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Disclaimer

Data analyses in high-energy physics such as the measurement presented in this master
thesis are a collaborative effort. The SuperKEKB particle accelerator which provides the
particle beams essential for all studies at Belle II was built and is operated and maintained
by the SuperKEKB accelerator group. The Belle II detector was built and is maintained
and operated by the Belle II collaboration. The Belle II collaboration also creates the
simulated and recorded data sets and maintains the computing infrastructure necessary to
process them. The software environment necessary for studies with Belle II data plays an
important role and was created and is maintained by the collaboration. I have performed
all studies detailed in this thesis except for the determination of calibration factors and the

associated uncertainties for:
e Tagging efficiency in Section 5.6.1
e The efficiency of 7 reconstruction in Section 5.6.2
e The efficiency and misreconstruction rate of charged K and 7 mesons in Section 5.6.2

e The efficiency of lepton reconstruction in Section 5.6.3

The mentioned studies have been performed by members of the collaboration and are

explicitly acknowledged whenever used.

VII






Statement on the Employment of Techniques

based on Artificial Intelligence

This thesis incorporates the use of Artificial Intelligence (AI) tools to help with grammatical

or stylistic improvement of text, and program code creation:

. Grammarlyl is utilized throughout the thesis for spell and grammar checks, as well
as for paraphrasing individual, selected sentences to improve clarity and precision in

academic writing. I have approved all suggested changes.

e GitHub Copilot2 is used to aid the development of Python code, in particular class
structures and string-handling code that does not constitute the core scientific work of
this thesis. I have approved and tested all suggestions to provide robust and reliable

results. The use of GitHub Copilot has been explicitly acknowledged whenever used.

1 https://www.grammarly.com/ (Access date: 8th October 2024)
2 https://github.com/features/copilot (Access date: 8th October 2024)
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1 Introduction

The Standard Model of particle physics (SM) [1-8| provides the most precise and detailed
description in the domain of elementary particle interactions. Even though this theory only
combines three of the four fundamental forces, it has found wide acceptance in the particle
physics community. The groundbreaking success over the last 50 years stems from the accu-
rate prediction of measurements performed by high-precision experiments. However, despite
the lack of a proper description of gravity, it cannot be considered complete. Inadequacies
of the SM include the inability of interpreting dark matter, the baryon asymmetry or the
presence of neutrino oscillations.

Two approaches have been established for searching for phenomena beyond our current un-
derstanding in need to extend the SM: A direct search for new phenomena or high-precision
measurements of SM processes to uncover inconsistencies with theoretical predictions.
Flavor physics, the study of elementary fermion interactions, is particularly sensitive to new
observations. Especially interactions involving flavor-changing neutral currents (FCNCs)
are highly suppressed, leading to observable effects in the presence of new phenomena.

te  and b — su+,u,_

Transitions under extensive experimental investigation include b — se
where several observed anomalies [9-14| prompted interpretations in terms of non-SM
particles, which mainly dissolved with the latest measurements [15]. On the other hand,
interesting patterns of deviations in the charged current b — c£~ 7, have been accumulated.
For this, the ratios of R(D(*)) and R(J/i) have been extensively studied to determine
lepton flavor universality (LFU) violation by comparing the 7 mode to the light lepton
(e, ) modes. Even though this charged current is a tree-level process and thus not mainly
sensitive to physics beyond the SM, the measured ratios differ from their SM predictions by
an average significance of 3.2 [16].

Combining both hints, a large LFU violation is expected in FCNC involving 7-leptons,
namely in b — s77 7. Theoretical models that allow the violation of LFU [17, 18] motivate
an increase in the branching fraction by three orders of magnitude. Experiments primarily
focusing on the study of B mesons are of particular interest in this regard, given their
heavy quark content and experimental accessibility. Since many quark transitions are

additionally observable, B mesons are a unique way to probe in this direction. The Large
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Hadron Collider beauty (LHCD) experiment, as well as the B factories BaBar and Belle have
successfully explored such new phenomena in the past 20 years in B — K77 transitions,
setting upper limits on the branching fraction. To further advance the research, improved
analysis techniques and especially a vastly larger dataset are urgently required. These
enhancements are the target of the Belle II experiment, commissioned in Tsukuba, Japan.
With improved reconstruction algorithms and an overall targeted dataset 50 times larger
than Belle [19], the Belle IT experiment provides a unique environment to study b — st

interactions.

In this work, I will outline a first estimate of the upper limit of Bt — K* 77~ de-
cays at the Belle II experiment. This decay is of particular interest, since it has not been
measured by any experiment and thus enables an exclusive viewpoint. For this analysis, I
employ an advanced hadronic tagging algorithm and consider additional 7 lepton modes,
making it distinct from similar searches from predecessor experiments.

In the following chapters of this work, I describe the foundations of the BT - K"+~
decay and present an outline of existing measurements (Chapter 2). Next, I introduce the
Belle II experiment and focus on key components that contribute to an advanced measure-
ment of B — K77 decays (Chapter 3). Furthermore, the necessary tools for this analysis
are introduced (Chapter 4). As key part of this work, I define the reconstruction procedure
and derive corrections to minimize the discrepancy between recorded and simulated data
samples (Chapter 5). The validation of the reconstruction is performed on designated
control samples (Chapter 6). With the gained knowledge, I define a signal extraction
strategy (Chapter 7) and apply it on the simulated dataset (Chapter 8), delivering the
first estimate on the upper limit of BT — K*'7777 on simulation. To further improve
the result, I outline advanced techniques (Chapter 9), making the future of this analysis

concise.



2 Foundations

In this chapter, I discuss the theoretical foundations required to fully describe the interaction
of interest. I briefly address the mechanism of weak interactions which is fundamental
for flavor physics. Furthermore, I introduce the concept of LFU and the effects of new
theoretical descriptions describing b — s¢7 ¢~ transitions. At the end of this chapter, I

summarize existing measurements performed by multiple experiments in this domain.

2.1 Lepton Flavor Universality

In the SM, the electroweak unification grounds on the symmetry-breaking pattern SU(2) x
U(1)y — U(1)gy. When introducing a complex doublet H, called the Higgs multiplet, the

electroweak Lagrangian reads

1

£=—4 “B2, 4+ (D, H) (D, H) +m*HUH — A(HH)?, (2.1)

W)’ = 1B
where B, is the gauge boson field affiliated with the hypercharge U(1)y- symmetry and W;j
the gauge boson fields associated with SU(2). The actual breaking of symmetry occurs
when the Higgs multiplet obtains its vacuum expectation value v. Expanding the Higgs
multiplet around v in the Lagrangian leads to mass terms associated with the three gauge
bosons W and Z.

When addressing the fermion sector, i.e. the coupling of the electroweak gauge bosons to
fermions, it turns out that the SU(2) gauge bosons only couple to left-handed fermions.
This is an important property since it causes the theory to be chiral and maximally parity-
violating.

Left-handed leptons and quarks are represented by three generations of SU(2) doublet pairs:

i _ (Ve VuL VrL . i_ [w cr iy . .
(i) () Co) o= () () () e

Here, the index i represents the generation. The right-handed fermions are characterized
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by SU(2) singlets:

63{ = {€R7 KR, TR} V;% = {VeRv ViR VTR} ’

u% = {uRa CR» tR} dyR = {dR7 SRs bR} : (23)

Focusing on the lepton sector, the interactions between fields and gauge bosons are governed

by the two coupling strengths g and ¢’. The corresponding Lagrangian is

L=1iL;(§ — igWeT* — ig/YLB)Li + iéjg((? — z'g'YeB)efR
+iTR(§ — iV, B)vi, (2.4)

here, T" are the generators of SU(2), Y}, defines the left-handed fields’ hypercharge and Y,,Y,,
the right-handed counterpart. The concept of hypercharge is the symmetry representation
of the U(1)y symmetry group of the electroweak theory. The corresponding hypercharges
in Equation (2.4) reveal itself to be the same for each generation.

The coupling strengths g and ¢’ are considered universal, meaning they are independent of
the lepton field. The gauge interaction has therefore identical couplings to different flavors
of leptons. This concept is known as lepton flavor universality (LFU).

The only source of LFU violation in the SM originates from the Yukawa interaction after
symmetry breaking. The Higgs doublet is hereby coupling to the fermion fields resulting
in massive fermions. Focusing on the quark component, the Yukawa Lagrangian after

symmetry breaking is
Ly = _ngEiLd% — gYZ;‘UZLu% +h.c., (2.5)

where Y% and Y are describing the down- or up-type couplings respectively. These two
3 x 3 matrices contain 18 parameters that regulate the fermion masses. To diagonalize
these matrices, a unitary rotation represented by Uy , is performed, yielding the quark mass
terms to be
a5 i i
Linass = —mjdpdy, — miupwy + h.c., (2.6)

where m? and m;L are referring to the quark masses. The kinetic term as well as interactions
with Z bosons are invariant under this transformation, since these do not mix up- and
down-type quarks. However, the Wf couplings are sensitive to such flavor rotations. The

Lagrangian describing the W;t interaction is then given by
Loy ~ [Wa A" (V) d], + Wy dpy (v | (2.7)

Here V = quUd describes the flavor mixing effects and is generally known as the Cabibbo-
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Figure 2.1: Leading order Feynman diagrams for the FONC transition b — s¢7 ¢~ showing
the electroweak penguin (left) and box diagram contributions (right). Taken
from [21].

Kobayashi-Maskawa (CKM) matrix [20].
Compared to Equation (2.4), the Yukawa interaction leads to additional terms sensitive to

lepton flavor and thus LFU is in general not sustained.

2.2 Enhancement of b — s77 Transitions

A special probe for testing LFU violation is provided by FCNCs, describing flavor-changing
transitions among fermions with the same electric charge. Given the unitarity of U,, and Uy,
as well as the CKM matrix, such transitions are heavily suppressed in the SM. This is often
referred to as Glashow-Iliopoulos-Maiani (GIM) mechanism [4], historically underpinning
the existence of the charm quark to fully understand the suppression of s — duu. Even
though FCNC processes are forbidden at tree level, they occur in higher order diagrams.

Rare b to s quark transitions are often referred to when considering the test of LFU. The
corresponding Feynman diagram of such a FCNC is depicted in Figure 2.1. First processes
of this type have been observed by the Belle collaboration [22] and have been studied

te~ and b — sup in the

extensively ever since. Especially the comparison of b — se
ratios of R(K™) [10, 23] have shown tensions to SM predictions. This deviation was
entirely resolved by the latest LHCb measurement [15], however a binned analysis of angular
components is still expected to demonstrate tensions to the SM predictions [24]. Together
with the excess in R(D(*)) and R(J/1) concerning 7-lepton modes [16], the FCNC process
b — s7T 7 is expected to be a promising candidate to further test the SM predictions.

The branching fraction of the corresponding process B — K777 is calculated by employing

unquenched lattice QCD, allowing for the first model-independent SM prediction [25]:

BB —Kr 7 )= (1.41+0.15) x 10" (2.8)
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Given the magnitude of this result, a precise measurement of this signal with existing
datasets is almost impossible since it drastically exceeds the sensitivity of current flavor
experiments [19]. However, new theoretical models allow for a significant increase of the
branching fraction by up to three orders of magnitude [17, 18].

A theoretical description is not trivial since the flavor-changing amplitudes involve widely
separated mass scales. While perturbation theory is a solid method for calculating QCD
effects associated with the scales of the bottom quark mass my, ~ 4.5 GeV/¢? and above, it
breaks down at the energy scale Aqcp ~ 350 GeV. A powerful tool for resolving this issue

+

is the effective weak Hamiltonian H.g. | define Hyg for the b — s7 "7 transitions in the

following way:

_4Gr
V2

Here, G denotes the Fermi constant and C, the coupling coeflicients of the effective

Hug(b —sthr ) = PV C,0,. (2.9)

operators O, also known as Wilson coefficients. The branching factions are sufficiently

described by Cy o and C hence the focus is set on the relevant operators

10,10"
O30y = 1= 3" Pb] [77,(7°)7] (2.10)
OF o) = 5= 57" Pab] [7,(2°)7] (2.11)

where Pp, p = (1 F 75)/2 denotes the projector mapping onto left- and right-handed field
components. In the SM, the corresponding Wilson coefficients are given by C’QSM ~ 4.1
Cls(l)v[ ~ —4.3 at the scale of 4.8 GeV [26]. Besides the first prediction of B — K77~ modes
*+_+_—
T'T

in Equation (2.8), the computation of BT 5 K is now possible. Taking the average

of the charged and neutral K*7 "7~ modes yields [17]
BB — K*7"77) = (0.98£0.10) x 10" . (2.12)

Additions to the coefficients Cy o and C
accounting for New Physics (NP) effects. Interestingly, the NP effects for b — stTr are

+ are used to extend the SM prediction by

correlated to NP contributions that provide a solution to the ~ 3.2 0 anomaly in R(D(*))
and R(J/1)): The deviations in b — ¢7 7, decays originate in NP contributions from a
scale significantly larger than the electroweak scale. This effectively suppresses b — s7 7

*77 interactions based on these assumptions. Given

transitions, while enhancing b — st
this case, the predictions on the branching fractions are almost entirely dominated by NP

effects 17| and result in

2

B(B — K*'7777) ~ 0.008 ( Ri\(j&) — 1) . (2.13)
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RD(*)&RJ[LP 20
RD(*)&RJ/LP 10
Br[Bs—11]
Br[B->K*171]
Br[B->K11]
Br[Bs— ¢11]

Br x 10*

OEEREONE O

1.1 1.2 1.3 1.4 1.5
Rx/R$M

Figure 2.2: Representation of the branching ratios for multiple b — s7 7 transitions as
a function of R(X)/Rgy(X). The blue ribbon corresponds to the calculated
branching fraction of B — K*7 77 transitions, yielding an increment of 10°
within the current tensions measured in R(D(*)) and R(J/Y). The uncertainty
on the calculation is hereby given by the width of the ribbon. Taken from [17].

As mentioned, the NP effects are correlated, making the branching fraction dependent on the
tension of the measured ratios with the SM predictions. The corresponding enhancements
yield an increasement of three orders of magnitude for the branching fractions as illustrated
in Figure 2.2.

The resulting branching fraction of B(BT — K**7777) ~ 10~ provides a well-motivated
approach in searches for violations of LFU, right at the experimental frontier of B factories

such as the Belle II experiment.

2.3 Current Experimental Status

The search for b — s7

T transitions have been performed by B factories in recent years. In
principle, B factories are electron-positron colliders operated at the T(4S) resonance energy.
The resulting Y(4S) almost exclusively decays into a BB pair, making it an outstanding
environment to study b transitions.

The BaBar collaboration closely studied Bt — K"777" transitions with the full BaBar

dataset corresponding to 424 b [21]. To set constraints on the signal B candidate, a
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35.2%

T — 7r_27r01/T
9.3%

Figure 2.3: Illustration of the branching fractions of the most common 7 decay processes.
The two shades of green in the outer circle represent 7 — ¢, modes, with their
combined contribution defined by the green inner circle. The shades of blue and
the other arbitrary 7 decay modes are referring to decays involving hadrons.
The combined contribution to the overall branching fraction is represented by
the light blue fraction of the inner circle. Taken from [27].

hadronic tagging1 algorithm was employed to increase the selection purity. By this, the
partner B meson originating from the Y (4S) decay is reconstructed in a variety of hadronic
decay modes. On the other hand, the 7-leptons exhibit a rapid decay once they have
been produced, given their short lifetime [8]. For reconstruction, the BaBar analysis solely
reconstructed T — (U, modes with light leptons (¢ = e, p), accounting for 35.2% of all 7
decays as illustrated in Figure 2.3.

The search did not find any evidence for signal, but was able to set an upper limit of
BBT - K 7 77) <225 x107% @90% C.L. [21]. Compared to the predicted branching
fraction, this result neither supports nor refutes the presence of NP effects. The most recent
search for b — s777~ was conducted by the Belle collaboration in B » K7 7T decays
at the KEK research facility in Japan.

In contrast to the BaBar experiment, Belle accumulated over 711fb™" of data at the T (45)
resonance. The 7-leptons are additionally reconstructed in the 7 — wr. mode, covering
a larger phase space of decay modes. Concerning tagging, the Belle search used the Full-

Reconstruction (FR) algorithm [28] to reconstruct hadronic modes on the tag-side. Also

1 The concept of tagging and the variety of tagging methods will be introduced in more detail in Chapter 4.
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in this search, no evidence of signal was found. However, the upper limit resulting in
BB’ - K7 7)) < 3.1x 107 @90% C.L. [29] provides a good probe in the direction of
b — sf¢ transitions.






3 The Belle 11 Experiment

This chapter is dedicated to the experimental setup of the Belle II experiment and is
intended to give an overview of the fundamental concepts. I introduce the core ideas of
physics at B factories before briefly describing the SuperKEKB accelerator and the Belle 11

detector.

3.1 Physics of B Mesons and Y Resonances

A bound state consisting of a bb is formally described by heavy quark expansion [30] in a
non-relativistic manner.

When operating an electron-positron collider far below the Z boson mass, the interaction
ete” = bb is mediated by a virtual photon. In general, a variety of bound bb states
corresponding to different configurations of the orbital momentum (L = S, P, D, ...) or
quark spins (total spin S = 0,1) are expected. However, the amount of bb pairs are limited
given that the virtual photons are characterized by their quantum numbers JPC =17,
This reduces the allowed pair states that occur in these interactions to the ones with
28+l 7= 381 [31]. Therefore, the T states present in the hadronic production correspond to
radial excitations of the triplet state S, named Y (nS) where n denotes the specific excitation
state. Multiple T resonances have been measured at energies between 9.4 and 11 GeV,
illustrated in Figure 3.1. Strong interactions are suppressed below the production threshold
of a BB meson pair. Therefore, electromagnetic interactions are becoming dominant, leading
to radiative transitions among various excitations in the bb system. Only for energies above
the threshold do strong forces become more competitive, making the decay to two B mesons
the dominating decay mode for Y(4S) with a branching fraction of ~ 96% [8]. At this
resonance, the BB production threshold is just slightly exceeded by 20 MeV resulting in
the B meson pair to be produced almost at rest.

In general, B mesons provide an excellent environment to study physics cases ranging from
CP violation to rare decay searches. Therefore some experiments are specialized to operate
at or near the Y (4S) resonance, producing a large amount of B mesons. These experiments

are usually referred to as "B factories". Examples for these kinds of experiments are the

11
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Figure 3.1: Representation of T(1S), T(2S), T(3S) and Y(4S) resonances in the hadronic
production cross section from e e~ annihilation as measured by the Columbia
University-Stony Brooks (CUSB) detector [32, 33]. The insert figure depicts
results of the CLEO collaboration concerning higher excitations, namely T(5S)
and Y(6S) [34]. This plot was initially published in Ref. [31]. This figure is
taken from [35].

BaBar, Belle and the Belle II experiment. Although providing an exceptional environment,

B factories are not the only type of experiments conducting investigations on B mesons.

3.2 The SuperKEKB Accelerator

In order to operate a B factory, an electron-positron accelerator is required that must
meet certain criteria. For rare decays such as BT — K*77777, a large amount of B
meson interactions are needed to provide sufficient statistics. A second major component is
asymmetry in beam energies. B mesons from Y (4S) resonance are produced nearly at rest
in the center-of-mass system (CMS) and decay rather quickly after traversing for ~ 10 pm.
To exceed the distance and better resolve the B decay vertices, asymmetric colliders are
used to boost the BB system.

Both goals are fulfilled by the SuperKEKB accelerator (shown in Figure 3.2) at the KEK
facility in Tsukuba, Japan. SuperKEKB mainly consists of two storage rings, one Low-
Energy Ring (LER) for 4 GeV positrons and one High-Energy Ring (HER) for 7GeV
electrons. The two beams collide at one point along the accelerator, exactly where the Belle

II detector is located.
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electron-positron
injector linac

Figure 3.2: Schematic illustration of the SuperKEKB collider at the High Energy Accelerator
Research Organization. The straight sections are labeled "Tsukuba", "Oho",
"Fuji" and "Nikko". The Belle II detector is located in the Tsukuba area. Taken
from [36].

Compared to its predecessor KEKB, the SuperKEKB accelerator plans to achieve a target
luminosity 30 times higher [37]. Essential for this raise is the reduction of the beam size
at the interaction point (IP) and the increase of the beam current by a factor of two. As
of June 2022, SuperKEKB holds the world record for peak instantaneous luminosity with
4.71 x 10**/(cm?®s) [38]. Concerning the boost, the increase in luminosity motivates the
decrease of beam asymmetry to a Lorentz boost of 8y = 0.28. Given the energy in the LER,

lower emittance growth due to intrabeam scattering is expected compared to KEKB [39].

3.3 The Belle II Detector

The tool to investigate collisions at the SuperKEKB accelerator is the Belle II detector. It
consists of a cylindrical structure around the IP that can be subdivided into three parts:
A tube-shaped component parallel to the beam axis ("barrel") and two disks positioned
perpendicular and centric to the beam ("endcaps"). Regarding its predecessor Belle, the
Belle II detector provides a substantial upgrade in every subdetector system. New vertex and
particle identification detectors in combination with the improved main tracking detector
and new electronics in the calorimeter showcase a better vertex, better track reconstruction,
and an improved energy resolution. In addition, the separation between charged hadrons
and suppression of particle misidentification is gradually improved.

Altogether, the Belle II detector consists of seven subdetectors as illustrated in Figure 3.3.

The three innermost detectors are aiming to reconstruct the particles’ trajectories ("tracks")
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Pixel Detector (PXD)

Silicon Vertex Detector (SVD)
Central Drift Chamber (CDC)
Time-Of-Propagation counter (TOP)
Aerogel RICH detector (ARICH)
Electromagnetic Calorimeter (ECL)

K? / Muon Detector (KLM)

Figure 3.3: Schematic view on the Belle II detector with all subdetector systems labeled.
Taken from [35].

that charged particles exhibit after collision. A superconducting solenoid magnet installed
between the calorimeter and Kg and muon detector produces a magnetic field of 1.5 T that
bends the charged particle trajectories.

In the following, I briefly describe the different subdetectors at the Belle II experiment. An

overall deeper and more technical description is available e.g. in Ref [40].

Pixel Detector The Pixel Detector (PXD) represents the first active detector layer after
particles emerge from the IP. The PXD is constructed from pixelated sensors of the Depleted
Field Effect Transistor (DEPFET) type [41] which are arranged in two layers at a radius of
r = 14mm and r = 22mm around the IP [42]. The DEPFET technology allows to position
the readout electronics outside of the detector itself, allowing for layer thicknesses of 75 pm.
During the data taking period relevant for this work, only one half of the originally proposed
40 DEPFET modules participated in recording data [42]. However, after the first long
shutdown of Belle II, a new detector with the two complete layers has been installed,

expanding the capability of the detector to its full potential.

Silicon Vertex Detector Together with the Pixel Detector (PXD), the Silicon Vertex
Detector (SVD) generates the supplementary component of the vertex detector [43]. Four
layers equipped with double-sided silicon strip sensors build the outer layer of the vertex
component.

The key objectives of the SVD are the extrapolation of trajectories from the drift chamber
inward to the PXD, particle identification using the energy loss rate dE/dx and precise
vertexing of Kg. In addition, the SVD is the only tracking component to reconstruct

trajectories of particles that do not reach the near central drift chamber.
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Central Drift Chamber The main detector for tracking is the Central Drift Chamber
(CDC), a large-volume drift chamber with small drift cells [44]. Compared to Belle, the
CDC extends to a larger radius (r = 1130 mm in contrast to r = 880 mm), while covering
the same polar angle 17° < 6 < 150°. Furthermore, the readout electronics have been
completely renewed to handle the higher trigger rate of 30 kHz with less dead time at the
target luminosity. The chamber is filled with a gas mixture of 50% helium and 50% ethane,
creating a low-density environment. This is especially useful since it suppresses multiple
scattering, a dominant effect present at the expected charged particle momenta of 1 to
2GeV/c. In total, the CDC consists of 14 336 sense wires arranged in 56 layers along the
z axis. The wires are orientated either along the beam axis ("axial") or slightly skewed
("stereo"), enabling the reconstruction of three-dimensional helix trajectories. Moreover,
the CDC contributes to particle identification by performing measurements of dF /dx of

the charged particle.

Particle Identification Detectors Belle II consists of two subdetector systems exclusively
targeting particle identification. The Aerogel Ring-Imagining Cherenkov detector (ARICH)
is located in the forward endcap and consists of two 2 cm thick layers of aerogel [45]. In
principle, if a charged particle of sufficient velocity hits the aerogel, photons are emitted via
the Cherenkov effect. To capture the intensity of photons in each aerogel tile, 420 Hybrid
Avalanche Photo-Detectors (HAPDs) arranged in 7 concentric rings are employed. The
primary purpose of Aerogel Ring-imaging Cherenkov (ARICH) is to effectively separate
pions and kaons in the full kinematic range of the experiment, i.e. from 0.5 to 4.0 GeV /c.
As a second form of particle identification, the Time-Of-Propagation counter (TOP) is
utilized and is located in the barrel region [46]. It comprises 16 bars of fused silica, each
equipped with a mirror located at the forward end of each bar. On the backward end, a
prism is located which couples to an array of micro-channel-plate photomultiplier tubes
(MCP-PMTs). When a particle with a large enough velocity hits the fused silica, it emits
Cherenkov radiation. Different to ARICH, the Cherenkov photons are trapped inside the bar
by total internal reflection. TOP reconstructs the Cherenkov emission angle by measuring
the propagation time of the Cherenkov photons from their emission to the sensor plane.
The particles’ initial velocity is directly connected to the reconstructed emission angle,

providing an additional source of particle identification compared to ARICH.

Electromagnetic Calorimeter The Electromagnetic Calorimeter (ECL) is a high gran-
ularity calorimeter built of 8736 CsI(T1) scintillating crystals [47]. Its main purpose is
the detection of photons and neutral hadrons which produce showers within the crystals
and are reconstructed from local energy depositions, referred to as "clusters". In addition,
the ECL is also used to separate between electrons and charged hadrons. In the case of

electrons, the particles often deposit their entire energy in the crystals, while for charged
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hadrons only a small fraction of their energy is left within the ECL. Each readout channel
consists of a charge-sensitive preamplifier followed by a waveform analysis realized in Field
Programmable Gate Arrays (FPGAs), providing both amplitude and time reconstruction.
The ECL covers the polar angle region of 12.4° < # < 155.1° except for two gaps of ~ 1°
between the barrel and endcap regions [48]. While the crystals were previously used in the
Belle calorimeter, the calorimeter electronics have been significantly upgraded to keep up

with the higher beam background rates expected at the target luminosity of SuperKEKB.

K(I), and Muon Detector The outermost subdetector is the K% and muon detector (KLM),
consisting of a cylindrical barrel part and two planar sections located in the endcaps. The
active components of the Belle KLM were based on glass-electrode Resistive Plate Chambers
(RPCs) located outside the solenoid magnet. While RPCs delivered sufficient results in the
scope of the Belle experiment, the expected higher background rates exceeds the RPCs long
dead time. To mitigate this problem, the KLM at Belle II additionally employs scintillator

strips with wavelength-shifting fibers in the inner barrel and endcap regions.



4 Tools

The analysis presented in this work relies on multiple tools and techniques. In this chapter,
I present fundamentals such as Boosted Decision Trees (BDTs), the Belle IT software

framework, B tagging and the datasets used in this analysis.

4.1 Boosted Decision Trees

Machine learning algorithms are widely considered when addressing classification tasks,
given their advantageous handling of complex and variable data at a large scale. While many
machine learning methods are suitable for classification, decision trees have established
themselves as a reliable approach due to their intuitive design and good performance in
modeling non-linear relationships among features. While only key concepts are summarized
here, a general introduction to decision trees and the method of boosting is given in [49].
Decision tree models partition the feature space into a set of rectangles, each optimized on
a Figure of Merit using a labeled dataset. Each decision is represented as a "node" and is
formed in a binary split. The number of sequential decisions within a tree is referred to as
the depth of the decision tree, a hyperparameter which must be optimized for each task. To
set up a classifier with only a single decision tree is straightforward but is often unstable.
A key reason for this is the hierarchical nature of the tree: A small change or error in
the top split propagates to all nodes down below. Choosing a more stable split criterion
does not remove the inherent instability of the simple estimator. To mitigate this issue, a
diverse ensemble of decision trees is considered to counteract the statistical fluctuations.
Two methods are very popular to create this ensemble: The method of bagging [50] and
boosting [51].

In bagging (short for "bootstrap aggregating"), multiple different training sets are created
by sampling with replacement from the original dataset. Each dataset, often referred to as
"bootstrap" sample, is exploited to train a single decision tree. The ensemble of decision
trees is then used as the classifier, drastically improving on the high variance compared to
a single decision tree.

However, in boosting, each decision tree is built sequentially. During each iteration one

17
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assigns weights to each datapoint, emphasizing those that previous models misclassified.
Hence for subsequent trees, the focus is shifted to rather hard-to-classify cases, gradually
improving the models’ overall accuracy. Unlike bagging, the boosting approach simultane-
ously reduces variance and bias.

A special instance of a boosting algorithm is stochastic gradient boosting [52]. In each
iteration, a subsample of the training dataset is randomly selected to fit the base learner.
By adding this stochastical component, overfitting is reduced and the boosting process
is more efficient. The resulting classifiers are referred to as Stochastic Gradient Boosted
Decision Trees (SGBDTs).

This work uses classifiers based on decision trees in multiple instances, including B tagging,
background suppression and particle identification. In two of these three applications, I
employ SGBDTs from the FastBDT software package [53]. Compared to other popular
frameworks used at Belle IT such as TMVA [54], scikit-learn [55] and XGBoost [56], the
FastBDT framework implements SGBDTs in a fast and cache-friendly manner.

4.2 The Belle 11 Analysis Software Framework

Modern high-energy physics (HEP) experiments such as Belle II collect a large amount of
data. In order to fully explore the potential of this data, accurate and efficient algorithms
concerning simulation, reconstruction and analysis are obligatory. The Belle II Analysis
Software Framework (basf2) [57, 58] contains the major software components to process
data at Belle II. The software is partitioned into individual modules each targeting a
different purpose. The majority of components are written as modules in C++ and build
on high-energy physics (HEP) specific software such as the ROOT framework [59]. The
modules are arranged and configured in an ordered manner using a more user-friendly
Python front-end.

For this work, the analysis subpackage is of particular interest. The modules in this
subpackage are operating on particle candidates, created by tracks and clusters associated
with particle hypotheses. Given a single event, the recombination is usually ambiguous,
resulting typically in multiple candidates reconstructed per event. To decrease the induced
multiplicity to unity, many approaches are sufficient and are presented in this work at a
later stage. A helpful tool in this regard are the tracks and clusters in an event not affiliated
with the signal candidate. The Rest Of Event (ROE) objects are furthermore beneficial for

the suppression of events where no B mesons are produced or missing background processes.

4.3 Full Event Interpretation

At Belle II, a huge amount of collision events containing an Y (4S) resonance are recorded.

These decay at least 96% of the time into a BB meson pair, gradually decaying into particles
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Figure 4.1: Schematic illustration of the tagging method. A typical B decay of interest
BT — T+(—> M+VMZ_)VT is illustrated as signal-side B decay on the right side.
The left side depicts an arbitrary reconstructed tag-side B decay. It is important
to know that the two sides are overlapping spatially in the detector. The
assignment of a measured track to the correct side is in general a challenging
task. Taken from [60].

that are considered stable in the Belle I detector. However, the measurement of rare B
decays such as BT — K*"77 7~ with multiple neutrinos in the final state is very challenging.
An advantageous tool for this purpose is the method of tagging. For this, the BB pair is
usually divided into two sides: The signal-side consists of all tracks and clusters associated
with the signal B decay one is investigating. On the other hand, the tag-side is composed
of remaining tracks and clusters consistent with an arbitrary B meson. This procedure is
illustrated for an example decay in Figure 4.1. The tag-side can be reconstructed in both
semileptonic or hadronic decay chains which distinguish themselves in several aspects. The
former is easily defined due to the presence of a high-momentum lepton and in combination
with the higher semileptonic branching fractions, the semileptonic reconstruction usually
yields a higher tag-side efficiency. The hadronic reconstruction suffers from lower branching
fractions of hadronic B decays, but in contrast, the four-momentum is well-defined given
the absence of additional neutrinos. This constraint is very powerful for the considered
channel of this work, hence only the hadronic reconstruction is considered in the following.
The approach of tagging has been adopted by many B factories. For the Belle experiment, the
concept was realized in a NeuroBayes-based Full-Reconstruction (FR) algorithm presented
in Ref. [28]. In order to increase the amount of reconstructed B decay chains, a hierarchical
selection procedure is employed. This approach consists of addressing each candidate with
a Bayesian signal probability, which acts as an input for higher-staged neural networks.
The algorithm was used previously in the measurement of B(BO — K*OT_T+)
in Chapter 2.

as presented



20 4 Tools

[ Tracks ] kDiSplaced VerticesJ LNeutral Clusters]

Figure 4.2: Schematic illustration of the Full Event Interpretation. B meson candidates
are reconstructed in six stages. Starting from information on the detector level,
long-lived particles and recursively intermediate particles are formed. At each
stage a FastBD'T classifier is employed to rank the reconstructed candidates.
Taken from [60].

The successor of the FR algorithm for the Belle II experiment is the Full Event Interpretation
(FEI) [60]. In principle, the FEI algorithm follows a hierarchical nature of six reconstruction
and classification stages to forge a tag-side B candidate. A schematic overview is given in
Figure 4.2. The algorithm starts by collecting available data on subdetector level such as
tracks, ECL and KLM clusters as well as pre-vertexed displaced particle candidates objects.
Based on this information, long-lived charged (e, u K", 7 and p) and neutral (K%
and ) particle candidates are formed. From here, intermediate particles are recombined
iteratively either from the long-lived particles or from previously reconstructed intermediate
candidates. At each step, a vertexing algorithm determines the probability of the recombined
constitutes stemming from a common decay vertex. A FastBDT classifier is employed
for each reconstruction step. In addition to the information provided by the vertexing
algorithm, case-specific features are used to determine the classifier output that is then
further propagated. At the top-level, the classifier assigns a signal probability to 20 B
meson candidates for the analysis. In order to keep the multiplicity to unity, a so-called
Best Candidate Selection (BCS) is utilized. Typically one selects the B meson candidate
with the highest signal probability, i.e. the highest classifier output.

Compared to the FR algorithm, the FEI tagging algorithm benefits from the improved
classification method and additional channels leading to a larger tag-side efficiency and

higher purity for the partner B meson as illustrated in Figure 4.3.
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Figure 4.3: Comparison of the Receiver operating characteristics of a charged (left) and a
neutral (right) tag-side B meson reconstructed with the FR and FEI algorithm,
both extracted from a fit on the beam-constrained mass on converted Belle data.
In the charged case, the FEI outperforms the FR algorithm in the low and high
purity domain. Taken from [60].

4.4 Datasets

Up until the first long shutdown in 2022, the Belle II experiment has acquired and simulated
a huge amount of data which is used throughout this analysis. For the scope of this work, I
refer to events measured by the Belle II detector as recorded data while simulated or
Monte Carlo (MC) data refers to events generated from particle and detector interactions
simulated with dedicated software’.

Recorded Data In multiple instances, this work relies on different recorded data samples.
The main dataset for B physics is recorded at the Y (4S) resonance and consists of 365.37 &
1.70fb~*. An additional amount of 42.74 + 0.20fb™ " is recorded slightly below the BB
pair production threshold and solely consists of e e~ — ¢q events. The dataset is used
for calibration purposes later in Section 5.6.4. A detailed overview of recorded datasets is
listed in Table 4.1.

Simulated Data Simulated events are used to model the underlying composition of signal
and background components with truth information provided by the event generator.

*+ 7_+

Regarding the signal events, I use a simulated sample of 50 million BT 5 K T events

at the Y (4S) resonance, where one B meson is restricted to decay into a K*"7 "

7 product
(that further decays generically) while the other decays generically. For the qq and BB
backgrounds, I use an amount representing 1 ab~! for each type which corresponds roughly
to 3 times the recorded data sample size. The collection of used datasets at the Y (4S)

energy is listed in Table 4.2.

1 In instances where the word "data" is used, I refer to recorded and simulated data alike.
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Table 4.1: The integrated luminosity of recorded data samples collected by the Belle 11
experiment from 2019 to 2022. The largest share of data is obtained at the Y (4S)
resonance, the most relevant domain for B physics. The supporting off-Y(4S) is
recorded 60 MeV below the threshold. The Y(5S) scan dataset contains various
recorded data beyond the Y (4S) threshold and is exploited for searches on exotic
vector resonances. Not listed are Y (4S) scans, since they make up a negligible
amount of the total integrated luminosity. The uncertainty on the luminosity is
composed out of a statistical and systematical component. Taken from [61].

Type Vs (GeV) £
T (4S) 10.580 365.37 + 1.70
off-1 (4S) 10.520 42.74 + 0.20
10.657 3.54 + 0.03
T(58) scan 10.706 1.63 4 0.02
10.751 9.88 + 0.06
10.810 4.71 £ 0.03
Total — 427.87 + 2.01

Table 4.2: Simulated datasets at the Y(4S) energy used throughout this analysis. The
background consists in each case of 1ab ™! which calculates into generated events
by considering the cross-section of the event of interest.

Process I'nteg.rated B Generated6
luminosity [fb™ ] events x 10
BT - K" 77~ 50
ete + —uu 1000 1586
ee +—dd 1000 306
ee T+ — 58 1000 362
efe + = cc 1000 1300
ete ™+ — Y(48) — BB’ 1000 -0
ete ™+ = T(4S) - BB~ 1000 539

Additionally, for the off-Y(4S) cases, I utilize a dedicated data sample for qq events simulated
at the off-1(4S) CMS energy. The integrated luminosity associated with each sample is

50fb ! and is only utilized for calibration purposes.
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In contrast to collision-based selections, the candidate-based selection approach allows
for an independent analysis of the two B mesons originating from a Y (4S) resonance. I
describe in detail the reconstruction and selection criteria for the tag B characterized by
the FEI algorithm (see Chapter 4) and the signal B meson. The decay topology is depicted
in Figure 5.1.

5.1 Tag-Side Selection

Applying the FEI algorithm is time-consuming and computation-wise highly demanding.
Therefore, all datasets used for reconstruction come with a pre-applied FEI tagging, so-
called FEI skims. The algorithm operates on displaced vertices, neutral clusters and tracks
affiliated with so-called final state particles (FSPs) in the detector. These are a category
of particles considered stable in the relevant time domain of interactions at the Belle II
experiment. A tag-side B meson is stepwise defined from FSPs through intermediate
resonances and labeled with an associated probability estimated by a multivariate classifier.
As a configuration for this analysis, I use the hadronic tagging method which solely recon-
structs the tag B meson in hadronic decay chains. The main advantage of this procedure is
the high tag-side purity stemming from the well-known four-momentum given to the absence
of neutrinos. The initial energy is precisely known, hence this is a powerful constraint for
selecting a signal B candidate. However, this method comes with smaller tag-side efficiency
arising from the lower hadronic branching fractions of B mesons.

In order to efficiently use the algorithm, performing a calibration is necessary to coun-
terbalance any discrepancies between Data and MC datasets. This calibration leads to
a correction factor which needs to be applied when comparing data with MC samples. 1
describe the calibration procedure in detail in Section 5.6.

With the tag-side B meson defined and reconstructed by the FEI algorithm, the employment
of further selection criteria is immensely beneficial. A more refined tag-side ensures a lower
event multiplicity and further prevents the use of constituents from the tag B meson in the

signal B meson reconstruction or vice versa.

23
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Figure 5.1: Decay of a Y(4S) resonance (blue) into a signal B and an arbitrary tag-side
B meson. For the signal side, only the channels used for reconstruction are
illustrated. Dashed arrows denote undetected neutrinos originating from 7-
lepton decays.

A good starting point to increase the ratio of correctly reconstructed tag-side B mesons to

falsely corrected ones are kinematic properties. For this, it is useful to look at common

properties of B mesons originating from B Factories: The invariant mass distribution of

correctly reconstructed B candidates should peak around the well-known mass of B mesons

and have an energy at around ~ 50% of the Y (4S)-resonance energy. Typically, two more

engineered variables, M. and AFE, are preferred which require precise knowledge of the
beam

beam energy in the center-of-mass system (CMS), namely Ecyig. The beam constrained

mass M, is defined as

2
S PcMs,B \ 2
e = ( cg/[ _( ¢ > ’ (5:1)
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with the spartial momentum of the B meson pcyg g both in the CMS. The difference in

energy is defined as
beam
AFE = Ecoys g — ECMS (5.2)

where hereby Ecyg g denotes the reconstructed energy of the B meson.

Since a BTB~ pair is produced almost at rest, these variables are only weakly correlated.
In contrast to naive kinematic definitions, both variables demonstrate their advantage by
exploiting the resolution properties of the detector: AFE strongly relies on the resolution
of the electromagnetic calorimeter and the particle mass hypothesis used to forge the B
meson from its constituents. In case of misidentified particles in the process, the energy
difference of these particles manifests in a shift in AFE, while for correctly reconstructed
events the variable is expected to peak around zero.

On the other hand M, is by design independent of the final-state particle hypothesis,
making it powerful in suppressing combinatorial background (e.g. induced by a light quark
pair) in B meson candidates. For correctly reconstructed B mesons, the My distribution
should peak at the nominal B mass, considering the combinatorial background is more
evenly distributed within the allowed kinematic range. To ensure a high purity in the
tag-side selection, a criterion of M, > 5.27 GreV/c2 and —0.15 < AFE < 0.1 GeV is applied.
In addition, the probability given to each reconstructed tag-side B candidate by the FEI
algorithm is used to increase the tag-side purity and overall significance against background.
For a more refined tag side, a requirement on Prgy > 0.01 is set. The decision of this selection
criteria is an important part when calibrating the FEI and correcting the simulation. For a
tag-side BCS, many approaches are taken into consideration. To make as few assumptions
on the tag-side B meson as possible, the candidate with the highest probability score is

chosen.

5.2 Signal-Side Selection

With the tag-side B meson fully described, one is now able to move on to the key part of
the reconstruction: The reconstruction of the signal B meson.

For a signal BT 5 K7t~ reconstruction, multiple different final-state and intermediate
particles are taken into consideration. I characterize the selection criteria applied on the
FSPs first and the ones of the recombined particles in succession to this.

In case of the K**, this analysis focuses on the K™ = K7 and K*™ — K%w* decay
chain. Charged mesons K' and 7 are considered as FSPs in the detector domain and
thus are easily reconstructed (see also Section 5.6.2). The neutral components of the K"t
are decaying within the detector and therefore need to be recombined from their final state
constituents.

Considering the 7-lepton, one final-state lepton (¢ = e, ), one final-state charged pion 7,
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or one reconstructed p meson is required to forge the third generation lepton candidate.
The p meson decays via strong interaction in almost all cases into one charged and one
neutral pion. Due to the very short lifetime, p mesons have a rather large decay width

which needs to be taken into account while reconstructing it.

Final state particles Each FSP gets allocated a particle trajectory (“track”) from the
tracking detectors and/or an energy deposition (“cluster”) in the ECL based on their under-
lying particle hypothesis. I use reconstructed track parameters dr and dz at the point of
closest approach (POCA) with respect to the evaluated interaction point (IP).

For the charged particles, the only kind of FSPs that leave traces in the tracking detectors,
a requirement for distances of dr < 2cm and |dz| < 4cm is set to suppress beam inter-
action backgrounds. In order to further increase the accuracy and its robustness in the
determination of track momenta and vertices, only tracks with a transverse momentum
pp > 100 MeV /¢, number of hits in the CDC > 20 and the polar angle within 17° < 6 < 150°
are used. The latter selection ensures a propagation within the CDC detection range for
the FSPs. As a final track selection criteria, the total energy associated with the track
proves to be of high use for setting a veto on ete” — eTe” events. While running at the
T (4S)-resonance energy, the final state electrons produced in Bhabha scattering are highly
energetic in the domain of the Belle II experiment. Thus, a selection criterion on the track
energy E < 5.5GeV is applied to veto these kinds of events.

Along with track selection criteria, effective and efficient charged particle identification
(PID) is a vital component in a physics analysis. Good particle identification is necessary
to reduce multiple forms of background and isolate hadronic final states. In the case of the
charged hadron FSPs, a probability calculation is performed dynamically by the particles’
hypothesis. The probability of Kaon identification is hereby given as a combined likelihood

function

LA LA+ Lo+ L+ Ly + Ly

P(K) (5.3)

where Ly describes the likelihood for each of the six long-lived charged particle hypotheses:
electron, muon, pion, kaon, proton, and deuteron. A likelihood value is determined for each
particle hypothesis using information from all available detector systems. To compute the
probability of pion identification, one has to adjust the corresponding likelihood function
in Equation (5.3) with £ in order to obtain P(x). For both charged kaon and pion, a tight
selection criteria of P(K) > 0.9 and respectively P(m) > 0.9 is enforced to ensure hadronic
final states of high purity.

Regarding the final state leptons, a pre-trained BDT classifier assigns a global probability
to each lepton candidate within the reconstruction. During evaluation of this step, around
~ 25% of candidates are observed to yield NaN values. By default, the track associated

with the lepton particle candidate is required to have a corresponding cluster within the
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ECL. In some occasions it is possible that if the matched cluster lies in between the ECL
gaps or its energy deposit is below 55 MeV, the probability gives NaN in return. For these
cases, the reconstruction is insufficient and thus these particle candidates are removed. The
remaining ones end up with a classifier output ranging from 0 to 1 which can be translated
into a probability. A selection criterion of Pgpr(e) > 0.9 and Pppr (1) > 0.9 is imposed,

retaining ~ 42% of electron and ~ 45% of muon candidates.

Recombined particles In contrast to FSPs described in the previous paragraph, recom-
bined particles cannot be considered stable as they decay within the detector. Products
of the decays (except neutrinos) interact with the different detector systems leading to
tracks and allocated clusters in the calorimeter. When all decay products are measured,
the mother particle is reconstructed by summing up the four momenta of its constituents.

Additional selection criteria are applied for each particle type individually.

Neutral K(S) mesons For the Kg originating from a K*" decay, the charged pion decay
channel is taken into consideration. By nature, the Kg decays in ~ 30% of the time into
a pair of neutral pions which subsequently each decaying into a photon pair. Due to the
energy scale of the experiment, the four resulting photons are of low energy making a
correct reconstruction a challenging task. Furthermore, the corresponding mass resolutions
are very different which would propagate through the whole analysis, hence such events are
not reconstructed.

The Kg is recombined in two ways separately: First, the recombination is managed by
forging it from charged particle pairs that originate from a common neutral mother par-
ticle. These exhibit a characteristic V-shape signature emerging from the decay far off
the IP. Additionally, the K(S) is built from all charged pions within the observed event.
Both approaches perform a vertex fit first and apply a loose mass criterion on the Kg of
0.45 <M < 0.55MeV/ ¢®. The resulting list of particle candidates is ultimately merged
while prioritizing Kg from a displaced vertex source in events with multiple candidates.
Moreover to enrich the purity, momentum binned selection criteria from Table 5.1 on the
Kg candidates are imposed. This collection of criteria was originally proposed for the Belle
experiment but its use in Belle II is justified (c.g. see Ref. [62]). For a K& candidate, a final
tighter mass window is enforced to account for the comparably sharp peak in the invariant
mass. To boost the sensitivity, the mass window is set to be 0.48 < M < 0.52 MeV/c2.

Neutral 7° mesons Photons that qualify to create 7 meson candidates are formed
from allocated clusters in the ECL. As the neutral pions decay in a very brief moment after
being formed, the efficiency and quality of the 7 reconstruction is strongly determined
by the ECL. Core restrictions in reconstructing the 7 are photons escaping the ECL, as

well as two photons merged in a single cluster making them inseparable. To increase the
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Table 5.1: Momentum-binned selection criteria applied to each Kg candidate. The IP
parameters dr and d¢ denote the vertex distance and the vertex azimuthal angle,
respectively, while 24, indicates the distance of the daughter tracks at POCA,
and FL denotes the flight length. The selection criteria follow those presented in
Ref. [63].

Momentum range (GeV/c) dr(cm) do(rad) zgg(cm) FL (cm)

< 0.5 > 0.05 < 0.3 < 0.8 -
0.5-1.5 > 0.03 < 0.1 < 1.8 > 0.08
> 1.5 > 0.02 <0.03 <24 > 0.22

photon resolution, a requirement of the number of weighted crystals > 1.5 and energy
thresholds are set, the latter depending on the cluster region within the ECL. These specify
to having at least 80 MeV in the forward region, 30 MeV in the barrel and 60 MeV in the
backward endcap region. In addition, the cluster angle has to be in CDC acceptance region
(17° < 6 < 150°) to ensure the allocated cluster stems from a neutral energy deposit.
Neutral 7° candidates are now formed by combining two photons that surpass the previously
mentioned selection criteria by imposing a mass window of 120 < M < 145 MeV/ ¢®. The
7 are boosted within the lab frame, hence the photons should be emitted in a collimated
manner. Thus only 7 candidates are taken into consideration where the angle between two
photons is ¢, < 1.5rad, while the difference of the azimuthal angle between both fulfills
|Ap| < 1.5rad.

Charged p mesons A neutral and a charged 7 candidate surpassing the aforementioned
criteria are qualified to be recombined into a p meson. A broader mass window is enforced
by limiting the invariant mass to 0.65 < M < 0.9GeV/ ¢® to account for the large decay
width of the particle, following the work in Ref. [64].

Charged K*' mesons The final piece missing is the recombination of the excited K meson
state. Again, the K*" is reconstructed in K** — Kg 7 and K7 — KT7" decays which
covers about ~ 66% of all possible decays. A first mass window of 0.6 < M < 1.3GeV/ ¢
is defined to suppress the badly reconstructed K* mesons. In the following, an additional
mass cut 0.790 < M < 0.994 GeV/c2 is enforced that defines the signal region. This
corresponds precisely to a 20 window around the nominal K** mass given in Ref. [8].
The remaining mass spectrum (0.6 < M < 0.79GeV/c* and 0.994 < M < 1.3GeV/c?)
is referred to as control region ("sideband") and is exploited to safely test the signal
reconstruction on a large dataset without operating in the signal sensitive region (see later
in Chapter 6).

With these criteria, one is now able to forge a B meson candidate that decays into a K*"
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and a 7-lepton pair covering all 1-prong decay modes. The reconstruction of the signal
side is complete. However, to further increase the purity, further selection criteria will be
applied to the T(4S) candidate that is formed after combining a signal B with its tag side

counterpart.

5.3 Selections on the Y (4S) Candidate

After reconstructing By, as well as B, candidates from their hypothesis, they are combined

sig
to form a Y(4S) candidate. At this stage, one is given a powerful set of tools: constraints on
the Rest Of Event (ROE). Correctly reconstructed Y (4S) candidates should by definition
not have a remaining unassigned track in the ROE, otherwise the reconstruction must be
flawed since not all particles could be covered in the candidates’ hypothesis. This is referred
to as completeness constraint.

To ensure this criterion does not arbitrarily sort out events, a well-reconstructed track in
the ROE is defined by surpassing dr < 2cm and |dz| < 4cm as well as 17° < 6 < 150°
and a minimum transverse momentum of py > 100 MeV/c. The multiplicity after this
step ranges from 1.33 to 2.66 (see cut-flow tables in Appendix A.1) depending on the
signal channel portrayed. This indicates that on average, multiple candidates deliver an
appropriate description of the signal channel. In said case, it is necessary to introduce an
indicator denoting the quality of multiple candidates within one event that picks the most
suitable one. Which variable to use as the indicator cannot be generally determined, but
is rather analysis-specific. Regarding this work, the T(4S) candidate with the K*t mass
closest to the nominal mass given by PDG |[8] is selected. While this might be sufficient for
some events to reduce the multiplicity to one, for some it does not and thus an additional
indicator is necessary. For the sake of simplicity, an arbitrary Y(4S) candidate from the
remaining candidates is chosen, ultimately retaining a single candidate per event.

On simulated samples, it is rather easy to evaluate the BCS. Choosing a K** mass closest
to its nominal one trivially favors candidates closest to the mass peak at 892 MeV/ ¢ 8]
For truth matched Y (4S) candidates, one observes a ~ 10% purity gain with this selection.
However, the BCS does not always pick the correct candidate. It occurs in 8.2% of the
time that a non-truth matched candidate survives the procedure, while the true candidate
gets sorted out. Reasons for this range from a candidate stemming from combinatorial
background to detector effects that lead to an incorrect mass close to the nominal one.
Choosing a T(4S) candidate randomly decreases the signal purity by 5.6%. Due to the very
low multiplicity in this regime (see Table A.2), a large number of events solely accommodate

a single candidate, refusing a potential choice in the first place.
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p(q) = 5GeV/c p(B) ~ 0.3GeV/c

ete™ - qq (q€{u,d,s,c}) ete” — T(4S) — BB

Figure 5.2: Depiction of the distinct event shapes for a continuum event (left) and a BB
event (right) in the CMS. Given the high amount of energy remaining from e e~
collisions forming a qq pair, the back-to-back cone-like structure is observed.
These events can be distinguished from the spherical topology of B meson decays
produced in e"e” — T(4S) — BB interactions. Taken from [65].

5.4 Suppression of Light-Quark Pair Background

Most e interactions at the Y(4S) CMS energy do not result in a Y (4S) resonance which
then decays into a B meson pair. A large portion of these non-Y(4S) events are usually
unproblematic in B decay analyses as the trigger already rejects them.

e~ — qq events (where

Contributions from continuum background originating from e
q=u, d, s, ¢) provide more of a challenge since B mesons reconstructed from these decays
show a broad distribution in variables, making them harder to separate from the signal
component. With a combined cross-section of 3.7nb, these interactions are much more
likely than the ones resulting in a BB pair corresponding to 1.1 nb.

However, the overall shape of the event is contrary: For a given BB event, both B mesons
are produced almost at rest in the CMS since the T(4S) mass is barely above the BB
production threshold. This results in B decay products being isotropically distributed
within the Y(4S) rest frame. In contrast, ete” = qq interactions produce a jet-like cone
structure stemming from the large initial momentum. Both event shapes are illustrated in
Figure 5.2. In pursuance of separating continuum events from signal, several powerful sets

of variables are established at Belle II.

Thrust variables A fundamental difference between a signal B meson and continuum
background are the distinct kinematic topologies. A useful observable in this regard is
the thrust axis T: For a collection of particle momenta p; (i = 1,..., N), the thrust axis is

defined as the unit vector maximizing the sum of momenta projections onto itself, resulting
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in
N
T= T -p; | - 5.4
max (ZZ pz> (5.4)
This directly leads to the definition of the thrust scalar T given by

S, |T py
T=4&e=11" > le G (5.5)
Zi:l P

a quantity that is precisely known once the thrust axis is determined. The given variable
quantifies the jet-likeness of the decay particles, taking values close to 1 for the collimated
case. For B meson candidates, the isotropic distribution leads to a thrust scalar 7' ~ 0.5.
A useful related variable in this context is cos (Thrustg; Thrustgrog) describing the cosine
of the angle between the thrust axis of the B meson Thrustg = Ty and the thrust axis of
the ROE, Thrustror = Trogr. Due to the isotropic distribution of the B decay products,
their thrust axes are randomly scattered, leading to a uniform distribution for signal
B mesons in cos (Thrusty; Thrustgrog) within the range [0,1]. The heavily collimated
manner of qq events on the other hand yields a distribution strongly peaking at 1, making
it possible to separate BB events from it. Especially prone to continuum background
are final states involving pions. Hadronic properties of the continuum events lead to a
larger misidentification rate in that regime, requiring an additional selection criteria to
exclude these events. As a consequence, I impose an additional selection criterion, namely
cos (Thrustg; Thrustrog) < 0.9. This leads to a signal loss of ~ 10% while removing ~ 34%
of continuum events. Furthermore, discrepancies when comparing Data to MC are mitigated
given the removal of the poorly modeled candidates.

Similarly one introduces the variable cos (Thrustg;z), based on the angle between the
thrust of the B meson and the beam axis (corresponding to the z-axis). The discriminating
power of this variable arises from the difference in angular distributions: the spin-1 Y (4S)
is decaying into two spin-0 B mesons; in contrast to the ete™ — qq processes and the

hadronization of the spin-1/2 quarks.

Fox-Wolfram moments Another useful parametrization of phase-space distributions of
momentum and energy in an event is given by Fox-Wolfram moments [66]. For a collection

of N particles with momenta p;, the k-th order Fox-Wolfram moment H}, is defined as

N
Hy = Z pillp;| Py (cos 6;;) (5.6)

1.J

where 0, ; denotes the angle between each pair of particles and Py, is the k-th order Legendre

polynomial. In the original work by Fox and Wolfram, an additional factor of 1/4/s is used
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to weight each addend. Practically, one usually makes use of the reduced Fox-Wolfram

momentum R, given by
Hy,

R, =k
k Hoa

(5.7)

where the constant factor cancels out for each component. A common choice here is Ry.
For events with two strongly collimated jets, R;, takes values close to zero (one) for odd
(even) values of k. Sharp signatures as such provide a convenient discrimination between
events exhibiting different forms of decay topologies.

Noticeable disagreement between data and current MC campaigns for BB and qq is ob-
served in the R, variable for this analysis. This arises either from insufficiencies in the
qq simulation described later in Section 5.6 or effects induced by beam background. As a

result, the variable Ry will not be used to separate the continuum from signal.

To extend the continuum suppression toolbox, modified Fox Wolfram moments, referred to
as Kakuno Super Fox Wolfram moments (KSFWs), are considered, first introduced at Belle
[67]. Two components come into play: The H;® (I € [0,4]) variable subset focusing solely
on ROE information of the B candidate and H}; combining information from both signal
and ROE. For H;°, one differenciates between odd and even cases for [, defining the set of

five variables as

Zi,j |pi|‘pj}Pl(COS 035), for even [

H =
Zi,j Qin‘pz’HijDl(COS 9@'); for odd [.

(5.8)

Hereby, i and j run over the ROE particles and Q; ; describe the corresponding particle
charges for particles 7 and j. In cases where k is even, the product of Q;Q; is equal to +1,
making Hy° equivalent to the associated Fox Wolfram moment for the ROE.

The H}; are decomposed further into three categories, depending on whether the variable
considers only charged particles (z = 0), neutral particles (x = 1) or the sum of missing
particle momenta represented by a pseudo particle (x = 2). In the latter case, beam

. . 50 .
constraints are taken into account. For even I, H; is defined as

0 _ Zi,j:p ‘ij‘Pl(COS 91‘]‘), for even ( 5.9
x ZZJJJ Qinx’ij‘Pl(COS 0;;), for odd !

following the similar variable definitions as in Equation (5.8), 7 is referring to the B daughters,
Jw indicates the ROE particle of category z with the spatial momentum p;,. Again Q; ;
describes the charge of the particles in case of [ being odd and x = 0, for even k the product

combines once again to +1, while it vanishes in cases of x = 1, 2.
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For sake of normalization, the KSFWs are scaled with Hy"™ or (Hy"™)* with
HM™ =2 (Eg‘f@gl - AE) , (5.10)

making these sets of variables independent of AE. In total 16 KSFWs are available: five
stemming from H;° and an additional eleven from H,;. The choice of whether or not
each variable is used later on to suppress continuum background heavily depends on their

separation power and overall Data/MC agreement.

Missing mass squared and transverse energy The missing mass squared is defined as

N 2 N
e S A oY 510
n=1 n=1

where Evy(4g) is the energy of the T(4S) candidate, E,, and p,, the energy and momentum
of the reconstructed particle n respectively, and N as the total number of FSPs. This
variable represents the invariant mass of the invisible particles stemming from the signal
B candidate. For well-reconstructed events with at most one massless particle, Méiss is
expected to peak at zero and to be model-independent. This makes it a good choice for a
signal extraction variable (e.g. as used in Ref. [27] and Ref. [35]).

However in this search, at least two massless particles are present, essentially removing the
peak at zero. Thus Mriiss is not further considered.

The transverse energy F; is the scalar sum of the transverse four momentum for each of

the N particles, yielding
N

Er=> |pral- (5.12)

n=1
For particle collisions, this quantity is used to discriminate signal-like events tending to a

higher F, against unwanted background events.

CLEO Cones The variables and tools defined above do not necessarily provide the
ideal discrimination of background in all four signal channels. For channels suffering from
large background rates, it is useful to introduce another set of variables. The CLEO Cone
variables, named after the CLEO Collaboration, were first used in the context of charmless
B decays [68]. Said variable set consists of nine quantities describing the momentum flow
around the thrust axis of the signal B candidate. Binned in nine cones of 10° (see Figure 5.3),
each one is merged with the corresponding counterpart from the opposite axis.

Not all nine CLEO cone variables show good agreement for the signal channels on sideband

data, hence only a selection contributes for each channel individually (see Table A.5).
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P, € Cone 5

P, € Cone 9
-~

1
P, € Cone 1

Figure 5.3: llustration of the nine CLEO cone variables concentrically aligned around the
thrust axis T. The cones are numbered corresponding to the related CLEO
Cone index ¢. For simplicity, not every CLEO Cone is illustrated in this figure.
In red, three arbitrary particle momenta are shown, depicting their affiliation
with the momentum flow to the cone regions. Taken from [27].

5.5 Suppression of Generic B Meson Pair Background

A distinct source of background are all e~ — Y(4S) — BB events where neither B meson
decays into a K*" and a 7-lepton pair. I refer to cases where a charged B meson pair is
produced as charged background, if a BB is formed it is specified to be mixed background.
Both charged and mixed backgrounds provide a more ambitious challenge to separate them
from the signal component. The tools and event-level variables derived in Section 5.4 are
insufficient because they are sensitive to event shape topologies. The overall event shape
of a charged or mixed background is closely resembling the topology of the signal event.

Hence, additional quantities are required that deliver the desired discriminating power.

Variables sensitive to D mesons To find such variables it is crucial to know what types
of BtB™ or B°B’ decays are wrongly getting reconstructed as a By,, and the Kt
resonance. Using simulated samples for charged and mixed background makes it possible to
study what events surpass the selection criteria stated in Section 5.1 and 5.2. The important
piece of information to retrieve is the decay chain determined by the event generators used
to simulate the samples in the first place. Having precise knowledge of both decays of

a BB pair, it is necessary to determine which of the two B mesons is used to build the
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tag-side and signal-side. By extracting the PDG code [8], a unique identifier for particles,
this abundance is resolved allowing to precisely identify each B meson.

The distribution of daughters of the generic B meson pair falsely reconstructed as K7t s
evaluated on the charged background sample only. This is justified, since it is out-dominating
the amount of mixed background after reconstruction due to the signal B meson required to

17 are listed,

carry a charge. In Table 5.2 the most frequent decays misinterpreted as K**r
as well as the fraction relating to all decays surpassing the reconstruction algorithm. Most
decays consist of at least a single (excited) D meson, ultimately leading to two charged
daughters in a subsequent decay in almost all cases (see Table A.3 and A.4). The two
charged daughters from a D meson as well as the additional charged particle from the
B candidate leave tracks in the detector. This produces a misreconstructed signal event
that consists of the same amount of tracks as a correct signal candidate would have. As a

consequence of this behavior, a variable sensitive to D mesons is introduced

M2 (Kt = (Boe + B, ) — ’ (5.13)
it1p) = | Byt t12 Pyt TPy, ) :

describing the squared mass of the K*' and the daughter of the first or second -lepton
t; with ¢ = 1,2. For misidentified cases of true B — D/v decays on the signal side, these
variables peak at the nominal D mass making them sensitive for those events.

According to Table 5.2, this retains a large portion of charged background in principle,

making it not necessary to introduce further variables.

BDT classifier With the tools and variables described and estimated on their potential
discriminating different types of background, BDTs are employed to classify signal from
background. For this, I use BDT classifiers from the FastBDT package [53], one for each of
the four signal channels. Every signal channel shows a unique and distinct decay topology
and thus is prone to different sorts of backgrounds. A direct consequence of this is that
some variables carry a large separating power in one channel, while signal and background
distributions are too closely resembling one another in a different one. In addition, only
well-modelled input features are considered for the classifier. A full list of utilized variables
for each signal category is given in Appendix A.3

The dataset used to train and test the multivariate analysis (MVA) classifier consists of
reconstructed events corresponding to 1 ab™ ! of qq and BB background in total. For the
signal sample, reconstructed events equivalent to 50 million generated samples are used. To
train the MVA classifier, the whole dataset is shuffled and a total of 70 % is retained for
training purposes. The remaining 30 % is exploited in the testing procedure.

As in many cases of classifying tasks, the input dataset should be balanced in the sense of
equally representing the categories to classify for. This ensures preventing the model from

largely learning patterns affiliated to only one data type and thus inducing a bias. In this
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Table 5.2: Depicting the ten most frequent charged background decays falsely getting
reconstructed as Bgj,. The true signal components are in the first column, while
the second describes the overall share in percent. The tool to extract these ratios
is developed with the Al programming assistant GitHub Copilot.

Signal B Daughters Fraction in %
Dyt y, 12.18
D*etu, 10.59

D et U,y 5.45
D’ ,u+ v, 4.91
D"y, 4.38

D’et Ve Y 2.22
D7ty 2.22

D’ p" 2.21

D* ,u+ v, 1.84

D*DJ; 1.84

case, the background sample is significantly larger than the signal one in each individual

category. As a consequence, a weight w, is assigned to each data type
w; = =2 (5.14)

to account for the unequal number of events. The index 7 is describing the data type
(1 = S, B) whether it is signal or background and N; the corresponding number of events.
After an initial training, each input variable gets evaluated on their feature importance.
Variables are deemed not important if the associated importance score is <1% of the
summarized importance. Quantities that fulfill these criteria are removed for the sake of
simplicity since their contributions are negligible. With the important features collected, a
grid search is performed, testing out a variety of different hyperparameter settings. The best
model is then defined by having the highest AUC,; score with the additional threshold
of (AUC st — AUC,1ain) /AUC st < 1%, ensuring consistent performance on train and test
set and to prevent overfitting. Furthermore, within the model evaluation, a k-Fold cross
validation is performed: The entire training datasets is split into k£ subsets, training and
testing models over each instance. The resulting scores should not differ by 5 % to deliver

consistent and reliable predictions. After these steps, the best model is used and saved to
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Figure 5.4: Depicting the workflow of choosing the best working point for the classifier.

ensure reproducibility. The described workflow for finding the best classifier is summarized
in Figure 5.4. Evaluation metrics and the output of the classifier are illustrated in Figure 5.5

and 5.6 respectively.

A key task of the BDT classifier is background suppression by defining a signal region with
the highest sensitivity. To optimize for sensitivity, a Punzi Figure of Merit (FoM) [69] is
used

FoM = (5.15)

€
3/24++/Ng’
with a desired significance of 3. Here € denotes the signal efficiency and Np the total
background yield at a specific threshold for the BDT output. The FoM is calculated for 50
equidistant instances of the BDT output ranging from 0 to 1, and the BDT output value
producing the highest sensitivity is used to define the signal region (see Figure 5.7 and
Figure 5.8).
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Representation of the BDT classifier output for all four signal channels on
simulated signal and background samples. The different stacked components in
the histogram refer to each background component, while the red histogram
denotes the signal component. For visualization purposes, both distributions
are normalized to unity.
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Figure 5.6: Illustrating the background rejection depending on the signal efficiency for
the trained MVA classifier in each signal category. The receiver operating
characteristics (ROC) curve is depicted in blue, while the ROC curve for the
test set is displayed in orange. In each instance, a dashed line in gray indicates

the outcome of a random classifier.
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Figure 5.7: Ilustration of the FoM distribution depending on the BDT output value for all
four signal channels. The dashed light blue line indicates the point with the
highest sensitivity and is therefore being used to define the signal region.
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Figure 5.8: Illustration of the relative signal yield (red triangle), relative BB yield (purple
star) and relative qq yield (turquoise dot) depending on the BDT output for all
four signal channels. The dashed light blue line indicates the point with the
highest sensitivity based on the FoM.
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5.6 MC Corrections

Reconstructing events and applying selection criteria rely heavily on the employed algorithms
in Belle II. The algorithms’ behavior on simulated samples does not resemble the performance
on real measured data in any case. To compensate for the different performance and reduce

the Data/MC discrepancy, several corrections must be derived and applied.

5.6.1 FEI Tagging Efficiency Correction

The FEI tagging algorithm applied to reconstruct the tag-side B meson shows different
performances on simulated and recorded events. It is possible to apply a global calibration
factor epgy to resemble the taken data with better precision. However, a more sophisticated
approach is to calibrate each FEI reconstruction channel, putting more emphasis on the

individual topologies. The calibration factors are then defined for each channel indexed ¢ by

Nyvc,i

: (5.16)
NData,i

€FEL; —
To calculate each factor epgy;, two independent analyses with different methods are con-
ducted. The first one is concerning inclusive B — X/v decays performed in Ref. [70]

while the second analysis examining partially reconstructed B — p®

7 decays described in
Ref. [71]. In both cases the yield of the calibration mode in data (i.e. the denominator in
Equation (5.16)) is determined via fitting to a discriminating variable. To combine both
calibration studies, a X2 parameter estimation is performed, described in detail in Ref. [72].
Resulting calibration factors from the fit are then extracted with their corresponding uncer-
tainties, illustrated in Figure 5.9. Each reconstructed decay mode by the FEI algorithm is
labeled with a unique identifier. Depending on the By,, decay mode, the corresponding

calibration factor is allocated to the event.

5.6.2 Hadron Efficiency and Misidentification

The reconstruction efficiency and the misidentification rate of charged kaons and pions are
evaluated on specific control channels. For the prior case, the decay chain D*T — [DO —
K_Wﬂ s exploited, while the Kg — 7 7 decay is used for the latter. The difference in
efficiency and misidentification rate between recorded and simulated data is determined by
a straightforward comparison. Illustrated in Figure 5.10 are the resulting calibration factors
for K™ and 77 identification, binned in terms of # and the corresponding momentum p.

*in ~ 7% of all cases which makes it far more occurring

A K7 gets misidentified as a 7
than vice versa (< 1.5%). In this analysis, charged kaon and pion efficiency corrections are
applied to the K*t daughters as well as the hadronic 7-lepton modes. Misidentification

rate corrections are solely applied for fake pions due to their relatively large occurrence.
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Figure 5.9: Representation of the FEI calibration factors and their uncertainties extracted
from a combined X2 fit of B — X/v and partially reconstructed B — DWr
decays. The individual calibration factors are depicted in blue for y, in black
for e and red for the Dm mode. The combined result is displayed in orange.
Taken from Ref. [72].

Correcting fake kaons is deemed not necessary due to the vanishing amount of observed
cases. Applying weights for this induces (larger) systematics that would propagate into the
final result.

For neutral 7° candidates, the less well-defined nature of photon candidates reconstructed
from electromagnetic clusters requires a proper ™ efficiency correction. Two measurements
are performed to cover a wide range of the 7 phase space exploiting D’ — K_7T+7T0, D’ —
K 7" and Bt - DD - D(—» K™ 7") 7%« modes in Ref. [73].

A tremendous challenge in this regard is the correction for pions with a momentum below
p = 0.2GeV /e which occur in 5 — 10% of events where at least one neutral pion is present.
In this regard, the resulting photon pair is likely to escape detection in the ECL based
on the selection criteria described in Section 5.2. Even if both photons are detected, the
photon resolution is insufficient due to smearing effects in the calorimeter.

The derived corrections in Ref. 73] are used to reweight the p signal channel, as well as
oceurring K* — K 7% modes in bins of 7 momentum from 0.2 GeV/c onwards. For softer

pions, no further weighting is considered due to the lack of proper corrections.
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Figure 5.10: Depiction of the derived K™ (left) and = (right) corrections exploiting D** —
[DO — K_7r+]7r+ and Kg N decays respectively. A red box indicates
where > 99% of all charged kaons and pions are located. Produced and
illustrated by P. Ecker’.

5.6.3 Lepton Efficiency Corrections

As described in Section 5.2, the final state lepton identification uses a BDT-based approach.
For both electrons and muons, this identification method induces a discrepancy in efficiency
and misidentification rates. In order to provide corrections for this behavior that cover a
large amount of the lepton phase space, the interactions J/¢ — e eter = 0t (7)
and ete” — eTe 4T are considered [74]. The efficiency corrections are applied to each
identified lepton on the signal side. Misidentification of a generated charged hadron as a
lepton is strongly suppressed resulting from the tight selection criteria (eIDgpt < 0.9) and
thus happens only in < 1% of all cases. Even rarer occurs a misidentification based on
lepton flavours which is present in < 0.5% of all events. No corrections are applied in both

cases due to the rare occurrence.

5.6.4 Calibrating Continuum MC

As a large background component and module in the template fit, an accurate description
of continuum background is crucial for obtaining a precise result on the signal yield.
Calibrating the continuum background is a complicated task and depends heavily on the
enforced selection criteria. This makes it difficult to provide central calibration and thus
has to be done for each analysis individually.

Running at a lower CMS energy, several defined quantities are deviating from their Y (4S)

1 Electronic address: patrick.ecker@kit.edu

Data/MC Ratio
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energy counterparts: The beam-constrained mass defined in Equation (5.1) depends on
beam-related quantities. In order to translate the selection criteria given in Section 5.2 to

the off-resonance case, one has to take the shift in beam energy into account, yielding

on, beam 2 on, beam 2
e | (Fows ) [ Ecus  Pousp (5.17)
be — 2 off, beam c : :
¢ Eens

Here Egrll\}lg M and Eg%[g “4 denote the beam energy in the CMS in the on- or off-resonance
case respectively. Compared to the quantity defined in the case of operating at Y (4S)
energy, the momentum of the B meson obtains an additional factor compensating the energy
differences. For the same reason, the difference in energy AE defined in Equation (5.2)

reads for the off-resonance case

on, beam

E

ff beam

AE” = %E(}MSB — ECnis - (5.18)
CMS

The cross-section for e e~ — qq interactions is depending on the initial energy of the
electron pair and hence corrections have to be made in this domain. Given the energy

fraction 6 E defined by
Eoff, beam

SE=1-—"M5_ ~06%, (5.19)

on, beam
CMS

the cross-section is decreasing by a relative factor of (1 — 5E)2 ~ (.989 in first order QED.
For the specific case of calibration, the recorded off-resonance dataset describing @ events is
being used, corresponding to 43 fh 1. Regarding the simulation, two datasets are in principle
suitable for deriving the calibration factors: The on-resonance continuum sample with
lab™? including all energy-depending refinements, or the dedicated off-resonance sample
with a size 50fb~ . Both approaches lead to a similar result, but distinguish themselves
from one another. While the former contains far more qq events and therefore results in a
smaller statistical error, using the dedicated sample is a much more convenient approach
and proves to be indifferent against errors made in energy-calibrated quantities. Uncertainty
on the quantities is given in each case solely by the statistical error originating from the
underlying Poisson distribution. This is justified as contributions derived from systematic
sources are presumed to have a negligible impact. The derived calibration factors along
with their uncertainties for all four signal channels from both approaches are illustrated in
Figure 5.11.

In direct comparison, both datasets provide a similar calibration, being nearly identical in
the 7, mm and p signal channel. For the ¢¢ channel, the difference is significantly larger,

but both results are still fairly overlapping when taking uncertainty into account. For the
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Figure 5.11: Calculated calibration factors from on-resonance MC samples (blue) and off-
resonance MC samples (purple), used to model the recorded off-resonance
spectrum.

Table 5.3: Depicting the derived calibration factors from the off-resonance MC samples for
continuum background being used in the reconstruction. The uncertainty only
consists of the statistical error modeled by a Poisson distribution.

Signal channel Calibration factor

o 1.071 £ 0.063
n 0.967 £ 0.026
s 0.942 £ 0.012
P 0.914 £ 0.014

sake of convenience and preciseness, the calibration factors used in this analysis stem from
using off-resonance samples. These derived quantities are represented in Table 5.3 for each
channel individually.

With this being the final correction of the simulated reconstruction, one is now able
to compare the simulated template with data. To prevent operating in a signal-sensitive
region, I mainly use the K* mass sideband defined in Section 5.2 to test the reconstruction
algorithm as well as the applied corrections stated in this section. A special domain for
testing provides the 1% dataset, where I evaluate the reconstruction in the signal region on
a low amount of statistics (1% of the full 365 fbfl).
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5.7 Resulting Simulated and Recorded Samples

The reconstruction efficiency as well as background yielding from qq and BB events are given
in Table 5.4. All signal channels show similar efficiencies in reconstruction. The differences
in background yield arise from dissimilar decay topologies and selection criteria in each
mode. The final states with hadrons present are especially prone to qq background caused
by misinterpretation of the hadronization. The ratio of background yield and efficiency
remains almost stable for each instance, hence the resulting signal sensitivity is expected to
be consistent.

Table 5.4: Resulting signal efficiency and background yield for each signal channel after

BDT selection. The background yield is scaled to an integrated luminosity of
365fb ! to match the recorded dataset.

cStlfgjiy ¢ (B+ - K*+T+Ti) back(glilound backiiund
12 1.521 x 107° 20.529 284.531
g4 1.617 x 107° 91.192 517.911
T 1.908 x 10~° 458.289 958.347
p 1.227 x 10° 120.772 345.528

combined 6.275 x 10° 690.782 2106.317







6 Data/MC Comparison

With the procedure of event reconstruction completed and all corrections applied to the
simulated samples, the focus is now set on the validation based on recorded data. This is a
crucial step in every analysis to compare the reconstructed events from simulation to data
and spot potential discrepancies that bias the result in the fitting procedure. Especially the
input variables of the BDT should properly resemble the measured data to make separating
backgrounds from signal as reliable as possible. To achieve this, I use multiple datasets
containing recorded data.

First, the derived calibration factors for the continuum background given in Section 5.6.4
are tested on the off-resonance dataset. Then, a validation is performed on the K*t mass
sideband defined in Section 5.2. This exploits the full Run 1 dataset corresponding to
365fb " and therefore contains the most statistics. The actual validation is conducted in
one dimension (1D), as well as in two dimensions (2D). The former approach already gives
a precise insight into the Data/MC agreement, but the latter makes it possible to observe
unwanted correlation patterns. With this dataset, the modeling of the BB background is
additionally evaluated.

The chapter concludes with analyzing 1% of the full Run 1 dataset in the signal region,
being used for testing the reconstruction on on-resonance data without operating in a
signal-sensitive area. This shifts the focus more towards the actual signal region and the

dataset later being used to extract the signal.

6.1 Continuum Background Validation

As stated in Section 5.6.4, a sufficient calibration is key to properly describe the underlying
qq background. The calculated calibration is applied to each qq event individually and
then used for reweighting purposes. As an example to analyze the result of the calibration
process, the variable cos (Thrusty; Thrustgog) is considered. This quantity is used in every
BDT utilized in this analysis as an input feature, hence proper modeling of continuum
background is essential. The distribution for data and the reweighted continuum simulation

is illustrated in Figure 6.1. Due to the low amount of statistics in the £/ channel, no

49
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Figure 6.1: Comparison of the variable cos (Thrustg; Thrustrog) for simulated continuum
samples and off-resonance data for all four signal channels. The simulation is
scaled to match the integrated luminosity of the recorded data. The uncertainties
on Data follow a Poisson distribution. All corrections described in Section 5.6
are applied to the simulation.
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events are observed in the spectrum between 0.1 and 0.7, distorting the ratio of data to
simulated samples. As mentioned in Section 5.4, this area is usually sparsely crowded
with continuum-like events, supporting this observation. However, one observes a good
agreement in the densely populated area as well as in the other three channels. For further

validation, examining the sideband distributions is mandatory.

6.2 Sideband Validation

By exploiting the full Run 1 data, statistical fluctuations are much more suppressed. Com-
pared to validating continuum events, the description of BB background events is tested
in addition. Both properties make the sideband validation a compelling tool in analyzing
Data/MC agreement.

To further validate the input features of the BDTs, multiple distributions are taken into
account: The 1D distributions are of major importance for each variable. A sufficient quan-
tity is expected to not exhibit large deviations on data compared to simulation, especially
in high-density regions. If this property is secured, 2D distributions are considered to check

for large mismodeling of correlations with other training variables.

6.2.1 One-Dimensional Validation

To continue the example given in Section 6.1, a validation of cos (Thrusty; Thrustgog) is
necessary.

A common indicator for good agreement is the ratio of Npui./Nye for each bin as in
Figure 6.1. Due to the increasing statistics and decreasing statistical uncertainty, asymmetry
becomes a rising factor. The asymmetry of the ratio distribution ultimately leads a skewed

behaviour, making it necessary to introduce a new indicator. The Pull, defined by

NData - NMC

/2 2
OData + oMC

is used, lifting the asymmetry. Here, Np,i, and Ny are referring to the counts of recorded

Pull = (6.1)

data and MC events in each bin. The denominator describes the propagated uncertainty
stemming from data and simulation. With the Pull defined, further investigations on
cos (Thrustg; Thrustrop) are possible. The distribution of data and simulation is pictured
in Figure 6.2. No severe tendencies in the pull distribution are observed in all four signal
channels. This is important since discrepancies arising at this stage will propagate into the
2D studies and lead to poorly modeled correlations between the variables. To mitigate this

issue, one typically conducts a deeper investigation to identify the discrepancies source and
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6.2: Comparison of the variable cos (Thrustg; Thrustrog) on the K* mass sideband

for simulated events and recorded data for all four signal channels. The simu-
lation is scaled to match the integrated luminosity of the recorded data. The
uncertainties on Data follow a Poisson distribution. All corrections described
in Section 5.6 are applied to the simulation.
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potentially apply additional selection criteria to exclude those regions. The full collection

of 1D validation plots is depicted in Appendix A.4.

6.2.2 Two-Dimensional Validation

A second major indicator for good Data/MC agreement is the modeling of the correlation
of the input features of the BDTs. If an initial correlation is present, this will ultimately
propagate through the BDT, leading to large discrepancies. To prevent this, checking the
2D distributions is obligatory.

As an indicator, the Data/MC ratio as well as the Pull is studied. The former is later being
used in the template fit in a reweighting campaign and thus is of high interest. Concerning the
latter, Pulls are again used to ensure a good agreement and spot a potentially mismodelled
area.

As an example, the 2D Histograms of cos (Thrustg; Thrustgrog) and cos (Thrustg; z) are
shown in Figure 6.3 and 6.4 for all four signal channels. In each instance, one is able to
identify the event-dense region as a ribbon in the last two bins of cos (Thrustg; Thrustgog).
Concerning the #¢ and {7 channels, these ribbons are smeared out in comparison to the
mm and p channel, stemming from the reduced amount of continuum background. The 2D
Data/MC ratio distribution offers a more precise insight into the modeling: In sparsely
populated regions, the ratio tends towards a higher or lower value than one. This translates
to the simulation either over- or underestimating the amount of recorded data in this
domain. Moving to the high-density region, ratios are close to one indicating a good
description. For further investigations the Pull is taken into consideration: Pull bins with
no or small tendency are observed in high-density regions, supporting the results from the
ratio distribution. Some outliers are observed, potentially caused by binning effects and
imminent statistical fluctuations.

To summarize, the given example shows good data agreement with the simulation in this
well-modeled case. Further checks of correlations with other training variables are obligatory
in order to be a reliable quantity. One finds a reasonable good agreement in the majority of
cases, where only a few combinations lead to observable discrepancies in areas with a large
event count. Given a set of N training variables for a single signal channel, N(N —1)/2
combinations require evaluation. Illustrating all combinations for all four signal channels is
not feasible within this thesis. However, a selection of 2D validation plots is depicted in

Appendix A.5 while the entire amount has been published as a Zenodo record (see Ref. [75]).

6.3 Validation Using 1% On-Resonance Data

So far, the validation procedure solely relies on control samples instead of the actual signal

region. Control samples serve as a safe region to test and evaluate the reconstruction and
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Figure 6.3: Two-dimensional comparison of recorded data and simulation in the variables cos (Thrustg; Thrustrog) and
cos (Thrustg; z) on the K** mass sideband for the ¢/ and ¢r channel (from top to bottom). From left to right:
Distribution of MC, Data, Data/MC ratio, and Pull. The simulation is scaled to match the integrated luminosity of
the recorded data. The uncertainties in Data follow a Poisson distribution. All corrections described in Section 5.6 are
applied to the simulation.
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Figure 6.5: Comparison of the variable cos (Thrustg; Thrustgop) on 1% of the full Run
1 dataset with simulated events for all four signal channels combined. The
simulation is scaled to match the integrated luminosity of the recorded data.
The uncertainties in Data follow a Poisson distribution. All corrections described
in Section 5.6 are applied to the simulation.

correction procedure safely. However, with the signal extraction in mind, it is far more
important to model the signal region properly with signal extraction in mind. Exploring
this region at this stage is strongly discouraged. This would potentially induce a bias where
the analyst would adapt to the outcome of the work.

It is possible to still evaluate the modeling of the signal region, without conducting studies
in a signal-sensitive region. To perform studies, one takes a fraction of the full Run 1
dataset. In this work, 1% is being used, corresponding to an effective integrated luminosity
of 3.65fb ™. For this purpose, no dedicated recorded sample is available. In order to obtain
the 1%, the full dataset is used and each event gets assigned a uniformly distributed param-
eter O € [0, 1]. Before starting the reconstruction procedure, every event must surpass a
selection criterion of O < 0.01, effectively removing the abundance of 99%. In principle, this
procedure does not lead to a dataset exactly representing 1% given the random component.
However, statistical fluctuations are deemed negligible here.

Once more the variable cos (Thrustg; Thrustrog) is used as an example. For evaluation,
all four signal channels are combined, due to the small size of the dataset. The resulting
comparison is then just an average over all modes, making the identification of potential

discrepancies in an individual channel a complex task. However, especially in the £¢ channel,
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this challenge would remain given the large statistical uncertainty. The result is shown
in Figure 6.5. Again, this variable shows a sufficient agreement in the entire phase space,
undermining the comparison results from the previous iterations.

With all validation tools now defined, the remaining training variables are evaluated on
their agreement with recorded data. For this, the one- and two-dimensional representations
of the K*™ mass sideband are examined. Furthermore, distributions on the 1% dataset are
studied, providing a unique opportunity to test the reconstruction procedure safely within

the signal window.






7 Signal Extraction Strategy

The events surpassing the reconstruction procedure are connected to the quantity of interest:
The branching fraction of BT — K*T7 777, This chapter presents two methods of estimating
the desired quantity. The first approach uses the remaining simulated samples given in
Section 5.7 to calculate a first sensitivity limit.

A more sophisticated approach is the estimation of the number of signal events in recorded
data by fitting. This procedure is not yet implemented at the current state of this analysis.
However, I describe the technique in detail, as well as the planned procedure to obtain and

validate the results.

7.1 Counting Experiment

To get a first estimate of the sensitivity in an early stage of the analysis, a counting
experiment is conducted. Starting with the background estimate given in Section 5.7,
the number of signal events required for a 3o excess is calculated. This is achieved by
utilizing a Poisson distribution with an expectation value v corresponding to the background
hypothesis. With an average background estimate of Ng, an additional Ng events need to
be observed to surpass the 3 ¢ threshold.

Based on this result, a toy experiment is conducted, consisting of 1 million simulated
observations. Each gets assigned a probability stemming from the underlying distribution.
An interval search is performed to determine the one-sided confidence interval. The required
confidence level (C.L.) is set to be at 90%, referring to the acceptance region. With this, an
expectation value of signal events is estimated, which translates to a branching fraction
(see Chapter 8).

7.2 Template Likelihood Fit

Although not explicitly accomplished in this work, fitting the recorded data to a template
consisting of the simulated background components delivers a far more robust result. In

this section, I describe the current fitting strategy and explain the statistical foundations.
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7.2.1 Maximum Likelihood Method

The following is a short introduction to the maximum likelihood technique crucial for
understanding parameter estimation. For a more detailed description, the reader is referred
to Ref. [76].

Given is a random variable x, distributed according to f(x;0) with one or more un-
known parameters 8 = (6,...,0,)). The method of maximum likelihood describes the

estimation of one or multiple parameters 6 using n data samples. The likelihood function,

n

L) =[] f(x::0) (7.1)
=1

describes the joint probability density function (PDF) for the samples z;. With the z;
treated as fixed, L solely depends on the parameter set 6.
An estimate of the true parameter 6 can be obtained by maximizing the likelihood function
by parameter variation. In general, analytic descriptions of the likelihood maxima are
not always available, meaning computations usually rely on numerical methods. Rather
than maximizing the likelihood function L straight away, it is instead more convenient to
minimize the negative logarithm of L, referred to as "negative log-likelihood". Applying
the logarithm to L converts the product to a sum, benefiting iterative algorithms used to

determine the minimum.

Extended Maximum Likelihood In contrast to the previous case, the number of
observations n in the sample zq, ..., x,, is often itself given by a Poisson distribution with
mean value v. Holding the result of the sample then not only consists of information about
the individual observation z;, but also of the total number n. To account for this, the

likelihood function is extended with a Poisson distribution, resulting in

n n

L(v,0) = %e_y I_If(:):Z7 0). (7.2)

i=1
Two distinguished cases need to be considered: If there is no functional relation between v
and 6, one simply obtains the same estimators 0 as by minimizing the logarithm of L in
Equation (7.1). The other situation of interest is that v is given as a function of 8. The
resulting estimators 0 following the extended likelihood exploit information from n and
the variables x;. As a result, 6 typically carries a smaller variance than in cases where it

exclusively relies on the x; values.
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Binned Maximum Likelihood In principle, the samples x; do not have to follow a
continuous distribution by default. Independent of the scenario, gathering data in bins
that form a histogram proves to be useful. Binning the data drastically simplifies the
computation of log f(x;; @) since one does not have to consider each sample z; individually.
Considering the number of entries n = (ny,...,ny) in N bins, the expectation value v; for

the number of entries in each bin is given by

max
2

N
vi(0) =S n, x / " a5 0) da. (7.3)
J i

(3

Here, x?ﬁn and z;"** are indicating the bin limits. If one refers to the histogram as a single
measurement of a random vector with dimension NV, a joint PDF represents the underlying

distribution. The log-likelihood function then yields

N
log L(6) = Z n; logv;(0) . (7.4)
i=1

Considering the case where N is very large (i.e. the bin size becomes very small), the
likelihood function becomes the same as in Equation 7.1. This prevents any difficulties that

may occur with empty or sparsely populated bins.

7.2.2 Parameter Estimation With Templates

The determination of the branching fraction requires a precise extraction of the signal
estimate. To obtain these estimate, the joint PDF is defined as the linear combination of

the individual PDFs f;(x) scaled by the unknown normalization parameter set 6:
F(@:0) =D _0:filx). (7.5)
i

The key task is the estimation of the parameter set @, giving insight into the signal estimate
in the recorded data. Describing the PDFs f;(z) analytically is not feasible since it has to
take into account the complex interactions inside the detector. To approximate the PDFs
in each bin, approximations in the form of simulation are considered. These templates
(or binned approximations) are generated from MC simulations, precisely describing the
physics processes and detector properties. Since the templates are already in discrete form,

the binned likelihood is described by a product of Poisson distributions P, yielding

N

L=]]Pnlvi(6)). (7.6)

=1
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With the total number of templates M, the expectation value in each bin is referred to as

the sum of template contributions
M
vi(6) = Z fijki(0;) (7.7)
J

where f;; denotes the fraction of events in bin ¢ for template j and k; describes the total
number of events from template j ', An accurate knowledge of k; for each template leads to
a precise estimate of the normalization parameter set 6.

The estimated parameter set is subject to uncertainties mainly from two sources: Derived
template distributions are affected by uncertainties stemming from the limited size of the
simulated sample or reconstruction effects. Furthermore, the estimators 6 obtained from
maximizing the likelihood function are carrying additional uncertainties. Discussion of
methods to derive the uncertainties is beyond the scope of this work, but the interested
reader is referred to Ref. [77] or Ref. |78].

7.2.3 Implementation Strategy

Having defined the concepts of likelihood and template-based parameter estimation, it is
now necessary to establish a procedure for the signal extraction. To perform the template fit,
I consider the neutral extra energy in the ECL, as it indicates the quality of reconstruction.
This quantity describes the additional energy deposits from neutral ECL clusters in the
ROE. The distribution of the quantity for simulated signal and background is illustrated
in Figure 7.1. For a well-reconstructed signal event, no additional energy depositions are
expected. This translates to a large signal sensitivity in the first bins of the distribution,
making it a crucial region for signal extraction.

A reliable signal extraction variable should possess not only a discriminative description of
the event, but also an adequate Data/MC agreement, minimizing the systematic uncertainty.
To ensure no potential discrepancy in data, the 1% on-resonance dataset is considered. The
comparison between the simulated background template and the recorded data is depicted

in Figure 7.2, showing overall good agreement.

7.2.4 Validation Strategy

A potential validation procedure should aim to establish the reliability and model dependence
of the signal extraction strategy. To obtain a first estimate of the signal sensitivity and
fluctuations around it, one typically considers the Asimov dataset [79]. This approach can

be conducted blind, i.e. without knowing the distribution in the signal region of the full

1 In general, the f;; also depends on the parameters 6;. For simplicity, the shape of the template is
considered as fixed, making it independent of the estimator.
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Figure 7.1: Distribution of the simulated background and signal sample for the Neutral
extra energy Egc, for all four signal channels. The simulation of the background
is scaled to match the integrated luminosity of the recorded data. All corrections

dataset.

described in Section 5.6 are applied to the simulation.

For validation, toy studies can be performed, allowing to test the reproducibility of the

estimated 6. To derive the statistical uncertainty, these toys can be sampled from a Poisson

distribution P(n|r) with mean v equal to the expected number of events in each bin of

neutral extra energy Egqp,. By fitting the resulting toy samples, one obtains the uncertainty

estimate o,, which can be validated using the Pull. If the fit adequately covers the data,

the resulting Pull should follow a standard Gaussian distribution.
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Figure 7.2: Comparison of the variable neutral extra energy Egcp, on 1% of the full Run
1 dataset with simulated events for all four signal channels combined. The
simulation is scaled to match the integrated luminosity of the recorded data.
The uncertainties in Data follow a Poisson distribution. All corrections described
in Section 5.6 are applied to the simulation.



8 Results

To obtain an estimate of the branching fraction of BT — K**7777, I conduct a counting
experiment as described in Section 7.1.

The template based on simulated events contains the total background yield, serving as
the average for the Poisson distribution. Based on Section 5.7, the background estimate
results in v = 2797. The underlying Poisson distribution is now fully described, allowing the
calculation of the 3 ¢ threshold. To exceed it, one must measure at least 149 additional events
to claim evidence. The associated probability for this observation given the background
estimate is 2.51 x 10>,

The rate of the signal sensitivity is equivalent to the limit on signal events to observe v+ 149
with a significance level of & = 0.1. This results in an upper limit for the estimated signal
component:

VSignal < 21889 @90% CL (81)

This upper limit is further used to determine the corresponding branching fraction. Given
the estimate Vgjg,a1, the calculation of the branching fraction follows Ref. [80] and calculates

to

B— VSignal _ ’ (8.2)

Esignal - 2+ B(Y(4S) = B™B7) - Nyg
where £gjg,) denotes the combined signal efficiency for all four modes’ and Npg correspond-
ing to the number of BB events in the entire dataset. This quantity is obtained using the
cross section given by the PDG [8] and the total size of the dataset. Inserting the signal
efficiency from Section 5.7 and the number of BB events represented in the full dataset,

one obtains the first estimate of the signal sensitivity to be

BB" - K*rTr7) <838 x107° @90% C.L. (8.3)

1 In other representations of this formula, the denominator consists of an additional factor representing the
branching fractions of the reconstructed modes. In simulation of the signal events, the resulting K**
T decays generically, leading to the factor being absorbed by egignal-
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The estimated branching fraction is located in the same order of magnitude as the results
given by previous searches of BaBar and Belle (see Chapter 2). Compared to the latter
searches, the result presented in this work does not directly rely on recorded data for signal
extraction. For the definition of the signal region and validation of the MVA analysis
components, detailed Data/MC studies are conducted, making this result not entirely
simulation-based. However, it is still a good first estimate and the fitting procedure will help
to ensure competitiveness with the ultimate goal of delivering an unprecedented sensitivity

in K77 modes.



9 Outlook

The branching fraction estimate from the previous chapter already serves as a good estimate
of the signal sensitivity. However, much more work is required to deliver the most precise
and validated measurement of the signal channel. In this chapter, I explain deeper validation

strategies and uncertainty techniques, making the future of this work concise.

Combinatorial BB background Despite the applied selection criteria in Section 5.1,
a misreconstructed tag-side B meson is still a key reason behind falsely determined B
signal candidates. Investigating the total contribution of this category yields an additional
calibration that needs to be taken into account.

For calculation, the same-flavor control sample is considered, inverting the opposite B
flavor requirement at the preselection level. By construction, this sample is orthogonal to
the events surpassing the standard preselection. The signal efficiency for this nonphysical
sample is expected to be significantly lower, while the background should have a similar
composition. Applying all corrections from Section 5.6 makes it possible to derive the

calibration factor A for the same-flavor control sample, resulting in

peak

N o Nqﬁ _
A= et MO MO (9.1)
Nyc

Here, Ny, describes the number of observed data events, foc and Nﬁegk the expected
amount of continuum and peaking BB background respectively. The remaining number of
events gets divided by the number of combinatorial events Nypcr b given by the same-flavor
control sample. The uncertainty on A is entirely defined by the statistical nature of the
recorded data used in the off-resonance calibration. This control sample is usually used for
further validation of comparing the shapes of the BDT input variables for the simulated

background.
Extra photon multiplicity The same-flavor control sample can additionally be referred

to for a check on potential mismodeling of the neutral extra energy Egcr,. To retrieve the

most precise and unbiased result from the fit, an adequate description of this variable is
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essential.

If potential discrepancies occur, one typically considers the photon multiplicity showing
more or less reconstructed photons than expected. Correction weights can now be obtained
for each bin separately, allowing for a precise calibration of Egcy,. Exploring two- or
multidimensional distributions can provide a more accurate description, allowing a higher

validation potential.

Signal validation The reconstruction of the signal component can also suffer from
Data/MC discrepancies. To investigate this, one considers a specific control sample,
referred to as the embedded sample. It is based on the abundant decay BT — K*+J/z/1,
exhibiting an unambiguous signature. The corresponding branching fraction is given as
BB — K*tJ/) ~ 1x 107 [8]. For the embedding procedure, one artificially removes the
signal component BT — K*+J/w and replaces it with simulated samples of BT - K.
The ROE and tag-side components remain unaltered. Repeating the procedure on recorded
data allows for calculating the Data/MC efficiency ratio for the embedded sample.

With the corrected sample, the input variables of the BDT can be evaluated. It is important
to mention that some corrections cannot be applied for the embedded sample, stemming

from the loss of the true particle identity during the embedding procedure.

Systematic uncertainties Investigating and understanding all sources of uncertainties is
vital for determining the error boundaries in which the true result is located. In this work,
only uncertainties of statistical nature are considered. Nevertheless, systematic uncertainties
play a crucial role that requires a deeper understanding of individual contributions.

These originate from underlying physics approximations, reconstruction effects, fit valida-
tion, or limitations along the signal extraction procedure. The precise estimation of the

individual contributions and the uncertainty propagation is the key task in this domain.



10 Conclusion

In this work, I present the first-ever estimate of the branching fraction of the process
BT — K*"7 7 at the Belle II experiment.

For this analysis, I consider the full Run 1 dataset at the Y (4S) resonance corresponding to
an integrated luminosity of 365 bt

In the interaction, at least two neutrinos are escaping the experiment without being detected.
For each event, the tag-side is reconstructed solely through hadronic decay channels, allowing
for pure tag-side B mesons and setting constraints on the signal B meson.

Considering background suppression, a MVA-based classifier is employed to boost the signal
sensitivity. Several calibrations are performed to counterbalance discrepancies originating
from algorithm inefficiencies. Each input feature is then evaluated in terms of discriminating
power and Data/MC agreement. The resulting signal efficiency and background yield allow
the implementation of a counting experiment. This statistical approach permits the

estimation of an upper limit on the signal sensitivity resulting in

BBY - K rt77) <838 x107° @90% C.L.

given the underlying background hypothesis. The derived upper limit is in good agreement
with recent results targeting similar b — sf£¢ modes with data stemming from predecessor
experiments.

Compared to previous searches, this analysis employs the state-of-the-art FEI tagging
algorithm and reconstructs all 1-prong 7 decays, resulting in the coverage of a larger
phase space and a significant sensitivity gain. Furthermore, two-dimensional Data/MC
distributions are considered, optimizing and validating the classifiers’ input features even
further.

Given the rare occurrence of this interaction, exploiting a larger dataset is a huge benefit in
limiting the statistical uncertainty. With the full target dataset of 50 ab_l, the predicted
upper limit on the branching fraction is expected to decrease by a factor of two compared
to existing measurements even in the baseline scenario [19].

With this in mind, the Belle II experiment provides a unique environment to precisely study
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these transitions. Together with the concise outlook of this work, further steps to advance

the current state of this analysis are highly motivated to offer unprecedented sensitivity in

this domain.
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A Appendix

A.1 Cut-Flow Tables

In this section of the appendix I present the cut-flow tables of the reconstruction procedure
described in Chapter 5. The cut-flow tables consist of efficiency and multiplicity information
after each selection criterion. I present the cut-flow table for the truth matched and
non-truth matched cases. The efficiency is hereby defined as the number of unique events
reconstructed divided by the number of generated events. In the truth matched case, only
reconstructed events are considered that hold one correct reconstructed event candidate.

Truth matching information is only available after the Y (4S) resonance is reconstructed.
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Table A.1: Non-truth matched cut-flow table describing the efficiency and multiplicity for each selection criteria introduced in chapter
5. For reconstruction, the signal MC sample for BT — K**717 has been used. A dash denotes that the corresponding
selection criteria is not applied in the specific instance or the information is unavailable.

Selection Criterion/Channels . t . . o . AT . 7 .
Eff. (in %) Multipl. 7 Eff. (in %) Multipl. 7 Eff. (in %) Multipl. 7 Eff. (in %) Multipl.
Generated 100.00 - 100.00 - 100.00 - 100.00 -
FEI Skim (hadr.) 5.1419 - 6.5930 - 9.9620 - 9.1036 -
Reconstructing T(4S) — By, By 25868 16148 | 35397 13809 | 55717 10143 | 3.7525  616.64
Biag My, > 5.27 Qm/\\mm 1.4592 116.13 1.6495 102.60 2.0621 63.81 1.6641 409.79
Biag — 0.15 < AE < 0.1GeV 1.3039 104.70 1.4814 91.83 1.8341 61.66 1.4766 393.78
Biag Prgr > 0.01 0.7358 69.79 0.7852 59.21 0.8218 35.92 0.6499 250.34
Track Cuts 0.6442 26.10 0.6685 18.95 0.7043 12.39 0.5698 170.51
GBKS criteria 0.5969 22.83 0.6078 15.75 0.6624 11.01 0.5134 119.21
Wm mass cut (0.48 < M < 0.52 Qm<\nwv 0.5933 22.81 0.6032 15.79 0.6594 11.01 0.5134 85.55
K** mass cut (0.790 < M < 0.994GeV/c?) | 0.4658 11.01 0.4615 7.87 0.5231 5.73 0.4824 61.23
p mass cut (0.65 < M < 0.90 GeV/c?) - - - - - - 0.2767 20.69
electron PID (BDT > 0.9) 0.1578 6.07 0.1915 4.27 - - - -
muon PID (BDT > 0.9) 0.1023 2.39 0.0581 4.21 - - - -
pionID > 0.9 0.0911 2.44 0.0251 3.92 0.1783 2.92 0.0714 9.73
kaonID > 0.9 0.0318 1.95 0.0079 3.16 0.0567 1.71 0.0201 4.12
cos (Thrustg; Thrustgog) < 0.9 - - - - 0.0518 1.71 - -
Niracks iIn ROE 0.0293 1.85 0.0053 1.87 0.0497 1.70 0.0182 3.06
BCS: K** mass closest to PDG 0.0293 1.36 0.0053 1.43 0.0497 1.07 0.0182 1.97
BCS: Choose random T'(4S) 0.0293 1.00 0.0053 1.00 0.0497 1.00 0.0182 1.00
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A.2 D Meson Daughters From B™B~ Background

In this part of the appendix, I show the ten most frequent D' and D’ decays which are
part of the charged background that is falsely reconstructed as signal event (see Table 5.2).

Table A.3: Depicting the ten most frequent Dt decays originating from falsely reconstructed
Bgig candidates. The D" daughters are in the first column while the second
describes the overall share in percent. The tool to extract these ratios is
developed with the Al programming assistant GitHub Copilot.

D' Daughters Fraction in %
K ntn” 24.16
Kort 10.61
K’ ut v, 5.67

K° e+1/e 5.61
K 7t 70 5.18
K ntn® 5.14
Kort 4.32
K ntnty 3.46
KQaf 2.84
K=t 2.31
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Table A.4: Depicting the ten most frequent D’ decays originating from falsely reconstructed
By candidates. The D’ daughters are in the first column while the second
describes the overall share in %. The tool to extract these ratios is developed
with the Al programming assistant GitHub Copilot.

D° Daughters Fraction in %
K 7 7° 25.55
K af 11.27
K n" 9.96
K pt 6.83
K 7tz 7° 3.92
K™ nta® ¥ 3.03
K 1.84
K nty 1.83
Kin n™ 1.63
K v, 1.61
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A.3 Training Variables for the Multivariate Analysis

Table A.5: Training variables used as input features in the BDT classifier to suppress
different background topologies against the signal component.

3
3

Training Variable bl | bw
Piniss. vV
By v
Er v

(\
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Figure A.1: Comparison of the variable pﬂﬁf on the K** mass sideband for simulated
events and recorded data for all four signal channels. The simulation is scaled
to match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6 are
applied to the simulation.
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Figure A.2: Comparison of the variable 6(p,,;s) on the K*" mass sideband for simulated

events and recorded data for all four signal channels. The simulation is scaled
to match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6 are
applied to the simulation.
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Figure A.4: Comparison of the variable E on the K*" mass sideband for simulated events
and recorded data for all four signal channels. The simulation is scaled to
match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6 are
applied to the simulation.
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Figure A.5: Comparison of the variable MK*+ on the K™ mass sideband for simulated

events and recorded data for all four signal channels. The simulation is scaled
to match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6 are

applied to the simulation.
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Figure A.6: Comparison of the variable cos (Thrustg; Thrustgop) on the K** mass side-
band for simulated events and recorded data for all four signal channels. The
simulation is scaled to match the integrated luminosity of the recorded data.
The uncertainties in Data follow a Poisson distribution. All corrections de-
scribed in Section 5.6 are applied to the simulation.
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Figure A.7: Comparison of the variable cos (Thrustg;z) on the K*" mass sideband for
simulated events and recorded data for all four signal channels. The simula-
tion is scaled to match the integrated luminosity of the recorded data. The
uncertainties in Data follow a Poisson distribution. All corrections described in
Section 5.6 are applied to the simulation.
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Figure A.8: Comparison of the variable Thrustg on the K*" mass sideband for simulated
events and recorded data for all four signal channels. The simulation is scaled
to match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6 are
applied to the simulation.
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Figure A.9: Comparison of the variable Thrustgop on the K*t mass sideband for simulated
events and recorded data for all four signal channels. The simulation is scaled
to match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6 are
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Figure A.10: Comparison of the variable CLEO Cone 0 on the K** mass sideband for
simulated events and recorded data for all four signal channels. The simulation

is scaled to match the integrated luminosity of the recorded data.

The

uncertainties in Data follow a Poisson distribution. All corrections described
in Section 5.6 are applied to the simulation.
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Figure A.11: Comparison of the variable CLEO Cone 1 on the K** mass sideband for
simulated events and recorded data for all four signal channels. The simulation

is scaled to match the integrated luminosity of the recorded data.

The

uncertainties in Data follow a Poisson distribution. All corrections described
in Section 5.6 are applied to the simulation.
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Figure A.12: Comparison of the variable CLEO Cone 2 on the K** mass sideband for
simulated events and recorded data for all four signal channels. The simulation

is scaled to match the integrated luminosity of the recorded data.

The

uncertainties in Data follow a Poisson distribution. All corrections described
in Section 5.6 are applied to the simulation.
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Figure A.13: Comparison of the variable CLEO Cone 3 on the K** mass sideband for
simulated events and recorded data for all four signal channels. The simulation

is scaled to match the integrated luminosity of the recorded data.

The

uncertainties in Data follow a Poisson distribution. All corrections described
in Section 5.6 are applied to the simulation.
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Figure A.14: Comparison of the variable CLEO Cone 4 on the K** mass sideband for
simulated events and recorded data for all four signal channels. The simulation
is scaled to match the integrated luminosity of the recorded data. The
uncertainties in Data follow a Poisson distribution. All corrections described
in Section 5.6 are applied to the simulation.
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Figure A.15: Comparison of the variable CLEO Cone 5 on the K** mass sideband for
simulated events and recorded data for all four signal channels. The simulation

is scaled to match the integrated luminosity of the recorded data.

The

uncertainties in Data follow a Poisson distribution. All corrections described
in Section 5.6 are applied to the simulation.
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Figure A.16: Comparison of the variable CLEO Cone 6 on the K*" mass sideband for
simulated events and recorded data for all four signal channels. The simulation

is scaled to match the integrated luminosity of the recorded data.

The

uncertainties in Data follow a Poisson distribution. All corrections described
in Section 5.6 are applied to the simulation.
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Figure A.17: Comparison of the variable CLEO Cone 7 on the K*" mass sideband for
simulated events and recorded data for all four signal channels. The simulation

is scaled to match the integrated luminosity of the recorded data.

The

uncertainties in Data follow a Poisson distribution. All corrections described
in Section 5.6 are applied to the simulation.



102

T

3000 _
[ Belle IT (own work) 88
[ £dt =365fb!

2500 [ 00 - signal

T

2000 |

(0.058)

~ 1500 |

Events

1000

500

[ B+B-
I dd EEE BBY
B yu B

$ Data

Data - Pred.
OData
o

I 0.5 I I 1.0|
CLEO Cone 8

1.5

[ Belle I (own work)
[ £dt =365 !

7T - signal

Data

-~

o

S

S
T

.072)
=
S

[ ss Il B B
I dd EEE B°B°
B yvu B cc

t

OData
o

Data- Pred.

_5:....|...|...|....

Il.OI 1.5
CLEO Cone 8

0.0 0.5

2.0

Events / (0.070)

Data - Pred.
O Data

Events / (0.075)

Data- Pred.
O Data

A Appendix
x10%
1.0  Belle II (own work) s B*_B'
[ L£dt=365b" I dd EEE B'BY
Iw - signal N wvu B
¢ Data
. L . i
ST
OF
75:. T e T B |
0.0 0.5 1.0 1.5 2.0
CLEO Cone 8
5000:_ Belle IT (own work) £ s W BB
U cdt=365m" B ] EE BT
p - signal BN yu B cc
* Data
4000
3000 |
2000
1000
O la i aal “
5r
N:
_5:....|....|....|....|..
0.0 0.5 1.0 1.5 2.0
CLEO Cone 8

Figure A.18: Comparison of the variable CLEO Cone 8 on the K** mass sideband for
simulated events and recorded data for all four signal channels. The simulation

is scaled to match the integrated luminosity of the recorded data.

The

uncertainties in Data follow a Poisson distribution. All corrections described
in Section 5.6 are applied to the simulation.
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Figure A.19: Comparison of the variable Hpg on the K*" mass sideband for simulated events

and recorded data for all four signal channels. The simulation is scaled to
match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6
are applied to the simulation.
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Figure A.20: Comparison of the variable Hs on the K** mass sideband for simulated events
and recorded data for all four signal channels. The simulation is scaled to
match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6
are applied to the simulation.
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Figure A.21: Comparison of the variable Hgg on the K* mass sideband for simulated events
and recorded data for all four signal channels. The simulation is scaled to
match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6
are applied to the simulation.
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Figure A.22: Comparison of the variable Hj on the K*" mass sideband for simulated events
and recorded data for all four signal channels. The simulation is scaled to
match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6

are applied to the simulation.
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Figure A.23: Comparison of the variable Hjg on the K*" mass sideband for simulated events
and recorded data for all four signal channels. The simulation is scaled to
match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6
are applied to the simulation.
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Figure A.24: Comparison of the variable Hjy on the K*" mass sideband for simulated events
and recorded data for all four signal channels. The simulation is scaled to
match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6
are applied to the simulation.
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Figure A.25: Comparison of the variable Hyq on the K* mass sideband for simulated events
and recorded data for all four signal channels. The simulation is scaled to
match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6

are applied

to the simulation.
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Figure A.26: Comparison of the variable Hy3 on the K*+ mass sideband for simulated events
and recorded data for all four signal channels. The simulation is scaled to
match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6
are applied to the simulation.
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Figure A.27: Comparison of the variable H5j on the K*" mass sideband for simulated events
and recorded data for all four signal channels. The simulation is scaled to
match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6
are applied to the simulation.
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Figure A.28: Comparison of the variable H; on the K™t mass sideband for simulated
events and recorded data for all four signal channels. The simulation is scaled
to match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6
are applied to the simulation.
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Figure A.29: Comparison of the variable Hgy on the K*" mass sideband for simulated
events and recorded data for all four signal channels. The simulation is scaled
to match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6
are applied to the simulation.
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Figure A.30: Comparison of the variable Hs on the K*" mass sideband for simulated
events and recorded data for all four signal channels. The simulation is scaled
to match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6
are applied to the simulation.
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are applied to the simulation.
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to match the integrated luminosity of the recorded data. The uncertainties in
Data follow a Poisson distribution. All corrections described in Section 5.6
are applied to the simulation.
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A.5 Two-Dimensional Sideband Validation Plots

In this section of the appendix, I present additional 2D plots of recorded and simulated
data on the K* sideband used for validation purposes. Given the large number of variables
used in the MVA, including all plots in this work is not feasible. However, a selection is
shown here, based on the variables that are used in every signal channel: pﬁﬁf , Eﬁ?ff,
cos (Thrustg; Thrustgop ), Thrustg, Hag, and M (K**;¢;). All combinations for all channels
are depicted on the following pages. The entire collection of 2D validation plots is available

as a Zenodo record (see Ref. [75]).
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Figure A.35: Two-dimensional comparison of recorded data and simulation in the variables cos (Thrustg; Thrustgop) and Hj; on the

K** mass sideband for the 77 and p channel (from top to bottom). From left to right: Distribution of MC, Data,
Data/MC ratio, and Pull. The simulation is scaled to match the integrated luminosity of the recorded data. The
uncertainties in data follow a Poisson distribution. All corrections described in Section 5.6 are applied to the simulation.
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Figure A.37: Two-dimensional comparison of recorded data and simulation in the variables cos (Thrustg; Thrustgrog) and M QA*LJ t1)
on the K** mass sideband for the 77 and p channel (from top to bottom). From left to right: Distribution of MC,
Data, Data/MC ratio, and Pull. The simulation is scaled to match the integrated luminosity of the recorded data. The
uncertainties in data follow a Poisson distribution. All corrections described in Section 5.6 are applied to the simulation.
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Belle IT (own work) [ £dt=365fb" =r-cl
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Figure A.39: Two-dimensional comparison of recorded data and simulation in the variables Hys and M QAVTJ t;) on the K*" mass

sideband for the 7w and p channel (from top to bottom). From left to right: Distribution of MC, Data, Data/MC
ratio, and Pull. The simulation is scaled to match the integrated luminosity of the recorded data. The uncertainties in
data follow a Poisson distribution. All corrections described in Section 5.6 are applied to the simulation.
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A.5 Two-Dimensional Sideband Validation Plots
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Belle IT Simulation (ownwork) [ £dt=365fb" wx-channel
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Two-dimensional comparison of recorded data and simulation in the variables Thrustg and cos (Thrustg; Thrustgog)

on the K** mass sideband for the 7 and p channel (from top to bottom). From left to right: Distribution of MC,
Data, Data/MC ratio, and Pull. The simulation is scaled to match the integrated luminosity of the recorded data. The
uncertainties in data follow a Poisson distribution. All corrections described in Section 5.6 are applied to the simulation.
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A.5 Two-Dimensional Sideband Validation Plots
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Figure A.43: Two-dimensional comparison of recorded data and simulation in the variables Thrustg and Hsg on the K*T mass
sideband for the 77 and p channel (from top to bottom). From left to right: Distribution of MC, Data, Data/MC
ratio, and Pull. The simulation is scaled to match the integrated luminosity of the recorded data. The uncertainties in
data follow a Poisson distribution. All corrections described in Section 5.6 are applied to the simulation.
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Figure A.47: Two-dimensional comparison of recorded data and simulation in the variables py s and cos (Thrustg; Thrustgrog) on
the K** mass sideband for the 77 and p channel (from top to bottom). From left to right: Distribution of MC, Data,
Data/MC ratio, and Pull. The simulation is scaled to match the integrated luminosity of the recorded data. The
uncertainties in data follow a Poisson distribution. All corrections described in Section 5.6 are applied to the simulation.
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Figure A.51: Two-dimensional comparison of recorded data and simulation in the variables MMKmm and Thrustg on the K*" mass

sideband for the 77 and p channel (from top to bottom). From left to right: Distribution of MC, Data, Data/MC
ratio, and Pull. The simulation is scaled to match the integrated luminosity of the recorded data. The uncertainties in
data follow a Poisson distribution. All corrections described in Section 5.6 are applied to the simulation.
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ratio, and Pull. The simulation is scaled to match the integrated luminosity of the recorded data. The uncertainties in
data follow a Poisson distribution. All corrections described in Section 5.6 are applied to the simulation.
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A.5 Two-Dimensional Sideband Validation Plots
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Figure A.63: Two-dimensional comparison of recorded data and simulation in the variables @Nﬁw and M ﬁm*ﬁ t;) on the K*" mass
sideband for the 77 and p channel (from top to bottom). From left to right: Distribution of MC, Data, Data/MC
ratio, and Pull. The simulation is scaled to match the integrated luminosity of the recorded data. The uncertainties in
data follow a Poisson distribution. All corrections described in Section 5.6 are applied to the simulation.
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