Master Thesis Open Access
Schmidt, Kylian
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="s">12693996</subfield>
<subfield code="u">https://publish.etp.kit.edu/record/22245/files/master_thesis_kylian_schmidt.pdf</subfield>
<subfield code="z">md5:b6e5fd718c2707381947cb3d2a3e9459</subfield>
</datafield>
<datafield tag="041" ind1=" " ind2=" ">
<subfield code="a">eng</subfield>
</datafield>
<controlfield tag="005">20240912133913.0</controlfield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">Schmidt, Kylian</subfield>
<subfield code="u">KIT/ETP</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-etp</subfield>
</datafield>
<controlfield tag="001">22245</controlfield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Klute, Markus</subfield>
<subfield code="u">KIT/ETP</subfield>
<subfield code="4">ths</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Ferber, Torben</subfield>
<subfield code="u">KIT/ETP</subfield>
<subfield code="4">ths</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Heidelbach, Alexander</subfield>
<subfield code="u">KIT/ETP</subfield>
<subfield code="4">ths</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">Graph Neural Networks, Axion-Like Particles</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">Photon Reconstruction of Axion-Like Particles with Graph Neural Networks at Beamdump Experiments</subfield>
</datafield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2024-03-02</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="o">oai:publish.etp.kit.edu:22245</subfield>
<subfield code="p">user-etp</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">thesis</subfield>
<subfield code="b">master-thesis</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a"><p>Axion-Like Particles (ALPs) are hypothetical weakly interacting light particles predicted<br>
by theories Beyond the Standard Model which could be mediators between a dark sector<br>
and the Standard Model. Some of these theories predict light ALPs which decay into two<br>
photons and could be detected at future beamdump experiments such as LUXE - New<br>
Physics search at Optical Dump.</p>
<p><br>
To investigate the properties of such ALPs, an accurate reconstruction of the common<br>
photon vertex from the hits measured in the detector can aid the search significantly. For<br>
this purpose, the photon shower direction needs to be reconstructed precisely, combining<br>
techniques from cluster and track reconstruction. This task is a prime candidate for modern<br>
methods of reconstruction based on Machine Learning such as Graph Neural Networks.</p>
<p><br>
This thesis presents a Graph Neural Network composed of GravNet and GarNet, which<br>
is able to reconstruct the decay vertex of ALPs from the sparse detector hits of the two<br>
photon showers. The performance of the network is assessed on a data-set simulated with a<br>
high granularity calorimeter.</p></subfield>
</datafield>
</record>