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Disclaimer

The results of modern particle physics are a collaborative effort. The work in this thesis is
built upon the work of Lea Reuter [1], who developed the Python code for the tracking
software CDC AI Tracking (CAT) and provided the Python scripts to train and evaluate
the models presented in this thesis. The Belle II collaboration [2] built and maintains the
Belle II detector, which is the main subject of this thesis. They also developed and maintain
the Belle II Analysis Software Framework (basf2) [3], which is used in this thesis for the
simulated events. Those events for this thesis are simulated by Lea Reuter. The event
displays shown in Chapter 4 are taken from Lea Reuter. The training of the models in
Chapter 5 was performed on the TOpAS GPU cluster at the Scientific Computing Center
(SCC) at KIT. The metrics used to evaluate the tracking performance in Chapter 5 are
taken from the Belle II tracking group [4], where Lea Reuter provided the scripts to access
the necessary information.

My contributions include the selection of the optimization methods for the input features
and the implementation of those in the Python code. The training and evaluation of those
models with the respective analysis are done by me. The plots and the tables, starting from
Chapter 4, are created by me.

This thesis incorporates the use of Artificial Intelligence (AI) tools to help with grammat-
ical or stylistic improvement of text creation. Grammarly1 is utilized throughout the thesis
for spell and grammar checks, as well as for paraphrasing individual, selected sentences to
improve clarity and precision in academic writing. I have approved all suggested changes.

1Grammarly Inc. Grammarly. url: https://www.grammarly.com (visited on Oct. 18, 2024).
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1. Introduction

Physicists are always striving for higher precision in their measurements to get a deeper
understanding of our universe and its fundamental rules. To measure those rules and
get answers to the open questions of particle physics, large experiments are carried out.
Among the leading experiments in the flavor and dark sector is the Belle II detector [2] at
the SuperKEKB accelerator facility [6] in Tsukuba, Japan. Its goal is to investigate rare
processes of the B-meson decay and new physics with unparalleled precision.

One of the main tasks of the Belle II detector is the reconstruction of particle trajectories
to measure the particle kinematics at the production point, called Interaction Point (IP).
This is mainly done in the Central Drift Chamber (CDC), where the particles ionize a gas
along their trajectories, also called tracks. The energy deposition along those tracks is then
measured by long wires in the CDC. An algorithm working with Legendre-transformation
finds those tracks as a pattern recognition task [4]. To get a higher precision than the
present algorithm for the CDC, a new algorithm CDC AI Tracking (CAT) [1] is built based
on Graph Neural Networks (GNNs). Significant improvement could be made in finding
so-called displaced tracks, which do not originate from the IP.

The main content of this work is to improve the CAT finder by input feature optimization.
Different methods to improve the input features of Neural Networks (NNs) are discussed
among researchers like feature selection, feature scaling, and feature criteria [7, 8]. With
those methods, new models of the CAT finder are trained with the aim of increasing the
performance of the models and time-savings of the training. The model with the best input
feature configuration will then be compared with the current standard configuration of the
CAT finder and the Legendre-based track finding algorithm.

This thesis is organized as follows. In Chapter 2, a short overview is given of the
SuperKEKB accelerator, the Belle II detector, and the structure and readout electronics of
the CDC. Chapter 3 describes the track finding in the CDC with the Legendre-based track
finding algorithm and the CAT finder, as well as the data set with simulated events. An
investigation of the input features with a visualization of those and the methods of input
feature optimization will be given in Chapter 4. The main evaluation of the trained models
and the analysis is given in Chapter 5. At last, a conclusion is drawn in Chapter 6.
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2. The Belle II Experiment

2.1. The SuperKEKB Accelerator and the Belle II Detector

In this section the experimental setup is briefly described, based on [6, 2, 9]. For further
information about the accelerator, see [6] and for the detector, see [2].

The SuperKEKB accelerator is a high-intensity asymmetric electron-positron-collider
located in Tsukuba, Japan. It collides beams of 4GeV positrons and 7GeV electrons with
the center-of-mass energy at the Υ(4S) resonance. This energy is over the threshold of the B-
meson pair production Υ(4S) → BB̄ where no fragmentation particles are produced. For this
reason, the SuperKEKB collider is also called B-Factory. Because of the asymmetric beam
energies, the particles are boosted in the lab system, which allows for precise measurements
of lifetimes, mixing parameters and the time-dependent Charge Parity (CP) symmetry
violation can be studied [6]. The instantaneous luminosity goal at SuperKEKB is set to
6.3× 1035 cm−2 s−1 [10], which is nearly 40 times higher than the achieved luminosity at
the old accelerator KEKB [2].

The beams from the accelerator collide at the Interaction Point (IP) inside the Belle
II detector. A schematic view of the detector can be seen in Fig. 2.1. Because of the
asymmetric collision of the particles and the resulting boost in the center-of-mass frame, the
direction of the electrons is considered forward and the other direction is called backward.
The positive z axis is parallel to the solenoid axis. The x and y axis point away from the
IP, where the x axis is horizontal and the y axis is vertical. The azimuthal angle is called ϕ
and the polar angle θ. The cylindrical area around the z axis is called the barrel region
and in the forward and backward directions are the endcaps [2]. The components of the
detector are arranged like layers inside of the detector and are the following from innermost
to outermost:

• Beam pipe: In the double-walled Beryllium beam pipe the beams are accelerated
and collided in the IP with a crossing angle of 83 mrad. Because of the Nano-Beam
scheme, the beam pipe can be smaller and the beam has a higher current than its
predecessor [2].

3
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Vertex Detectors

Central Drift 
Chamber (CDC)

Electromagnetic 
Calorimeter (ECL)

Particle Identification 
(ARICH)

KL and Muon 
Detector (KLM)

Detector Solenoid

Particle 
Identification (TOP)

positrons

electrons

Figure 2.1.: Schematic overview of the Belle II detector showing the layers of different
components to detect and measure particles. Adapted from [11].

• Vertex detectors: The innermost detector, the Pixel Detector (PXD), has the
highest precision in determining the IP. The PXD consists of two layers of sensors,
with radii of 14 mm and 22 mm [2].
The Silicon Vertex Detector (SVD) is composed of four layers and has an acceptance
range of 17◦ < θ < 150◦ [2]. The main purpose of the SVD is to have high efficiency
in reconstructing the vertices of K0

S → π+π− decays [9].

• Central Drift Chamber (CDC): The CDC is the central tracking device of the
Belle II detector. This large volume drift chamber is filled with sense wires and a
gas mixture of helium and ethane. It has the same acceptance rate as the SVD of
17◦ < θ < 150◦ [2, 9]. The main purposes of the CDC are the determination of the
particle trajectory and its momentum, the measurement of energy losses in the gas
volume to identify the particle, and providing the trigger information on the charged
particles [12]. This is the main detector for this thesis and therefore it is described in
more detail in Sec. 2.2.

• Particle identification system: In the barrel region there is the Time-of-Propagation
(TOP) counter. This Cherenkov detector consists of quartz bars and photo-detectors
at the end. With two-dimensional information on the Cherenkov rings, the particles
can be identified [9, 13].
The Aerogel Ring-imaging Cherenkov (ARICH) detector is used in the forward endcap
region. It consists of an aerogel radiator and an array of position-sensitive photon
detectors. Both systems can separate pions and kaons in a high-impulse spectrum. [2]
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• Electromagnetic Calorimeter (ECL): This calorimeter consists of CsI(Tl) scin-
tillation crystals in the barrel and endcap region. It covers a polar angle region of
12.4◦ < θ < 155.1◦ The main purposes are the detection and precise determination of
the energy of photons and the electron identification [2, 9].

• Detector Solenoid: The superconducting solenoid provides a magnetic field of 1.5T
with a 3.1m diameter. Because of this, the charged particles have a helical trajectory.
With the radius of this trajectory and the charge of the particle, the impulse can be
determined [2].

• KL and Muon Detector (KLM): This detector consists of an alternating sandwich
of iron plates and active detector elements. The iron plates serve as the magnetic flux
return for the solenoid and provide more material, in which K0

L mesons can shower
hadronically. The total angular coverage with the endcaps is 20◦ < θ < 155◦. Its
main purpose is to detect the long-living particles K0

L and muons [2, 9].
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2.2. Central Drift Chamber
2.2.1. Geometry and Structure

Inside the volume of the CDC are 42 240 field wires and 14 336 sense wires spanned parallel
to the magnetic field of the solenoid. Additionally, in the volume, there is a gas mixture
of helium and ethane. When a charged particle flies through this gas, around its path
electrons are produced that drift in the electrical field towards the sense wires, where the
particle can be tracked. The inner and outer cylinder of the CDC consists of a thin carbon
fiber reinforced plastic and two round aluminum endplates around the IP. The detector has
a polar angular acceptance of 17◦ < θ < 150◦. The radius of the inner cylinder is 160mm
and of the outer 1130mm, the length of the CDC is 2417mm. [2]. The structure can be
seen as a cross-section in Figure 2.2.

Figure 2.2.: Schematic structure of the CDC as a cross-section in the Belle II detector.
Taken from [2].

The CDC has a cellular structure, where cells consist of eight field wires made out of
aluminum and one sense wire made out of tungsten. Respectively eight field wires create an
electrical field, with one sense wire in the middle. This can be seen in figure 2.3. When a
charged particle flies through the gas inside the CDC, electrons are created in the ionization
process around its path. The electrons then drift in the electrical field towards the sense
wire. With the information of the time, the electrons need to drift to the sense wire, a circle
with the distance between sense wire and particle can be drawn, a so called drift circle.
The sense wire then gives a signal to the readout electronics, which allows the trajectory of
the particle to be reconstructed [2, 12].



2.2. Central Drift Chamber 7

Figure 2.3.: Visualization of the electrical field created in one cell of the CDC. The electrical
field (green dashed line) is created by the field wires (violet points) and the drift
paths (yellow line) of the electrons point toward the sense wires (red points).
Taken from [14].

The sense wires are arranged in 56 layers around the IP. Those layers are grouped into 9
superlayers, with 8 layers in the innermost superlayer and 6 layers in the remaining. To get
better tracking in z-direction, parallel to the magnetic field, some of those superlayers are
skewed by a small angle. The parallel superlayers are called axial (A), and the intervening
superlayers, called stereo, alternate between positive (U) and negative (V) angles. The
total sequence is AUAVAUAVA [2]. Detailed information about the superlayers can be seen
in Tab. 2.1, where superlayer 1 is the innermost.

Table 2.1.: Configuration of the superlayers in the CDC. Taken from [2].

superlayer type layers cells per layer radius (mm) stereo angle (mrad)

1 axial A 8 160 168.0 – 238.0 0
2 stereo U 6 160 257.0 – 348.0 45.4 – 45.8
3 axial A 6 192 356.2 – 455.7 0
4 stereo V 6 224 476.9 – 566.9 -55.3 – -64.3
5 axial A 6 256 584.1 – 674.1 0
6 stereo U 6 288 695.3 – 785.3 63.1 – 70.0
7 axial A 6 320 802.5 – 892.5 0
8 stereo V 6 352 913.7 – 1003.7 -68.5 – -74.0
9 axial A 6 284 1020.9 – 1111.4 0



8 2. The Belle II Experiment

2.2.2. Readout Electronics

The readout electronics of the CDC provide the digitized analog signal, the Analog-to-Digital
Converter (ADC) count, the associated time information, the Time-to-Digital Converter
(TDC) count and the Time-Over-Threshold (TOT) count to the Data Acquisition (DAQ)
system. The ADC count refers to the deposited energy of a wire hit in the CDC. It is
calculated as a truncated mean of a time window with a frequency of approximately 30MHz.
The TDC count is the time information of hits in the CDC and has a resolution of 1 ns.
The TOT count gives the duration time of the signal over a specific threshold [15, 2].

The timer of the TDC is read out on a periodical external trigger, approximately every
30 ns. Subtracting this time difference between the last external trigger signal and the
arrival of the electrons at the wire Tcount by the known clock time Tclock gets the full
measured time Tmeas. The measured time Tmeas is given by (see [16])

Tmeas = T0 + Tflight + Tdrift + Tprop + Twalk. (2.1)

Here, T0 is given by the difference between the external trigger signal and the collision,
which was producing the particle. Tflight is the flight time of the particle until it reaches the
drift cell, Tdrift is the time the electron drifts from the ionization to the sense wire, and
Tprop is the time, the electrical signal propagates through the wire to the readout electronics.
When the current of the wire starts rising, the timer at the readout electronics gets started.
This is the neglectable time Twalk. With the drift time Tdrift and because of the constant
drift velocity of the electrons, the closest distance of the particle and the sense wire can be
determined, which can be visualized as a drift circle. With this, the accuracy of the track
fitting gets higher [16]. A visualization of the time components is shown in Fig. 2.4.

Figure 2.4.: Visualisation of the time components of a CDC wire hit. The particle, which
was produced at T0, travels to the cell (Tflight), where the electrons from the
ionization drift to the sense wire (Tdrift) and the electrical signal propagates
through the wire (Tprop) to the readout electronics, which start a timer (Twalk).
At the next external clock signal, the timer is read out (Tcount). The lengths of
the times on the x axis are not to scale. Taken from [16].



2.3. Beam Background 9

2.3. Beam Background

The beam-induced backgrounds, here from now on referred to as beam background, is one
of the key challenges for tracking at Belle II. Because the luminosity of the SuperKEKB
collider is increased by reducing the beam size and by higher beam currents, the background
is higher than for the KEKB accelerator and is expected to get higher in the next ten years.
The main sources of the beam background are the following, based on [10]:

• Particle scattering: The particles fall out of the stable orbit because of scattering
with gas molecules or Coulomb scattering in the beam bunch (Touschek effect) and
reach the wall of the beam pipe. Here they create an electromagnetic (EM) shower,
which is then detected in the detector as background.

• Colliding beams: Some collision processes, which are not of high interest for physics
measurements but have a high cross-section, create a radiative background. Those
are for example radiative Bhabha scattering and two photon processes.

• Beam injection: When new bunches are injected, because of the limited lifetime
of the beam, the particle loss gets higher during the first rounds, until the beam is
stable again.

Other sources for background in the CDC can be the interference from different channels,
because of spatially close sense wires [17] and cosmic rays, which fly through the detector.
When being studied by Monte Carlo (MC) simulations, a background rate of 150 kHz/wire
in the CDC is considered acceptable [18].





3. Track Finding in the Central Drift
Chamber

The Belle II tracking software consists of independent and interchangeable data processing
modules, which perform the corresponding task. The information from all modules gets
integrated into one final set of tracks that are available for physics analyses. Different
algorithms are used for the different tracking detectors [4]. The combination of the
reconstructed tracks from each of the tracking detectors is done by a Combinatorial Kalman
Filter (CKF) [16]. After this, the track fitting algorithm performs a track fit. Since the
main focus of this thesis is on the CDC, only the CDC track finding algorithm will be
explained here. For further information, see [4].

3.1. Legendre-based Track Finder
The trajectories of the charged particles in the CDC can be approximated as circles in the
xy plane. The reason for this is the magnetic field in the z direction from the solenoid and
the Lorentz force (see Sec. 2.2.1). Since the axial wires are parallel to the z axis, those can
provide the correct xy information of the trajectory for the first step of track finding. It is
assumed that all charged particles come from the IP in some approximation, which makes
a common point of all tracks. The wire hits in the CDC can be visualized as drift circles
around the sense wire, where the trajectory of the particle has to be a tangent (see Sec.
2.2.2) [12].

The Legendre-based track finder, in the following called the Baseline finder, uses the
characteristics of the trajectories to find and fit them with high precision. Because of the
circular trajectories, they first have to be transformed into straight lines. This is done
by conformal mapping, which transforms circles in the real space to straight lines in the
conformal space. The problem then is to only find a tangent common of all circles, with
known radius and position, which is done by the Legendre transformation. After the
Legendre transformation, the drift circle can be represented as a concave r+ and convex r−
part with:

r± = x0 cos θ + y0 sin θ ±Rdr (3.1)

Here (x0, y0) represents the center of the drift circle in the conformal space and Rdr its
radius (which is the same as in the real space). The parameters of the Legendre space are
r and θ. The common tangents of the drift circles in the conformal space correspond to

11
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intersections of the sinograms in the Legendre space [19, 12]. A representation of a common
tangent of drift circles in the Legendre space can be seen in Fig. 3.1.

Figure 3.1.: Visualization of a common tangent of drift circles (on the left) represented in
the Legendre space as the intersection of sinograms for the Legendre-based
track finding in the CDC (on the right). Here, x and y are the coordinates of
the conformal space, and r and θ are the Legendre parameters. Taken from
[12].

To determine the Legendre parameters, the most populated regions in the Legendre space
must be found. This is done by a two-dimensional binary search algorithm. This algorithm
works recursive, by dividing the r-θ space into four equally sized bins and selecting the
most populated, until convergence. The stopping of the binary search is determined by a
resolution parameter, which is dependent on r [12, 4].

In the next step, the hits from the stereo layers are added. Those hits contain the
z information because of the skewed angle of the stereo layers. The same algorithm as
described above can be used with the conformal mapping of the ρ-ϕ space, where ρ2 = x2+y2.
The trajectory is now straight in the s-z space, described by the equation

z0 = zrec − tanλ · srec. (3.2)

The reconstructed z coordinate zrec and s coordinate srec are transformed in the Legendre
space (z0, λ). The track parameters are determined by the same method. After the
two-dimensional track finding and the last step of adding the stereo wires, the tracks are
found and the momentum is determined [4].
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3.2. Track Reconstruction with Graph Neural Networks

The Baseline finder is facing higher difficulties because of the low efficiency in finding tracks,
that do not originate from the IP (see sec. 3.1) and because of the higher background
conditions in the CDC expected in the future (see sec. 2.3). This is the reason a finder
based on Artificial Intelligence (AI) is being developed [1].

3.2.1. CAT Finder

The new track finding algorithm CDC AI Tracking (CAT) uses Graph Neural Networks
(GNNs) to detect and fit the trajectories of charged particles in the CDC. The GNN
architecture allows the utilization of the variable input size and non-uniform arrangement of
the input wires. This algorithm aims to predict the number of tracks, the three-momentum,
the starting point of the track, the charge, and the hits associated with the number of
tracks [1].

Each node in the Graph corresponds to one wire hit. The standard input features are the
x and y position of the wire, the layer information (see Sec. 2.2.1), and the ADC and TDC
count (see Sec. 2.2.2). An overview of all used input features with their names can be seen
in the following:

• middle_x: x position of the wire, taken at the z middle of the wire.

• middle_y: y position of the wire, taken at the z middle of the wire.

• superlayer: Number of the superlayer in which the wire is, counting from 1 outwards
to 9.

• layer: Number of the layer inside the superlayer, counting from 1 outwards to 8 for
the first and 6 for the remaining superlayers.

• clayer: Total number of the layer, counting from 1 outwards to 56.

• adc: Signal amplitude, also called ADC count, which is proportional to the energy
deposition of the particle.

• tdc: Signal length, also called TDC count, which is the time difference between the
signal time and an external clock time.

The input features of the detector hits are first scaled to be in the same range and
then put in an input matrix. This runs through the initial Linear Layer (LL) [1]. The
GravNet block consists of a GravNet layer, which is responsible for building the graph and
for message passing between the nodes [1, 20]. After this comes a final LL. The output of
the first LL is used for the GravNet block and gets concatenated with the final layer [1]. A
visualization of the architecture of the CAT finder can be seen in Fig. 3.2.
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Figure 3.2.: Visualization of the architecture of the CAT finder using GNNs. Taken with
permission of Lea Reuter [1].

3.2.2. Simulated Events

The data set used for training and evaluation in this thesis are simulated Belle II events. The
MC simulation is done by the software tool GEANT4 [21]. Here, the full detector geometry
and all interactions of final state particles with the detector material can be simulated. The
software tool provides the simulation of a detector response to create digitized detector hits.
The simulated events are reconstructed and analyzed with the Belle II Analysis Software
Framework (basf2) [22, 3].

The particles in the simulation are created without bias toward specific event signatures.
The simulated, charged particles are muons, protons, electrons, and pions with their
respective antiparticle. All events include 1 to 11 particles and the charge is selected
randomly. The samples include displaced events, with a starting point not in the IP, and
displaced angled events with a new momentum direction. They also include vertex samples,
with a displaced starting point along the original momentum direction, where two particles
with opposite charge are created, with a new, random momentum direction [1]. Those
topologies of the data set can be seen in Fig. 3.3.

In addition to the simulated signal is an overlay of beam background in the events (see Sec.
2.3). This is done by simulated beam background corresponding to the collider conditions
in 2021 [10], in the following called low background and by data recorded by Belle II in the
last data-taking period during Run 1, in the following called high background. In Fig. 3.4 a
comparison between low and high background can be seen with two typical event displays.
The x and y information of the wire hits are plotted at z = 0. The wire hits are visualized
as dots over a schematic cross-section of the CDC. Because of the mc_id parameter in the
data set, the differentiation of each track from a particle and the background is possible.
The grey dots are marked as background and the colored dots each belong to a particle
track.
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Figure 3.3.: Topologies of the data set used for training and validating the CAT finder.
Particles and anti-particles are created in the IP (on the left), with displaced
starting points and displaced angles (in the middle), and with displaced vertices,
where two particles with opposite charges are created (on the right). Taken
with permission of Lea Reuter [1].
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Figure 3.4.: Visualization of a simulated event display at low (left) and high background
(right). The grey dots are marked as background and the colored points each
belong to a track of a simulated particle.
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4.1. Visualization of the Input Features

In the following, a visualization of the input features from the CDC will be given. The data
sets used for the studies of this thesis are simulated events, as discussed in Sec. 3.2.2. The
visualization leads to a better understanding of the input features, used for the CAT finder
and therefore will help with the upcoming optimization of the input features. Comparable
and extended studies can be found in [23].

4.1.1. Comparison between the Position Features

As discussed in Sec 3.2.1, the standard position parameters of the CAT finder are middle_x
and middle_y at the z middle of the wire from z = 0 cm up to z = 40 cm. The other option
would be the x and y position at z = 0, called x and y. Those parameters differ, because of
the non-symmetric structure of the CDC in the xz plane and because of the skewed stereo
layers (see Sec. 2.2.1). A visualization of the different position features for the CAT finder
can be seen in Fig. 4.1.

Fig. 4.2 shows a comparison of the two position parameters for different angles. In the
event display is a selection of tracks with specific angles θ. Those angles are calculated
from the momentum information of the simulation. The position parameters are projected
on the xy plane for a better comparison. The differences can then be seen at the stereo
layers because of their deviating position at z = 0 and the middle of the wire.

The signal at z = 0 is in one line in the xy plane at an angle of θ = 90◦ and the signal at
the middle of the wire is slightly shifted at the stereo layers. At an angle of about θ ≈ 60◦

is the signal at the middle of the wire in one line and the signal at z = 0 is shifted at the
stereo layers. In the forward direction with small angles, the shift in the stereo layers is
higher at the signal at z = 0 as at the middle of the wire (see θ = 37.5◦). In the backward
direction the other way around (see θ = 122.9◦). The shift of the track at the stereo layers
gives information about the z position of the track, where a higher shift means a higher z
value. Because of the asymmetric beam energies, most tracks are in the forward direction.
This means, that the shift in the forward direction is important than in the backward
direction. With this, the position at z = 0 can give better resolution in the z direction.

17
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Figure 4.1.: Visualization of the position features for the CAT finder as a cross-section of
the CDC in the xz plane. One position feature is taken at z = 0 and the other
at the z middle of the wire. It can be seen that the z middle of the wire is not
in one line, but shifted for the lower layers. Dimension of the CDC from [2].
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Figure 4.2.: Event display of selected tracks taken at low background with specific θ angles
to compare the two different position parameters. One position parameter is
taken at the z middle of the wire and the other at z = 0. The position of the
wires shown in the visualization of the event display in the background is taken
at z = 0.
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4.1.2. Distribution of the Input Features

In the following, the distribution of the ADC count, TDC count, and TOT count (see
Sec. 2.2.2) is shown for muons, electrons, and protons. Those can then be compared
to the distributions found in low or high background, regarding the data set. The high
background is of more interest because it is taken from real data and not simulated, as the
low background. The low background is of special importance in this thesis because the
training of the models is done with the low background.

Fig. 4.3 to 4.8 show the distributions for the low or high background hits as well as the
three signal particle hits for the ADC, TDC, and TOT count. Due to the different amounts
of background and signal hits, the histograms are normalized. An overview of the medians
and means of the ADC, TDC, and TOT count per particle can be seen in Tab. 4.1.

Table 4.1.: Median and mean values of the input features for muons, electrons, and protons.

input feature bg type muon electron proton
median mean median mean median mean

ADC count low 63 87.71 73 104.14 67 133.67
high 67 98.86 78 116.73 75 157.38

TDC count low 4802 4765.0 4801 4762.6 4792 4749.3
high 4812 4767.6 4813 4767.7 4803 4755.4

TOT count low 7 6.627 7 6.581 7 6.545
high 7 6.614 6 6.572 7 6.592

The distribution of the ADC count in dependency of the particle type compared to the
low background can be seen in Fig. 4.3 and for the high background in Fig. 4.4. The signal
has a distinct peak at around 60 ADC counts. The muons have the lowest median and
electrons the highest. All particles have a long tail to high values. The limit of the x axis is
set to 300 ADC counts, but the highest values of the ADC go up to 50 000 ADC counts,
which can be neglected. The y axis with the relative events is logarithmic.

Most of the ADC counts that belong to the background are very small, between 0 ADC
counts and 3 ADC counts. This maximum goes for the low background up to 1.6× 10−2

relative events and for the high background to 9.5× 10−2 relative events. The background
has a second smaller maximum at around 150 ADC counts and also a long tail towards high
values. Because of the different shapes of the distribution of the signal and background
hits, the ADC count can be used to distinguish signal and background and even give a hint
about the particle type.
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Figure 4.3.: Distribution of the ADC count for muons, electrons, and protons compared
with the low background from the simulated data set.

0 50 100 150 200 250 300
ADC count

10 4

10 3

10 2

10 1

re
la

tiv
e 

ev
en

ts
 / 

(1
.0

 A
DC

 c
ou

nt
s)

Belle II Simulation (own work)
high background

muon signal
electron signal
proton signal
background

Figure 4.4.: Distribution of the ADC count for muons, electrons, and protons compared
with the high background from the simulated data set.
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The distribution of the TDC count in dependency of the particle type compared to the
low background can be seen in Fig. 4.5 and for the high background in Fig. 4.6. The
signal has a distinct maximum at around 4880 TDC counts. The distribution of muons and
electrons behaves very similarly and protons have slightly smaller values. All particles have
a tail to smaller values down to 4200 TDC counts. There are no signal hits over 4930 TDC
counts.

The TDC count of the background is more evenly distributed with a small peak at
5000 TDC counts. The peak at the low background is more significant than at the high
background. There are even values over 5000 TDC counts. This concludes that the TDC
count can also be used to distinguish signal and background.

4300 4400 4500 4600 4700 4800 4900 5000
TDC count

0.000

0.002

0.004

0.006

0.008

0.010

re
la

tiv
e 

ev
en

ts
 / 

(5
.0

 T
DC

 c
ou

nt
s)

Belle II Simulation (own work)
low background

muon signal
electron signal
proton signal
background

Figure 4.5.: Distribution of the TDC count for muons, electrons, and protons compared
with the low background from the simulated data set.
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Figure 4.6.: Distribution of the TDC count for muons, electrons, and protons compared
with the high background from the simulated data set.

The distribution of the TOT count in dependency of the particle type compared to the
low background can be seen in Fig. 4.7 and for the high background in Fig. 4.8. The signal
has a maximum of around 7 TOT counts. The distribution of muons and electrons is still
quite similar and protons have slightly lower values. There are very few signal hits with
under 3 TOT counts. The distribution of the signal hits has a tail to high values. The x
axis is cut off at 17 TOT counts, but the highest values go up to 30 TOT counts.

The background hits have smaller TOT counts with a peak at 4 TOT counts for the
low background and 2 TOT counts for the high background. The distributions of both
background conditions have also a tail of up to 30 TOT counts. Although the TOT count
has very small values and the values are less distributed, the TOT count still shows different
distributions for signal and background and can therefore also be used to distinguish both.
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Figure 4.7.: Distribution of the TDC count for muons, electrons, and protons compared
with the low background from the simulated data set.
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Figure 4.8.: Distribution of the TDC count for muons, electrons, and protons compared
with the high background from the simulated data set.
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4.1.3. Areas of the Excess of Signal and Background Hits

For a deeper investigation of the input features, the areas of the excess of signal over
background hits and contrariwise are visualized in this section with two-dimensional
histograms. At first, the TDC count is plotted over the ADC count, and then the TOT
count is plotted over the ADC count. For signal hits, muons are chosen, because the
evaluation of the models will also be taken with muons. The same plots for electron and
proton hits can be seen in Sec. A.3.

The value of each bin nbin in the histogram is given by the number of signal hits nsignal

and the number of background hits nbackground per bin with the following formula:

nbin =
nsignal − nbackground

nsignal + nbackground
. (4.1)

A value of 1 (green) means a total excess of signal hits in this bin and -1 (violet) means a
total excess of background hits. A value of 0 (white) is the result of a balance between the
number of signal hits and background hits in one bin or an empty bin. Those conditions can
therefore not be distinguished. The total amount of hits per bin can also not be determined
by those plots and can be seen in Sec. A.2.

The two-dimensional histogram with the TDC count over the ADC count, with a com-
parison of the signal hits from a muon and the low background hits can be seen in Fig.
4.9 and in Fig. 4.10 for the high background. The highest bin at the y axis ends at 5020
TDC counts. A clear excess of background over signal hits (violet) can be seen at values
under 20 ADC counts and over 4900 TDC counts. The area of the excess of signal hits
(green) is bigger for the low background than for the high background. This is because
about four times more background hits are measured per event and therefore the bins are
filled with more background. At the low background, the green area is divided into two
parts horizontally. This can be explained by the second maxima of the background hits at
around 150 ADC counts. For higher values of the ADC count and lower values of the TDC
count, there are fewer hits in total, but for both background conditions, there is an excess
of background over signal hits.

The two-dimensional histogram with the TOT count over the ADC count can be seen
in Fig. 4.11 at the low background and in Fig. 4.12 at the high background. The bins
of the y axis end at 14 TOT counts and at the x axis at 300 ADC counts. An excess of
background hits can be seen especially under 4 TOT counts and over 20 ADC counts. For
low background, there are no hits with an ADC count which is less than double the value
of the TOT count. For the high background, this is only true for signal hits. The area of
the excess of signal hits is still bigger at the low background than at the high background.
The most signal hits are between 8 and 11 TOT counts and for low ADC counts. For high
TOT and ADC counts there are fewer hits, with a balance of signal and background hits at
low background and an excess of background hits at high background.

This shows that the distinct areas of the excess of signal hits can be used to find criteria,
where background hits are filtered out. But for higher background conditions the area of
the excess of signal hits is getting smaller, which makes the challenge more difficult to
distinguish between signal and background hits.
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Figure 4.9.: Comparison between the signal hits from a muon and low background hits from
the simulated data set in a two-dimensional histogram with the TDC count
over the ADC count.
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Figure 4.10.: Comparison between the signal hits from a muon and high background hits
from the simulated data set in a two-dimensional histogram with the TDC
count over the ADC count.
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Figure 4.11.: Comparison between the signal hits from a muon and low background hits
from the simulated data set in a two-dimensional histogram with the TOT
count over the ADC count.
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Figure 4.12.: Comparison between the signal hits from a muon and high background hits
from the simulated data set in a two-dimensional histogram with the TOT
count over the ADC count.
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4.2. Methods of Input Feature Optimization

There are three methods of input feature optimization, which will be examined in this thesis.
The first one is the input feature selection, the second is the input features scaling, and the
third is the input feature criteria. The standard methods of input feature optimization for
the CAT finder will be shortly described here and new methods will be proposed. The
impact of those modifications will then be evaluated in the next Chapter.

4.2.1. Input Feature Selection

The input feature selection of the standard CAT finder can be seen in Sec. 3.2.1. There
are different options to extend and exchange the standard features. The position features
middle_x and middle_y can be exchanged by the features at z = 0, called x and y. The
visualization of those input features in Sec. 4.1.1, shows that this can lead to a better z
resolution.

Another option is to use the calculated features given by basf2. Those are the charge_deposit,
calculated from the ADC count, and the drift_time and drift_length, calculated from
the TDC count. Those features can hold additional information about the IP, the collision
time, the electrical field in the cells of the CDC, and the charge of the particle.

To add additional information about the wire configuration of the CDC (see Sec. 2.2.1),
the angle feature could be implemented. This feature then holds information about the
skewed angle of the stereo wires. Since all layers in the stereo wires have a different angle,
the information from the clayer feature can be translated to the angle via a matrix with
all angles of the respective layers. The angle of each layer can be seen in [24].

4.2.2. Input Feature Scaling

The input feature scaling is important for the efficiency of the Neural Network (NN). The
scaling of the input features puts them in a better form for the NN to use, which makes
the training of the NN faster. There are multiple methods of input feature scaling like the
statistical normalization or the min-max-normalization. The first one scales the features
so that the mean of the feature is 0 and the standard deviation is 1. The advantage of
this method is, that it reduces the effects of outliers in the data set. The second method
rescales the features linearly in a new range, from 0 to 1 or from -1 to 1. The advantage of
this method is that all relationships are preserved in the data set [7, 25].

For the CAT finder, a version of the min-max-normalization is chosen. To scale the value
x of an input feature, two parameters a and b must be chosen. The scaled value xscaled can
then be calculated by

xscaled =
x

a
+ b. (4.2)

In addition to this method, the features adc and charge_deposit are clipped at high values.
This is to preserve the information at the lower values while removing the very high outliers
of those features. The adc feature is clipped at 600 and the charge_deposit at 0. The
scaling of all features in the CAT finder can be seen in Tab. 4.2.
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Table 4.2.: Scaling of the input features in the CAT finder.

Input feature unscaled range scaled range a b

position features -111 to 111 -1.11 to 1.11 100 0
superlayer 0 to 8 0 to 0.8 10 0

layer 0 to 7 0 to 0.7 10 0
clayer 0 to 55 0 to 0.98 56 0
adc 0 to 600 (clipped) 0 to 1 600 0

charge_deposit 0 to 0 (clipped) 0 to 1 0 0
tdc 4100 to 5100 0 to 0.91 1100 4100

drift_time -130 to 710 -0.19 to 1.01 700 0
drift_length -0.4 to 0.83 -0.4 to 0.83 1 0

tot 0 to 30 0 to 2.72 11 0

Options for a different input feature scaling in comparison to the standard CAT finder
could be a logarithmic scaling [7] of the adc and charge_deposit features instead of the
clipping at 600 ADC counts. With this, while keeping all the data, the more important low
values are centered and the outliers have less weight. A visualization of the clipped and
logarithmic adc feature can be seen in Fig. 4.13. It can be seen that for the clipping at 600
ADC counts, a lot of values are in the last bin, which goes over 25 relative events, while the
values of the logarithmic scaling are more centered and have, after a division by 10, a range
from 0 to 0.9.
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Figure 4.13.: Scaling of the adc feature in the CAT finder in comparison with the muon
signal and low background. The standard scaling with a clipping at 600 ADC
counts (left) is compared to a logarithmic scaling (right).

Another feature, whose scaling can be optimized is the tot feature. Because of the
outliers up to 30 TOT counts, the range after scaling still goes up to 2.72. This could be
fixed by applying a clipping at values of 11 TOT counts. With this, the range would be
exactly between 0 and 1, while still keeping the outliers as the value 1. A visualization of
the normal range and the clipped range of the tot feature can be seen in Fig. 4.14.
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Figure 4.14.: Visualization of the scaling of the tot feature in the CAT finder in comparison
with the muon signal and low background. The standard scaling (left) is
compared to a clipping at 11 TOT counts (right).

4.2.3. Input Feature Criteria

As in Sec. 4.1.2 and 4.1.3 discussed, the distribution of the input features differs in
dependency if they belong to a signal or a background hit. Because of this, input feature
criteria can be found, to reduce the amount of background hits without losing many signal
hits. The low values of the tot and adc features are mainly background hits, while the
signal hits are at higher values. This can be used to find criteria, with a lower limit for
those features. This would remove background hits while keeping most of the signal hits.
The standard configuration of the CAT finder has no criteria for the input features. In
the following, the adc and tot criteria will be discussed, but the same principles apply to
other features like the charge_deposit (see Sec A.4). For the tdc feature no criteria will
be used, because of the importance of this feature on the correct event timing.

The ratio of removed background hits ϵbackground is then given by

ϵbackground =
nhits(removed background)

nhits(background)
. (4.3)

Here, nhits(removed background) is the amount of removed background hits, and the amount
of all background hits without feature criteria is nhits(background). The amount of removed
signal hits ϵsignal is given by

ϵsignal =
nhits(removed signal)

nhits(signal)
. (4.4)

The amount of removed signal hits is nhits(removed signal) and the total amount of signal
hits without feature criteria is nhits(signal). The ratio of removed signal hits is chosen to
not be higher than one percent.

An overview of different lower limit criteria for the adc and tot features at low background
can be seen in Tab. 4.3. The feature criteria gives a lower limit for either the adc or the
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tot feature, to remove all hits lower than the limit. As expected, the ratio of removed
background hits is always higher than for the signal hits. The ratio of removed muon hits
is for most limits the lowest, the ratio of removed electron hits is in general higher. For the
proton hits, the ratio of removed hits is up to two times higher than for the other particles.

The highest ratio of removed background is at the criteria ≥ 4 TOT counts, with around
50% removed background. But the ratio of removed signal for this criteria is also between
3% for muons and 5% for protons, which is over the chosen threshold of how much signal
can be removed. The second highest amount of removed background is at ≥ 3 TOT counts,
with 22% of removed background and around a tenth of percent removed signal. These
criteria can therefore be considered the best because the ratio of removed backgrounds is
the highest while the ratio of removed signal hits is under the threshold.

The ADC criteria seem to be less effective on the removed background than the TOT
criteria. For example, the criteria ≥ 15 ADC counts and ≥ 2 TOT counts have about the
same ratio of removed background hits, but the ratio of removed signal hits is about five
times higher for the criteria on the ADC count. A combination of a lower limit for the
adc feature and the tot feature would not be effective, because less background would be
removed, while the ratio of removed signal hits would be the same as with only one limit
(see Sec. A.4).

Table 4.3.: Ratio of removed signal ϵsignal and background hits ϵbackground for different feature
criteria with lower limits for the adc and tot features for a muon, electron, and
proton signal at the low background.

feature criteria ϵmuon (%) ϵelectron (%) ϵproton (%) ϵbackground (%)

≥ 6 ADC counts 0.125 0.141 0.255 5.568
≥ 8 ADC counts 0.155 0.171 0.320 6.949
≥ 10 ADC counts 0.195 0.212 0.398 8.194
≥ 15 ADC counts 0.526 0.513 0.821 10.894
≥ 20 ADC counts 1.734 1.436 2.059 13.431

≥ 1 TOT count 0.057 0.060 0.100 2.052
≥ 2 TOT counts 0.101 0.111 0.192 11.940
≥ 3 TOT counts 0.126 0.142 0.255 22.672
≥ 4 TOT counts 2.980 3.459 4.770 49.402

The amount of removed signal and background hits for high background can be seen in
Tab. 4.4. While the amount of removed signal hits is not significantly higher than at the
low background, the removed background hits are much larger. For example at a lower
limit of 3 TOT counts, with a loss of around 0.1 % of signal hits for all particles, more
than 50 % of background hits are removed. With a lower limit of 4 TOT counts, even 67
% of background hits can be removed. The ratio of removed signal hits is about twice as
large for the ADC criteria at high background than for the low background, but the ratio
of removed background hits is about four times higher.
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Table 4.4.: Ratio of removed signal ϵsignal and background hits ϵbackground for different feature
criteria with lower limits for the adc and tot features for a muon, electron, and
proton signal at the high background.

feature criteria ϵmuon (%) ϵelectron (%) ϵproton (%) ϵbackground (%)

≥ 6 ADC counts 0.095 0.104 0.214 28.727
≥ 8 ADC counts 0.159 0.172 0.305 33.777
≥ 10 ADC counts 0.383 0.378 0.514 37.885
≥ 15 ADC counts 1.580 1.273 1.525 44.748
≥ 20 ADC counts 3.226 2.444 2.919 48.947

≥ 1 TOT count 0.036 0.037 0.073 16.365
≥ 2 TOT counts 0.070 0.078 0.151 37.734
≥ 3 TOT counts 0.096 0.104 0.215 56.078
≥ 4 TOT counts 4.063 4.598 5.357 67.342

The criteria will be applied to the models in the next Chapter and the best criteria will
be examined by the evaluation of the models. All cuts of the low background, where the
ratio of removed signal hits is not over the chosen threshold of 1% will be tested.
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5.1. Evaluation Metrics

To measure the performance of the chosen configurations for the CAT finder, the tracking
metrics from the Belle II tracking group [4] are reproduced in the following section. At
first, the hit efficiency and hit purity are determined, to give criteria for the tracks of the
simulated particles. Then the metrics for the performance of the track finding are defined.

The hit efficiency εhit of one track is given by the ratio of hits matched to a simulated
particle and included in the found track nhits(matched and in track) divided by the number
of all matched hits nhits(matched), as

εhit =
nhits(matched and in track)

nhits(matched)
. (5.1)

The hit purity phit is the ratio of the number of hits matched to a particle and included
in a found track nhits(matched and in track) divided by the number of all hits in the track
nhits(in track), as

phit =
nhits(matched and in track)

nhits(in track)
. (5.2)

For those parameters and the number of hits related to this track nhits(in track), the
following criteria are chosen, to define, if a found track is related to a simulated particle:
εhit > 0.005, phit > 0.66, and nhits(in track) ≥ 7. If the criteria for the hit efficiency or hit
purity are not achieved, the track is called a fake track. The number of fake tracks nfake track
divided by the number of all found tracks ntrack, is called fake rate rfake and given by

rfake =
nfake track
ntrack

. (5.3)

The track with the highest hit purity is chosen if more than one found track can be related
to the same simulated particle. Those tracks are then called clone track. The clone rate
rclone is given by the ratio of the number of clone tracks nclone track divided by the number
of all tracks related to this particle ntracks(related to particle), as

rclone =
nclone tracks

ntrack(related to particle)
. (5.4)

33
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The ratio of the number of matched tracks ntrack(matched) divided by the number of
simulated particles that are matched to at least one hit nsimulated is called track efficiency
εtrack and is given by

εtrack =
ntrack(matched)

nsimulated
. (5.5)

The track charge efficiency εcharge is given by the ratio of the number of matched tracks with
the correct reconstructed charge ntrack(matched and corr. charge) divided by the number
of simulated particles that are matched to at least one hit nsimulated, as

εcharge =
ntrack(matched and corr. charge)

nsimulated
. (5.6)

The wrong charge rate rwrong ch. is defined as the number of matched tracks with the wrong
charge ntrack(matched and wrong charge) divided by the number of all tracks, that are
matched to a particle ntrack(matched), as

rwrong ch. =
ntrack(matched and wrong charge)

ntrack(matched)
. (5.7)

For all metrics, a different value for the track finding and track fitting can be determined.
This is because tracks can be found, but then lost in the fitting step. The following analysis
will therefore differentiate between CAT finder and CAT fitter.
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5.2. Training and Evaluation of the Input Feature Configura-
tions

In this section, the evaluation of the chosen input feature configurations for the CAT finder
and fitter will be presented. After the selection of the input features, a new scaling will
be tested and at last, new feature criteria will be applied. The training of the chosen
configurations is done with a smaller data set with 10 % of the data compared to the data
set for the standard CAT finder.

Since the charge efficiency εcharge is considered the most important metric, the performance
of the following models will be ranked by this metric. A charge efficiency of 100% is
considered a perfect performance and means, that all tracks are matched to a simulated
particle with the correct charge. All the following tables with rankings of the presented
models, are sorted by the charge efficiency, from the highest to the lowest. When a new
model beats the old one in this metric, it is considered the best model and the new standard
for the following studies. The goal of this section is to find the best configuration of input
features for the CAT finder and fitter.

The evaluation software from the Belle II tracking group determines the indicated errors.
After training and evaluating the same model several times, the uncertainties of the training
are measured as ±0.2% of the charge efficiency. An improvement of a model of around 1 %
of the charge efficiency or more can therefore be considered significant. Unless otherwise
stated, the training of all models is done at the low background with all particles, and
the evaluations are done with muons. The evaluation was also done only in the barrel
region, because of the importance of this region and the high performance of the baseline
in this region. Only a selection of models and rankings is shown here. A total ranking of
all configurations can be seen in Sec. B.2.

5.2.1. Selection of the Position Features

The selection of the input features starts with the standard CAT configuration (see Sec.
3.2.1). The standard position features are middle_x and middle_y but can be exchanged
by the x and y features taken at z = 0. An overview of the models for the position feature
selection can be seen in Tab. 5.1.

Table 5.1.: Feature selection of the position features.

model name position features

middle-of-wire CAT middle_x and middle_y
z = 0 CAT x and y

The evaluation of those models can be seen in Fig. 5.2. As expected, the model z = 0
CAT with the position features at z = 0 has a higher efficiency in finding and fitting the
tracks than the model with the position at the middle of the wire (middle-of-wire CAT ).
The charge efficiency and track efficiency are significantly higher for the z = 0 CAT finder
and fitter. The fake, clone, and wrong charge rate are so small, that they can be neglected.
In the following, the features x and y are used as the position features.
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Table 5.2.: Evaluation with muons of the models for the selection of the position features
with a model with the standard configuration (middle-of-wire CAT ) and the
z = 0 CAT model. Ranked by the charge efficiency εcharge, with the track
efficiency εtrack, fake rate rfake, clone rate rclone, and wrong charge rate rwrong ch..
Uncertainties below 0.01 % are not shown.

model name εcharge (%) εtrack (%) rfake (%) rclone (%) rwrong ch. (%)

z = 0 CAT finder 95.27+0.06
−0.06 96.77+0.05

−0.05 1.72+0.04
−0.04 0.19+0.01

−0.01 1.55+0.04
−0.04

middle-of-wire CAT finder 93.92+0.07
−0.07 95.19+0.06

−0.06 2.03+0.04
−0.04 0.08+0.01

−0.01 1.33+0.03
−0.03

z = 0 CAT fitter 92.08+0.08
−0.08 92.65+0.07

−0.07 0.51+0.02
−0.02 0.06+0.01

−0.01 0.61+0.02
−0.02

middle-of-wire CAT fitter 91.02+0.08
−0.08 91.47+0.08

−0.08 0.81+0.03
−0.03 0.02 0.49+0.02

−0.02

5.2.2. Selection of the Charge and Time Features

The models for the selection of the charge and time features can be seen in Tab. 5.3. The
adc-tdc-tot CAT model has the additional tot feature in comparison to the no tot CAT
model, with the standard charge and time feature selection. In a model without tdc (no tdc
CAT ) the importance of this feature is examined. The adc and tdc features are exchanged
by the calibrated features charge_deposit, drift_time, and drift_length in different
configurations.

Table 5.3.: Feature selection of the charge and time features.

model name charge features time features

adc-tdc-tot CAT adc tdc tot
no tdc CAT adc tot
no tot CAT adc tdc

drift CAT adc drift_time and drift_length tot
charge CAT charge_deposit tdc tot

charge-drift CAT charge_deposit drift_time and drift_length tot

The evaluation of the models can be seen in Tab. 5.4. As expected, the addition of the
tot feature in comparison to the standard charge and time features, adc and tdc, has a
better charge efficiency for the CAT finder and fitter. The adc-tdc-tot CAT is overall the
model with the highest performance for this selection. The models without tot (no tot
CAT ) and without tdc (no tdc CAT ) have a significantly lower charge efficiency, with the
no tdc CAT having the lowest performance. Especially the no tdc CAT has a higher fake
rate than all other models. The other fake, clone, and wrong charge rates are so low that
they can be neglected. This shows the importance of the time features tdc and tot and
that they each give additional important information for tracking.

The charge efficiency of the drift-charge CAT finder is not significantly lower than the
adc-tdc-tot CAT finder, but for the associated fitters the first one performs significantly
lower than the second. A reason for this could be, that the calculated features, especially
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the drift_time and drift_length are not calculated precisely enough for low multiplicity
events to give the correct parameters for the track fitting. This could then be the reason,
the charge CAT fitter, which does not use those features, performs slightly better than
the drift-charge CAT fitter, while the associated finders have no significant difference. The
models with a mixture of calculated and normal features, the charge and drift CAT have
overall a lower performance than the models with only one type of feature. This could
mean, that the normal features and the calculated features are not compatible. The drift
CAT has a very low performance, which could come from the lower-performing calculated
time features and the incompatibility of its features. Therefore in the following the adc,
tdc, and tot features are the charge and time features. Those features are also used by
basf2 for background filters.

Table 5.4.: Evaluation with muons of the models for the selection of the charge and time
features (configuration see Tab. 5.3). Ranked by the charge efficiency εcharge,
with the track efficiency εtrack, fake rate rfake, clone rate rclone, and wrong charge
rate rwrong ch.. Uncertainties below 0.01 % are not shown.

model name εcharge (%) εtrack (%) rfake (%) rclone (%) rwrong ch. (%)

adc-tdc-tot CAT finder 96.29+0.05
−0.05 97.62+0.04

−0.04 1.44+0.03
−0.03 0.19+0.01

−0.01 1.36+0.03
−0.03

drift-charge CAT finder 96.08+0.09
−0.09 97.69+0.07

−0.07 1.75+0.06
−0.06 0.22+0.02

−0.02 1.65+0.06
−0.06

charge CAT finder 96.01+0.06
−0.05 97.37+0.05

−0.04 1.59+0.03
−0.03 0.15+0.01

−0.01 1.40+0.03
−0.03

no tot CAT finder 95.27+0.06
−0.06 96.77+0.05

−0.05 1.72+0.04
−0.04 0.19+0.01

−0.01 1.55+0.04
−0.04

drift CAT finder 95.05+0.06
−0.06 96.47+0.05

−0.05 1.71+0.04
−0.04 0.12+0.01

−0.01 1.47+0.03
−0.03

no tdc CAT finder 94.64+0.06
−0.06 95.94+0.06

−0.06 3.63+0.05
−0.05 0.14+0.01

−0.01 1.36+0.03
−0.03

adc-tdc-tot CAT fitter 93.2+0.07
−0.07 93.62+0.07

−0.07 0.54+0.02
−0.02 0.07+0.01

−0.01 0.44+0.02
−0.02

charge CAT fitter 92.87+0.07
−0.07 93.3+0.07

−0.07 0.54+0.02
−0.02 0.05+0.01

−0.01 0.46+0.02
−0.02

drift-charge CAT fitter 92.3+0.1
−0.1 92.7+0.1

−0.1 0.49+0.03
−0.03 0.07+0.01

−0.01 0.5+0.03
−0.03

no tot CAT fitter 92.08+0.08
−0.08 92.65+0.07

−0.07 0.51+0.02
−0.02 0.06+0.01

−0.01 0.61+0.02
−0.02

drift CAT fitter 91.91+0.08
−0.08 92.33+0.08

−0.07 0.56+0.02
−0.02 0.02 0.46+0.02

−0.02

no tdc CAT fitter 91.46+0.08
−0.08 92.06+0.08

−0.08 1.24+0.03
−0.03 0.05+0.01

−0.01 0.65+0.02
−0.02

5.2.3. Selection of the Layer Features

The models for the selection of the layer features can be seen in Tab. 5.5. In comparison
to the standard wire feature selection (no angle CAT ), the new feature angle is added in
the angle CAT model. As scaling of this new feature, the parameter a is chosen as the
highest value of the angles in mrad, a = 79 so that the scaled range is between -1 and 1.
The importance of the clayer feature after adding the angle is tested with the no clayer
CAT model and the importance of the layer feature with the no layer CAT model.

In Tab. 5.6 the evaluation of the models for the selection of the layer feature can be seen.
Adding the angle feature in the angle CAT does not have the expected higher performance
than without angle (no angle CAT ). Both models have no significant differences in the
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Table 5.5.: Feature selection of the layer features with the new angle feature.

model name layer features

angle CAT superlayer layer clayer angle
no angle CAT superlayer layer clayer
no clayer CAT superlayer layer angle
no layer CAT superlayer clayer angle

metrics for the finder and fitter. The reason could be, that the CAT finder gets enough
information about the structure of the CDC from the other layer features.

The importance of the clayer and layer feature can be confirmed with the lower
performance of the no clayer CAT and no layer CAT finder and fitter. But it can be seen,
that the difference of those models to the full feature selection is not as high as for other
features when they are left out.

Table 5.6.: Evaluation with muons of the models for the selection of the layer features
(configuration see Tab. 5.5). Ranked by the charge efficiency εcharge, with the
track efficiency εtrack, fake rate rfake, clone rate rclone, and wrong charge rate
rwrong ch.. Uncertainties below 0.01 % are not shown.

model name εcharge (%) εtrack (%) rfake (%) rclone (%) rwrong ch. (%)

no angle CAT finder 96.29+0.05
−0.05 97.62+0.04

−0.04 1.44+0.03
−0.03 0.19+0.01

−0.01 1.36+0.03
−0.03

angle CAT finder 96.15+0.05
−0.05 97.46+0.04

−0.04 1.55+0.03
−0.03 0.22+0.01

−0.01 1.34+0.03
−0.03

no clayer CAT finder 95.35+0.06
−0.06 96.83+0.05

−0.05 1.68+0.04
−0.04 0.16+0.01

−0.01 1.53+0.03
−0.04

no layer CAT finder 95.24+0.06
−0.06 96.86+0.05

−0.05 1.65+0.03
−0.04 0.19+0.01

−0.01 1.66+0.04
−0.04

angle CAT fitter 93.26+0.07
−0.07 93.78+0.07

−0.07 0.53+0.02
−0.02 0.07+0.01

−0.01 0.55+0.02
−0.02

no angle CAT fitter 93.2+0.07
−0.07 93.62+0.07

−0.07 0.54+0.02
−0.02 0.07+0.01

−0.01 0.44+0.02
−0.02

no clayer CAT fitter 92.07+0.08
−0.08 92.44+0.07

−0.07 0.53+0.02
−0.02 0.04+0.01

−0.01 0.41+0.02
−0.02

no layer CAT fitter 91.97+0.08
−0.08 92.4+0.07

−0.07 0.53+0.02
−0.02 0.07+0.01

−0.01 0.47+0.02
−0.02

The features of the angle CAT model are considered the best feature selection in the
following studies. Those are x and y as the position features, adc, tdc, and tot as the
charge and time features, and superlayer, layer, clayer, and angle as layer features.
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5.2.4. Scaling of the Input Features

The model with the best feature selection and the standard scaling (std. scaling CAT ) will
be compared to the models with the new scaling. Those are a model with clipping of the
tot feature at 11 TOT counts (tot clip CAT ) and a model with logarithmic scaling of the
adc feature (adc log CAT ).

The evaluation of those models can be seen in Tab. 5.7. The new scaling methods do not
have the expected performance advantages. The models have no significant difference in the
charge efficiency. The standard scaling std. scaling CAT has a slightly better performance,
especially for the fitter. The reason for this could be that most of the values of the adc
feature are below 600 ADC counts and not affected by the clipping. The logarithmic scaling
just shifts the values higher, but also does not contain the relationships in the data. The
clipping of the tot feature seems to have no significant effect because most of the values are
below the clipping and therefore with no change. With those results, the standard scaling
is still considered the best scaling for the following models.

Table 5.7.: Evaluation with muons of the models with the input feature scaling (scaling
methods see Sec. 5.2.4). Ranked by the charge efficiency εcharge, with the track
efficiency εtrack, fake rate rfake, clone rate rclone, and wrong charge rate rwrong ch..
Uncertainties below 0.01 % are not shown.

model name εcharge (%) εtrack (%) rfake (%) rclone (%) rwrong ch. (%)

std. scaling CAT finder 96.15+0.05
−0.05 97.46+0.04

−0.04 1.55+0.03
−0.03 0.22+0.01

−0.01 1.34+0.03
−0.03

tot clip CAT finder 96.03+0.06
−0.05 97.54+0.04

−0.04 1.61+0.03
−0.03 0.24+0.01

−0.01 1.55+0.03
−0.04

adc log CAT finder 96.01+0.06
−0.05 97.37+0.05

−0.04 1.61+0.03
−0.03 0.16+0.01

−0.01 1.4+0.03
−0.03

std. scaling CAT fitter 93.26+0.07
−0.07 93.78+0.07

−0.07 0.53+0.02
−0.02 0.07+0.01

−0.01 0.55+0.02
−0.02

adc log CAT fitter 93.02+0.07
−0.07 93.53+0.07

−0.07 0.58+0.02
−0.02 0.06+0.01

−0.01 0.56+0.02
−0.02

tot clip CAT fitter 92.6+0.07
−0.07 93.11+0.07

−0.07 0.54+0.02
−0.02 0.11+0.01

−0.01 0.54+0.02
−0.02

5.2.5. Criteria for the Input Features

Based on the best feature selection model (no criteria CAT ), the feature criteria with a
lower limit for the tot and adc feature will be evaluated here. The model name gives the
lower limit, with the number being the lowest value of the feature, which is kept in the data
set. For example at the tot1 CAT model, all values of tot smaller than 1 TOT count are
removed.

The evaluation of the models with different criteria for the adc and tot feature can be seen
in Tab. 5.8. The model no criteria CAT has the highest performance, but the difference
between the models with lower criteria and the model without criteria is very small. This
could mean, that the model without criteria learns on its own, how to distinguish between
signal and background with the given input features and there is no need to remove hits, for
a higher-performing model. The worst performing models are the ones with the lower limit
of tot at 1 and adc at 10. The reason for this could be, that the amount of background is
too small to affect the model, but the are still removed signal hits, which the model misses.
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Table 5.8.: Evaluation with muons of the models with the feature criteria for the adc and
tot feature (used criteria see Sec. 5.2.5). Ranked by the charge efficiency εcharge,
with the track efficiency εtrack, fake rate rfake, clone rate rclone, and wrong charge
rate rwrong ch.. Uncertainties below 0.01 % are not shown.

model name εcharge (%) εtrack (%) rfake (%) rclone (%) rwrong ch. (%)

no criteria CAT finder 96.15+0.05
−0.05 97.46+0.04

−0.04 1.55+0.03
−0.03 0.22+0.01

−0.01 1.34+0.03
−0.03

adc8 CAT finder 95.99+0.06
−0.05 97.27+0.05

−0.05 1.45+0.03
−0.03 0.14+0.01

−0.01 1.32+0.03
−0.03

adc15 CAT finder 95.99+0.06
−0.06 97.29+0.05

−0.05 1.57+0.04
−0.04 0.17+0.01

−0.01 1.34+0.04
−0.04

tot3 CAT finder 95.95+0.06
−0.06 97.41+0.04

−0.04 1.37+0.03
−0.03 0.14+0.01

−0.01 1.5+0.03
−0.03

adc6 CAT finder 95.93+0.06
−0.06 97.3+0.05

−0.05 1.53+0.03
−0.03 0.14+0.01

−0.01 1.41+0.03
−0.03

tot2 CAT finder 95.86+0.06
−0.06 97.37+0.05

−0.04 1.68+0.04
−0.04 0.18+0.01

−0.01 1.56+0.04
−0.04

adc10 CAT finder 95.29+0.07
−0.07 96.73+0.06

−0.06 1.49+0.04
−0.04 0.16+0.01

−0.01 1.49+0.04
−0.04

tot1 CAT finder 95.29+0.06
−0.06 96.4+0.05

−0.05 1.63+0.03
−0.04 0.11+0.01

−0.01 1.16+0.03
−0.03

no criteria CAT fitter 93.26+0.07
−0.07 93.78+0.07

−0.07 0.53+0.02
−0.02 0.07+0.01

−0.01 0.55+0.02
−0.02

adc15 CAT fitter 93.16+0.08
−0.08 93.6+0.08

−0.08 0.5+0.02
−0.02 0.06+0.01

−0.01 0.46+0.02
−0.02

tot3 CAT fitter 92.94+0.07
−0.07 93.36+0.07

−0.07 0.5+0.02
−0.02 0.05+0.01

−0.01 0.44+0.02
−0.02

adc6 CAT fitter 92.89+0.07
−0.07 93.34+0.07

−0.07 0.49+0.02
−0.02 0.07+0.01

−0.01 0.47+0.02
−0.02

tot2 CAT fitter 92.69+0.07
−0.07 93.13+0.07

−0.07 0.57+0.02
−0.02 0.06+0.01

−0.01 0.47+0.02
−0.02

adc8 CAT fitter 92.5+0.07
−0.07 92.88+0.07

−0.07 0.54+0.02
−0.02 0.05+0.01

−0.01 0.42+0.02
−0.02

adc10 CAT fitter 92.09+0.09
−0.09 92.57+0.09

−0.09 0.57+0.02
−0.03 0.07+0.01

−0.01 0.52+0.02
−0.02

tot1 CAT fitter 92.01+0.08
−0.08 92.42+0.07

−0.07 0.5+0.02
−0.02 0.02 0.44+0.02

−0.02

In Tab. 5.9 the evaluation for the same models with protons can be seen. This evaluation
is of special interest because the removed signal hits are higher for protons than for muons
and electrons. The model without criteria and the models with the highest criteria, tot3
CAT and adc15 CAT have no significant difference. Only the adc15 CAT model is noticeable
with a slightly higher performance of the fitter. The lower criteria model, tot1 CAT, tot2
CAT, adc6 CAT, adc8 CAT, and adc10 CAT have the lowest performance.

An important advantage of the criteria for the input features is the faster time for the
training of the models, when there are fewer hits in the data set. The most important
metric is the duration per iteration, which ranks the models according to their time savings.
The number of epochs can vary depending on the training, and therefore the total duration,
which is dependent on the total number of epochs, can also vary strongly. However the
duration per iteration varies only about ±1 s, which was tested with the same model trained
several times. The time saving is compared to the ratio of removed hits ϵhits, which is given
by the total amount of removed hits by the criteria divided by the total amount of hits.

The time savings for the different models can be seen in Tab. 5.10. As expected, there is
a significant time saving for the models after applying the feature criteria. For the model
with the highest amount of removed hits, the tot3 CAT, the duration per iteration is nearly
half as large as for the model with no criteria. This model is followed by all the other
models with a criteria of the tot feature. The models with criteria of the adc feature have
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Table 5.9.: Evaluation with protons of the models with the feature criteria for the adc and
tot feature (used criteria see Sec. 5.2.5). Ranked by the charge efficiency εcharge,
with the track efficiency εtrack, fake rate rfake, clone rate rclone, and wrong charge
rate rwrong ch.. Uncertainties below 0.01 % are not shown.

model name εcharge (%) εtrack (%) rfake (%) rclone (%) rwrong ch. (%)

tot3 CAT finder 93.53+0.08
−0.08 94.24+0.08

−0.08 3.3+0.05
−0.05 0.47+0.02

−0.02 0.75+0.03
−0.03

adc15 CAT finder 93.41+0.09
−0.09 94.22+0.09

−0.08 3.3+0.05
−0.05 0.47+0.02

−0.02 0.86+0.03
−0.04

no criteria CAT finder 93.26+0.08
−0.08 94.25+0.08

−0.08 3.79+0.05
−0.05 0.62+0.02

−0.02 1.05+0.03
−0.04

adc6 CAT finder 93.25+0.08
−0.08 94.17+0.08

−0.08 3.67+0.05
−0.05 0.5+0.02

−0.02 0.97+0.03
−0.03

adc8 CAT finder 93.07+0.08
−0.08 94.1+0.08

−0.08 3.67+0.05
−0.05 0.52+0.02

−0.02 1.09+0.04
−0.04

adc10 CAT finder 92.93+0.09
−0.09 93.87+0.09

−0.09 3.43+0.05
−0.05 0.53+0.02

−0.02 1.0+0.04
−0.04

tot2 CAT finder 92.93+0.09
−0.08 93.95+0.08

−0.08 3.92+0.05
−0.05 0.46+0.02

−0.02 1.09+0.04
−0.04

tot1 CAT finder 92.09+0.09
−0.09 92.9+0.09

−0.08 3.91+0.05
−0.05 0.44+0.02

−0.02 0.88+0.03
−0.03

adc15 CAT fitter 91.3+0.1
−0.1 92.06+0.1

−0.1 1.08+0.03
−0.03 0.25+0.01

−0.02 0.85+0.03
−0.04

tot3 CAT fitter 90.65+0.1
−0.1 91.48+0.09

−0.09 1.07+0.03
−0.03 0.22+0.01

−0.01 0.9+0.03
−0.03

no criteria CAT fitter 90.5+0.1
−0.1 91.43+0.09

−0.09 1.22+0.03
−0.03 0.3+0.01

−0.02 1.02+0.03
−0.04

adc6 CAT fitter 90.23+0.1
−0.1 91.09+0.09

−0.09 1.13+0.03
−0.03 0.24+0.01

−0.01 0.95+0.03
−0.03

adc10 CAT fitter 90.2+0.1
−0.1 91.2+0.1

−0.1 1.2+0.03
−0.03 0.22+0.01

−0.01 1.04+0.04
−0.04

tot2 CAT fitter 90.2+0.1
−0.1 91.09+0.09

−0.09 1.34+0.03
−0.03 0.22+0.01

−0.01 0.98+0.03
−0.03

adc8 CAT fitter 90.13+0.1
−0.1 91.05+0.09

−0.09 1.23+0.03
−0.03 0.23+0.01

−0.01 1.02+0.03
−0.04

tot1 CAT fitter 89.5+0.1
−0.1 90.37+0.1

−0.1 1.19+0.03
−0.03 0.21+0.01

−0.01 0.96+0.03
−0.03

a higher duration per iteration, although the ratio of removed hits is not smaller than for
the models with the criteria of the tot feature. The models tot2 CAT and adc15 CAT
have roughly the same ratio of removed hits, but the duration per iteration is significantly
smaller for the first model. A reason for this could be, that the amount of removed signal
hits is about 5 times higher for the criteria of the adc feature than for the tot feature,
while the amount of background is about the same. This would mean, that the model adc15
CAT has fewer signal hits, to find the tracks, which makes it last longer in the training.

In conclusion, it is not easy to pick the best input feature criteria after this evaluation.
For the performance of the model, removing hits is not necessary, because the model learns
on its own to distinguish signal and background from the input features. When the time
saving of the training is of high importance, then the model tot3 CAT is the best one. This
model has roughly the same performance as a model without criteria, but the duration of
the training is significantly quicker.

As already discussed, the criteria at high background are expected to have a higher impact,
because of the higher ratio of removed background hits in comparison to the removed signal
hits. A training of such models is not done in the context of this work, because the model
size and the size of the data set would be too small for training at the high background.
Higher background conditions would require more time for training to deal with the more
complicated events, with more background hits than signal hits.
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Table 5.10.: Time savings of the models with feature criteria. Sorted by the duration/itera-
tion with the total duration, last epoch after early stopping and the ratio of
removed hits ϵhits.

model name duration/iteration (s) total duration last epoch ϵhits (%)

tot3 CAT 75.03 15 h 46min 40 s 757 12.79
tot2 CAT 102.41 23 h 4min 14 s 811 6.75
tot1 CAT 123.09 22 h 48min 19 s 667 1.18

adc15 CAT 124.77 23 h 58min 57 s 692 6.35
adc10 CAT 127.99 35 h 33min 14 s 1000 4.69
adc8 CAT 130.87 29 h 2min 45 s 799 3.97
adc6 CAT 133.06 29 h 9min 43 s 789 3.18

no criteria CAT 139.17 29 h 15min 48 s 757 0.00
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5.3. Comparison of the Best Configuration CAT to the Baseline

In this section, a comparison of the model with the best configuration will be compared
with the baseline and the standard CAT finder. The model was trained with the same
sized data set as the standard CAT finder. The used feature selections are x and y as
the position features, adc, tdc, and tot as the charge and time features, and superlayer,
layer, clayer, and angle as layer features. The criteria for the tot feature of ≥ 3 TOT
counts was chosen. The training duration was over 12 days, which is more than 6 times
higher than for the other models.

The evaluation of those models with muons can be seen in Tab. 5.11. It can be seen
that the model with the best configuration (best config. CAT ) has a significantly higher
performance than the Baseline. This proves the fact, that a tracking software based on
GNNs is more effective in finding and fitting tracks than the Baseline based on Legendre-
transformations. The standard model (std. CAT ) has a slightly higher performance than
the best configuration model, which is in contrast to the previous studies. The reason for
this could be, that the model is bigger with more GravNet blocks. The std. CAT model
has about double the amount of total parameters than the best config. CAT model. For a
correct comparison, the same model size should be compared.

Table 5.11.: Evaluation with muons of the best configuration model best config. CAT in
comparison to the Baseline and the standard CAT model std. CAT. Ranked
by the charge efficiency εcharge, with the track efficiency εtrack, fake rate rfake,
clone rate rclone, and wrong charge rate rwrong ch.. Uncertainties below 0.01 %
are not shown.

model name εcharge εtrack rfake rclone rwrong ch.

std. CAT finder 99.2+0.03
−0.02 99.54+0.02

−0.02 0.93+0.03
−0.03 0.03−0.01 0.34+0.02

−0.02

best config. CAT finder 98.99+0.03
−0.03 99.41+0.02

−0.02 0.73+0.02
−0.02 0.02 0.43+0.02

−0.02

Baseline finder 96.78+0.05
−0.05 98.63+0.03

−0.03 0.71+0.02
−0.02 0.04+0.01

−0.01 1.87+0.04
−0.04

std. CAT fitter 97.43+0.04
−0.04 97.55+0.04

−0.04 0.41+0.02
−0.02 0.01 0.12+0.01

−0.01

best config. CAT fitter 97.19+0.05
−0.05 97.32+0.05

−0.05 0.23+0.01
−0.01 0.01 0.13+0.01

−0.01

Baseline fitter 96.1+0.06
−0.05 97.37+0.05

−0.05 0.51+0.02
−0.02 0.02 1.3+0.03

−0.03





6. Conclusion and Outlook

The goal of this thesis was to improve the performance and training time of the track
finding algorithm CAT for the CDC in the Belle II detector. For this, different methods of
input feature optimization were applied to models of the CAT finder to get the model with
the best configuration.

At first, the input features were investigated by visualizing them. By comparing the
two position features, it could be seen that the x and y features, with the position taken
at z = 0 contain better position information than the features taken at the z middle of
the wire, middle_x and middle_y. In a comparison of the input features of signal and
background hits, it could be seen, that the features adc, tdc, and tot, taken from the
readout electronics of the CDC, can be used to distinguish signal and background hits.
In all of those features are small areas of the excess of signal hits over background hits,
which can be used to apply criteria to remove background hits and could even help in
distinguishing the particle types.

In the main part, the models with the different configurations were trained at the low
background, with 1 to 11 particles per event, including displaced, displaced angled, and
displaced vertex events. Starting from the standard configuration model with a charge
efficiency evaluated with muons of εcharge = 93.9% for the finder and εcharge = 91.0% for
the fitter, the first improvement could be made by switching the position features to x and
y. An improvement of over one percentage point for the finder and fitter could be made,
which is clearly over the uncertainties of the training for similar models and therefore can be
considered significant. In the selection of the charge and time features, by adding the tot
feature, another improvement of over one percentage point could be made. The addition of
the new angle feature did not have the expected improvements for the CAT finder and
fitter but had roughly the same performance. The model with the position features x and y,
charge and time features adc, tdc, and tot and layer features superlayer, clayer, layer,
and angle is now considered the model with the best feature selection. The charge efficiency
of the finder of this model is εcharge = 96.2% and of the fitter εcharge = 93.26%, which is an
improvement of more than two percentage points over the standard configuration.

The new scaling methods that were applied to the models, namely the logarithmic scaling
of the adc feature and the clipping of the tot feature at 11 TOT counts, were not effective.
The efficiency of the models with the new scaling was around a tenth of a percentage point
less than that of the model with the standard scaling.

45
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At last, different models with criteria of the input features, with lower limits of the adc
and the tot feature were trained and evaluated. The criteria at ≥ 15 ADC counts and ≥ 3
TOT counts had slightly the same charge efficiency as the model with no criteria, the other
models had a lower performance. The time savings on the other hand were significant, with
a duration per iteration of around 75 s for the criteria ≥ 3 TOT counts compared to around
139 s for the model without criteria. This time-saving of around 46% is very significant for
the training of the CAT models.

A model was trained with the same sized data set as the standard CAT finder and the
best configuration, which has the best feature selection and a feature criteria of ≥ 3 TOT
counts. A comparison was made with this best configuration model, the baseline, and
the standard CAT finder. It could be seen that the performance is significantly higher
for the best configuration CAT model than for the baseline, with a difference of over two
percentage points for the model with the best configuration over the baseline finder and
over one percentage point for the baseline fitter. The standard CAT model had the highest
performance by a slight margin over the best configuration model for the finder and fitter.
This could be explained by the larger model size of the standard CAT model with more
layers and parameters.

In conclusion, the improvement of the CAT finder by input feature optimization was
successful. Especially by the input feature selection, the performance was improved
significantly. The criteria of the tot feature resulted in significant time savings for the
training of the model without losing performance. This shows, that studies on input feature
optimization can improve Neural Networks significantly.

One major limitation of this study is the size of the models and the used data set. For
Neural Networks, those are very important for the performance of the Network. In the
end, it could be seen that even after finding the best configuration, the larger model has
still a higher efficiency. The other limitation was the so-called low background, with which
the models were trained. Those background hits are simulated as opposed to the high
background presented in this study, which was taken from the detector.

Based on those studies, in the future, the best configuration should be tested with larger
models. Those could then be expanded to data sets with the high background taken from
the detector. At the high background, one should also study the effects of the feature
criteria, because of their higher ratio of removed background hits.

The CDC of the Belle II detector is facing increasing background conditions and finding
particles is getting more and more difficult. This study can help improve the track finding
in the future with higher-performing models and a faster training time.
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A. Appendix: Investigation of the Input
Features

A.1. Distribution of the Input Features
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Figure A.1.: Distribution of the charge deposit for muons, electrons, and protons compared
with the low background from a simulated data set.

51



52 A. Appendix: Investigation of the Input Features

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
charge_deposit count 1e 5

0

100000

200000

300000

400000

500000

re
la

tiv
e 

ev
en

ts

Belle II Simulation (own work)
high background

muon signal
electron signal
proton signal
background

Figure A.2.: Distribution of the charge deposit for muons, electrons, and protons compared
with the high background from a simulated data set.
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Figure A.3.: Distribution of the drift time for muons, electrons, and protons compared with
the low background from a simulated data set.
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Figure A.4.: Distribution of the drift time for muons, electrons, and protons compared with
the high background from a simulated data set.
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Figure A.5.: Distribution of the drift length for muons, electrons, and protons compared
with the low background from a simulated data set.
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Figure A.6.: Distribution of the drift length for muons, electrons, and protons compared
with the high background from a simulated data set.



A.2. Correlation between the Input Features 55

A.2. Correlation between the Input Features
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Figure A.7.: Correlation between the ADC count and TDC count for a muon signal at the
low background from a simulated data set.
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Figure A.8.: Correlation between the ADC count and TDC count for an electron signal at
the low background from a simulated data set.
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Figure A.9.: Correlation between the ADC count and TDC count for a proton signal at the
low background from a simulated data set.
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Figure A.10.: Correlation between the ADC count and TDC count for the low background
from a simulated data set.
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Figure A.11.: Correlation between the ADC count and TDC count for a muon signal at the
high background from a simulated data set.

0 50 100 150 200 250 300
ADC count / (5.0 TDC counts)

4200

4400

4600

4800

5000

TD
C 

co
un

t /
 (1

.0
 A

DC
 c

ou
nt

s)

Belle II Simulation (own work)
high background

1.0 × 102

2.0 × 102

3.0 × 102

4.0 × 102

nu
m

be
r o

f e
ve

nt
s

Figure A.12.: Correlation between the ADC count and TDC count for an electron signal at
the high background from a simulated data set.



58 A. Appendix: Investigation of the Input Features

0 50 100 150 200 250 300
ADC count / (5.0 TDC counts)

4200

4400

4600

4800

5000
TD

C 
co

un
t /

 (1
.0

 A
DC

 c
ou

nt
s)

Belle II Simulation (own work)
high background

1.0 × 102

2.0 × 102

3.0 × 102

4.0 × 102

5.0 × 102

nu
m

be
r o

f e
ve

nt
s

Figure A.13.: Correlation between the ADC count and TDC count for a proton signal at
the high background from a simulated data set.
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Figure A.14.: Correlation between the ADC count and TDC count for the high background
from a simulated data set.
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Figure A.15.: Correlation between the ADC count and TOT count for a muon signal at the
low background from a simulated data set.
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Figure A.16.: Correlation between the ADC count and TOT count for an electron signal at
the low background from a simulated data set.
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Figure A.17.: Correlation between the ADC count and TOT count for a proton signal at
the low background from a simulated data set.
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Figure A.18.: Correlation between the ADC count and TOT count for the low background
from a simulated data set.
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Figure A.19.: Correlation between the ADC count and TOT count for a muon signal at the
high background from a simulated data set.
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Figure A.20.: Correlation between the ADC count and TOT count for an electron signal at
the high background from a simulated data set.
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Figure A.21.: Correlation between the ADC count and TOT count for a proton signal at
the high background from a simulated data set.
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Figure A.22.: Correlation between the ADC count and TOT count for the high background
from a simulated data set.
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Figure A.23.: Comparison between the signal hits from an electron and low background
hits from the simulated data set in a two-dimensional histogram with the
TDC count over the ADC count.
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Figure A.24.: Comparison between the signal hits from an electron and high background
hits from the simulated data set in a two-dimensional histogram with the
TDC count over the ADC count.
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Figure A.25.: Comparison between the signal hits from an electron and low background
hits from the simulated data set in a two-dimensional histogram with the
TOT count over the ADC count.
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Figure A.26.: Comparison between the signal hits from an electron and high background
hits from the simulated data set in a two-dimensional histogram with the
TOT count over the ADC count.
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Figure A.27.: Comparison between the signal hits from a proton and low background hits
from the simulated data set in a two-dimensional histogram with the TDC
count over the ADC count.
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Figure A.28.: Comparison between the signal hits from a proton and high background hits
from the simulated data set in a two-dimensional histogram with the TDC
count over the ADC count.
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Figure A.29.: Comparison between the signal hits from a proton and low background hits
from the simulated data set in a two-dimensional histogram with the TOT
count over the ADC count.
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Figure A.30.: Comparison between the signal hits from a proton and high background hits
from the simulated data set in a two-dimensional histogram with the TOT
count over the ADC count.
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A.4. Removed Signal and Background with the Input Feature
Criteria

Table A.1.: Ratio of removed signal ϵsignal and background hits ϵbackground for different
feature criteria with lower limits for the charge_deposit feature for a muon,
electron, and proton signal at the low background.

feature criteria ϵmuon (%) ϵelectron (%) ϵproton (%) ϵbackground (%)

< 5× 10−8 charge_deposit counts 0.085 0.091 0.160 3.185

< 1× 10−7 charge_deposit counts 0.101 0.111 0.192 4.006

< 2× 10−7 charge_deposit counts 0.140 0.156 0.287 6.272

< 3× 10−7 charge_deposit counts 0.195 0.212 0.398 8.194

< 4× 10−7 charge_deposit counts 0.411 0.415 0.691 10.387

< 5× 10−7 charge_deposit counts 0.872 0.800 1.187 11.940

Table A.2.: Ratio of removed signal ϵsignal and background hits ϵbackground for different
feature criteria with lower limits for the charge_deposit feature for a muon,
electron, and proton signal at the high background.

feature criteria ϵmuon (%) ϵelectron (%) ϵproton (%) ϵbackground (%)

< 5× 10−8 charge_deposit counts 0.058 0.062 0.121 20.200

< 1× 10−7 charge_deposit counts 0.070 0.078 0.150 22.985

< 2× 10−7 charge_deposit counts 0.116 0.127 0.252 31.387

< 3× 10−7 charge_deposit counts 0.383 0.378 0.514 37.885

< 4× 10−7 charge_deposit counts 1.301 1.073 1.287 43.655

< 5× 10−7 charge_deposit counts 2.190 1.706 2.034 46.662
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Table A.3.: Ratio of removed signal ϵsignal and background hits ϵbackground for different
feature criteria with lower limits for the adc and tot features for a muon,
electron, and proton signal at the low background.

feature criteria ϵmuon (%) ϵelectron (%) ϵproton (%) ϵbackground (%)

≥ 6 ADC and ≥ 1 TOT counts 0.057 0.060 0.100 2.052
≥ 8 ADC and ≥ 2 TOT counts 0.101 0.111 0.192 5.627
≥ 8 ADC and ≥ 1 TOT counts 0.057 0.060 0.100 2.052
≥ 10 ADC and ≥ 2 TOT counts 0.101 0.111 0.192 6.207
≥ 10 ADC and ≥ 3 TOT counts 0.125 0.141 0.255 7.321
≥ 10 ADC and ≥ 4 TOT counts 0.191 0.208 0.380 8.168
≥ 15 ADC and ≥ 2 TOT counts 0.101 0.111 0.192 7.335
≥ 15 ADC and ≥ 3 TOT counts 0.125 0.141 0.255 8.958
≥ 15 ADC and ≥ 4 TOT counts 0.386 0.410 0.642 10.792
≥ 20 ADC and ≥ 3 TOT counts 0.125 0.141 0.255 10.417
≥ 20 ADC and ≥ 4 TOT counts 0.807 0.861 1.129 13.224

Table A.4.: Ratio of removed signal ϵsignal and background hits ϵbackground for different
feature criteria with lower limits for the adc and tot features for a muon,
electron, and proton signal at the high background.

feature criteria ϵmuon (%) ϵelectron (%) ϵproton (%) ϵbackground (%)

≥ 6 ADC and ≥ 1 TOT counts 0.036 0.037 0.073 16.359
≥ 8 ADC and ≥ 2 TOT counts 0.070 0.078 0.151 29.762
≥ 8 ADC and ≥ 1 TOT counts 0.036 0.037 0.073 16.360
≥ 10 ADC and ≥ 2 TOT counts 0.070 0.078 0.151 31.483
≥ 10 ADC and ≥ 3 TOT counts 0.096 0.104 0.215 36.894
≥ 10 ADC and ≥ 4 TOT counts 0.328 0.330 0.457 37.747
≥ 15 ADC and ≥ 2 TOT counts 0.070 0.078 0.151 33.634
≥ 15 ADC and ≥ 3 TOT counts 0.096 0.104 0.215 41.880
≥ 15 ADC and ≥ 4 TOT counts 1.044 0.953 1.091 44.045
≥ 20 ADC and ≥ 3 TOT counts 0.096 0.104 0.215 44.486
≥ 20 ADC and ≥ 4 TOT counts 1.776 1.633 1.782 47.568
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Table B.1.: Total ranking of all CAT finder models at the low background for muons.
Ranked by the charge efficiency εcharge, with the track efficiency εtrack, fake rate
rfake, clone rate rclone, and wrong charge rate rwrong ch.. Uncertainties below
0.01 % are not shown.

model name εcharge εtrack rfake rclone rwrong ch.

adc-tdc-tot CAT finder 96.29+0.05
−0.05 97.62+0.04

−0.04 1.44+0.03
−0.03 0.19+0.01

−0.01 1.36+0.03
−0.03

angle CAT finder 96.15+0.05
−0.05 97.46+0.04

−0.04 1.55+0.03
−0.03 0.22+0.01

−0.01 1.34+0.03
−0.03

drift-charge CAT finder 96.08+0.09
−0.09 97.69+0.07

−0.07 1.75+0.06
−0.06 0.22+0.02

−0.02 1.65+0.06
−0.06

tot clip CAT finder 96.03+0.06
−0.05 97.54+0.04

−0.04 1.61+0.03
−0.03 0.24+0.01

−0.01 1.55+0.03
−0.04

adc log CAT finder 96.01+0.06
−0.05 97.37+0.05

−0.04 1.61+0.03
−0.03 0.16+0.01

−0.01 1.4+0.03
−0.03

charge CAT finder 96.01+0.06
−0.05 97.37+0.05

−0.04 1.59+0.03
−0.03 0.15+0.01

−0.01 1.40+0.03
−0.03

adc8 CAT finder 95.99+0.06
−0.05 97.27+0.05

−0.05 1.45+0.03
−0.03 0.14+0.01

−0.01 1.32+0.03
−0.03

adc15 CAT finder 95.99+0.06
−0.06 97.29+0.05

−0.05 1.57+0.04
−0.04 0.17+0.01

−0.01 1.34+0.04
−0.04

tot3 CAT finder 95.95+0.06
−0.06 97.41+0.04

−0.04 1.37+0.03
−0.03 0.14+0.01

−0.01 1.5+0.03
−0.03

adc6 CAT finder 95.93+0.06
−0.06 97.3+0.05

−0.05 1.53+0.03
−0.03 0.14+0.01

−0.01 1.41+0.03
−0.03

tot2 CAT finder 95.86+0.06
−0.06 97.37+0.05

−0.04 1.68+0.04
−0.04 0.18+0.01

−0.01 1.56+0.04
−0.04

no clayer CAT finder 95.35+0.06
−0.06 96.83+0.05

−0.05 1.68+0.04
−0.04 0.16+0.01

−0.01 1.53+0.03
−0.04

adc10 CAT finder 95.29+0.07
−0.07 96.73+0.06

−0.06 1.49+0.04
−0.04 0.16+0.01

−0.01 1.49+0.04
−0.04

tot1 CAT finder 95.29+0.06
−0.06 96.4+0.05

−0.05 1.63+0.03
−0.04 0.11+0.01

−0.01 1.16+0.03
−0.03

no tot CAT finder 95.27+0.06
−0.06 96.77+0.05

−0.05 1.72+0.04
−0.04 0.19+0.01

−0.01 1.55+0.04
−0.04

no layer CAT finder 95.24+0.06
−0.06 96.86+0.05

−0.05 1.65+0.03
−0.04 0.19+0.01

−0.01 1.66+0.04
−0.04

drift CAT finder 95.05+0.06
−0.06 96.47+0.05

−0.05 1.71+0.04
−0.04 0.12+0.01

−0.01 1.47+0.03
−0.03

no tdc CAT finder 94.64+0.06
−0.06 95.94+0.06

−0.06 3.63+0.05
−0.05 0.14+0.01

−0.01 1.36+0.03
−0.03

middle-of-wire CAT finder 93.92+0.07
−0.07 95.19+0.06

−0.06 2.03+0.04
−0.04 0.08+0.01

−0.01 1.33+0.03
−0.03

angle CAT fitter 93.26+0.07
−0.07 93.78+0.07

−0.07 0.53+0.02
−0.02 0.07+0.01

−0.01 0.55+0.02
−0.02

adc-tdc-tot CAT fitter 93.2+0.07
−0.07 93.62+0.07

−0.07 0.54+0.02
−0.02 0.07+0.01

−0.01 0.44+0.02
−0.02

adc15 CAT fitter 93.16+0.08
−0.08 93.6+0.08

−0.08 0.5+0.02
−0.02 0.06+0.01

−0.01 0.46+0.02
−0.02

adc log CAT fitter 93.02+0.07
−0.07 93.53+0.07

−0.07 0.58+0.02
−0.02 0.06+0.01

−0.01 0.56+0.02
−0.02

tot3 CAT fitter 92.94+0.07
−0.07 93.36+0.07

−0.07 0.5+0.02
−0.02 0.05+0.01

−0.01 0.44+0.02
−0.02

adc6 CAT fitter 92.89+0.07
−0.07 93.34+0.07

−0.07 0.49+0.02
−0.02 0.07+0.01

−0.01 0.47+0.02
−0.02

charge CAT fitter 92.87+0.07
−0.07 93.3+0.07

−0.07 0.54+0.02
−0.02 0.05+0.01

−0.01 0.46+0.02
−0.02

tot2 CAT fitter 92.69+0.07
−0.07 93.13+0.07

−0.07 0.57+0.02
−0.02 0.06+0.01

−0.01 0.47+0.02
−0.02

tot clip CAT fitter 92.6+0.07
−0.07 93.11+0.07

−0.07 0.54+0.02
−0.02 0.11+0.01

−0.01 0.54+0.02
−0.02

adc8 CAT fitter 92.5+0.07
−0.07 92.88+0.07

−0.07 0.54+0.02
−0.02 0.05+0.01

−0.01 0.42+0.02
−0.02

drift-charge CAT fitter 92.3+0.1
−0.1 92.7+0.1

−0.1 0.49+0.03
−0.03 0.07+0.01

−0.01 0.5+0.03
−0.03

adc10 CAT fitter 92.09+0.09
−0.09 92.57+0.09

−0.09 0.57+0.02
−0.03 0.07+0.01

−0.01 0.52+0.02
−0.02

no tot CAT fitter 92.08+0.08
−0.08 92.65+0.07

−0.07 0.51+0.02
−0.02 0.06+0.01

−0.01 0.61+0.02
−0.02

no clayer CAT fitter 92.07+0.08
−0.08 92.44+0.07

−0.07 0.53+0.02
−0.02 0.04+0.01

−0.01 0.41+0.02
−0.02

tot1 CAT fitter 92.01+0.08
−0.08 92.42+0.07

−0.07 0.5+0.02
−0.02 0.02 0.44+0.02

−0.02

no layer CAT fitter 91.97+0.08
−0.08 92.4+0.07

−0.07 0.53+0.02
−0.02 0.07+0.01

−0.01 0.47+0.02
−0.02

drift CAT fitter 91.91+0.08
−0.08 92.33+0.08

−0.07 0.56+0.02
−0.02 0.02 0.46+0.02

−0.02

no tdc CAT fitter 91.46+0.08
−0.08 92.06+0.08

−0.08 1.24+0.03
−0.03 0.05+0.01

−0.01 0.65+0.02
−0.02

middle-of-wire CAT fitter 91.02+0.08
−0.08 91.47+0.08

−0.08 0.81+0.03
−0.03 0.02 0.49+0.02

−0.02
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Table B.2.: Total ranking of all CAT finder models at the low background for electrons.
Ranked by the charge efficiency εcharge, with the track efficiency εtrack, fake rate
rfake, clone rate rclone, and wrong charge rate rwrong ch.. Uncertainties below
0.01 % are not shown.

model name εcharge εtrack rfake rclone rwrong ch.

adc-tdc-tot CAT finder 85.59+0.1
−0.1 87.29+0.09

−0.09 1.42+0.03
−0.03 0.25+0.01

−0.01 1.94+0.04
−0.04

adc6 CAT finder 85.3+0.1
−0.1 87.03+0.1

−0.1 1.57+0.03
−0.03 0.16+0.01

−0.01 1.97+0.04
−0.04

adc8 CAT finder 85.4+0.1
−0.1 87.06+0.1

−0.1 1.49+0.03
−0.03 0.18+0.01

−0.01 1.92+0.04
−0.04

adc10 CAT finder 84.9+0.1
−0.1 86.7+0.1

−0.1 1.7+0.04
−0.04 0.21+0.01

−0.01 2.03+0.05
−0.05

adc15 CAT finder 85.6+0.1
−0.1 87.2+0.1

−0.1 1.55+0.04
−0.04 0.19+0.01

−0.01 1.84+0.05
−0.05

tot clip CAT finder 85.4+0.1
−0.1 87.34+0.09

−0.09 1.62+0.03
−0.03 0.24+0.01

−0.01 2.2+0.04
−0.04

adc log CAT finder 85.4+0.1
−0.1 87.16+0.1

−0.09 1.63+0.03
−0.04 0.18+0.01

−0.01 1.98+0.04
−0.04

tot3 CAT finder 85.3+0.1
−0.1 87.07+0.1

−0.1 1.41+0.03
−0.03 0.15+0.01

−0.01 2.07+0.04
−0.04

charge CAT finder 85.3+0.1
−0.1 87.05+0.1

−0.1 1.59+0.03
−0.03 0.17+0.01

−0.01 1.96+0.04
−0.04

tot2 CAT finder 85.2+0.1
−0.1 87.13+0.1

−0.1 1.7+0.04
−0.04 0.17+0.01

−0.01 2.16+0.04
−0.04

drift-charge CAT finder 84.9+0.2
−0.2 86.9+0.2

−0.2 1.78+0.06
−0.06 0.21+0.02

−0.02 2.29+0.07
−0.07

tot1 CAT finder 84.8+0.1
−0.1 86.27+0.1

−0.1 1.6+0.03
−0.03 0.15+0.01

−0.01 1.73+0.04
−0.04

no tot CAT finder 84.8+0.1
−0.1 86.5+0.1

−0.1 1.61+0.04
−0.04 0.19+0.01

−0.01 1.92+0.04
−0.04

drift CAT finder 84.5+0.1
−0.1 86.32+0.1

−0.1 1.74+0.04
−0.04 0.13+0.01

−0.01 2.05+0.04
−0.04

no tdc CAT finder 84.3+0.1
−0.1 85.97+0.1

−0.1 3.47+0.05
−0.05 0.17+0.01

−0.01 1.95+0.04
−0.04

middle-of-wire CAT finder 83.7+0.1
−0.1 85.3+0.1

−0.1 2.09+0.04
−0.04 0.15+0.01

−0.01 1.88+0.04
−0.04

angle CAT fitter 82.2+0.1
−0.1 82.7+0.1

−0.1 0.51+0.02
−0.02 0.06+0.01

−0.01 0.6+0.02
−0.02

adc15 CAT fitter 82.0+0.1
−0.1 82.5+0.1

−0.1 0.52+0.02
−0.02 0.06+0.01

−0.01 0.61+0.03
−0.03

adc-tdc-tot CAT fitter 82.0+0.1
−0.1 82.4+0.1

−0.1 0.51+0.02
−0.02 0.09+0.01

−0.01 0.51+0.02
−0.02

adc log CAT fitter 81.9+0.1
−0.1 82.4+0.1

−0.1 0.55+0.02
−0.02 0.08+0.01

−0.01 0.63+0.02
−0.03

tot3 CAT fitter 81.7+0.1
−0.1 82.2+0.1

−0.1 0.46+0.02
−0.02 0.05+0.01

−0.01 0.57+0.02
−0.02

tot2 CAT fitter 81.7+0.1
−0.1 82.1+0.1

−0.1 0.58+0.02
−0.02 0.07+0.01

−0.01 0.5+0.02
−0.02

charge CAT fitter 81.7+0.1
−0.1 82.1+0.1

−0.1 0.54+0.02
−0.02 0.05+0.01

−0.01 0.55+0.02
−0.02

adc6 CAT fitter 81.6+0.1
−0.1 82.1+0.1

−0.1 0.51+0.02
−0.02 0.07+0.01

−0.01 0.6+0.02
−0.02

tot clip CAT fitter 81.5+0.1
−0.1 82.0+0.1

−0.1 0.53+0.02
−0.02 0.07+0.01

−0.01 0.61+0.02
−0.02

no tot CAT fitter 81.3+0.1
−0.1 81.8+0.1

−0.1 0.53+0.02
−0.02 0.06+0.01

−0.01 0.68+0.03
−0.03

adc8 CAT fitter 81.3+0.1
−0.1 81.7+0.1

−0.1 0.54+0.02
−0.02 0.06+0.01

−0.01 0.51+0.02
−0.02

no clayer CAT fitter 81.2+0.1
−0.1 81.6+0.1

−0.1 0.54+0.02
−0.02 0.06+0.01

−0.01 0.5+0.02
−0.02

adc10 CAT fitter 81.1+0.1
−0.1 81.6+0.1

−0.1 0.59+0.02
−0.02 0.08+0.01

−0.01 0.6+0.03
−0.03

tot1 CAT fitter 81.1+0.1
−0.1 81.5+0.1

−0.1 0.53+0.02
−0.02 0.02 0.53+0.02

−0.02

no layer CAT fitter 81.0+0.1
−0.1 81.4+0.1

−0.1 0.54+0.02
−0.02 0.07+0.01

−0.01 0.5+0.02
−0.02

drift CAT fitter 80.9+0.1
−0.1 81.3+0.1

−0.1 0.56+0.02
−0.02 0.03−0.01 0.5+0.02

−0.02

drift-charge CAT fitter 80.7+0.2
−0.2 81.2+0.2

−0.2 0.53+0.03
−0.03 0.07+0.01

−0.01 0.55+0.04
−0.04

no tdc CAT fitter 80.7+0.1
−0.1 81.2+0.1

−0.1 1.17+0.03
−0.03 0.06+0.01

−0.01 0.65+0.03
−0.03

middle-of-wire CAT fitter 80.4+0.1
−0.1 80.8+0.1

−0.1 0.83+0.03
−0.03 0.04+0.01

−0.01 0.55+0.02
−0.02
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Table B.3.: Total ranking of all CAT finder at the low background for protons. Ranked
by the charge efficiency εcharge, with the track efficiency εtrack, fake rate rfake,
clone rate rclone, and wrong charge rate rwrong ch.. Uncertainties below 0.01 %
are not shown.

model name εcharge εtrack rfake rclone rwrong ch.

tot3 CAT finder 93.53+0.08
−0.08 94.24+0.08

−0.08 3.3+0.05
−0.05 0.47+0.02

−0.02 0.75+0.03
−0.03

adc15 CAT finder 93.41+0.09
−0.09 94.22+0.09

−0.08 3.3+0.05
−0.05 0.47+0.02

−0.02 0.86+0.03
−0.04

adc-tdc-tot CAT finder 93.32+0.08
−0.08 94.24+0.08

−0.08 3.54+0.05
−0.05 0.54+0.02

−0.02 0.98+0.03
−0.03

adc log CAT finder 93.31+0.08
−0.08 94.28+0.08

−0.08 3.78+0.05
−0.05 0.54+0.02

−0.02 1.02+0.03
−0.03

angle CAT finder 93.26+0.08
−0.08 94.25+0.08

−0.08 3.79+0.05
−0.05 0.62+0.02

−0.02 1.05+0.03
−0.04

adc6 CAT finder 93.25+0.08
−0.08 94.17+0.08

−0.08 3.67+0.05
−0.05 0.5+0.02

−0.02 0.97+0.03
−0.03

charge CAT finder 93.14+0.08
−0.08 94.02+0.08

−0.08 3.9+0.05
−0.05 0.46+0.02

−0.02 0.93+0.03
−0.03

tot clip CAT finder 93.11+0.08
−0.08 94.08+0.08

−0.08 4.0+0.05
−0.05 0.55+0.02

−0.02 1.04+0.03
−0.03

drift-charge CAT finder 93.1+0.2
−0.2 94.1+0.2

−0.2 4.7+0.1
−0.1 0.63+0.04

−0.04 1.02+0.07
−0.07

adc8 CAT finder 93.07+0.08
−0.08 94.1+0.08

−0.08 3.67+0.05
−0.05 0.52+0.02

−0.02 1.09+0.04
−0.04

no tot CAT finder 93.03+0.09
−0.09 93.97+0.08

−0.08 3.85+0.05
−0.05 0.54+0.02

−0.02 1.0+0.03
−0.04

adc10 CAT finder 92.93+0.09
−0.09 93.87+0.09

−0.09 3.43+0.05
−0.05 0.53+0.02

−0.02 1.0+0.04
−0.04

tot2 CAT finder 92.93+0.09
−0.08 93.95+0.08

−0.08 3.92+0.05
−0.05 0.46+0.02

−0.02 1.09+0.04
−0.04

no layer CAT finder 92.9+0.09
−0.08 93.79+0.08

−0.08 3.76+0.05
−0.05 0.47+0.02

−0.02 0.95+0.03
−0.03

no clayer CAT finder 92.78+0.09
−0.09 93.83+0.08

−0.08 3.97+0.05
−0.05 0.54+0.02

−0.02 1.12+0.04
−0.04

drift CAT finder 92.49+0.09
−0.09 93.21+0.08

−0.08 4.17+0.05
−0.05 0.43+0.02

−0.02 0.77+0.03
−0.03

tot1 CAT finder 92.09+0.09
−0.09 92.9+0.09

−0.08 3.91+0.05
−0.05 0.44+0.02

−0.02 0.88+0.03
−0.03

no tdc CAT finder 91.93+0.09
−0.09 92.81+0.09

−0.09 5.59+0.06
−0.06 0.58+0.02

−0.02 0.95+0.03
−0.03

middle-of-wire CAT finder 91.35+0.09
−0.09 92.17+0.09

−0.09 4.62+0.06
−0.06 0.56+0.02

−0.02 0.89+0.03
−0.03

adc15 CAT fitter 91.3+0.1
−0.1 92.06+0.1

−0.1 1.08+0.03
−0.03 0.25+0.01

−0.02 0.85+0.03
−0.04

tot3 CAT fitter 90.65+0.1
−0.1 91.48+0.09

−0.09 1.07+0.03
−0.03 0.22+0.01

−0.01 0.9+0.03
−0.03

angle CAT fitter 90.5+0.1
−0.1 91.43+0.09

−0.09 1.22+0.03
−0.03 0.3+0.01

−0.02 1.02+0.03
−0.04

no tot CAT fitter 90.4+0.1
−0.1 91.38+0.1

−0.1 1.23+0.03
−0.03 0.25+0.01

−0.01 1.02+0.04
−0.04

adc log CAT fitter 90.34+0.1
−0.1 91.27+0.09

−0.09 1.24+0.03
−0.03 0.26+0.01

−0.01 1.02+0.03
−0.04

adc6 CAT fitter 90.23+0.1
−0.1 91.09+0.09

−0.09 1.13+0.03
−0.03 0.24+0.01

−0.01 0.95+0.03
−0.03

adc10 CAT fitter 90.2+0.1
−0.1 91.2+0.1

−0.1 1.2+0.03
−0.03 0.22+0.01

−0.01 1.04+0.04
−0.04

tot2 CAT fitter 90.2+0.1
−0.1 91.09+0.09

−0.09 1.34+0.03
−0.03 0.22+0.01

−0.01 0.98+0.03
−0.03

adc8 CAT fitter 90.13+0.1
−0.1 91.05+0.09

−0.09 1.23+0.03
−0.03 0.23+0.01

−0.01 1.02+0.03
−0.04

adc-tdc-tot CAT fitter 90.12+0.1
−0.1 91.01+0.1

−0.09 1.2+0.03
−0.03 0.25+0.01

−0.01 0.98+0.03
−0.03

charge CAT fitter 90.08+0.1
−0.1 90.94+0.1

−0.09 1.24+0.03
−0.03 0.2+0.01

−0.01 0.95+0.03
−0.03

tot clip CAT fitter 90.01+0.1
−0.1 90.87+0.1

−0.1 1.28+0.03
−0.03 0.23+0.01

−0.01 0.94+0.03
−0.03

no clayer CAT fitter 89.98+0.1
−0.1 90.83+0.1

−0.1 1.25+0.03
−0.03 0.25+0.01

−0.01 0.94+0.03
−0.03

no layer CAT fitter 89.92+0.1
−0.1 90.75+0.1

−0.1 1.21+0.03
−0.03 0.19+0.01

−0.01 0.92+0.03
−0.03

tot1 CAT fitter 89.5+0.1
−0.1 90.37+0.1

−0.1 1.19+0.03
−0.03 0.21+0.01

−0.01 0.96+0.03
−0.03

drift CAT fitter 89.4+0.1
−0.1 90.25+0.1

−0.1 1.27+0.03
−0.03 0.19+0.01

−0.01 0.92+0.03
−0.03

drift-charge CAT fitter 88.8+0.2
−0.2 89.6+0.2

−0.2 1.41+0.06
−0.07 0.35+0.03

−0.03 0.93+0.07
−0.07

no tdc CAT fitter 88.8+0.1
−0.1 89.87+0.1

−0.1 1.87+0.04
−0.04 0.29+0.01

−0.02 1.14+0.04
−0.04

middle-of-wire CAT fitter 88.6+0.1
−0.1 89.4+0.1

−0.1 1.58+0.03
−0.04 0.24+0.01

−0.01 0.9+0.03
−0.03
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B.2. Comparison to the standard CAT and the Baseline for all
Particles.

Table B.4.: Evaluation with electrons of the best configuration model in comparison to the
Baseline and the standard CAT model. Ranked by the charge efficiency εcharge,
with the track efficiency εtrack, fake rate rfake, clone rate rclone, and wrong charge
rate rwrong ch.. Uncertainties below 0.01 % are not shown.

model name εcharge εtrack rfake rclone rwrong ch.

std. CAT finder 88.45+0.09
−0.09 89.21+0.09

−0.09 1.0+0.03
−0.03 0.41+0.02

−0.02 0.85+0.03
−0.03

best config. CAT finder 88.33+0.09
−0.09 89.03+0.09

−0.09 0.81+0.02
−0.02 0.06+0.01

−0.01 0.78+0.03
−0.03

Baseline finder 85.59+0.1
−0.1 87.91+0.09

−0.09 0.76+0.02
−0.02 0.07+0.01

−0.01 2.65+0.05
−0.05

std. CAT fitter 86.02+0.1
−0.1 86.23+0.1

−0.1 0.41+0.02
−0.02 0.13+0.01

−0.01 0.25+0.01
−0.02

best config. CAT fitter 85.93+0.1
−0.1 86.08+0.1

−0.1 0.27+0.01
−0.01 0.02 0.17+0.01

−0.01

Baseline fitter 84.7+0.1
−0.1 86.32+0.1

−0.1 0.57+0.02
−0.02 0.05+0.01

−0.01 1.86+0.04
−0.04

Table B.5.: Evaluation with protons of the best configuration model in comparison to the
Baseline and the standard CAT model. Ranked by the charge efficiency εcharge,
with the track efficiency εtrack, fake rate rfake, clone rate rclone, and wrong charge
rate rwrong ch.. Uncertainties below 0.01 % are not shown.

model name εcharge εtrack rfake rclone rwrong ch.

best config. CAT finder 95.01+0.07
−0.07 95.88+0.07

−0.07 2.37+0.04
−0.04 0.32+0.01

−0.02 0.91+0.03
−0.03

Baseline finder 92.92+0.09
−0.08 93.56+0.08

−0.08 1.62+0.03
−0.03 0.17+0.01

−0.01 0.68+0.03
−0.03

std. CAT finder 90.42+0.1
−0.1 92.79+0.09

−0.09 3.27+0.05
−0.05 4.38+0.05

−0.05 2.55+0.05
−0.05

best config. CAT fitter 91.83+0.09
−0.09 92.62+0.09

−0.09 0.82+0.02
−0.03 0.19+0.01

−0.01 0.85+0.03
−0.03

Baseline fitter 91.53+0.09
−0.09 91.94+0.09

−0.09 1.11+0.03
−0.03 0.1+0.01

−0.01 0.45+0.02
−0.02

std. CAT fitter 87.9+0.1
−0.1 89.7+0.1

−0.1 1.09+0.03
−0.03 2.05+0.04

−0.04 1.96+0.05
−0.05
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