Bachelor Thesis Open Access

Generating Explanations for Graph Neural Networks for tt+X events at the CMS Experiment

Oßwald, Paul


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Oßwald, Paul</subfield>
    <subfield code="u">KIT/ETP</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2338128</subfield>
    <subfield code="u">https://publish.etp.kit.edu/record/22217/files/Bachelorthesis_Paul_Osswald_GNNExplainer.pdf</subfield>
    <subfield code="z">md5:bd063daba99ddf1d6075ab2e77414d3b</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">thesis</subfield>
    <subfield code="b">bachelor-thesis</subfield>
  </datafield>
  <controlfield tag="005">20240213100406.0</controlfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In the last years, efforts have been made to use various machine learning models in the multiclass classification of the tt+X&amp;nbsp;events. Especially Graph Neural Networks (GNN) architectures have received attention, due to the data structure lending itself to the representation as a multi-relational graph. Naturally, when using a GNN to classify an event, it is of interest why it makes a particular prediction. GNNs however, due to the complex structure of graph data and black-box nature, are hard to interpret.&lt;/p&gt;

&lt;p&gt;This thesis focuses on examining a GNN trained for this classification task using the GNNExplainer method to better understand the underlying decisions taken by the GNN when using different tt+X&amp;nbsp;events as input.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2023-11-08</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Husemann, Prof. Dr. Ulrich</subfield>
    <subfield code="u">KIT/ETP</subfield>
    <subfield code="4">ths</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Wassmer, Dr. Michael</subfield>
    <subfield code="u">KIT/ETP</subfield>
    <subfield code="4">ths</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Pfeffer, Emanuel</subfield>
    <subfield code="u">KIT/ETP</subfield>
    <subfield code="4">ths</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Generating Explanations for Graph Neural Networks for tt+X events at the CMS Experiment</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Graph Neural Networks</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">GNNExplainer</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">CMS</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">ttX</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Machine learning</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:publish.etp.kit.edu:22217</subfield>
    <subfield code="p">user-cms</subfield>
    <subfield code="p">user-etp</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-cms</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-etp</subfield>
  </datafield>
  <controlfield tag="001">22217</controlfield>
</record>

Cite as