Master Thesis Open Access
Schmidt, Kylian
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2024-03-02</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">12693996</subfield> <subfield code="u">https://publish.etp.kit.edu/record/22245/files/master_thesis_kylian_schmidt.pdf</subfield> <subfield code="z">md5:b6e5fd718c2707381947cb3d2a3e9459</subfield> </datafield> <controlfield tag="001">22245</controlfield> <controlfield tag="005">20240912133913.0</controlfield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Axion-Like Particles (ALPs) are hypothetical weakly interacting light particles predicted<br> by theories Beyond the Standard Model which could be mediators between a dark sector<br> and the Standard Model. Some of these theories predict light ALPs which decay into two<br> photons and could be detected at future beamdump experiments such as LUXE - New<br> Physics search at Optical Dump.</p> <p><br> To investigate the properties of such ALPs, an accurate reconstruction of the common<br> photon vertex from the hits measured in the detector can aid the search significantly. For<br> this purpose, the photon shower direction needs to be reconstructed precisely, combining<br> techniques from cluster and track reconstruction. This task is a prime candidate for modern<br> methods of reconstruction based on Machine Learning such as Graph Neural Networks.</p> <p><br> This thesis presents a Graph Neural Network composed of GravNet and GarNet, which<br> is able to reconstruct the decay vertex of ALPs from the sparse detector hits of the two<br> photon showers. The performance of the network is assessed on a data-set simulated with a<br> high granularity calorimeter.</p></subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="a">Schmidt, Kylian</subfield> <subfield code="u">KIT/ETP</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">thesis</subfield> <subfield code="b">master-thesis</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="o">oai:publish.etp.kit.edu:22245</subfield> <subfield code="p">user-etp</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-etp</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Klute, Markus</subfield> <subfield code="u">KIT/ETP</subfield> <subfield code="4">ths</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Ferber, Torben</subfield> <subfield code="u">KIT/ETP</subfield> <subfield code="4">ths</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Heidelbach, Alexander</subfield> <subfield code="u">KIT/ETP</subfield> <subfield code="4">ths</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Photon Reconstruction of Axion-Like Particles with Graph Neural Networks at Beamdump Experiments</subfield> </datafield> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Graph Neural Networks, Axion-Like Particles</subfield> </datafield> </record>