Master Thesis Open Access

Study of $B → D^{**} l \nu$ decays for a $R(D^{ (∗) })$ measurement at Belle

Ecker, Patrick


JSON-LD (schema.org) Export

{
  "@context": "https://schema.org/", 
  "@type": "ScholarlyArticle", 
  "contributor": [], 
  "creator": [
    {
      "@type": "Person", 
      "affiliation": "KIT/ETP", 
      "name": "Ecker, Patrick"
    }
  ], 
  "datePublished": "2021-02-24", 
  "description": "<p>One of the assumptions the standard model of particle physics makes is the lepton flavor universality.<br>\nThis assumes that the couplings of the gauge bosons do not depend on the flavor of the interacting lepton.<br>\nTaking this assumption into account, one can calculate the branching fraction ratios of the semileptonic $ B \\rightarrow D^{(**)} \\tau \\nu $ decay to the $ B \\rightarrow D^{(**)} l \\nu $ decay, with $ l $ being one of the light leptons $ e $ or $ \\mu $.<br>\nThe combined result shows a $ 3.1\\sigma $ deviation from the value expected from the SM.<br>\nTo check whether the discrepancy reported by the previous $ \\mathcal{R}(D^{(**)}) $ measurements is actually there or caused by a systematic error in the measurement, a new&nbsp; $ \\mathcal{R}(D^{(**)}) $ measurement is performed with the Belle dataset.<br>\n<br>\nTwo of the main systematic uncertainties, which are reported for the previous measurements, are the limited knowledge about both the shapes and the branching fractions of the $ B \\rightarrow D^{**} l \\nu $ decays.<br>\nTo reduce the above mentioned uncertainties for the $ \\mathcal{R}(D^{(**)}) $ analysis, this thesis provides studies on the form factor modeling of the four different $ D^{**} $ states.<br>\nAdditionally, this thesis introduces a setup to measure the different $ B \\rightarrow D^{**} l \\nu $ branching fractions for each of the four different $D^{**} $ states.<br>\nBoth the form factor study and the branching fraction measurement are expected to improve the understanding of the decay $ B \\rightarrow D^{**} l \\nu $ and consequently reduce the systematic uncertainty on the underlying $ \\mathcal{R}(D^{(**)}) $ measurement.</p>\n\n<p>&nbsp;</p>", 
  "headline": "Study of $B \u2192 D^{**} l \\nu$ decays for a $R(D^{ (\u2217) })$ measurement at Belle", 
  "image": "https://publish.etp.kit.edu/static/img/logos/zenodo-gradient-round.svg", 
  "inLanguage": {
    "@type": "Language", 
    "alternateName": "eng", 
    "name": "English"
  }, 
  "keywords": [
    "Belle"
  ], 
  "name": "Study of $B \u2192 D^{**} l \\nu$ decays for a $R(D^{ (\u2217) })$ measurement at Belle", 
  "url": "https://publish.etp.kit.edu/record/22064"
}

Cite as