Master Thesis Open Access
Greta Heine
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">9020387</subfield> <subfield code="u">https://publish.etp.kit.edu/record/22136/files/Master_Thesis_Greta_Heine-final.pdf</subfield> <subfield code="z">md5:0ff99df6f2cce1e7933f7ef0b8e1ff9f</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">A Fast AI-Based Track Reconstruction on FPGA for the PANDA Experiment</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">thesis</subfield> <subfield code="b">master-thesis</subfield> </datafield> <controlfield tag="001">22136</controlfield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="a">Greta Heine</subfield> <subfield code="u">KIT/ETP, KIT/IPE</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Efficient reconstruction of charged particle trajectories is a crucial yet very difficult step&nbsp;in the analysis pipeline of high energy physics (HEP) experiments. Recent work has&nbsp;shown that graph neural networks (GNNs) are well suited for the pattern recognition&nbsp;task of track finding, where tracking detector hits can be naturally represented as nodes&nbsp;and particle track segments as edges. The interaction network (IN) GNN architecture&nbsp;provides computationally efficient edge classification of the high-dimensional and sparse&nbsp;tracker data, which is especially crucial for implementation in constrained computing&nbsp;environments such as field programmable gate arrays (FPGAs). This work describes the&nbsp;overall workflow for implementing and systematically analyzing an IN-based classification&nbsp;of track segments on FPGAs for the anti-Proton&nbsp;Annihilation at&nbsp;DArmstadt (PANDA)&nbsp;forward tracking system (FTS). This workflow includes data preprocessing, graph building, GNN-based edge classification and a series of FPGA implementation design studies&nbsp;concerning latency, resource utilization, and classification quality using the high level&nbsp;synthesis for machine learning (hls4ml) compiler. The presented final implementation of&nbsp;the GNN-based track segment classifier on a Xilinx Zynq&nbsp;provides an overall inference latency of about&nbsp;0.99&nbsp;&mu;s&nbsp;using about&nbsp;34 %&nbsp;of available digital signal processors (DSPs) and&nbsp;85 %&nbsp;of available lookup tables (LUTs). This work enables the acceleration of charged particle tracking on heterogeneous computational resources toward real-time track reconstruction for the PANDA experiment. The discussed methods and studies could be easily adapted and used in other HEP experiments for accelerated charged particle tracking.</p></subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2022-09-15</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-etp</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-hardware</subfield> </datafield> <controlfield tag="005">20221202161804.0</controlfield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">HEP, Machine Learning, GNN, FPGA, PANDA, Tracking</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="o">oai:publish.etp.kit.edu:22136</subfield> <subfield code="p">user-hardware</subfield> <subfield code="p">user-etp</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Prof. Dr. Torben Ferber</subfield> <subfield code="u">KIT/ETP</subfield> <subfield code="4">ths</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Dr. Michele Caselle</subfield> <subfield code="u">KIT/IPE</subfield> <subfield code="4">ths</subfield> </datafield> </record>