Master Thesis Open Access
Sowa, Lars
{ "@context": "https://schema.org/", "@type": "ScholarlyArticle", "contributor": [], "creator": [ { "@type": "Person", "affiliation": "KIT/ETP", "name": "Sowa, Lars" } ], "datePublished": "2021-07-27", "description": "<p>The SuperKEKB collider in Japan accelerates<br>\nelectrons and positrons which collide at an energy of 11 GeV aiming to produce B meson<br>\npairs. To analyse the properties of a B meson, it gets recombined from its decay daughters.<br>\nSince there are a lot of background events that mimic the signature of a B meson, it is<br>\nimportant to suppress these events. Such a suppression is called Continuum Suppression. This work aims to further improve the Deep Continuum Suppression, which is perfromed by a Multilayer Perceptron (MLP), by three points: Firstly, an MLP needs a fixed order for input particles. Therefore, this thesis<br>\npresents a reliable, self-attention-based input mechanism which allows for invariance under<br>\nthe particle order. Secondly, to guarantee certainty about the prediction of deep learning models, there is a<br>\nhigh interest in models with predictive uncertainties. This is addressed using the concept<br>\nof Deep Ensembles to predict uncertainties of continuum classifications.<br>\nFinally, the use of vertex information for the training of a model leads to a bias in<br>\ncertain analysis variables. Since this could lead to falsification of further studies, a Distance<br>\nCorrelation is used to decorrelate the Continuum Suppression model from third variables.</p>", "headline": "Deep Continuum Suppression with Predictive Uncertainties at the Belle II Experiment", "image": "https://publish.etp.kit.edu/static/img/logos/zenodo-gradient-round.svg", "inLanguage": { "@type": "Language", "alternateName": "eng", "name": "English" }, "keywords": [ "Continuum Suppression", "Deep Learning", "Uncertainties", "Decorrelation", "Self-Attention" ], "name": "Deep Continuum Suppression with Predictive Uncertainties at the Belle II Experiment", "url": "https://publish.etp.kit.edu/record/22060" }