Doctoral Dissertation Open Access
Bal, Aritra
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <controlfield tag="001">22337</controlfield> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="o">oai:publish.etp.kit.edu:22337</subfield> <subfield code="p">user-etp</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2025-07-11</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <controlfield tag="005">20250807085839.0</controlfield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">thesis</subfield> <subfield code="b">phd-thesis</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">14886938</subfield> <subfield code="u">https://publish.etp.kit.edu/record/22337/files/Classical_and_Quantum_Machine_Learning_for_Anomaly_Detection_at_the_CMS_Experiment_and_Beyond.pdf</subfield> <subfield code="z">md5:28e501a400a159ae7a647e9590b4510b</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Klute, Markus</subfield> <subfield code="u">KIT/ETP</subfield> <subfield code="4">ths</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Wolf, Roger</subfield> <subfield code="u">KIT/ETP</subfield> <subfield code="4">ths</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Maier, Benedikt</subfield> <subfield code="u">Imperial College, London</subfield> <subfield code="4">ths</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="a">Bal, Aritra</subfield> <subfield code="u">KIT/ETP</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-etp</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>This thesis presents two novel methodologies for anomaly detection in particle collision events, utilising both classical and quantum machine learning techniques. The first approach employs an unsupervised, data-driven variational autoencoder (VAE), trained on collision data recorded by the CMS detector at the Large Hadron Collider during Run 2.&nbsp;No significant excess above the Standard Model (SM) expectation is observed. This method is subsequently used to derive exclusion limits on a large number of exotic signal models derived from Beyond the Standard Model (BSM) physics.&nbsp;The second approach introduces a novel quantum machine learning framework, named <em>1P1Q</em>, for encoding jet kinematic features onto two-level quantum bits (qubits).&nbsp;For both the anomaly detection and supervised classification tasks, the <em>1P1Q</em> method is demonstrated to achieve signal identification and separation performance comparable to or surpassing current state-of-the-art classical machine learning algorithms.</p></subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Classical and Quantum Machine Learning for Anomaly Detection at the CMS Experiment and Beyond</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">machine learning</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">quantum machine learning</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">anomaly detection</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">BSM physics</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">EXO</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">CMS</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">model-agnostic</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">unsupervised</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">ML</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">searches</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">CMS</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">ETP</subfield> </datafield> </record>