Bachelor Thesis Open Access
Schmitt, Frederik
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">thesis</subfield> <subfield code="b">bachelor-thesis</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">3174467</subfield> <subfield code="u">https://publish.etp.kit.edu/record/22144/files/BachelorThesis.pdf</subfield> <subfield code="z">md5:d403f98d722b7395828af97c6fbabe80</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Belle II</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">ALPs</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <controlfield tag="001">22144</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Ferber, Torben</subfield> <subfield code="u">KIT/ETP</subfield> <subfield code="4">ths</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Stefkova, Slavomira</subfield> <subfield code="u">KIT/ETP</subfield> <subfield code="4">ths</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Improving Event Selection with Machine Learning Methods for the $B^\pm \rightarrow K^\pm a,~a\rightarrow \gamma\gamma$ Search at Belle II.</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-belle2</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-etp</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>In the search for&nbsp;Axion Like Particles (ALPs) as a extension of the standard model of particle physics, one possibly arising experimental signature is&nbsp;<span class="math-tex">\(B^\pm \rightarrow K^\pm a,~a\rightarrow \gamma\gamma\)</span>.<br> In the context of the search for this signature at the Belle II experiment, this thesis studies an alternative signal selection algorithm on Belle II simulation samples.<br> Here the signal selection is based on the so-called Punzi-net, &nbsp;a training of a feed-forward neural network with a loss function inspired by the minimal detectable cross-section. This approach&nbsp;reproduces the signal efficiency&nbsp;from&nbsp;the previous cut-based selection.</p></subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="o">oai:publish.etp.kit.edu:22144</subfield> <subfield code="p">user-belle2</subfield> <subfield code="p">user-etp</subfield> </datafield> <controlfield tag="005">20221216132845.0</controlfield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2022-12-13</subfield> </datafield> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="a">Schmitt, Frederik</subfield> <subfield code="u">KIT/ETP</subfield> </datafield> </record>