
Development of a C++/Python Interface for a
New Track Finding Algorithm in Belle II

Entwicklung einer C++/Python-Schnittstelle für einen neuen
Spurfindungsalgorithmus in Belle II

Bachelor’s Thesis of
Bachelorarbeit von

Yannis Klügl

at the Department of Physics
an der Fakultät für Physik

Institute of Experimental Particle Physics
Institut für Experimentelle Teilchenphysik

Advisor: Prof. Dr. Torben Ferber
Referent

Coadvisor: Dr. Giacomo De Pietro
Korrefferent

14. November 2023 - 30. March 2024
14. November 2023 - 30. März 2024

ETP-Bachelor-KA/2024-01

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Abstract

Over the last years, there have been many advancements in the area of artificial intelligence
(AI) and neural networks, which also make their way into science applications. Researchers
at the Institute of Experimental Particle Physics at the Karlsruhe Institute of Technology are
exploring new ways to solve problems in particle physics using these achievements in AI
research. One of those problems is the track finding for particles at the Belle II experiment
in Tsukuba, Japan. Here, particles generated from the collision of an electron and a positron
beam pass through a tracking detector, the central drift chamber (CDC), and leave a trail of
hits. Analyzing these tracks allows to obtain information about the particle, for example, its
momentum and charge.

As a classic approach, track finding algorithms based on the concepts of Legendre
transformation and cellular automata are used. In a novel approach, a neural network
that takes the hits in the detector as an input and produces reconstructed tracks as an
output is now employed. This neural network, which is currently in development, is known
as the CDC AI Track Finder (CAT Finder). The goal is to implement this tracking algorithm
as a module in the C++ analysis software framework of the Belle II experiment (basf2) [1].
Contrary to most of basf2, the CAT Finder module is written in Python, which allows for quick
prototyping and better readability but comes with the disadvantage of less performance
than C++. This makes it necessary to efficiently interface between the two languages.

This thesis focuses on developing such an interface. Besides implementing the C++/Python
interface ways to optimize it are also discussed, aiming to reduce the runtime and memory
consumption of the CAT Finder module. To verify that the C++/Python interface, produces
the same output as the CAT Finder, the track finding efficiency, fake rate, and resolution of
transverse momentum are studied. These metrics are measured for multiple event types and
beam-background scenarios. Lastly, the same benchmarks are performed on the established
Legendre tracking algorithm and compared to the results of the CAT Finder and C++/Python
interface.

I

Preface

This thesis builds upon the work of Lea Reuter [2], who provided the CAT Finder Python code
and parts of a module to measure the tracking performance.
The event simulation uses the analysis software of the Belle II experiment [1]. CAT Finder and
the C++/Python interface developed in this thesis aim to expand this software framework.
The beam-background data as well as a module for basf2 statistics was provided by Dr.
Giacomo De Pietro.
The beam-backgrounds are centrally produced by the Belle II collaboration using MC
simulations and can be found at
/group/belle2/dataprod/BGOverlay/early_phase3/release-06-00-05/overlay/BGx1

and
/group/belle2/dataprod/BGOverlay/nominal_phase3/release-06-00-05/overlay/BGx1

on KEKCC for low and high beam-background respectively. See also [3].

My contributions to the project are the implementation and optimization of the C++ code
for the CAT Finder. Additionally, I developed benchmarks to quantify the performance of the
C++/Python interface and other tracking algorithms. These are inspired by the benchmarks
used by Lea Reuter for the CAT Finder.

Dr. Giacomo De Pietro and Prof. Torben Ferber proposed the studies conducted in this thesis.

II

Contents

Abstract I

Preface II

1 Introduction 4
1.1 The Belle II experiment . 4
1.2 Track finding at Belle II . 4

1.2.1 Hardware . 4
1.2.2 Software . 6

1.3 Motivation for the C++/Python interface . 10

2 Implementation of the C++/Python interface 12
2.1 The basf2 environment . 12
2.2 Methods of code optimization . 13
2.3 Implementing the C++/Python interface . 14

2.3.1 Preprocessing . 14
2.3.2 Postprocessing . 16

3 Performance analysis 18
3.1 Methodology . 18

3.1.1 Steering file . 19
3.2 Runtime performance . 20
3.3 Memory performance . 22
3.4 Track finding efficiency . 23
3.5 Fake rate . 23
3.6 Resolution of transverse momentum . 25

4 Conclusion 28
4.1 Results . 28
4.2 Outlook . 29

4.2.1 Transfer to other parts of the detector . 29
4.2.2 Neural network improvements . 29
4.2.3 CAT Finder as C++ module . 29

1

Contents 2

A Appendix 32
A.1 Source code . 32
A.2 Plots . 32

A.2.1 Runtime performance . 33
A.2.2 Memory performance . 35
A.2.3 Track finding efficiency . 37
A.2.4 Fake rate . 39
A.2.5 Resolution of transverse momentum . 41

B List of Tables 43

C List of Figures 44

D Bibliography 45

E Declaration of Authorship 48

3

Chapter 1

Introduction

1.1 The Belle II experiment

The Belle II detector is a particle detector located at the High Energy Accelerator Research
Organization (高エネルギー加速器研究機構), also known as KEK, in Tsukuba, about 60 km
north-east of Tokyo, Japan. The primary goals of Belle II are the search for new physics and
more precise measurements of Standard Model parameters [4].
The detector is operated at the SuperKEKB accelerator complex, which is an asymmetric,
circular e+e− accelerator using 4 GeV positrons and 7 GeV electrons [5]. It is designed to reach
an instantaneous luminosity of 6.5 × 1035 cm−2 s−1, about 30 times as high as its predecessor
KEKB [6] [7]. The data is mainly collected at the Υ(4S) resonance at approximately 10.58 GeV,
allowing for the production of B-meson pairs [4] [8].
The Belle II detector was first proposed in 2004 as an upgrade of the Belle experiment and
data-taking began in 2018 [4] [9].

Like most modern particle detectors, the Belle II detector consists of several specialized
detectors that are arranged in layers around the interaction region. From the center outwards
these are three tracking detectors (PXD, SVD, CDC), two detectors for particle identification
(TOP, ARICH), the electromagnetic calorimeter (ECL), and finally the KL and muon detector
(KLM). The arrangement of these detectors and other components is shown in Figure 1.1.
The following sections will discuss the Belle II tracking system in more detail.

1.2 Track finding at Belle II

1.2.1 Hardware

The track finding system at Belle II consists of three detectors: the pixel detector (PXD), the
silicon vertex detector (SVD), and the central drift chamber (CDC). As the tracking algorithm
studied in this thesis exclusively works with the CDC, the PXD and SVD are discussed only
briefly.

4

5 1.2. Track finding at Belle II

Figure 1.1: Top view of the Belle II detector showing the layer-like arrangement of the individual
detectors. The beamline (orange) enters from the left and right. Image taken from [4].

The PXD consists of two layers of eight and twelve ladders based on depleted p-channel
field effect transistor (DEPFET) technology. The ladders are created by combining two DEPFET
modules for a total of 40 sensors with a resolution of 250 by 768 pixels each.
The SVD is built similarly with four layers of double-sided silicon strip detectors on 35 ladders
and a total of 172 sensors. The sensors have a resolution of 768 by 768 strips per sensor on
the first layer and 768 by 512 strips per sensor on the remaining layers [5].

The CDC is a cylindric chamber 226 cm in diameter. To make space for the SVD, PXD, and
beamline, the center is spared along the z-axis with a minimum diameter of 32 cm [9]. This
volume is filled by about 50 000 sense and field wires which are combined into 56 layers and 9
superlayers. The superlayers contain 6 layers each, except for the innermost superlayer which
contains 8 layers. This and every second layer following is an axial layer where the wires are
aligned parallel to the z-axis. In the remaining layers, the wires are skewed by 45.4 mrad to
74 mrad to form a stereo layer [5]. The direction of the skew alternates between the stereo
layers. This skew allows information about the z-position of a particle to be reconstructed.
Figure 1.2 shows a quadrant of the cross-section of the CDC volume on the left side. The
dark and light points represent the axial and stereo layers respectively. To the right, the
alignment of the axial (top) and stereo (bottom) wires are shown. The skew of the stereo
wires is exaggerated for illustration.
The CDC is filled with a mixture of 50 % helium and 50 % ethane. The performance of this gas
mixture has been studied in the Belle experiment [9].

Introduction 6

Figure 1.2: Wire configuration of the CDC. The left side shows a quadrant of the cross-section
of the CDC, the right shows the wires as seen perpendicular to the z-axis with an axial layer
on the top and a stereo layer on the bottom. Image taken from [5].

The CDC measurements strongly depend on several factors. It is trivial to see that the
number of hits increases along with the beam-background. Beam-background occurs from
losses in the particle beam that produce secondary particles in the detector [3]. The event
type determines the number of tracks and thus also influences the number of hits that are
generated. For B decays there are an average of 11 tracks per event while e+e− → µ−µ+

events typically only generate 2 tracks and e+e− → µ+µ− events generate 2 to 6 tracks. For
momenta below 300 MeV [5] the particle trajectory can be curved so strongly that it will return
to the CDC or is unable to leave it. The tracks of these particles, called curlers, contain more
CDC hits due to their longer trajectory in the CDC and are more challenging to reconstruct. An
example of the CDC measurement of a single event can be seen in Figure 1.3.

1.2.2 Software

There are currently two established algorithms used for track finding in Belle II, a global
algorithm using Legendre transformations and a local algorithm based on a cellular
automaton. The former is primarily meant to find tracks that start close to the interaction
point (IP) whereas the latter searches for connected hits and is also efficient for displaced
vertices. The results from both of these algorithms can be merged to obtain the reconstructed
tracks. These tracks are additionally improved by a combinatorial Kalman filter which also
takes the SVD data into account. If the CDC does not produce enough hits, a standalone SVD
algorithm is used. The found tracks are finally fitted using a deterministic annealing filter of
the GENFIT2 package [5] [10].
The global Legendre algorithm is the primary and currently only track finding algorithm used
in Belle II. The cellular automaton algorithm exhibits issues with the track finding quality and
is therefore switched off. As the Legendre algorithm is used to compare the performance of
the CAT Finder and CAT LINK it is discussed in more detail in the following section.

7 1.2. Track finding at Belle II

100 50 0 50 100
x (cm)

100

50

0

50

100
y

(c
m

)

Belle II Simulation (own work)

detector hit

Figure 1.3: Simulation of a CDC measurement for an e+e− → µ+µ− event with low beam-
background. The plot shows the CDC cross-section with the wire hits highlighted. The two
tracks from the µ+ and µ− are visible along with some hits produced by beam-background.
Image provided by Lea Reuter.

Legendre track finding

This global track finding algorithm is designed to find tracks with origins close to the IP. During
data taking, a time to digital converter (TDC) records the time between the event trigger signal
and the signal of each sense wire. This time is then used to calculate drift circles which give all
positions at which the particle could have crossed the sense wire. These drift circles are now
used as an input to the Legendre algorithm. As the name of the algorithm implies it applies
a Legendre transformation from the r-φ-plane to a conformal space which represents the
curved tracks as straight lines while the drift circles remain circles. In the beginning, this is
only done for the axial layer hits. The problem now is to find tangents to the drift circles that
intersect the origin. The tangents can be expressed by

ρ = x0 cos θ + y0 sin θ ±Rdc (1.1)

with the Legendre parameters ρ and θ, x- and y-coordinate x0 and y0 and radius Rdc of the
drift circle. Viewing this in the ρ-θ-space produces a sinusoid for each drift circle.

Introduction 8

Finding the most populated areas in this space yields the Legendre parameters for the most
optimal tangent. Applying an inverse Legendre transformation to this tangent then finally
returns the track. To do this, the ρ-θ-space is split into four equally sized bins. The most
populated bin is selected and the process is repeated until the bins are smaller than a ρ-
dependent resolution parameter. Figure 1.4 shows this technique.
For multiple tracks in the CDC, this track finding process is repeated while different track
candidates are investigated in each iteration. As the next steps, a slightly modified process
is employed which allows for tracks with origins offset from the CDC center to be found.
Additionally, the stereo layer hits are used to gain z-axis information [5].

Figure 1.4: Bin subdivision in Legendre tracking. The bins are quartered and the most
populated bin is selected. This process is repeated until a given resolution parameter is
reached. Image taken from [5].

9 1.2. Track finding at Belle II

CAT Finder

As the Legendre track finding algorithm is currently the only track finding algorithm used,
the track finding efficiency for tracks that originate further from the IP is accordingly poor.
This is problematic since these displaced vertices are an important signature in dark sector
searches like, for example, the production of dark Higgs [11]. A possible solution to this
is the development of a new track finding algorithm that also efficiently detects displaced
tracks. CAT Finder, which is currently under development, aims to achieve this goal by using
graph neural networks (GNN) [12] and object condensation [13]. This technique transforms
the hits of the CDC from the real space to a latent space. The CDC hits that correspond to a
track condense into a cluster while background hits tend to isolate themselves. It is thought
to work well with an unknown number of tracks while also adhering to computing resource
constraints [2].

Figure 1.5 shows the architecture of the GNN used for the CAT Finder. An input matrix (green)
represents the CDC hit data and is fed to the GNN (blue). The CDC hit data consists of the
coordinates of the hit wire and the signal height (ADC) and time (TDC) for each hit. The
GNN itself consists of multiple layers, each including a GravNet layer. The GNN ultimately
outputs (orange) the cluster coordinates of the object condensation and a beta value, which
is a weight between 0 and 1 assigned for every hit. The GNN also outputs the parameters of the
tracks that were predicted from the CDC hits. These parameters are the starting position and
momentum of the track. By applying a selection criterion on the beta value, the condensation
points are found and the hits within a certain range in the latent space of the GNN are assigned
to predicted tracks [2] [14]. The predicted tracks are then stored by the Belle II software and
passed to following reconstruction steps (e.g. track fitting).

Use Detector Hits (Graph Nodes) as Input
Learn graph edges with GravNet Layers

Initial
LL

x N

Cluster
Coordinate

LL

LL
Final

LL

Input Matrix

Input

ADC1 TDC1

ADC2 TDC2

ADC3 TDC3

ADC... TDC...

ADCn TDC

Linear Layers (LL)
- ELU activation

GravNet Block

Batchnorm Layer
(BNL)

Skip connection

Forward connection

Output Layers

GravNet
Layer

Beta Value
LL

Cluster Coordinate 1

C
lu

st
e

r
C

o
o

rd
in

a
te

 2

Momentum
LL

...

Object Condensation
Layers

Track Parameter
Layers

s

px

py

pz

...

LL BNL BNL

GravNet Layer
s1

s 2

(arxiv: 1902.07987)

Detector Hits

LL

Figure 1.5: Architecture of the CAT Finder GNN. From left to right, the CDC hits are stored in an
input matrix which is passed to the GNN. The GNN outputs the object condensation and track
parameters. Image taken from [14].

Introduction 10

1.3 Motivation for the C++/Python interface

The main problem that arises is that, unlike the established tracking algorithms, the CAT
Finder is purely written in Python. While this brings the advantage of faster prototyping and
better readability, lower performance in runtime and memory consumption are a drawback.
While it may seem simple to translate a stable version of the Python code to C++, this is not
easily possible. The basf2 software currently does not support LibTorch, the C++ equivalent
of PyTorch [15] which is used the by CAT Finders GNN, as an external library. The solution is
to do as many of the calculations as possible in C++ and interface the data to and from the
Python GNN. The software that performs these calculations and provides the interface will be
referred to as the CAT Language Interface for Neural Network (CAT LINK).
The main goals of CAT LINK are faster runtime and lower memory consumption compared to
the standalone CAT Finder while producing the same results.

11

Chapter 2

Implementation of the C++/Python
interface

2.1 The basf2 environment

The simulation and analysis of particle collision events is done using the Belle II Analysis
Software Framework (basf2), an analysis framework developed by the Belle II experiment [1]
[16].
The framework contains several modules which can be loaded dynamically by the software.
The functionality of these modules can be divided into core modules and analysis modules.
While the latter perform the actual analysis of the events, core modules can be used to steer
and monitor the basf2 framework itself. Examples for basf2 modules are given in Table 2.1. All
modules inherit from the Module base class, which offers interface methods that are called
during initialization or termination of the analysis, before or after a run is processed, or
during each processed event. The modules in which performance is crucial are written in
C++ although Python modules are also used [1].

Table 2.1: Example modules of basf2 [17].

Module Description

EventInfoSetter Mandatory module to set metadata for the current event.

Progress Prints the number of processed events to the standard output.

RootOutput Saves objects from the global data store to a .root file. The
data can be loaded using the RootInput module.

StatisticsSummary Provides a summary of the statistics of all modules that are
called between two StatisticsSummary modules.

CATFinder Module containing the novel track finding algorithm studied in
this thesis.

12

13 2.2. Methods of code optimization

Another important component of a basf2 analysis is the Path object. Modules can be added
to it and are then executed when calling the process() method. Each event undergoes the
whole sequence of modules in the order that they are added to the Path instance.
A Python interface is provided by basf2 that allows the path and its modules to be configured
in Python files called “steering files”. Custom modules can also be defined here. Steering files
may be executed directly by a Python interpreter or by using the basf2 executable. Using the
executable allows for framework-specific arguments, e.g. the number of events that should
be simulated, to be passed [1].
The framework also contains a globally accessible data store. The data store provides
access to objects and arrays of objects that are saved in StoreObjPtr or StoreArray objects
respectively. The data store can also store many-to-many relations between its objects. This
can for example be used to relate an object to other objects that were used to create it.

In addition to the basf2 framework, the Belle II software also relies on the use of “externals”
which are third-party applications not specific to Belle II. These externals are distributed with
basf2 and, among others, include a C++ compiler, Python interpreter, and high-energy physics
related software such as Geant4 [18] and EvtGen [19]. In total, there are about 60 external
packages as well as 90 Python packages [1] [20]. Externals bring extremely powerful tools for
analysis in Belle II and the lack of appropriate externals can hinder the development of new
modules as discussed in Section 1.3.

2.2 Methods of code optimization

Optimizing code strongly depends on the application the code is supposed to serve. There are
however several practices that can be applied to any project, and often across programming
languages, to ensure better code performance. Some practices that are relevant for CAT LINK
are:

• Avoiding local variables.
Removing unnecessary variable definitions not only clears memory but can also save
the time that would be needed to access this memory space.

• Avoiding casting.
Casting often includes copying data in the background and performing conversions that
could be avoided by using an appropriate datatype to begin with.

• Avoiding dynamic memory allocation.
While this feature is very useful to have, it requires the system to find a suitable spot in
the memory to save object data every time the object grows.

• Optimizing loops.
It might be possible to terminate some loops as soon as a specific outcome is reached.
Loops could also be replaceable by optimized functions from third-party packages.

Implementation of the C++/Python interface 14

Additionally, some code optimization can also be done automatically by the C++ compiler.
A problem specific to CAT Finder and CAT LINK is the PyROOT C++/Python interface provided
by the ROOT data analysis framework [21]. This interface is built robust but is not optimized
for performance. As the data is handled by C++, accessing the data via Python might lead to
unknown data conversion operations behind the scenes. Implementing specialized methods
that handle these operations allows for a better understanding of the internal processes of
the interface and optimize it to suit the performance requirements of the CAT Finder.

2.3 Implementing the C++/Python interface

The CAT Finder basf2 module can conceptually be split into three parts: preprocessing,
running the GNN, and postprocessing. The preprocessing stage accesses the CDC hits
provided by the basf2 software and extracts relevant information. This is the x- and y-
coordinates of the center of the wire hit, TDC and ADC counts as well as the CDC layer and
superlayer. The preprocessing stage then converts this information into pure Python objects
(e.g. lists) that are accepted as input by the GNN. After running the GNN, the postprocessing
stage accepts its output and reconstructs the track from it.

The concepts of code performance improvements discussed in Section 2.2 are now applied to
the pre- and postprocessing stages. The CAT Finder module will remain in Python with calls
to the C++ code at the appropriate spots.

2.3.1 Preprocessing

As a first naive implementation, the Python code is replicated in C++ with no regard for
performance.
The preprocessing starts by retrieving all of the CDC hits and preparing Python lists with a
size that equals the number of CDC hits. Looping over all CDC hits, the information about the
current hit is saved, which includes the CDC global layer number, wire, wire position, TDC,
and ADC counts. The TDC and ADC information then has to be scaled to a range of -1 to 1
and 0 to 1 respectively. They are then saved to the Python lists using PyList_SetItem()[22].
The layer and wire information is used to determine the x- and y-position of the hit which
are also saved to Python lists. The two final Python lists are filled with the CDC layer and
superlayer.

With a functional prototype in place, improving the performance is now focused. Firstly, the
GNN is still written in Python and as such expects Python objects to be passed to it. None of
the arrays are needed as C++ vectors. It is therefore better to save the CDC hit data directly
into Python lists instead of creating a C++ vector and converting it to a Python list. Since
the preprocessing stage only retrieves data from the basf2 data store and performs some
basic calculations on it, this is already the highest impact the optimization efforts have.
Nonetheless, some minor improvements are added in a second iteration. These are the
removal of unnecessary variable definitions and the strategy for handling the Python lists is
revised.

15 2.3. Implementing the C++/Python interface

As the length of each list is equivalent to the amount of CDC hits, lists of a fixed size are
prepared beforehand to avoid dynamic memory allocation. Additionally, instead of creating
new list objects for each event, the existing lists are emptied and reused.

The effects on the average per-event runtime of the interface are shown in Figure 2.1.
Optimization step 0 refers to the first prototype, step 1 is after storing the data in Python
objects and step 2 includes the minor improvements as mentioned earlier.

0 1 2
Optimization steps

1.5

2.0

2.5

3.0

3.5

Ru
nt

im
e

(m
s)

Belle II Simulation (own work)
10 + events
No beam-background

Figure 2.1: Runtime performance of the preprocessing stage after optimization. Step 1 refers
to the implementation of Python lists and step 2 is other minor improvements as discussed
above.

Implementation of the C++/Python interface 16

2.3.2 Postprocessing

For the postprocessing stage, the same basic approach of converting the Python code into
C++ code and then iteratively optimizing it is used. As the GNN returns Python objects,
they need to be converted to C++ objects first. For primitive datatypes, the corresponding
functions provided by the Python/C API [22] are used, such as PyFloat_AsDouble(). For
converting the Python lists, a new function is defined as follows:

First a std::vector<double> object is created that will store the Python list. After using
PyList_check() to make sure that the GNN output is a list, memory is reserved as needed
according to the length of the list. In a loop, every entry of the Python list is retrieved using
PyList_GetItem(), checked that it is a float with PyFloat_Check() and, if so, appended to
the C++ vector.
A second function that converts a Python list to a std::vector<long> C++ object is defined
in the same fashion.

Now the GNN output can be accessed as C++ objects and the reconstruction is done by
looping over all of the condensation points. Within this loop, the distance of each hit to the
current condensation point is calculated in the latent space. If this distance is smaller than
a previously defined threshold dhit, the hit index is saved to a list. For all of the simulations
discussed later, the threshold is set to dhit = 0.5.
The momenta and positions of the track can be retrieved from the vec_con_point_px,
vec_con_point_vx, and respective y- and z- lists. This information is now added to a newly
created RecoTrack object, which is in turn added to the data store. The RecoTrack object
is also equipped with a covariance matrix that describes the uncertainties of the predicted
track using default values. Finally all of the previously found CDC hits that are close enough
to the condensation point are linked to the reconstructed track and the loop continues with
the next condensation point.

17

Chapter 3

Performance analysis

3.1 Methodology

To verify that the new basf2 module satisfies the expectations mentioned in Section 1.3, the
CAT LINK C++/Python interface is extensively tested. This means comparing the CAT LINK
results in several benchmarks to the results of the pure Python CAT Finder subjected to the
same benchmark conditions. Additionally, the tests are also performed with basf2’s Legendre
algorithm to compare the novel algorithms with an established one.

As the main goal of CAT LINK is to speed up track reconstruction in the CAT Finder, the runtime
performance is the most critical metric to discuss for the fully functional interface. Here the
runtime performance refers to the average time needed for the algorithm to reconstruct
simulated Monte Carlo particles (MC particles) from hits in the CDC of a single event. This
event runtime is further broken down into the runtimes of the preprocessing, GNN, and
postprocessing stages. Since the Legendre algorithm is fully implemented in C++, the runtime
is not broken down.

Another important metric to consider is the memory consumption. A detailed memory
profiling proves to be more difficult than the analysis of the runtime performance.

To verify that the reconstructed tracks delivered by CAT LINK match those found by the CAT
Finder, the track finding efficiency, fake rate, and relative transverse momentum resolution
(pt resolution) are measured according to the truth transverse momentum.
For the track finding efficiency and fake rate, the particles that were reconstructed using the
tracking algorithm and the particles that were actually simulated need to be saved. For the
pt resolution, the predicted and simulated momenta of each particle are also looked upon.
To understand how CAT LINK behaves with different event conditions, all benchmarks are
performed for four different event types:

• e+e− → µ−µ+ (generated using KKMC [23])

• e+e− → τ−τ+ (generated using KKMC and Tauola [24])

• e+e− → B0B0 (generated using EvtGen [19])

• e+e− → B+B− (generated using EvtGen)

18

19 3.1. Methodology

and three different beam-background scenarios [3]:

• No beam-background

• Low beam-background corresponding to the average SuperKEKB conditions in Run 1

• High beam-background corresponding to the average SuperKEKB conditions at the peak
design luminosity

30 000 events are simulated for each combination of tracking algorithm, event type, and
beam-background scenario. The same random seed was used for all simulations. Some of the
data was lost due to an unknown bug in the simulation workflow. One possible explanation
is the occurrence of race conditions as the events were simulated using multiprocessing. The
missing data is filled with data from simulations of 3 000 events. Any data that is based
on this dataset with lower statistics is marked with a dagger (†) in the plots. The memory
performance data is fully based on datasets of 1 000 events. For the simulation, a dedicated
basf2 branch detached from commit cd980c80 is used. The beam-background files are
centrally produced by the collaboration using release-06-00-08. As explained in Section 1.2.1,
different beam-background conditions and different event types lead to a different number
of CDC hits and the track finding algorithm performance varies with the number of CDC hits.

3.1.1 Steering file

The steering file used in all of the benchmarks executes the CATFinder module containing
the GNN based tracking algorithm, the RecoTrackInfo module as well as the standard basf2
simulation path. the RecoTrackInfo module is used to determine the tracking efficiency,
fake rate, and pt resolution of the tracking algorithm used in the path. How each of those
metrics is calculated within the module is explained in Section 3.2 to Section 3.6.

The steering file can be launched with basf2 and requires the arguments defined in Table 3.1
using the argparse Python package [25]. The --event-type flag adds the KKMC generator
for e+e− → µ−µ+ and e+e− → τ−τ+ events or the EvtGen generator for e+e− → B0B0 and
e+e− → B+B− events. The beam-background is chosen with the --background argument.
For high beam-background, the expList argument has to be set to 0 when adding the
EventInfoSettermodule to the path. For other beam background scenarios, expList is set to
1 003. Lastly, the tracking algorithm that is chosen with the argument --tracking-algorithm
is added to the path. For the Legendre tracking, the StatisticsSummary module has to
be added directly before and after adding the Legendre tracking itself. This allows for the
memory consumption and per-event runtime to be measured. The steering file saves all of
the necessary data to the file path specified with the --output-file argument.

Performance analysis 20

Table 3.1: Supported command line arguments for the steering file.

Argument Accepted
values

Description

--event-type, -e mumu, tautau,
BB, BBbar

Defines which event type should be
simulated. Currently supported are
e+e− → µ−µ+, e+e− → τ−τ+, e+e− → B+B−

and e+e− → B0B0 events.

--tracking-algorithm,
-a

leg, cat, int Sets the tracking algorithm. Currently
supported are Legendre tracking, CAT Finder
and CAT LINK respectively.

--background, -b none, low,
high

Sets the beam-background scenario.

--output-file, -o any filepath Defines a file to which the data is written. An
existing file will be overwritten.

The process of collecting important data is automated for every benchmarked scenario using
an appropriate shell script. To go easy on computing resources, the steering files are executed
sequentially and not in parallel. At this point, it will also be beneficial to choose file names
for the output files that can easily be processed later on. An example command for running
the simulation is given here:

basf2 -n 30000 -p 50 steering_file.py -- -a int -e tautau -b high

-o int_tautau_high_30000.txt

The basf2 argument -n sets the number of events that should be simulated in a single run
and -p sets the number of CPU cores that should be used in parallel. This command is run 36
times with the arguments adjusted accordingly to simulate every possible combination.

3.2 Runtime performance

To measure the runtime performance of the CAT Finder and CAT LINK, the perf_counter_ns

class from Pythons time package [26] is used. Once called, this class returns the value of a
performance counter with nanosecond precision. Calling the class again later and subtracting
the performance counter value from the first call then gives the elapsed time between both
calls in nanoseconds. To be consistent with the basf2 statistics, this runtime is converted to
milliseconds. Now the runtime of all of the stages in the CAT Finder event method can be
determined by simply keeping track of the performance counter value at the start and end
of each stage in the code.

As mentioned before, the runtime of the Legendre algorithm can not be easily retrieved
this way. Instead, the basf2 statistics function has to be used. Another challenge is that the
Legendre algorithm consists of multiple basf2 modules and as such there is not a single
value that corresponds to the Legendre runtime in the basf2 statistics. To solve this, another

21 3.2. Runtime performance

module is introduced to the path: the StatisticsSummary module. This module will add
another entry to the basf2 statistics which contains the sum of all of the modules that have
been called between the first and second call of the StatisticsSummary module. Adding this
module to the path directly before and after adding the Legendre algorithm then yields the
per-event runtime of the Legendre algorithm as the output of the StatisticsSummarymodule.

Figure 3.1 shows the per-event runtimes of each tracking algorithm measured using the
described methods. It is worth noting that the results of the first event of each simulation
are discarded. The initialization of the simulation framework causes this event to have a
significantly higher runtime compared to the following events, distorting the average runtime.
It is assumed that, in a realistic scenario, the initialization is done before the first event so
this performance drop is not expected.
Comparing the CAT Finder and CAT LINK in an example scenario it is evident that
the performance of the preprocessing stage increased drastically (4,7 times). For the
postprocessing stage, a small performance drop (1.7 times) is observed in this specific
scenario. Overall, in both cases, the average event runtime is dominated by the GNN and
about 1,7 times larger than for the Legendre track finding algorithm.

0 50 100 150 200 250 300 350 400
Runtime (ms)

CAT
 LIN

K

CAT
 Fin

de
r

Leg
en

dre

Belle II Simulation (own work)
30000 + events
High beam-background

Preprocessing
Neural Network
Postprocessing
Event

Figure 3.1: Comparison of the per-event runtimes of the different track finding algorithms for
30 000 e+e− → τ−τ+ events with high beam-background. The Legendre algorithm shows the
fastest runtime, CAT Finder and CAT LINK being roughly 1,7 times slower. The preprocessing
runtime is significantly reduced while the postprocessing runtime slightly increased in this
specific scenario. Overall, CAT LINK performs slightly better than CAT Finder.

Performance analysis 22

3.3 Memory performance

Measuring the memory consumption of all of the stages separately is not as easy as the
runtime. Therefore, the memory profiling provided internally by basf2 has to be relied upon.
This comes with the disadvantage of low resolutions of approximately O (1 MB). Additionally,
the memory consumption as measured by basf2 is easily influenced for example by print()

commands in the code or concurrent activity on the machine. The memory consumption of
a module provided by basf2 is only for the entire runtime, not per event. All in all, it is clear
that the absolute memory values are not reliable but are still useful to compare the different
algorithms.

Figure 3.2 shows a slight drop in memory consumption when using CAT LINK compared to the
CAT Finder (1.2 times) though both algorithms are outperformed by the Legendre tracking.
This proves that the internal implementation in C++ provides better memory management for
CAT LINK.

Legendre CAT Finder CAT LINK
0

100

200

300

400

500

600

M
em

or
y

Co
ns

um
pt

io
n

(M
B)

Belle II Simulation (own work)
1000 + events
High beam-background

Figure 3.2: Comparison of the memory consumption of the different tracking algorithms based
on 1 000 e+e− → τ−τ+ events with high beam-background. The Legendre algorithm again
exhibits the best performance while CAT LINK performs about 1,2 times better than the CAT
Finder.

23 3.4. Track finding efficiency

3.4 Track finding efficiency

As a first test to see if CAT LINK exhibits the same performance as the CAT Finder alone, the
track finding efficiency is determined. It is defined as

ηtrack =
Nfound

NMC
, (3.1)

where Nfound is the number of simulated tracks that were found by the tracking algorithm and
NMC is the total amount of simulated tracks. Both Nfound and NMC are implicitly stored as
the length of the MCParticles and RecoTracks store arrays in basf2. These are the names
of the containers for the simulated particles and the tracks found by the tracking algorithm
respectively. All necessary calculations are defined in a dedicated basf2 module which can
then be used for all tracking algorithms.
For each of the found tracks, the predicted momenta px, py and pz of the track are determined
and used to calculate the transverse momentum as

pt =
√
p2x + p2y. (3.2)

This information is used to fill a histogram with 30 bins of 200 MeV width, ranging from 0 GeV
to 6 GeV, by increasing a counter for the bin corresponding to the predicted momentum. In the
next step, a similar histogram is created by repeating this process for the simulated particles.
The track finding efficiency can then be determined in relation to the transverse momentum.
Figure 3.3 shows the resulting plot for e+e− → τ−τ+ high beam-background events. The x-
axis does not span the full 6 GeV range as no corresponding particles are generated or found
above a certain momentum. The plot shows that the track finding efficiencies of the CAT Finder
match perfectly with the efficiencies of CAT LINK. It is also clearly visible that the CAT Finder
and CAT LINK yield at least the same efficiency as Legendre for pMC

t ≥ 0.6 GeV and in most
cases even surpass it.

3.5 Fake rate

As the next metric, the fake rate is investigated. The fake rate of a tracking algorithm describes
the ratio N found of how many of the predicted tracks do not originate from a simulated particle
to the total number of simulated particles. It is therefore defined as

ηfake =
N found

NMC
. (3.3)

The module created for the track finding efficiency is expanded by adding another histogram
for counting with the same properties as before. When looping over the found tracks it
is checked if the track is related to a simulated particle. If not, the counter of the bin
corresponding to the predicted pt is increased. Figure 3.4 shows the resulting plot. The fake
rates for the CAT Finder and CAT LINK again match perfectly. For pMC

t ≤ 4.6 GeV slightly higher
fake rates are observed for the GNN-based algorithms with higher deviations for pt ≤ 2 GeV.
It is worth noting that results in this area might not be as trustworthy due to lower statistics.

Performance analysis 24

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ac
k-

fin
di

ng
 E

ffi
cie

nc
y

Belle II Simulation (own work)
30000 + events
High beam-background

Legendre
CAT Finder
CAT LINK

Figure 3.3: Comparison of the track finding efficiency of the different tracking algorithms based
on 30 000 e+e− → τ−τ+ events with high beam-background. The results of the CAT Finder
(orange) and CAT LINK (purple) match for pMC

t ≥ 0.6 GeV and in most cases outperform the
Legendre algorithm (green). The step size of pMC

t is set to 0.2 GeV.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ke

 R
at

e

Belle II Simulation (own work)
30000 + events
High beam-background

Legendre
CAT Finder
CAT LINK

Figure 3.4: Comparison of the fake rate of the different tracking algorithms based on 30 000
e+e− → τ−τ+ events with high beam-background. The CAT Finder (orange) and CAT LINK
(purple) results again match over the whole transverse momentum range. The Legendre
algorithm (green) outperforms the GNN-based algorithms for pMC

t ≤ 4.6 GeV. The step size of
pMC
t is again set to 0.2 GeV.

25 3.6. Resolution of transverse momentum

3.6 Resolution of transverse momentum

For the pt resolution, the tracks found by the tracking algorithm that are matched to a
simulated particle are studied. The transverse momentum resolution is defined as the full
width at half maximum (FWHM) of the distribution given by

f
(
ppredt , pMC

t

)
=

ppredt − pMC
t

pMC
t

(3.4)

As the resolution should again be in relation to pMC
t , a histogram of the distribution in

Equation (3.4) is created for every pMC
t bin. These have a range from −0.15 to 0.15 with 120

bins. To populate these resolution histograms, it is first checked which pMC
t bin they belong

to. Afterward, the predicted and simulated momenta are plugged into Equation (3.4) and the
counter of the resulting bin is increased. Once this is done for all reconstructed tracks, a fit is
performed on each of the histograms using the Crystal Ball probability density function [27]
and the FWHM of the fitted function is calculated. The model function is

fm (x, x0, A, α, n, x, σ) = A · fcb (x− x0, α, n, x, σ) (3.5)

with the x-offset x0, amplitude A, and Crystal Ball function fcb defined as

fcb (x, α, n, x, σ) = N ·

exp−x2

2 if x > −α(
n
|α|

)2
exp

(
−α2

2

)(
n
|α| − |α| − x

)−n
if x ≤ −α

. (3.6)

A Crystal Ball function describes a distribution with a Gaussian core and power-law tails.
β defines the point at which the distribution changes from a power-law to a Gaussian
distribution with mean x and deviation σ. n is the free parameter of the power-law term and
N is a normalization constant. The probability density function of the Crystal Ball function is
used from scipy.stats.crystalball [28].

An example of this for pMC
t = 0.6 GeV is shown in Figure 3.5. The full pt resolution for all pMC

t

bins is shown in Figure 3.6. Any gaps in the data can be explained by a failed Crystal Ball fit
which occurs more frequently for the Legendre track finding algorithm. The reason for this
is to be investigated. The plot again shows that the CAT Finder and CAT LINK results match,
albeit with worse results than for the Legendre algorithm.
Combined with the results from Section 3.2 and Section 3.3 this concludes that CAT LINK
exhibits the same performance as CAT Finder while reducing both runtime and memory
consumption, reaching the targets set in Section 1.3.

Performance analysis 26

0.15 0.10 0.05 0.00 0.05 0.10 0.15
(ppred

t pMC
t)/pMC

t

0

20

40

60

80

100

120

140
Co

un
ts

Belle II Simulation (own work)
30000 + events
High beam-background
Example for pMC

t = 0.6 GeV

Figure 3.5: Example of a Crystal Ball fit (red) to determine the pt resolution. The data (blue)
relies on 30 000 e+e− → τ−τ+ events with high beam-background. The bin size is set to
2,5 · 10−3.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FW
HM

 ((
ppr

ed
t

pM
C

t
)/p

M
C

t
) Belle II Simulation (own work)

30000 + events
High beam-background

Legendre
CAT Finder
CAT LINK

Figure 3.6: Comparison of the pt resolution of the different tracking algorithms based on
30 000 e+e− → τ−τ+ events with high beam-background. The CAT Finder (orange) and
CAT LINK (purple) results again match at every point. For pt ≤ 5 GeV the Legendre (green)
algorithm performs better than the GNN-based algorithms.

27

Chapter 4

Conclusion

4.1 Results

All in all, CAT LINK reaches its goals and successfully reduces the per-event runtime
and memory consumption of the CAT Finder tracking algorithm. The results of all of the
benchmarks can be found in Appendix A.2.

Comparing the per-event runtimes, CAT LINK shows an improvement to CAT Finder especially
for events with a low number of CDC hits. For a larger amount of hits, the Legendre algorithm
performs worse and its per-event runtime approaches the per-event runtimes of the GNN-
based algorithms. For some of the simulations, CAT LINK performs worse than CAT Finder.
These performance losses mainly stem from the execution of the GNN which is not altered
for CAT LINK. A possible explanation would be that the runtime is influenced by concurrent
processes running on the machine.
For memory consumption, CAT LINK surpasses the CAT Finder in every scenario and in
some cases also the Legendre algorithm. CAT LINK therefore meets its goal of reducing
memory consumption. As described in Section 3.3, external factors easily influence memory
consumption and can cause severe fluctuations. A possible solution to mitigate this effect
would be to take the average of many benchmarks which would be very time-consuming and
was therefore not done here. Another solution would be to run the simulation in a more
isolated environment, like a dedicated machine.
The track finding efficiency, fake rate and pt resolution of the CAT Finder and CAT LINK mostly
match except for events without beam-background and e+e− → B+B− events with low beam-
background. The reason for this discrepancy is to be studied in the future. Nonetheless, the
results CAT LINK delivers are close to the CAT Finder results and still within an acceptable
range.

28

29 4.2. Outlook

4.2 Outlook

4.2.1 Transfer to other parts of the detector

The use of GNNs for the reconstruction of events is also studied for other detector elements
in Belle II, such as the electromagnetic calorimeter. It consists of 8 736 thallium-doped CsI
crystals that are arranged around the beamline on a cylinder barrel and in forward- and
backward-facing endcaps. Photodiodes attached to the back of these crystals measure the
energy deposited in the crystals by energetic photons. A photon typically spreads its energy
over a volume of up to 5 × 5 crystals. The reconstruction algorithm now has to find clusters
of crystals that contain the energy of a single photon but not from other particles or beam-
background [29].
As the GNN developed for this application is based on Pytorch Geometric [30], the same
problem as for the CAT Finder arises when implementing the reconstruction algorithm in
basf2. As the C++/Python interface developed in this thesis has been proven to benefit
the performance of the tracking-algorithm, the same concept could be applied to the
reconstruction of photons in the ECL.

4.2.2 Neural network improvements

As shown in Section 3.2, the runtime of the CAT Finder and CAT LINK is still highly dominated
by the runtime of the GNN. It seems natural that performance upgrades in this sector would
overall benefit the tracking algorithm the most. One possible approach would be to optimize
the remaining Python code of the CAT Finder. This would mainly apply to the part of the
event() method in which the GNN is executed. As most of this is already outsourced to C++,
this approach might be challenging and not yield notable results.
Another method would be to revise the GNN itself. Specifically the graph construction using
nearest neighbors, which is currently based on [12], is investigated for optimizations.

4.2.3 CAT Finder as C++ module

Since the GNN can not be implemented in C++ at this point (see Section 1.3), another solution
would be to implement the CAT Finder module in C++ and interface to the Python GNN. One
benefit of this would be that more calculations can be done in C++, potentially reducing the
runtime. On top of that this implementation would only require to access the interface once
instead of twice which could also benefit the runtime performance. The C++ module would
also be relatively easy to implement as a large part of the code developed as part of this
thesis can be reused. Additionally, the C++/Python interface has been proven to satisfy the
functionality and performance requirements needed for track finding in Belle II using CAT
Finder.

30

31

Appendix A

Appendix

A.1 Source code

The source code of the CAT LINK interface and the steering file described in Section 3.1.1 are
available at https://zenodo.org/records/10895311 [31].

The C++ code for the pre- and postprocessing is based on the original CAT Finder Python code
by Lea Reuter, who also provided the extraction of the momenta of the reconstructed tracks
and the simulated MC particles in the RecoTrackInfo module.

A.2 Plots

The following pages contain the data for all of the benchmarked scenarios as discussed in
Section 3.1. The plots are sorted with increasing beam-background downwards and different
event types for each column in the order e+e− → µ−µ+, e+e− → τ−τ+, e+e− → B+B−,
e+e− → B0B0.

32

https://zenodo.org/records/10895311

33 A.2. Plots

A.2.1 Runtime performance

0 5 10 15 20
Runtime (ms)

CAT
 LIN

K

CAT
 Fin

de
r

Leg
en

dre

Belle II Simulation (own work)
30000 + events
No beam-background

Preprocessing
Neural Network
Postprocessing
Event

e+e− → µ−µ+ events, no background.

0 5 10 15 20 25 30 35
Runtime (ms)

CAT
 LIN

K

CAT
 Fin

de
r

Leg
en

dre
 (

)

Belle II Simulation (own work)
30000 + events
No beam-background

Preprocessing
Neural Network
Postprocessing
Event

e+e− → τ−τ+ events, no background.

0 10 20 30 40 50 60 70 80
Runtime (ms)

CAT
 LIN

K

CAT
 Fin

de
r

Leg
en

dre

Belle II Simulation (own work)
30000 + events
Low beam-background

Preprocessing
Neural Network
Postprocessing
Event

e+e− → µ−µ+ events, low background.

0 20 40 60 80
Runtime (ms)

CAT
 LIN

K

CAT
 Fin

de
r

Leg
en

dre
 (

)

Belle II Simulation (own work)
30000 + events
Low beam-background

Preprocessing
Neural Network
Postprocessing
Event

e+e− → τ−τ+ events, low background.

0 50 100 150 200 250 300 350 400
Runtime (ms)

CAT
 LIN

K

CAT
 Fin

de
r

Leg
en

dre

Belle II Simulation (own work)
30000 + events
High beam-background

Preprocessing
Neural Network
Postprocessing
Event

e+e− → µ−µ+ events, high background.

0 50 100 150 200 250 300 350 400
Runtime (ms)

CAT
 LIN

K

CAT
 Fin

de
r

Leg
en

dre

Belle II Simulation (own work)
30000 + events
High beam-background

Preprocessing
Neural Network
Postprocessing
Event

e+e− → τ−τ+ events, high background.

Appendix 34

0 20 40 60 80 100 120 140
Runtime (ms)

CAT
 LIN

K

CAT
 Fin

de
r

Leg
en

dre

Belle II Simulation (own work)
30000 B + B events
No beam-background

Preprocessing
Neural Network
Postprocessing
Event

e+e− → B+B− events, no background.

0 20 40 60 80 100 120 140 160
Runtime (ms)

CAT
 LIN

K

CAT
 Fin

de
r

Leg
en

dre

Belle II Simulation (own work)
30000 B0B0 events
No beam-background

Preprocessing
Neural Network
Postprocessing
Event

e+e− → B0B0 events, no background.

0 25 50 75 100 125 150 175 200
Runtime (ms)

CAT
 LIN

K

CAT
 Fin

de
r

Leg
en

dre
 (

)

Belle II Simulation (own work)
30000 B + B events
Low beam-background

Preprocessing
Neural Network
Postprocessing
Event

e+e− → B+B− events, low background.

0 50 100 150 200
Runtime (ms)

CAT
 LIN

K

CAT
 Fin

de
r

Leg
en

dre

Belle II Simulation (own work)
30000 B0B0 events
Low beam-background

Preprocessing
Neural Network
Postprocessing
Event

e+e− → B0B0 events, low background.

0 100 200 300 400 500
Runtime (ms)

CAT
 LIN

K

CAT
 Fin

de
r

Leg
en

dre
 (

)

Belle II Simulation (own work)
30000 B + B events
High beam-background

Preprocessing
Neural Network
Postprocessing
Event

e+e− → B+B− events, high background.

0 100 200 300 400 500
Runtime (ms)

CAT
 LIN

K

CAT
 Fin

de
r

Leg
en

dre
 (

)

Belle II Simulation (own work)
30000 B0B0 events
High beam-background

Preprocessing
Neural Network
Postprocessing
Event

e+e− → B0B0 events, high background.

35 A.2. Plots

A.2.2 Memory performance

Legendre CAT Finder CAT LINK
0

10

20

30

40

50

60

70

M
em

or
y

Co
ns

um
pt

io
n

(M
B)

Belle II Simulation (own work)
1000 + events
No beam-background

e+e− → µ−µ+ events, no background.

Legendre CAT Finder CAT LINK
0

20

40

60

80

100

M
em

or
y

Co
ns

um
pt

io
n

(M
B)

Belle II Simulation (own work)
1000 + events
No beam-background

e+e− → τ−τ+ events, no background.

Legendre CAT Finder CAT LINK
0

10

20

30

40

50

60

70

80

M
em

or
y

Co
ns

um
pt

io
n

(M
B)

Belle II Simulation (own work)
1000 + events
Low beam-background

e+e− → µ−µ+ events, low background.

Legendre CAT Finder CAT LINK
0

20

40

60

80

100

M
em

or
y

Co
ns

um
pt

io
n

(M
B)

Belle II Simulation (own work)
1000 + events
Low beam-background

e+e− → τ−τ+ events, low background.

Legendre CAT Finder CAT LINK
0

100

200

300

400

500

600

700

M
em

or
y

Co
ns

um
pt

io
n

(M
B)

Belle II Simulation (own work)
1000 + events
High beam-background

e+e− → µ−µ+ events, high background.

Legendre CAT Finder CAT LINK
0

100

200

300

400

500

600

M
em

or
y

Co
ns

um
pt

io
n

(M
B)

Belle II Simulation (own work)
1000 + events
High beam-background

e+e− → τ−τ+ events, high background.

Appendix 36

Legendre CAT Finder CAT LINK
0

25

50

75

100

125

150

175

M
em

or
y

Co
ns

um
pt

io
n

(M
B)

Belle II Simulation (own work)
1000 B + B events
No beam-background

e+e− → B+B− events, no background.

Legendre CAT Finder CAT LINK
0

20

40

60

80

100

120

140

M
em

or
y

Co
ns

um
pt

io
n

(M
B)

Belle II Simulation (own work)
1000 B0B0 events
No beam-background

e+e− → B0B0 events, no background.

Legendre CAT Finder CAT LINK
0

100

200

300

400

500

M
em

or
y

Co
ns

um
pt

io
n

(M
B)

Belle II Simulation (own work)
1000 B + B events
Low beam-background

e+e− → B+B− events, low background.

Legendre CAT Finder CAT LINK
0

20

40

60

80

100

120

140

M
em

or
y

Co
ns

um
pt

io
n

(M
B)

Belle II Simulation (own work)
1000 B0B0 events
Low beam-background

e+e− → B0B0 events, low background.

Legendre CAT Finder CAT LINK
0

200

400

600

800

1000

M
em

or
y

Co
ns

um
pt

io
n

(M
B)

Belle II Simulation (own work)
1000 B + B events
High beam-background

e+e− → B+B− events, high background.

Legendre CAT Finder CAT LINK
0

100

200

300

400

500

600

700

800

M
em

or
y

Co
ns

um
pt

io
n

(M
B)

Belle II Simulation (own work)
1000 B0B0 events
High beam-background

e+e− → B0B0 events, high background.

37 A.2. Plots

A.2.3 Track finding efficiency

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ac

k-
fin

di
ng

 E
ffi

cie
nc

y

Belle II Simulation (own work)
30000 + events
No beam-background

Legendre
CAT Finder
CAT LINK

e+e− → µ−µ+ events, no background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ac

k-
fin

di
ng

 E
ffi

cie
nc

y

Belle II Simulation (own work)
30000 + events
No beam-background

Legendre
CAT Finder
CAT LINK

e+e− → τ−τ+ events, no background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ac

k-
fin

di
ng

 E
ffi

cie
nc

y

Belle II Simulation (own work)
30000 + events
Low beam-background

Legendre
CAT Finder
CAT LINK

e+e− → µ−µ+ events, low background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ac

k-
fin

di
ng

 E
ffi

cie
nc

y

Belle II Simulation (own work)
30000 + events
Low beam-background

Legendre
CAT Finder
CAT LINK

e+e− → τ−τ+ events, low background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ac

k-
fin

di
ng

 E
ffi

cie
nc

y

Belle II Simulation (own work)
30000 + events
High beam-background

Legendre
CAT Finder
CAT LINK

e+e− → µ−µ+ events, high background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ac

k-
fin

di
ng

 E
ffi

cie
nc

y

Belle II Simulation (own work)
30000 + events
High beam-background

Legendre
CAT Finder
CAT LINK

e+e− → τ−τ+ events, high background.

Appendix 38

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ac

k-
fin

di
ng

 E
ffi

cie
nc

y

Belle II Simulation (own work)
30000 B + B events
No beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B+B− events, no background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ac

k-
fin

di
ng

 E
ffi

cie
nc

y

Belle II Simulation (own work)
30000 B0B0 events
No beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B0B0 events, no background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ac

k-
fin

di
ng

 E
ffi

cie
nc

y

Belle II Simulation (own work)
30000 B + B events
Low beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B+B− events, low background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ac

k-
fin

di
ng

 E
ffi

cie
nc

y

Belle II Simulation (own work)
30000 B0B0 events
Low beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B0B0 events, low background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ac

k-
fin

di
ng

 E
ffi

cie
nc

y

Belle II Simulation (own work)
30000 B + B events
High beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B+B− events, high background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ac

k-
fin

di
ng

 E
ffi

cie
nc

y

Belle II Simulation (own work)
30000 B0B0 events
High beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B0B0 events, high background.

39 A.2. Plots

A.2.4 Fake rate

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ke

 R
at

e

Belle II Simulation (own work)
30000 + events
No beam-background

Legendre
CAT Finder
CAT LINK

e+e− → µ−µ+ events, no background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ke

 R
at

e

Belle II Simulation (own work)
30000 + events
No beam-background

Legendre
CAT Finder
CAT LINK

e+e− → τ−τ+ events, no background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ke

 R
at

e

Belle II Simulation (own work)
30000 + events
Low beam-background

Legendre
CAT Finder
CAT LINK

e+e− → µ−µ+ events, low background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ke

 R
at

e

Belle II Simulation (own work)
30000 + events
Low beam-background

Legendre
CAT Finder
CAT LINK

e+e− → τ−τ+ events, low background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ke

 R
at

e

Belle II Simulation (own work)
30000 + events
High beam-background

Legendre
CAT Finder
CAT LINK

e+e− → µ−µ+ events, high background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ke

 R
at

e

Belle II Simulation (own work)
30000 + events
High beam-background

Legendre
CAT Finder
CAT LINK

e+e− → τ−τ+ events, high background.

Appendix 40

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ke

 R
at

e

Belle II Simulation (own work)
30000 B + B events
No beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B+B− events, no background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ke

 R
at

e

Belle II Simulation (own work)
30000 B0B0 events
No beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B0B0 events, no background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ke

 R
at

e

Belle II Simulation (own work)
30000 B + B events
Low beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B+B− events, low background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ke

 R
at

e

Belle II Simulation (own work)
30000 B0B0 events
Low beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B0B0 events, low background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ke

 R
at

e

Belle II Simulation (own work)
30000 B + B events
High beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B+B− events, high background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ke

 R
at

e

Belle II Simulation (own work)
30000 B0B0 events
High beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B0B0 events, high background.

41 A.2. Plots

A.2.5 Resolution of transverse momentum

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FW
HM

 ((
ppr

ed
t

pM
C

t
)/p

M
C

t
) Belle II Simulation (own work)

30000 + events
No beam-background

Legendre
CAT Finder
CAT LINK

e+e− → µ−µ+ events, no background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FW
HM

 ((
ppr

ed
t

pM
C

t
)/p

M
C

t
) Belle II Simulation (own work)

30000 + events
No beam-background

Legendre
CAT Finder
CAT LINK

e+e− → τ−τ+ events, no background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FW
HM

 ((
ppr

ed
t

pM
C

t
)/p

M
C

t
) Belle II Simulation (own work)

30000 + events
Low beam-background

Legendre
CAT Finder
CAT LINK

e+e− → µ−µ+ events, low background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FW
HM

 ((
ppr

ed
t

pM
C

t
)/p

M
C

t
) Belle II Simulation (own work)

30000 + events
Low beam-background

Legendre
CAT Finder
CAT LINK

e+e− → τ−τ+ events, low background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FW
HM

 ((
ppr

ed
t

pM
C

t
)/p

M
C

t
) Belle II Simulation (own work)

30000 + events
High beam-background

Legendre
CAT Finder
CAT LINK

e+e− → µ−µ+ events, high background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FW
HM

 ((
ppr

ed
t

pM
C

t
)/p

M
C

t
) Belle II Simulation (own work)

30000 + events
High beam-background

Legendre
CAT Finder
CAT LINK

e+e− → τ−τ+ events, high background.

Appendix 42

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FW
HM

 ((
ppr

ed
t

pM
C

t
)/p

M
C

t
) Belle II Simulation (own work)

30000 B + B events
No beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B+B− events, no background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FW
HM

 ((
ppr

ed
t

pM
C

t
)/p

M
C

t
) Belle II Simulation (own work)

30000 B0B0 events
No beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B0B0 events, no background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FW
HM

 ((
ppr

ed
t

pM
C

t
)/p

M
C

t
) Belle II Simulation (own work)

30000 B + B events
Low beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B+B− events, low background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FW
HM

 ((
ppr

ed
t

pM
C

t
)/p

M
C

t
) Belle II Simulation (own work)

30000 B0B0 events
Low beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B0B0 events, low background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FW
HM

 ((
ppr

ed
t

pM
C

t
)/p

M
C

t
) Belle II Simulation (own work)

30000 B + B events
High beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B+B− events, high background.

0 1 2 3 4 5
pMC

t (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FW
HM

 ((
ppr

ed
t

pM
C

t
)/p

M
C

t
) Belle II Simulation (own work)

30000 B0B0 events
High beam-background

Legendre
CAT Finder
CAT LINK

e+e− → B0B0 events, high background.

List of Tables

2.1 Example modules of basf2 . 12

3.1 Supported command line arguments for the steering file. 20

43

List of Figures

1.1 Top view of the Belle II detector . 5
1.2 Wire configuration of the CDC . 6
1.3 Simulation of a CDC measurement . 7
1.4 Bin subdivision in Legendre tracking . 8
1.5 Architecture of the CAT Finder GNN . 9

2.1 Runtime performance of the preprocessing stage after optimization 15

3.1 Comparison of the per-event runtimes for e+e− → τ−τ+ 21
3.2 Comparison of the memory consumption for e+e− → τ−τ+ 22
3.3 Comparison of the track finding efficiency for e+e− → τ−τ+ 24
3.4 Comparison of the fake rate for e+e− → τ−τ+ . 24
3.5 Example of a Crystal Ball fit . 26
3.6 Comparison of the transverse momentum resolution for e+e− → τ−τ+ 26

A.1 Summary of per-event runtimes . 33
A.4 Summary of memory consumptions . 35
A.7 Summary of track finding efficiencies . 37
A.10 Summary of fake rates . 39
A.13 Summary of transverse momentum resolutions . 41

44

Bibliography

[1] T. Kuhr et al., The Belle II Core Software, Computing and Software for Big Science 3
(2019) 1.

[2] L. Reuter, P. Dorwarth, S. Stefkova, and T. Ferber, Graph Neural Network based Track
Finding in the Central Drift Chamber at Belle II, May, 2023. Contribution to the
conference CHEP 2023, https://indico.jlab.org/event/459/.

[3] A. Natochii et al., Beam background expectations for Belle II at SuperKEKB, Aug., 2022.
arXiv:2203.05731 [hep-ex].

[4] E. Kou et al., The Belle II Physics Book, Progress of Theoretical and Experimental Physics
2019 (2019) 123C01.

[5] V. Bertacchi et al., Track finding at Belle II, Computer Physics Communications 259 (2021)
107610.

[6] F. Forti, Snowmass Whitepaper: The Belle II Detector Upgrade Program, Mar., 2022.
arXiv:2203.11349 [hep-ex].

[7] Y. Ohnishi et al., Accelerator design at SuperKEKB, Progress of Theoretical and
Experimental Physics 2013 (2013) 3A011.

[8] Particle Data Group et al., Review of Particle Physics, Progress of Theoretical and
Experimental Physics 2022 (2022) 083C01.

[9] T. Abe et al., Belle II Technical Design Report, Nov., 2010. arXiv:1011.0352 [hep-ex].

[10] Jojosito et al., GenFit/GenFit: release-02-00-05, Dec., 2023.
doi: 10.5281/ZENODO.10301439.

[11] M. Duerr et al., Long-lived Dark Higgs and Inelastic Dark Matter at Belle II, Journal of
High Energy Physics 2021 (2021) 146, arXiv:2012.08595 [hep-ph].

[12] S. R. Qasim, J. Kieseler, Y. Iiyama, and M. Pierini, Learning representations of irregular
particle-detector geometry with distance-weighted graph networks, The European
Physical Journal C 79 (2019) 608, arXiv:1902.07987 [hep-ex, stat].

[13] J. Kieseler, Object condensation: one-stage grid-free multi-object reconstruction in
physics detectors, graph and image data, The European Physical Journal C 80 (2020)
886, arXiv:2002.03605 [hep-ex].

45

https://doi.org/10.1007/s41781-018-0017-9
https://doi.org/10.1007/s41781-018-0017-9
https://doi.org/10.1093/ptep/ptz106
https://doi.org/10.1093/ptep/ptz106
https://doi.org/10.1016/j.cpc.2020.107610
https://doi.org/10.1016/j.cpc.2020.107610
https://doi.org/10.1093/ptep/pts083
https://doi.org/10.1093/ptep/pts083
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.5281/ZENODO.10301439
https://doi.org/10.1007/JHEP04(2021)146
https://doi.org/10.1007/JHEP04(2021)146
https://doi.org/10.1140/epjc/s10052-019-7113-9
https://doi.org/10.1140/epjc/s10052-019-7113-9
https://doi.org/10.1140/epjc/s10052-020-08461-2
https://doi.org/10.1140/epjc/s10052-020-08461-2

Bibliography 46

[14] L. Reuter, Graph Neural Network based Track finding in the CDC, Contribution to the
Belle II Germany Meeting 2023, https://indico.belle2.org/event/8188/.

[15] A. Paszke et al., PyTorch: An Imperative Style, High-Performance Deep Learning Library,
Dec., 2019. arXiv:1912.01703 [cs, stat].

[16] The Belle II Collaboration, Belle II Analysis Software Framework (basf2), Aug., 2022.
doi: 10.5281/ZENODO.5574115.

[17] List of Core Modules — basf2 light-2311-nebelung documentation,
https://training.belle2.org/framework/doc/index-04-modules.html, last accessed
March 24th 2024.

[18] S. Agostinelli et al., Geant4—a simulation toolkit, Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 506 (2003) 250.

[19] D. J. Lange, The EvtGen particle decay simulation package, Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 462 (2001) 152.

[20] belle2 externals, Oct., 2022. original-date: 2021-07-29T11:50:38Z,
https://github.com/belle2/externals.

[21] R. Brun et al., root-project/root: v6.18/02, Aug., 2019. doi: 10.5281/ZENODO.3895860.

[22] Python/C API Reference Manual, https://docs.python.org/3/c-api/index.html, last
accessed March 1st 2024.

[23] S. Jadach, B. F. L. Ward, and Z. Was, The precision Monte Carlo event generator for
two-fermion final states in collisions, Computer Physics Communications 130 (2000)
260.

[24] S. Jadach, J. H. Kühn, and Z. Was, TAUOLA - a library of Monte Carlo programs to simulate
decays of polarized leptons, Computer Physics Communications 64 (1991) 275.

[25] argparse — Python documentation, https://docs.python.org/3/library/argparse.html,
last accessed March 25th 2024.

[26] time — Python documentation, https://docs.python.org/3/library/time.html, last
accessed March 1st 2024.

[27] T. Skwarnicki, A study of the radiative CASCADE transitions between the Upsilon-Prime
and Upsilon resonances, tech. rep., [object Object], 1986. Artwork Size: pages 133
Publication Title: 133 pp. (1986)., doi: 10.3204/PUBDB-2023-03027.

[28] SciPy v1.12.0 Manual,
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.crystalball.html, last
accessed February 27th 2024.

[29] F. Wemmer et al., Photon Reconstruction in the Belle II Calorimeter Using Graph Neural
Networks, Computing and Software for Big Science 7 (2023) 13.

https://doi.org/10.5281/ZENODO.5574115
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.5281/ZENODO.3895860
https://doi.org/10.1016/S0010-4655(00)00048-5
https://doi.org/10.1016/S0010-4655(00)00048-5
https://doi.org/10.1016/0010-4655(91)90038-M
https://doi.org/10.3204/PUBDB-2023-03027
https://doi.org/10.1007/s41781-023-00105-w

47 Bibliography

[30] M. Fey and J. E. Lenssen, Fast Graph Representation Learning with PyTorch Geometric,
Apr., 2019. arXiv:1903.02428 [cs, stat].

[31] Y. Klügl, CAT LINK, Mar., 2024. doi: 10.5281/ZENODO.10895311.

https://doi.org/10.5281/ZENODO.10895311

Declaration of Authorship

I declare that the enclosed thesis has been composed by me and is based on my own work
unless stated otherwise. No other person’s work has been used without due acknowledgment
in this thesis.
Additionally, I acknowledge the KIT statutes for safeguarding good research practice in the
September 30th, 2021 version.

Karlsruhe, March 30th 2024

. .
(Yannis Klügl)

48

	Abstract
	Preface
	Introduction
	The Belle II experiment
	Track finding at Belle II
	Hardware
	Software

	Motivation for the C++/Python interface

	Implementation of the C++/Python interface
	The basf2 environment
	Methods of code optimization
	Implementing the C++/Python interface
	Preprocessing
	Postprocessing

	Performance analysis
	Methodology
	Steering file

	Runtime performance
	Memory performance
	Track finding efficiency
	Fake rate
	Resolution of transverse momentum

	Conclusion
	Results
	Outlook
	Transfer to other parts of the detector
	Neural network improvements
	CAT Finder as C++ module

	Appendix
	Source code
	Plots
	Runtime performance
	Memory performance
	Track finding efficiency
	Fake rate
	Resolution of transverse momentum

	List of Tables
	List of Figures
	Bibliography
	Declaration of Authorship

