Master Thesis Open Access
Wemmer, Florian
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">thesis</subfield> <subfield code="b">master-thesis</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">24167209</subfield> <subfield code="u">https://publish.etp.kit.edu/record/22142/files/Thesis.pdf</subfield> <subfield code="z">md5:10467487be40bb285ef4c08e55f243d8</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Belle II</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Calorimeter</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Graph Neural Networks</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Deep Learning</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Clustering</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Photon Reconstruction</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <controlfield tag="001">22142</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Ferber, Torben</subfield> <subfield code="u">KIT/ETP</subfield> <subfield code="4">ths</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Klute, Markus</subfield> <subfield code="u">KIT/ETP</subfield> <subfield code="4">ths</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-belle2</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-etp</subfield> </datafield> <datafield tag="502" ind1=" " ind2=" "> <subfield code="c">Karlsruhe Institute of Technology (KIT)</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>This thesis presents the implementation and performance of the GravNet algorithm for the photon<br> energy reconstruction in the Belle II electromagnetic calorimeter. GravNet is a machine learning<br> algorithm based on the concept of graph neural networks. The Belle II Analysis Software Frame-<br> work is the currently used reconstruction framework that serves as the baseline for comparison in<br> several studies. GravNet solves many of the conceptual restrictions that limit the performance<br> of the traditional reconstruction approach, especially in the presence of high levels of beam<br> background. The studies in this thesis are considered a first validation and are exclusively based<br> on Monte Carlo generated and simulated data. The GravNet implementation outperforms the<br> baseline energy resolutions over a large range of photon energies from 0.01GeV to 3.0 GeV by<br> up to 20 %. In addition, the studies demonstrate substantial improvements of up to 15 % in the<br> reconstruction of neutral pions from the invariant mass of two-photon systems. GravNet proves<br> to be a viable and versatile reconstruction algorithm with a promising outlook for a broad range<br> of present and future applications.</p></subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="o">oai:publish.etp.kit.edu:22142</subfield> <subfield code="p">user-belle2</subfield> <subfield code="p">user-etp</subfield> </datafield> <controlfield tag="005">20221202162153.0</controlfield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2022-11-11</subfield> </datafield> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="a">Wemmer, Florian</subfield> <subfield code="u">KIT/ETP</subfield> </datafield> </record>