Bachelor Thesis Open Access
Heine, Greta Sophie
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Heine, Greta Sophie</dc:creator> <dc:date>2019-11-04</dc:date> <dc:description>This thesis enhances the understanding of Neural Network (NN) trainings by investigation of the learning process especially focusing on the dependence of the NN output on the input space for given tasks. For this purpose, the NN function is decomposed into a Taylor expansion. The Taylor coefficients serve as a metric to illustrate the influence of input space features on the output at each step of the training. Both, the arithmetic mean values of the Taylor coefficients and their dependence on each point of the input space are investigated, giving new insights into the decision taking of NNs.</dc:description> <dc:identifier>https://publish.etp.kit.edu/record/21984</dc:identifier> <dc:identifier>oai:publish.etp.kit.edu:21984</dc:identifier> <dc:language>eng</dc:language> <dc:relation>url:https://publish.etp.kit.edu/communities/computing</dc:relation> <dc:relation>url:https://publish.etp.kit.edu/communities/etp</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:subject>neural network, training, Taylor expansion</dc:subject> <dc:title>Illustration of the Neural Network Learning Process during Training</dc:title> <dc:type>info:eu-repo/semantics/bachelorThesis</dc:type> <dc:type>thesis-bachelor-thesis</dc:type> </oai_dc:dc>