
Workflow- und Performanzoptimierung
für schnelle NNLO

pQCD-Berechnungen
(Workflow and performance optimization for

fast NNLO pQCD Calculations)

Masterarbeit
von

Johannes Gäßler

am Institut für Experimentelle Teilchenphysik (ETP)

Reviewer: P. D. Dr. Klaus Rabbertz
Second Reviewer: Prof. Dr. Günter Quast

Bearbeitungszeit: 21.12.2022 – 21.12.2023

ETP-KA/2023-14
FAKULTÄT FÜR PHYSIK

Institut für Experimentelle Teilchenphysik (ETP)

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Erklärung zur Selbstständigkeit

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe, die wörtlich oder inhaltlich übernomme-
nen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter
wissenschaftlicher Praxis in der gültigen Fassung vom 24.05.2018 beachtet habe.

Karlsruhe, den 20.12.23,
Johannes Gäßler

Als Prüfungsexemplar genehmigt von

Karlsruhe, den 20.12.23,
P. D. Dr. Klaus Rabbertz

Contents

1. Introduction 1

2. fastNLO: Fast pQCD Calculations for a posteriori PDF choices 3
2.1. Scale Nodes . 4
2.2. Software Architecture and Context . 5

3. Parton Distribution Function Interpolation Techniques 7
3.1. Node selection . 15
3.2. Monte Carlo Integration . 16

4. NodeDensity: A New Method for x Node Spacing 19
4.1. Scale nodes . 23

5. Results 25
5.1. Performance optimization . 25
5.2. Node Density Efficiency Benchmarks . 29

6. Conclusion 39
6.1. Outlook . 39

7. ROOT Routines 3

Appendix 41

A. Implementation Details 43
A. Configuration . 43
B. Workflow Integration . 43
C. Table Filling . 45
D. Table Merging . 52
E. Testing . 53

B. NNLOJET Runtime Percentages 55

Bibliography 59

List of Figures

2.1. NLOJet++ interface . 5
2.2. NNLOJET interface . 6

3.1. Nearest-neighbor interpolation . 8
3.2. Linear interpolation . 8
3.3. Lagrange interpolation . 10
3.4. Lagrange spline interpolation . 11
3.5. Catmull-Rom spline interpolation . 12
3.6. Interpolation error comparison . 12
3.7. Rel. interpolation error comparison . 13
3.8. Interpolation cancellation comparison . 14
3.9. Lagrange interpolation four nodes . 15

4.1. NodesPerBin vs. NodeDensity . 20
4.2. NodesPerBin vs. NodeDensity . 21
4.3. Node weight spread . 22

5.1. Interpolation efficiency dijet all . 30
5.2. Interpolation efficiency dijet 1 . 31
5.3. Interpolation efficiency dijet 2 . 31
5.4. Interpolation efficiency dijet 3 . 32
5.5. Interpolation efficiency dijet 4 . 32
5.6. Interpolation efficiency dijet 5 . 33
5.7. Z+jet rapidity bins . 34
5.8. Interpolation efficiency Z+jet LO all . 35
5.9. Interpolation efficiency Z+jet NLO all . 36
5.10. Interpolation efficiency Z+jet NLO all 98% 36
5.11. Interpolation efficiency Z+jet NLO all 95% 37
5.12. Interpolation efficiency Drell-Yan LO all . 38

A.1. Warmup run logic . 44
C.2. Original Table Filling . 46
C.3. New Table Filling . 48
C.4. Table Filling Logic . 49
C.5. fastNLOCreate class diagram . 50

List of Tables

3.1. Lagrange polynomials . 9
3.2. Transfer functions . 16

5.1. NNLOJET rev5918 profiling by contribution 26
5.2. NNLOJET rev6591 LC profiling by contribution 27
5.3. NNLOJET rev6591 FC profiling by contribution 28
5.4. NNLOJET rev6591 FC MC profiling by contribution 28

.1. Comparison of RRa profiling results for select NNLOJET methods. 56

.2. NNLOJET rev6591 RRa method runtime 57

.3. NNLOJET rev6591 RV method runtime . 57

1. Introduction

The Large Hadron Collider at CERN - as the name suggests - collides hadrons, namely
protons. Compared to the previous Large Electron-Positron Collider the advantage of
the LHC is its much higher center-of-mass energy of 13.6 TeV compared to the 209 GeV
achieved with LEP. This is in part because protons have a mass of 938 MeV compared
to only 0.511 MeV for electrons/positrons. For this reason they lose a significantly lower
fraction of their energy to Bremsstrahlung in a circular collider which in turn increases the
maximum energy to which particles can be accelerated. However, the disadvantage of the
LHC is that the use of protons also makes the use of its data for analyses more challenging.
According to the standard model electrons and positrons are elementary particles. Protons
on the other hand consist of multiple partons, three valence quarks (2 up, 1 down) as well
as virtual sea quarks and gluons. Theory predictions (e.g. the cross sections of various
physical processes) then of course depend on the exact proton contents.

At high enough energies quantum chromodynamics becomes accessible to perturbation
theory (perturbative quantum chromodynamics). So-called parton distribution functions
(PDFs) can then be used to describe the probability density for finding a given parton with
momentum fraction x at energy scale µ. Unfortunately these PDFs are not known from
theory. They instead need to be estimated from experimental data and therefore introduce
a corresponding uncertainty to analyses using LHC data. The two primary methods for
estimating these uncertainties are to either derive them from the method of maximum
likelihood when fitting a PDF to experimental data (e.g. [23]) or from an ensemble of PDFs
derived from subsets of the experimental data (oftentimes using artificial neural networks,
e.g. [8]). Both of these approaches have in common that the PDFs have free parameters
that need to be optimized numerically in order to match the experimental data. In practical
terms, this means that the cost function for determining how closely the theory predictions
match experimental data needs to be evaluated hundreds if not thousands of times for
different sets of free PDF parameters. And for each evaluation of the cost function with a
new set of PDF parameters in turn new theory predictions need to be calculated. To make
such analyses feasible the computational costs of theory predictions therefore need to be
sufficiently low.

fastNLO[19][10] is a project which - as the name implies - was created to facilitate the
calculation of fast next-to-leading-order theory predictions. The concept is to calculate
so-called “coefficient tables” that separate the PDFs from the rest of the calculation by
effectively interpolating them. Given a coefficient table, theory predictions can then be
calculated quickly for an arbitrary choice of PDFs, the strong coupling constant αs (and
potentially energy scales). As of writing the project has evolved to support calculations up
to next-to-next-to-leading order for deep inelastic scattering, proton-proton collisions, and
proton-antiproton collisions.

First, in chapter 2 the theoretical aspects for pQCD calculations as well as the concept
behind the fastNLO project will be explained. Chapter 3 details the intricacies of PDF

1

2 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

interpolation in further detail. Chapter 4 describes the concept behind the implementation
of NodeDensity, a new technique for x node interpolation that allows for a simpler workflow;
the corresponding implementation details can be found in appendix A. Chapter 5 will list
the results of the code changes made for this thesis and benchmarks against the preexisting
implementations in terms of memory/disk space use. And Finally chapter 6 will recapitulate
the contents of this thesis and provide insight into possible further areas of improvement.

2. fastNLO: Fast pQCD Calculations for a
posteriori PDF choices

As first discovered by David Gross, Frank Wilczek, and David Politzer, the strength of the
strong coupling constant αs depends on the energy scale of the interaction[16][22]. At low
energies/long distances αs is large while it decreases for high energies/small distances. As
a consequence, in a theoretical infinite momentum frame the quarks and gluons inside a
hadron can be treated as a cloud of free partons that do not interact via the strong force
(asymptotic freedom). While a particle obviously cannot be given infinite momentum (and
therefore infinite energy) in an actual physics experiment, the factorization of a hadron into
its parton is still a valid assumption at high enough energies. It is then possible to define
parton distribution functions f(x, µf) that describe the likelihood of finding a specific parton
with momentum fraction x of the hadron at factorization scale µf . Perturbative quantum
chromodynamics[14] then allows for the calculation of a proton-proton cross section σ given
an additional renormalization scale µr and perturbative coefficients ca,b,n(x1, x2, µr, µf):

σ =
∑
a,b,n

∫ 1

0
dx1

∫ 1

0
dx2 αn

s (µr) ca,b,n(x1, x2, µr, µf) fa(x1, µf) fb(x2, µf), (2.1)

where the indices a and b indicate the respective types of the ingoing partons and n indicates
the order of the strong coupling constant αs. Unfortunately calculating the above integral
is computationally expensive. Due to the large number of coupled degrees of freedom
the only feasible method for numerical integration is Monte Carlo integration where the
uncertainty on the result only decreases with the square root of the number of generated
events. One possibility to keep the computational costs low is to only calculate the cross
section at leading order (LO). However, because αs is on the order of 10−1 (compared to
e.g. the fine-structure constant with α ≈ 1

137) the difference between LO and higher orders
can be comparatively large.

The core idea behind fastNLO is to separate the dependency of the cross section on αs

and the parton PDFs from the Monte Carlo integration. That way the Monte Carlo
integration has to be performed only once and αs and the PDFs can be chosen a posteriori
to calculate the cross section. To explain how this works, consider a decomposition
f(x, µf) =

∑
i ai gi(x, µf) of the PDF used above where ai are simple scalars and gi(x, µf)

are functions. The cross section calculation can then be rearranged as such:

σ(µr, µf) =
∑
a,b,n

∫ 1

0
dx1

∫ 1

0
dx2 αn

s (µr) ca,b,n(x1, x2, µr, µf)
∑
i,j

ai gi(x, µf) aj gj(x, µf)

=
∑
i,j,n

ai aj αn
s (µr)

∑
a,b

∫ 1

0
dx1

∫ 1

0
dx2 ca,b,n(x1, x2, µr, µf) gi(x, µf) gj(x, µf)

=:
∑
i,j,n

ai aj αn
s (µr) σ̃ijn(µr, µf). (2.2)

3

4 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Notably the cross section can now be calculated as a simple sum given the pre-computed
coefficients σ̃ijn. However, in order to actually reduce the amount of computation necessary
for e.g. PDF fits these coefficients must be made reusable for different PDF choices. This
can be achieved by choosing the PDF composition in a way that interpolates the PDF
given some set of nodes xi via ai = f(xi, µf) and gi(xj , µf) = δij :

f(x, µf) =
∑

i

ai gi(x, µf) ≈
∑

i

f(xi, µf) gi(x, µf). (2.3)

Plugging this into equation 2.2 yields:

σ(µr, µf) ≈
∑
i,j,n

f(xi, µf) f(xj , µf) αn
s (µr) σ̃ijn(µr, µf). (2.4)

With this decomposition choice the coefficients σ̃ijn(µr, µf) become entirely independent of
the PDF f(x, µf) and depend only on the nodes xi. In the context of the fastNLO project
the set of pre-computed coefficients σ̃ijn(µr, µf) is also referred to as a “coefficient table”.
The coefficients are computed only once and then reused to calculate a cross section for
an arbitrary PDF and αs choice via the sum in eq. 2.4. This is only an approximation
but according to the Weierstrass approximation theorem[27] polynomials can be used to
interpolate any continuous function to arbitrary precision.
This then only leaves the question of how to choose the nodes xi. One approach is to do a
“warmup” run in which some events are generated for the sole purpose of determining good
xi values for a “production” run where the actual coefficients are calculated. With this
method the x nodes are set at the beginning of the production run and not changed during
the run. The primary goal of this thesis is to implement and test methods for choosing xi

values without a prior warmup run (see chapter 4).

2.1. Scale Nodes
So far, the cross section was simply treated as a function of the scales µr, µf . However, for
an actual physics analysis using LHC data the number of events is so large that binning
the events is effectively mandatory. Typically one of the histogram dimensions is some sort
of energy scale, for example the dijet mass m12 in the case of dijet analyses. In order for
the theory predictions produced by fastNLO to match those bins the cross section needs to
be integrated across the bin width. The additional integration dimension can be treated in
the same way as the integration over the momentum fraction: the PDF is interpolated in
the scale dimension to absorb the scale dependence into the coefficients σ̃ijkn where k is
the newly added scale node index. Assuming µr = µf = µ and given scale nodes µk the
cross section becomes:∫

σ(µ)dµ ≈
∑

i,j,k,n

f(xi, µk) f(xj , µk) αn
s (µk) σ̃ijkn. (2.5)

Given a decomposition
f(x, µ) ≈

∑
i,k

f(xi, µk) gi(x) hk(µ) (2.6)

the coefficients σ̃ijkn are defined as:

σ̃ijkn =
∑
a,b

∫
dµ

∫ 1

0
dx1

∫ 1

0
dx2 ca,b,n(x1, x2, µ) gi(x) gj(x) hk(µ). (2.7)

The scale variation is handled by explicitly calculating and saving coefficients for multiple
scale variations. In fastNLO this type of coefficient table is referred to as a “fixed-scale
table”. Alternatively the coefficient table can be saved as the scale-independent part plus
factors of log µr, log µf , log2 µr, log µr log µf , and log2 µf . This way in addition to the
PDF and αs the energy scale can also be chosen freely when calculating the cross section.
In fastNLO this type of coefficient table is referred to as a “flexible scale tables”.

Chapter 2. fastNLO: Fast pQCD Calculations for a posteriori PDF choices 5

Figure 2.1.: UML sequence diagram showing schematically how NLOJet++ can be
used to fill fastNLO coefficient tables in user code.

2.2. Software Architecture and Context

fastNLO by itself is not sufficient to generate coefficient tables. Instead it is part of a
wider QCD software ecosystem. In particular, an external event generator is required. As
of writing, Sherpa[9], NLOJet++[21], and NNLOJET[15] are supported. Alternatives to
fastNLO include APPLGrid[11] and PineAPPL[12].

Due to the differences in software architecture between event generators the corresponding
fastNLO interfaces also need to differ. Figure 2.1 shows how NLOJet++ can be used to fill
fastNLO coefficient tables. Both NLOJet++ and fastNLO are used as software libraries
by user code: the user code first generates events using NLOJet++, then passes those
events to fastNLO. By contrast, figure 2.2 shows the equivalent process for NNLOJET.
Instead of user code, it is the NNLOJET binary itself that (given the correct compilation
and configuration options) fills the fastNLO coefficient tables. The coefficient tables are
created via an adapter named NNLO Bridge (part of NNLOJET). This adapter provides a
unified interface to both fastNLO and APPLgrid to ensure that both libraries can be used
interchangeably.

6 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Figure 2.2.: UML sequence diagram showing schematically how the NNLOJET binary
can be used to fill fastNLO coefficient tables.

3. Parton Distribution Function
Interpolation Techniques

For the purposes of this thesis, an interpolation G(x) of a function f(x) is defined as a
decomposition of f(x) into functions gi(x) using n nodes xi:

f(x) ≈ G(x) =
∑

i=0..n−1
f(xi) gi(x), gi(xj) = δij . (3.1)

The Kronecker delta ensures that modifying the function value f(xi) for one of the nodes
does not affect the value of any other nodes. For the following discussion the interpolation
error δ is defined as the maximum absolute difference between a function f(x) and its
approximation G(x) on an interval [a, b]:

δ = max |f(x)−G(x)| , x ∈ [a, b]. (3.2)

The definition in eq. 3.2 assumes a one-dimensional interval [a, b] but it can be trivially
generalized to a volume of higher dimension.

A very simple way to interpolate a function would be to construct an equidistant grid of
nodes across the volume of interest and to evaluate the function at each grid point. When
evaluating the interpolated function G(x) the x vector is then rounded to the nearest grid
point and the function value at that grid point is assumed for the interpolated function
(nearest-neighbor interpolation). The functions gi(x) are then either 1 if xi is the nearest
neighbor and 0 otherwise. A visualization of the technique is shown in figure 3.1. For
simplicity an interpolation of a simple one-dimensional function f(x) = x(1− x) exp(−3x)
is shown (but the same principles apply for higher dimensions). The previously mentioned
function is chosen because it vaguely resembles a parton distribution function: it satisfies
f(0) = 0 and f(1) = 0 with a bias towards lower x values. With seven nodes nearest-
neighbor interpolation achieves an interpolation error of δ = 5.9 · 10−2 for the toy problem.
For an infinitely large grid (with infinitely dense nodes due to the finite volume) this
technique could approximate any function to arbitrary precision. But an infinitely large
grid would imply infinite CPU time and memory - and since the whole point is to reduce
computing costs that would not be a good solution.

A still relatively simple improvement upon the previous approach would be to linearly
interpolate the grid values between the points instead of just rounding to the nearest point.
A visualization of linear interpolation is shown in figure 3.2. The gi(x) are defined as
follows:

gi(x) =


x−xi−1
xi−xi−1

if 1 ≤ i ≤ n− 1 ∧ xi−1 ≤ x ≤ xi,
x−xi+1
xi−xi+1

if 0 ≤ i ≤ n− 2 ∧ xi ≤ x ≤ xi+1,

0 otherwise.

(3.3)

If the x value exactly matches a grid point xi then the interpolated function is equal to the
value of the grid point f(xi). With seven nodes linear interpolation has an interpolation

7

8 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Figure 3.1.: Interpolation of f(x) = x(1 − x) exp(−3x) using nearest-neighbor inter-
polation. The solid black line indicates the function f(x). The gray area indicates the
interpolated function G(x).

Figure 3.2.: Interpolation of f(x) = x(1− x) exp(−3x) using linear interpolation. The
solid black line indicates the function f(x). The gray area indicates the interpolated
function G(x). The colored, dashed lines indicate the nonzero f(xi) gi(x) contributions
of individual grid points to the interpolated function G(x).

Chapter 3. Parton Distribution Function Interpolation Techniques 9

Table 3.1.: Lagrange polynomials up to n = 4 with nodes xi = i = 0, 1..n. Note that
the degree of the polynomials is n− 1.

n i gn,k(x) =
∏

0≤j≤n−1, j ̸=i
x−j
i−j .

1 0 1

2 0 1− x
2 1 x

3 0 1
2x2 − 3

2x + 1
3 1 2x− x2

3 2 −1x + x2

4 0 1− 11
6 x + x2 − 1

6x3

4 1 3x− 5
2x2 + 1

2x3

4 2 −3
2x + 2x2 − 1

2x3

4 3 1
3x− 1

2x2 + 1
6x3

error of δ = 1.7 · 10−2 for the toy problem. Linear interpolation is superior to rounding
because it matches the actual function very closely as long as the function’s second derivative
is small on the scale of the distance between two grid nodes. For Monte Carlo integrations
in particular linear interpolation also has the advantage that for an integration volume
with n dimensions each node will receive contributions from 2n more events compared to
nearest neighbor interpolation and thus the result will converge much faster.

The improvement from linear interpolation compared to nearest-neighbor interpolation
comes from the fact that it takes the first derivative of the function into account. Higher
derivatives can be taken into account by utilizing polynomials of higher degrees. This leads
us to the next improvement: the use of Lagrange polynomials[20]. For example, Lagrange
polynomials that interpolate the function f(x) can be constructed as follows:

gi(x) =
∏

0≤j≤n−1
j ̸=i

x− xj

xi − xj
. (3.4)

Example Lagrange polynomials up to third degree are listed in table 3.1. The interpolation
toy problem is also visualized in figure 3.3. The contributions from the nodes at x = 0 and
x = 1 are not shown because they would be equal to 0.

With seven nodes Lagrange interpolation has an interpolation error of δ = 2.0 · 10−4 for the
toy problem, almost two orders of magnitude less than with linear interpolation. However,
defining Lagrange polynomials across the entire grid comes with a significant disadvantage:
when using equidistant nodes, Lagrange polynomials have a tendency towards oscillations
between nodes, particularly towards the edges of the interval. This is known as Runge’s
phenomenon[26]. As a consequence there are cases, e.g. when interpolating the so-called
Runge function f(x) = 1

1+25x2 with equidistant nodes on the interval [−1, 1], in which the
interpolation error actually increases as the number of equidistant nodes is increased.

Even if the interpolation error does not diverge as the number of nodes is increased the
oscillations still pose problems for actually calculating the interpolated function. The
interpolated function G(x) receives contributions f(xi) gi(x) from all grid points. And due
to the oscillations in gi(x) these contributions can be many times larger than the actual
function value f(x) between grid points. While these contributions will theoretically cancel
each other out when including all grid points they do in practice introduce significant
rounding errors due to floating point arithmetic. This is because floating point values can

10 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Figure 3.3.: Interpolation of f(x) = x(1 − x) exp(−3x) using Lagrange polynomial
interpolation. The solid black line indicates the function f(x). The gray area indicates
the interpolated function G(x). The colored, dashed lines indicate the nonzero f(xi) gi(x)
contributions of individual grid points to the interpolated function G(x).

only store a limited precision and thus exhibit a behavior known as cancellation[1]: if the
difference of two floating point numbers is calculated the rounding error of the individual
numbers is amplified if the absolute value of the difference is small compared to the absolute
values of the original numbers. In extreme cases the resulting rounding error can be orders
of magnitudes larger than the difference to be calculated.

There are multiple ways to mitigate Runge’s phenomenon. One option would be to choose
better nodes than simply equidistant ones since the Weierstrass approximation theorem[27]
states that on a closed interval for any continuous function a polynomial approximation
with arbitrarily small interpolation error must exist. However, in practice it is difficult
to actually determine the correct choice of node values, particularly for parton density
functions which are not known from theory. Therefore, in fastNLO Runge’s phenomenon
is mitigated by using Lagrange splines (local, piecewise Lagrange polynomials) instead
of the full Lagrange polynomials spanning the entire grid. In practical terms this means
that the Lagrange polynomials for interpolation are defined using only a subset of all
grid points. Because the number of nodes actually used for interpolation is now constant,
adding more nodes to the grid cannot result in a divergent interpolation error. The linear
interpolation that we discussed before is in fact a Lagrange spline interpolation using
first-degree Lagrangian polynomials. In that case each event modifies the weights of two
grid points (assuming a single dimension). The next (symmetrical) candidate for spline
interpolation would be to modify the weights of four grid points. This results in third degree
Lagrangian polynomials. These are the polynomials employed by fastNLO’s “Lagrange”
kernels. At the edges of the grid there is only a single node on one side of the event in one
of the dimensions. In that case that single node as well as three nodes (instead of two) on
the other side are used for the interpolation. The Lagrange splines used by fastNLO are
visualized in figure 3.4. With seven nodes third degree Lagrange spline interpolation has

Chapter 3. Parton Distribution Function Interpolation Techniques 11

Figure 3.4.: Interpolation of f(x) = x(1 − x) exp(−3x) using third degree Lagrange
spline interpolation. The solid black line indicates the function f(x). The gray area
indicates the interpolated function G(x). The colored, dashed lines indicate the nonzero
f(xi) gi(x) contributions of individual grid points to the interpolated function G(x).

an interpolation error of δ = 2.8 · 10−3 for the toy problem. The interpolation error thus
roughly sits between linear interpolation and full Lagrange interpolation. But the ratio of
the individual contributions f(xi) gi(x) to the total interpolated function value G(x) is
much better (cancellation quantified further down).

An alternative way to define polynomial splines are so-called cubic Hermite splines[2]. As
the name suggests, they are derived from cubic polynomials in their Hermite form, i.e.
third degree polynomials defined by their values pk and first-degree derivatives mk at the
boundaries. The way in which the derivatives mk are chosen differentiates the subtypes of
cubic Hermite splines. For the so-called Catmull-Rom splines[13] the derivatives are chosen
as

mk = pk+1 − pk−1
2 , (3.5)

where the nodes are assumed to be equidistant with a distance of 1 between nodes. Naturally
this requires special treatment at the edges. There the interpolation is instead done in
the same way as with Lagrange polynomials, meaning the polynomials are defined by the
node values only. The Catmull-Rom splines implemented by fastNLO are visualized in
figure 3.5. With seven nodes Catmull-Rom spline interpolation has an interpolation error
of δ = 1.1 · 10−2 for the toy problem. This is comparable to the interpolation error of
δ = 1.7 · 10−2 obtained for linear interpolation. However, compared to the interpolations
based on Lagrange polynomials the overshoot (and therefore the numerical cancellation) is
greatly reduced.

The interpolation errors listed so far have always been for a total of seven nodes. However,
the interpolation error of all of the described techniques can be reduced by increasing the
number of nodes. Furthermore the relative magnitudes of the corresponding interpolation
error δ may vary depending on the number of nodes. Figure 3.6 shows the interpolation

12 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Figure 3.5.: Interpolation of f(x) = x(1 − x) exp(−3x) using Catmull-Rom spline
interpolation. The solid black line indicates the function f(x). The gray area indicates
the interpolated function G(x). The colored, dashed lines indicate the nonzero f(xi) gi(x)
contributions of individual grid points to the interpolated function G(x).

Figure 3.6.: Comparison of interpolation techniques in terms of interpolation error.

Chapter 3. Parton Distribution Function Interpolation Techniques 13

Figure 3.7.: Comparison of interpolation techniques in terms of relative interpolation
error.

errors of the previously introduced interpolation techniques for the toy problem as a
function of the number of nodes (equidistant spacing). When the number of nodes is
low the interpolation errors differ by roughly one order of magnitude but this difference
grows with the number of nodes up to nine orders of magnitude. With the exception of
full Lagrange interpolation, the ranking by interpolation error does not change as the
number of nodes increases: the same techniques that perform well for a small number
of nodes are the same techniques that perform well for a large number of nodes. The
interpolation error for the full Lagrange interpolation at first decreases the fastest, eventually
plateauing at roughly 10−10 (likely due to numerical limitations). However, at some point
the interpolation error increases again due to Runge’s phenomenon. The other techniques
show consistent improvement as the number of nodes is increased.

The previously used definition of interpolation error only considers the absolute differences
between the original function and its interpolation. However, this metric may only be
reflective of the parts of the function with a high absolute function value. The parts with a
low absolute value may have a high interpolation error relative to their absolute function
value without affecting the interpolation error value which only considers the maximum
difference. It is therefore important to also inspect the relative interpolation error δrel
defined here as

δrel = max |f(x)−G(x)|
|f(x)| , x ∈ [a, b]. (3.6)

Figure 3.7 shows the relative interpolation errors of the previously introduced interpolation
techniques for the toy problem as a function of the number of nodes. The behavior for
a low number of nodes is slightly different. But the asymptotic behavior of the relative
interpolation error as the number of nodes increases is essentially the same as with the
absolute interpolation error. This suggests that the absolute interpolation error which only
considers the maximum is a good proxy for the behavior in regions with small absolute

14 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Figure 3.8.: Comparison of interpolation techniques in terms of maximum rounding
error from cancellation given the worst-case order of summation. The numerical precision
of common IEEE 754 floating point formats has been added for reference. FP16 (half
precision) has a precision of 11 bits, FP32 (single precision) has a precision of 24 bits,
and FP64 (double precision) has a precision of 53 bits.

value.

Another important aspect to consider is the degree to which numerical cancellation occurs.
Because the numerical precision of a floating point number is approximately proportionate
to its absolute value the precision loss in bits Lb when adding numbers a and b can be
approximated as follows:

Lb ≈ max (log2 |a|, log2 |b|)− log2 (|a + b|) . (3.7)

The interpretation is as follows: After the floating point addition approximately Lb bits of
the significand of a + b will be affected by cancellation and contain no useful information
regarding the result that would have been obtained without rounding error. The cancellation
will be highest for a ≈ −b which is equivalent to the scenario in which a and b are subtracted
and |a− b| is small compared to |a| and |b|. For reference, single-precision floating point
numbers following the IEEE 754 format[7] have a precision of 24 bits while double-precision
numbers have a precision of 53 bits.

The worst-case precision loss when summing up more than two floating point numbers
occurs when first all positive and negative numbers are summed up as partial sums and
the final result is then calculated as the sum of those two partial sums. While it is unlikely
that this exact pattern would naturally arise in code the same precision loss would occur
if the sum were to instead be calculated by summing up a one-dimensional array with a
simple for loop if said array is sorted by sign. Figure 3.8 shows the maximum worst-case
precision loss of the previously introduced techniques as a function of the number of nodes.
Rounding to the nearest node introduces no precision loss because the technique does
not involve summation. Linear interpolation only sums up non-negative terms for the

Chapter 3. Parton Distribution Function Interpolation Techniques 15

Figure 3.9.: Interpolation of f(x) = x(1−x) exp(−3x) using full Lagrange interpolation
(and only four nodes).

toy example because the function is non-negative on the interval [0, 1]. The sum of the
negative terms is therefore always 0 which then implies Lb = 0. The interpolations based on
Lagrange polynomials or Catmull-Rom splines introduce cancellation because their weights
can become negative for non-negative functions. The precision loss for Catmull-Rom and
Lagrange splines is roughly constant with 1 bit and 2.5 bits respectively. The precision loss
of full Lagrange interpolation measured in bits increases linearly as the number of nodes
increases. However, because the number of values that can be represented by a floating
point number increases exponentially with the number of bits this actually means that the
rounding error of the final result increases exponentially with the number of nodes. The
full Lagrange precision loss seems to stagnate shortly after passing the double precision
threshold; presumably this is an artifact of the limited numerical precision of the machine
on which the calculation was done.

The precision loss for the interpolation techniques based on Lagrange polynomials is
noticeably worse when using only four nodes. This is because in that case the interpolation
is bad enough to cause the interpolated function to partially become negative (see Figure
3.9). As a result the sum of the individual terms can become very small which amplifies
the cancellation. This also means that if f(x) has zero crossings then the precision loss
near those crossings will be comparatively higher.

3.1. Node selection

As previously hinted at with the discussion of Runge’s phenomenon, choosing good node
values for the interpolation is nontrivial. In practice there are three challenges:

1. Determining the interval on which the nodes should be distributed,

2. determining how the nodes should be distributed on the interval,

16 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Table 3.2.: Transfer functions implemented in fastNLO. x refers to the non-transformed
variable while x̂ refers to the transformed variable.

Name Transfer function Inverse transfer function

linear x x̂
loglog ln [ln (x)] exp [exp (x̂)]

loglog025 ln
[
ln

(
x

0.25
)]

0.25 · exp [exp (x̂)]
log10 log10 x 10x̂

sqrtlog10 −
√
− log10 x 10−x̂2

3rdrtlog10 − 3
√
− log10 x 10−x̂3

4thrtlog10 − 4
√
− log10 x 10−x̂4

3. and determining how many nodes are needed for a sufficiently small interpolation
error.

Due to the interplay of these three challenges the approach used in fastNLO is best explained
starting from the second point.

As stated before, equidistantly spaced nodes can be a suboptimal choice. Therefore
fastNLO has implemented several transfer functions that transform the interval on which
the parton distribution functions are interpolated to another interval. Nodes are then
spaced equidistantly on the transformed interval which results in non-equidistant spacing
on the non-transformed interval. This non-equidistant spacing reduces the interpolation
error. The transfer functions implemented in fastNLO are shown in table 3.2. By default
sqrtlog10 is used for the momentum fraction and loglog025 is used for the scales. Notably
log10, sqrtlog10, 3rdlog10, and 4thlog10 transform the bounded interval [0, 1] to the
unbounded interval (−∞, 0]. When using these transfer functions for the momentum
fraction x the nodes are distributed more densely at low x values (and in fact become
infinitely dense for x→ 0). This is because for actual parton PDFs a better momentum
fraction resolution at low values is desirable. However, these transfer function open up a
new problem: determining the lower bound for x nodes.

To get back to the first point, the lower bound for the momentum fraction can be estimated
by doing a so-called “warmup” run. In this mode only the minimum and maximum values of
the momentum fraction and the scales that occur are being recorded. Then, for the actual
“production” run those minimum and maximum values can be used to set the minimum
and maximum node values.

This then only leaves the number of nodes that should be used for the interpolation as the
last parameter. One option is to simply set a constant number of nodes per observable bin
(called NodesPerBin from now on). Unfortunately there is no automatic way of determining
a good value for this parameter; the values used in production are based on experience and
experimentation. Generally the momentum fraction requires something like 15-30 nodes
per bin while the scales require about 6. Alternatively the number of nodes can be set
per magnitude spanned by the warmup min./max. values. In the latter case the number
of nodes provided by the user is scaled up by a factor of log10 xmax − log10 xmin (rounded
down). This mode will in the following be referred to as NodesPerMagnitude.

3.2. Monte Carlo Integration

So far this chapter has only explained how a PDF (or a function in general) can be
interpolated. However, it is important to also understand the interplay between this
interpolation, the Monte Carlo integration, and the actual calculation of a cross section

Chapter 3. Parton Distribution Function Interpolation Techniques 17

given an a posteriori PDF choice. As described in chapter 2 the cross section can be
calculated as ∫

σ(µ)dµ ≈
∑

i,j,k,n

f(xi, µk) f(xj , µk) αn
s (µk) σ̃ijkn, (3.8)

with the coefficients σ̃ijkn defined as:

σ̃ijkn =
∑
a,b

∫
dµ

∫ 1

0
dx1

∫ 1

0
dx2 ca,b,n(x1, x2, µ) gi(x) gj(x) hk(µ). (3.9)

In practical terms this means that instead of calculating a single Monte Carlo integral for a
given PDF instead many Monte Carlo integrals for the function products gi(x)gj(x)hk(µ)
are calculated. The results of these integrations are then written to the coefficient table.

When an event is generated for a Monte Carlo integration that event would in principle
affect the entire coefficient table. However, when e.g. using the fastNLO Lagrange splines
for interpolation almost all gi(x), gj(x), and hk(µ) equal to zero. The event only affects
those coefficients whose nodes are close to the event. In this way the weight of the MC
event is “spread” across multiple coefficients. With the fastNLO Lagrange splines four
coefficients per dimension are affected which would equal to 43 = 64 coefficients. As implied
by eq. 3.9 the final weight for a specific σ̃ijkn can then be obtained by simply multiplying
the event weight with the function values gi(x), gj(x), and hk(µ) (with x and µ taken from
the event).

4. NodeDensity: A New Method for x
Node Spacing

Section 3.1 has described the preexisting methods for determining momentum fraction
x nodes xi from a warmup run. This chapter conceptually describes the new method
NodeDensity added by this thesis which determines the nodes xi without such a warmup
run. Appendix A contains the implementation details; they are largely invisible to regular
users but provide relevant information for developers.

The main motivation for developing methods that do not require a warmup run is to reduce
the amount of manual effort needed for creating coefficient tables by removing one of the
steps in the workflow. A secondary benefit is that the CPU hours needed for the warmup
run can also be saved (though compared to the production run the warmup run is relatively
fast anyways). For compute clusters workflows with fewer jobs are also advantageous for
reducing the clock time needed for creating coefficient tables by reducing the overhead from
e.g. jobs waiting to be scheduled or the user checking the warmup results before submitting
further jobs.

The approach for NodeDensity is to define x nodes via a constant density in transformed
x space (the space transformed by the transfer functions in table 3.2). The highest node is
placed at x = 1 in non-transformed space. In the space transformed with sqrtlog10 (the
default for the momentum fraction) this corresponds to x̂ = 0. All other nodes are then
defined inductively by placing it a set distance below the previous node (in transformed
space).

Because no warmup run was performed there is no estimate for the lowest x value that
will be encountered during the production run. It is therefore necessary to dynamically
extend the x nodes and the x dimension of the coefficient table σ̃ towards lower x values
as they are encountered. Conceptually this makes σ̃ infinitely large in the x dimension.
However, after the production run all σ̃ value below a certain x index (which depends on
the minimum x value encountered during the production run) will be zero. And because
the contributions to the actual cross section in eq. 2.4 are proportional to σ̃ any zero values
can be ignored. It is therefore sufficient to store the finite range of σ̃ values from the lowest
(in terms of x) nonzero value to the upper bound at x = 1.

Figure 4.1 compares the distribution of nodes for NodesPerBin and NodeDensity for a toy
example with two bins. The first bin stands for the case of high transverse momentum pT

and low absolute rapidity |y| which necessitates that both partons have a high momentum
fraction. The minimum momentum fraction for events in this bin is therefore high. The
second bin stands for low pT and high |y| which necessitates that the momentum fraction of
one of the partons is high while that of the other parton is low. The minimum momentum
fraction for events in this bin is therefore low. Also, the events in the second bin form a
double peak structure in x that for the same number of nodes is expected to have a higher
interpolation error than the single peak structure in the first bin. In order to minimize the

19

20 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Figure 4.1.: Comparison of NodesPerBin and NodeDensity for a toy example with
only two observable bins. The nodes are placed at the x values corresponding horizontal
lines of the boxes. The circles represent individual events. The blue circles represent the
event with minimum momentum fraction. The nodes marked as red are the ones added
dynamically during the production run as new minimal x values are encountered.

Chapter 4. NodeDensity: A New Method for x Node Spacing 21

Figure 4.2.: Comparison of NodesPerBin, NodeDensity, and NodesPerMagnitude for
a toy example with only two observable bins. The nodes are placed at the horizontal lines
of the boxes. The crosses represent the events with minimum momentum fraction.

maximum interpolation error across all bins it would therefore be desirable to assign more
nodes to the second bin. At the same time assigning more nodes to the first bin would not
affect the maximum interpolation error at all. It is therefore desirable to scale the number
of nodes assigned to each bin with the minimum x value of that bin. NodesPerBin does not
do this. Instead all observable bins receive the same number of nodes. When the number of
nodes for the worst bin is increased in order to reduce the maximum interpolation error, the
number of nodes for all other bins is also increased. This provides no benefit for reducing
the maximum interpolation error but it greatly increases the overall size of the coefficient
table and the associated resource usage.

By contrast NodeDensity can be expected to automatically assign more nodes to those
observable bins with low minimum x values: due to the constant density of x nodes in
transformed space the total number of nodes between a low minimal x value and x = 1
will be higher than the total number of nodes between a high minimal x value and x = 1.

At this point it should be noted that the preexisting method NodesPerMagnitude also auto-
matically assigns more nodes to those observable bins with low minimum x values. Figure 4.2
shows a comparison between NodesPerBin, NodeDensity, and NodesPerMagnitude. The
transfer function used for this toy example is sqrtlog10. As a consequence NodesPerMagnitude
assigns more nodes to bins with low minimum x values than NodeDensity does. If log10
were to be used NodeDensity and NodesPerMagnitude could be configured to result in the
same nodes.

As can be inferred from figures 4.1 and 4.2, compared to NodesPerBin and NodesPerMagnitude
NodeDensity adds an additional node below the minimum momentum fraction. This is
because when using Lagrange or Catmull-Rom interpolation kernels (regardless of the
method for determining the x nodes) the weight of an event is spread across four nodes (see
figure 4.3). In the center of the coefficient table these are the two nodes directly adjacent
to either side of an event in the interpolated dimension. However, the behavior at the
edges of the grid needs to be different because on one side of the event there is only a
single node. To compensate three instead of two nodes from the other side are used. If the
size of the grid is constant then this is a minor detail. However, if the size of the grid is

22 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Figure 4.3.: Visualization of how the weight from single events (black points) is spread
across nodes (grid intersections) in two dimensions x1 and x2 using Lagrange splines. At
the edges of the grid (red lines) the event weight spread across four nodes per dimension
is asymmetric. When using node density there is no lower edge so the weight is spread
symmetrically.

Chapter 4. NodeDensity: A New Method for x Node Spacing 23

dynamic towards small x values then there is no actual lower bound. At any x value the
two adjacent x nodes to either side are affected. Therefore, for the same event x value the
weight of the event is spread to lower x nodes for NodeDensity compared to NodesPerBin
and NodesPerMagnitude. As a consequence the coefficient table as a whole ends up slightly
larger when using NodeDensity.

4.1. Scale nodes

So far the focus has been on the momentum fraction nodes. This is because the interpolation
of PDFs in that dimension is much more difficult than in the scale dimensions. Not only is
the total number of nodes needed much higher (roughly 2.5-5 times) but furthermore the
total grid size for proton-(anti)proton collisions scales quadratically with the number of x
nodes because for each event there are two separate momentum fractions. Still, the scale
dimensions need to be taken into account. Compared to the momentum fraction the main
difference is that there is no natural upper bound. Since the scales are measured in units of
energy there is theoretically a lower bound at 0. But because the strength of αs increases
at low energy scales the underlying assumption of asymptotic freedom is then no longer
valid. As a consequence perturbative QCD cannot be used for theory predictions at low
energies; for this reason the lower bound at 0 is not useful. This makes the scale dimensions
effectively unbounded in either direction. Because of this there is no clear starting point for
defining nodes which complicates a general implementation of node density for the scales.
As of writing there is no NodeDensity implementation for the scales.

With the node density implementation for the momentum fraction the warmup run is only
needed for the scales. So ideally, if there is a way to determine the min./max. scale values
without a warmup run then the warmup run can be skipped entirely. Luckily there are
instances where the scale choice is equal to the binning choice (e.g. dijet mass m12). In
those cases the min./max. scale values can simply be read from the binning and no warmup
run is necessary for the scales. Unfortunately there are also cases where a non-observable
quantity is used as an energy scale (e.g. the sum of parton transverse momenta H∗

T). In
those cases a warmup run is still necessary.

5. Results

This chapter details the results of the NodeDensity implementation. The most important
result is that part of the workflow can now be automated. In addition the refactoring has
made the code simpler which will reduce maintenance for the fastNLO project. Actually
measuring the amount of person time saved with these improvements is out of scope for this
thesis. Instead this chapter will present measurements relating to computational resources
that can be collected with relative ease via benchmarks. The first measurement is the code
speedup from the table filling code overhaul as well as an investigation of whether more
optimizations of the fastNLO code would be worthwhile. The second measurement is the
interpolation quality as a function of coefficient table size for NodeDensity compared to
the preexisting methods NodesPerBin and NodesPerMagnitude.

5.1. Performance optimization

As detailed in appendix A, as part of the code changes for this thesis the code for filling
fastNLO coefficient tables was refactored. The primary goal was to simplify the code
and make maintaining the project easier. But as a side effect the code also became more
performant.

This first became apparent when running simple test productions at leading order. The
time needed for a flexible-scale dijet production run with 106 events and NLOJet++ as
the event generator improved from 110 s to only 23.2 s, resulting in a speedup of 4.7 on
a consumer platform with an AMD Ryzen 3700X processor. The speedup comes from a
more efficient use of partial results when multiplying the interpolation weights of multiple
dimensions, thus reducing the amount of floating point arithmetic. The time needed for
fixed-scale tables was essentially unchanged: on the test machine the runtime improved
only marginally from 12.0 s to 11.8 s.

However, despite this measured speedup for flexible-scale tables one cannot expect a
universally significant improvement in runtime. To explain why, Ahmdahl’s law[25] is
considered. It assumes a system with multiple parts where one part initially takes up a
fraction p of the runtime and is sped up by a factor of s. The speedup S of the system as
a whole then becomes:

S = 1
1− p + p

s

. (5.1)

Notably this law implies S < 1
1−p regardless of s. In other words, the speedup of the system

as a whole is limited by the fraction of the runtime that the optimized part takes up. In the
case of the test production almost the entire runtime is taken up by filling fastNLO tables
(p ≈ 1). However, this is to a large part because LO calculations with NLOJet++ are fast,
so the event generator takes up only a small percentage of the runtime with s ≈ S = 4.7.
However, for state-of-the-art NNLO calculations the event generator can be expected to
take up a much larger percentage of the runtime. It is also likely that the simple test code

25

26 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Table 5.1.: Profiling data for NNLOJET rev5918, nnlo-bridge v0.0.40

Subprocess Runtime [s] Incl. bridge + fastNLO [s] Incl. fastNLO [s]

LO 0.658 0.086 13.01% 0.053 7.98%
V 2.383 0.621 26.08% 0.535 22.46%
R 6.259 2.536 40.52% 1.950 31.15%
NLO 9.300 3.243 34.87% 2.538 27.29%
VV 6.999 0.379 5.42% 0.327 4.67%
RV 57.732 5.912 10.24% 4.624 8.01%
RRa 114.915 40.565 35.30% 31.452 27.37%
RRb 114.430 40.256 35.18% 32.395 28.31%
NNLO 303.376 90.355 29.78% 71.336 23.51%

is simply not sufficiently optimized in terms of reducing the number of fastNLO function
calls to a minimum, thus spending more runtime than necessary in fastNLO code. For
these reasons the parameter p can be expected to be lower in production code which then
in turn reduces the observed speedup S.

To then conclude whether or not further fastNLO performance optimizations would be
worthwhile it is imperative to determine the parameter p for NNLO, i.e. what percentage
of the total runtime is used by fastNLO for NNLO calculations. If p is low then further
performance optimizations are not worthwhile. The tool used for this purpose is Valgrind[6].
It can be used to “profile” programs, i.e. to determine which percentage of the total runtime
the program spends in individual functions or libraries. There are two primary runtime
percentages determined by Valgrind: “self” and “inclusive”. Self refers to the amount of
runtime spent in a function/library while excluding the runtime from any sub-calls within
the function. Inclusive refers to the amount of runtime spent in a function/library while
including the runtime from any sub-calls within the function. For determining whether or
not more performance optimizations would be worthwhile the inclusive runtime percentage
was used. This is because the performance of a function can be improved not only by
improving the efficiency of the code in the function itself but also from reducing the number
of calls to expensive other functions. Furthermore the inclusive percentage is at least as
high as the self percentage by definition. Therefore, if optimizations are not worthwhile
under the inclusive percentage they would also not be worthwhile under the self percentage.
In addition to determining whether more performance optimizations would be worthwhile
the profiling investigation also intended to benchmark different software configurations and
estimate the additional overhead from filling fastNLO tables.

At the time of the investigation the only fastNLO-compatible event generator capable
of NNLO calculations was NNLOJET. For NNLO calculations the contributions to the
coefficient table are split into leading order, virtual, real, virtual-virtual, real-virtual, real-
real a, and real-real b with each contribution requiring a separate run (results are merged
afterwards). Notably in a real analysis the number of events generated is not the same per
contribution. This is because it is more economical to put more CPU time towards those
contributions that are cheap. However, the computational cost of the event generator also
affects p, the percentage of the runtime spent on fastNLO. Therefore the number of events
for each contribution was taken from a real dijet analysis at a center-of-mass energy of 7
TeV (but scaled down by a factor of 106) to ensure that the runtime percentages of the
combined calculation are representative. Table 5.1 shows the profiling data when using
NNLOJET rev5918 to create a fastNLO coefficient table. The runtimes were obtained by
simply running the NNLOJET binary. Profiling data had to be obtained in separate runs
because the profiling interferes with the runtime measurement, causing the program to

Chapter 5. Results 27

Table 5.2.: Leading color profiling data for NNLOJET rev6591, nnlo-bridge v0.0.46

Subprocess Runtime [s] Incl. bridge + fastNLO [s] Incl. fastNLO [s]

LO 0.696 0.092 13.20% 0.062 8.91%
V 2.154 0.124 5.77% 0.082 3.83%
R 12.407 1.040 8.38% 0.605 4.88%
NLO 15.257 1.256 8.23% 0.749 4.91%
VV 9.710 0.201 2.07% 0.142 1.46%
RV 180.825 4.014 2.22% 2.387 1.32%
RRa 159.221 4.188 2.63% 2.341 1.47%
RRb 183.860 5.993 3.26% 3.659 1.99%
NNLO 548.873 15.652 2.85% 9.278 1.69%

become roughly 50 times slower.

The original runtimes of the individual contributions ranged from seconds (LO) to minutes
(RR). For profiling this presented an issue because at very short runtimes parts of the
code that do not scale with the number of events (e.g. file reads) can take up a large
portion of the total runtime and skew the results. Therefore, for LO, V, R, and VV the
number of events was scaled up for the profile run (so that the program runs for at least 60
seconds). This was done to suppress the parts of the code with constant runtime, making
the percentages representative of a run with a large number of events as would be the case
for an actual physics analysis. The runtimes for NLO and NNLO (both total and for parts
of the program) were determined by summing up the runtimes of the respective individual
contributions. The corresponding percentages were then determined from those sums.

The procedure described above where the runtime fractions are determined from separate
runs with a scaled up number of events biases the fractions towards higher values. However,
because the total runtime for NNLO is dominated by the contributions that were not scaled
up this bias is negligible when considering NNLO as a whole. For NNLOJET rev5918
29.78% of the combined runtime was spent in the “bridge” code, the code responsible
for filling either a fastNLO or an APPLGrid table. Filling a fastNLO table with this
revision therefore increases the total runtime by roughly 40% (compared to just calculating
a cross section for a given PDF). Further, 23.51% of the total runtime was spent in the
actual fastNLO code which would limit the speedup from further fastNLO optimizations
to S ≤ 1.31.

Table 5.2 shows the equivalent profiling results for NNLOJET rev6591. The first thing
to note is that the total runtime has increased by a factor of 1.81. At the same time the
runtime spent in bridge/fastNLO code has decreased by a factor of 7. Taken together the
overhead from calculating fastNLO tables has decreased significantly to only 2.85% of the
total runtime. Further fastNLO performance optimizations would be insignificant with a
speedup of S ≤ 1.017.

Notably NNLOJET rev6591 has added new configuration options for “leading color” and
“full color” calculations. The difference is that leading color only adds contributions to
matrix elements from those Feynman diagrams which are not suppressed by powers of the
number of color charges nc2 = 32 = 9 or nc4 = 34 = 27. By contrast full color does include
those contributions. In rev5918 those contributions were not implemented. The rev5918
results are therefore comparable to leading color rev6591.

Tables 5.3 and 5.4 show the profiling data for full color calculations. When switching
only to full color the total runtime increases by a factor of 5.66. However, NNLOJET
rev6591 has also added a new performance optimization option: “multichanneling”. This

28 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Table 5.3.: Full color profiling data for NNLOJET rev6591, nnlo-bridge v0.0.46

Subprocess Runtime [s] Incl. bridge + fastNLO [s] Incl. fastNLO [s]

LO 0.730 0.096 13.16% 0.065 8.88%
V 2.157 0.124 5.76% 0.082 3.82%
R 12.359 0.597 4.83% 0.582 4.71%
NLO 15.246 0.817 5.36% 0.729 4.78%
VV 20.731 0.369 1.78% 0.251 1.21%
RV 1700.880 13.607 0.80% 7.994 0.47%
RRa 672.888 17.629 2.62% 9.689 1.44%
RRb 696.900 22.719 3.26% 14.008 2.01%
NNLO 3105.745 55.141 1.78% 32.671 1.05%

Table 5.4.: Full color profiling data for NNLOJET rev6591 with multi_channel set to
true, nnlo-bridge v0.0.46

Subprocess Runtime [s] Incl. bridge + fastNLO [s] Incl. fastNLO [s]

LO 0.676 0.010 1.52% 0.010 1.00%
V 0.691 0.021 2.99% 0.014 2.01%
R 0.971 0.068 7.04% 0.040 4.12%
NLO 2.338 0.099 4.23% 0.064 2.74%
VV 1.084 0.017 1.55% 0.011 1.06%
RV 10.086 0.179 1.77% 0.103 1.02%
RRa 14.809 0.244 1.65% 0.144 0.97%
RRb 15.282 0.319 2.09% 0.192 1.26%
NNLO 43.599 0.858 1.97% 0.514 1.18%

Chapter 5. Results 29

option optimizes Monte Carlo convergence via importance sampling[18]: the larger the
contribution of a given Feynman diagram is to the total cross section of an observable
bin, the more events are generated for said diagram. Conversely Feynman diagrams with
smaller contributions receive fewer events. To compensate the contributions are scaled in
such a way that the expected cross section remains the same. The effect of this is that the
comparatively larger statistical uncertainties from large contributions are reduced at the
cost of increasing the statistical uncertainties of smaller contributions. Importantly this
reduces the statistical uncertainty on the total result for a given number of events.

With multichanneling enabled the runtime decreases by almost two orders of magnitude so
that the runtime ends up 12.59 times lower than the LC rev6591 results, and even 6.96
times lower than the LC rev5918 results. However, this result is not directly comparable
to the result without multichanneling because the speed of convergence per event in the
configuration file is not the same. Both with and without multichanneling the runtime taken
up by the bridge/fastNLO code is low: the total overhead from fastNLO was only 2% of the
runtime while the potential for further speedup was S ≤ 1.02. Notably the runtime needed
for RV increased by a disproportionate amount for full color without multichanneling.

Appendix B includes further analysis of the NNLOJET profiling data that was collected in
order to aid with the development process but is not of general interest.

5.2. Node Density Efficiency Benchmarks

As mentioned before, there is a tradeoff between the size of fastNLO coefficient tables and
the resulting interpolation error: a large table with more nodes will be able to interpolate
a PDF with smaller error but will also require more memory and disk space. At the same
time the interpolation error beyond some table size becomes negligible due to the presence
of other sources of uncertainty. Further increasing the size of tables at that point only
incurs additional cost with no benefit. In particular, a larger table would require more
memory and disk space to create and calculating a cross section from the table would be
slower because more values would need to be summed up.

An important check for determining the quality of a fastNLO table is to investigate the
so-called “closure”. First, during the creation of a fastNLO table the conventional cross
sections that would have been obtained for a given PDF is calculated. Then, once the
fastNLO table is finished it is used to calculate cross sections using the exact same PDF.
If the difference between the conventionally calculated cross section and the one obtained
via interpolation is negligible compared to other sources of uncertainty then it is assumed
that this will also be the case for other PDFs.

One metric that can be used to investigate the closure between an expected value a and an
obtained value b is their ratio. It is simply defined as:

R = b

a
, (5.2)

with good closure given for R ≈ 1. However, this definition has the disadvantage that it
diverges for a← 0. The asymmetry As of two values a and b on the other hand is defined
as:

As = a− b

a + b
. (5.3)

If a and b are both non-negative As is bounded to the interval [-1, 1]. The error from
fastNLO interpolation is assumed to be negligible compared to other sources of uncertainty if
|As| < 10−3 for the conventional and the fastNLO cross sections. Because the interpolation
quality generally increases with the number of x nodes and because the interpretation of

30 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Figure 5.1.: Maximum asymmetry across all observable bins as a function of the
uncompressed file size. The black numbers at function points indicate the value for
X_NNodes.

the configuration value X_NNodes differs between NodesPerBin, NodesPerMagnitude, and
NodeDensity a comparison between the three is not straightforward. For a like-for-like
comparison the asymmetry is investigated as a function of the table size. The metric used
for determining the table size is the size of the uncompressed fastNLO table files on disk.
Because the file contains all relevant information for a fastNLO table this is also a good
approximation for the memory use during table filling.

The first investigation is for LO dijet production at 7 TeV binned by dijet mass m12 and
absolute rapidity |y| < 2.5. Figure 5.1 shows the maximum asymmetry across all observable
bins as a function of the uncompressed file size (UFS). A method is considered better if it
achieves a lower asymmetry at the same UFS value (or needs less disk space for a given
asymmetry value). The results are very close and there does not seem to be a method that
is universally the best at all file sizes. The asymmetry eventually flattens out at roughly
2 · 10−4 for all methods, possibly because the number of scale nodes was kept constant at
6 which limits the interpolation precision in the scale dimension. However, at As = 10−3

NodesPerBin performs the best with X_NNodes=12.4 and UFS=3.64 MiB, followed by
NodeDensity with X_NNodes=11.7 and UFS=4.49 MiB and NodesPerMagnitude with
X_NNodes=11.4 and UFS=5.41 MiB. The values for X_NNodes and UFS that correspond to
As = 10−3 have been obtained via linear interpolation between individual results. Note that
it is not actually possible to define fractional values for X_NNodes when using NodesPerBin
and NodesPerMagnitude. However, for comparison purposes the interpolated fractional
value is used in order to judge whether the upper or lower next integer is closer to As = 10−3.

Figures 5.2, 5.3, 5.4, 5.5, and 5.6 show the asymmetry as a function of file size for the
different rapidity bins. Against expectation the central rapidity bin with |y| < 0.5 showed
higher maximum absolute asymmetry than the outer rapidity bin with 2.0 ≤ |y| < 2.5 when
using the same number of nodes (equal values for NodesPerBin). When using NodesPerBin

Chapter 5. Results 31

Figure 5.2.: Maximum asymmetry across all observable bins with 0.0 ≤ |y| < 0.5 as a
function of the uncompressed file size. The black numbers at function points indicate the
value for X_NNodes.

Figure 5.3.: Maximum asymmetry across all observable bins with 0.5 ≤ |y| < 1.0 as a
function of the uncompressed file size. The black numbers at function points indicate the
value for X_NNodes.

32 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Figure 5.4.: Maximum asymmetry across all observable bins with 1.0 ≤ |y| < 1.5 as a
function of the uncompressed file size. The black numbers at function points indicate the
value for X_NNodes.

Figure 5.5.: Maximum asymmetry across all observable bins with 1.5 ≤ |y| < 2.0 as a
function of the uncompressed file size. The black numbers at function points indicate the
value for X_NNodes.

Chapter 5. Results 33

Figure 5.6.: Maximum asymmetry across all observable bins with 2.0 ≤ |y| < 2.5 as a
function of the uncompressed file size. The black numbers at function points indicate the
value for X_NNodes.

the number of nodes per bin is constant. When using NodeDensity or NodesPerMagnitude
the number of nodes per bin increases for bins with low minimum x values (with the increase
in NodesPerMagnitude being steeper). Because the minimum x values are comparatively
high/low at central/outer rapidity, assigning more nodes to bins with low minimum x is
counterproductive.

Next Z+jet production at 13 TeV is investigated. The binning is in the transverse momentum
of the Z boson pT Z and transformed rapidity bins yb (“y-boost”) and y∗ (“y-star”). Given
the Z boson rapidity yZ and the jet rapidity yjet they are defined as:

yb = 0.5 · |yZ + yjet|, y∗ = 0.5 · |yZ − yjet|. (5.4)

The transformed rapidity bins have a width of 0.5 and only rapidity bins with max yb +
max y∗ < 3.0 are considered. This leads to a total of 15 rapidity bins (see Figure 5.7).

Figure 5.8 shows the absolute asymmetry as a function of UFS at LO. NodesPerMagnitude
performs the best with X_NNodes=6.8 and UFS=21.6 MiB, followed by NodeDensity with
X_NNodes=12.0 and UFS=26.1 MiB and NodesPerBin with X_NNodes=23.1 and UFS=33.6
MiB. Notably this is the exact reverse order compared to dijet production. For Z+jet the
bins with high yb and y∗ were the ones with higher asymmetry (when assigning the exact
same number of nodes) so assigning more nodes to those bins (via scaling with minimum
x) is beneficial. This proves that among the investigated methods there is not a single one
that is universally better than the others for all physical processes.

Also the value for X_NNodes with |As| = 10−3 when using NodeDensity is much closer
to the value found for dijets (12.0 vs. 11.7) compared to NodesPerBin (23.1 vs. 12.4)
and NodesPerMagnitude (6.8 vs. 11.4). While this is irrelevant in terms of the efficiency
given the optimal configuration it does make a big difference for actually finding that

34 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Figure 5.7.: Visualization of used Z+jet rapidity bins in yb and y∗[17].

Chapter 5. Results 35

Figure 5.8.: Maximum asymmetry across all Z+jet observable bins as a function of the
uncompressed file size at LO. The black numbers at function points indicate the value
for X_NNodes.

optimal configuration. As mentioned before, there is no known method for predicting the
exact value for X_NNodes that will result in a targeted precision. Therefore in practice
the value for X_NNodes is determined iteratively: a user inputs a value that he assumes
from experience will work well, and then initiates a test production run and adjusts the
X_NNodes value based on the results. The larger the spread between optimal values is
between different physical processes the more iterations are needed until the optimal (or a
sufficiently good) value is found. The seemingly lower spread of NodeDensity is therefore
a desirable property for reducing the amount of person time needed for producing fastNLO
tables. However, due to the low number of investigated processes it is difficult to extrapolate
these results.

Z+jet was investigated further because compared to dijets much larger tables are required.
Figure 5.9 shows the same plot of max. absolute asymmetry as a function of UFS as before
except for NLO rather than LO. None of the methods achieve an asymmetry lower than
2 · 10−3. The issue is caused by individual bins with high yb and y∗ values (with y∗ being
more influential). The asymmetry of those bins eventually stops improving as X_NNodes is
increased. Because of this the max. absolute asymmetry in turn also stops improving once
that point is reached. The exact reason why some bins do not further improve is not clear.
It could simply be a limitation of the interpolation in the scale dimension (since the number
of scale nodes is constant at 6). It could also be an issue with floating point arithmetic since
there are more problematic bins with NodesPerBin and NodesPerMagnitude than with
NodeDensity (and NodeDensity should be slightly less vulnerable to Runge’s phenomenon
due to not having a hard lower edge).

Figure 5.10 and 5.11 show the 98th and 95th percentiles. These percentiles ignore the
problematic bins which do not improve. The ranking of the methods is the same as for
LO. When using NodesPerMagnitude for the 98th percentile |As| = 10−3 is achieved with

36 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Figure 5.9.: Maximum asymmetry across all Z+jet observable bins as a function of the
uncompressed file size at NLO. The black numbers at function points indicate the value
for X_NNodes.

Figure 5.10.: 98th percentile of the asymmetry across all Z+jet observable bins as a
function of the uncompressed file size at NLO. The black numbers at function points
indicate the value for X_NNodes.

Chapter 5. Results 37

Figure 5.11.: 95th percentile of the asymmetry across all Z+jet observable bins as a
function of the uncompressed file size at NLO. The black numbers at function points
indicate the value for X_NNodes.

X_NNodes=6.0 and UFS=338 MiB, when using NodeDensity with X_NNodes=12.3 and
UFS=427 MiB, and when using NodesPerBin with X_NNodes=23.5 and UFS=551 MiB.
For the 95th percentile when using NodesPerMagnitude with X_NNodes=5.6 and UFS=310
MiB, when using NodeDensity with X_NNodes=11.4 and UFS=379 MiB, and when using
NodesPerBin with X_NNodes=20.7 and UFS=446 MiB.

Lastly Z production via the Drell-Yan process was investigated at a center-of-mass energy
of 13 TeV. The binning is one-dimensional in the Z-boson rapidity ranging from 0.0 to
2.4 in increments of 0.2. Figure 5.12 shows the maximum asymmetry as a function of
uncompressed file size. NodesPerMagnitude again performs the best with X_NNodes=6.97
and UFS=0.47 MiB, followed by NodesPerBin with X_NNodes=25.01 and UFS=0.55 MiB,
and NodeDensity with X_NNodes=14.37 and UFS=0.59 MiB. The ranking is again different
compared to dijets and Z+jet. The values for X_NNodes at which the target asymmetry is
reached are comparably similar to Z+jet.

38 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Figure 5.12.: Maximum asymmetry across all Drell-Yan observable bins as a function
of the uncompressed file size at LO. The black numbers at function points indicate the
value for X_NNodes.

6. Conclusion

In chapter 2 the theoretical background behind the fastNLO project has been explained. Via
the interpolation of parton distribution functions the results of a Monte Carlo integration
can be reused for fast cross section calculations. The PDF, the value of the strong coupling
constant αs, and potentially the values of the scales can be chosen a posteriori. In chapter
3 several interpolation techniques (nearest neighbor, linear, Lagrange, Lagrange spline,
Catmull-Rom spline) have been introduced. The techniques were benchmarked in terms of
interpolation error, relative interpolation error, and worst-case floating point cancellation
on a synthetic problem. The preexisting procedures NodesPerBin and NodesPerMagnitude
have been described. In chapter 4 the new procedure for selecting interpolation nodes
NodeDensity has been described conceptually and contrasted with the preexisting pro-
cedures NodesPerBin and NodesPerMagnitude. Finally chapter 5 has shown a 4.7 times
speedup of the refactored fastNLO table filling code when filling LO flexible-scale tables
with NLOJet++. To determine the optimal settings and whether further performance
optimizations would be worthwhile NNLO coefficient table creation using NNLOJET was
profiled. Using the newest versions for the software stack only 1% of the runtime was
spent in fastNLO, making further performance optimizations of the fastNLO code not
worthwhile. The new NodeDensity implementation was tested for LO dijet, NLO Z+jet,
and LO Z production and contrasted with NodesPerBin and NodesPerMagnitude. None
of these methods has consistently performed the best in terms of maximum absolute cross
section asymmetry as a function of table size. The ranking of methods was different for each
physical process. However, NodeDensity was more consistent in terms of which value needs
to be set for X_NNodes in the fastNLO configuration file to achieve a targeted asymmetry
of 10−3, making it easier for the user to guess a good value.

6.1. Outlook

The momentum fraction x interpolation nodes can now be determined for all physical
processes without a warmup run. For the energy scale interpolation nodes there are still
cases where a warmup run is necessary because the quantity used as the energy scale is not
observable. A concept (and following implementation) for efficiently treating these cases
would be useful.

Furthermore the interpolation efficiency investigation in section 5.2 only covered a small
number of physical processes and only at LO/NLO. A more comprehensive analysis that
investigated more processes at up to NNLO could provide valuable insights for making the
optimal choice between NodesPerBin, NodesPerMagnitude, and NodeDensity. However,
apart from the method for x node spacing there are many more configuration options:
the number of scale nodes, the interpolation kernels for x/scale nodes, and the transfer
functions for the x/scale nodes. The large number of options greatly increases the amount
of manual effort required for finding the optimal configuration. A method for automatically
optimizing these options for a given physical process would therefore be very useful.

39

40 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

The automation of configuration optimization also allow for an extension of the configuration
standard that would not be feasible to use without automation. For instance, as of right
now fastNLO is intended to be used with a single value for X_NNodes (the number of nodes
per bin is always proportional to this value). Since the number of nodes needed for a given
precision differs between observable bins setting this value per observable bin would allow
for smaller coefficient tables without reducing the worst-case precision. However, manually
setting and optimizing values for up to hundreds of observable bins would not be feasible
in terms of person time. If the X_NNodes value per bin could be determined automatically
however this would no longer be an issue. Similarly, instead of fixed, predetermined transfer
functions it would be feasible to add free parameters to the transfer functions that could
be optimized per observable bin.

One approach with which the above optimization could be achieved would be an iterative
calculation of small test coefficient tables. First a cost function that penalizes inefficient
resource usage and precision below the user-requested value for each bin would need to
be defined. Then for a set of potential configuration parameters a small test coefficient
table would be calculated and its precision and size used to calculate a cost function value.
Standard numerical optimization algorithms could then be used to determine the optimal
configuration parameters. One issue with this approach is that the cost function may not
converge smoothly towards its global minimum, causing the optimization to get stuck in a
local minimum instead. Some parameters like the number of scale nodes or the X_NNodes
value for NodesPerBin and NodesPerMagnitude can also only take on discrete values and
would therefore be difficult to optimize. The calculation of coefficient tables for evaluating
the cost function may also be too expensive; ideally it would be possible to determine good
configuration values for NNLO from LO tables. Lastly the optimization would add an
additional step to the workflow similar to the warmup run mentioned in this thesis (but
the warmup can be merged with the parameter optimization). The added manual effort
from an extra workflow step would probably be offset by the automation of determining
optimal configuration values though.

Another approach that could potentially be used to determine optimal configuration value
would be machine learning. Given enough data an artificial neural network of sufficient size
would for example be guaranteed to be able to learn the mapping from the parameters of an
analysis to the optimal fastNLO configuration parameters. The main challenge would be to
create a good dataset from which such a mapping could be learned. However, at this point
it should be noted that an approach based on machine learning is not mutually exclusive
with the iterative approach described above. The iterative approach could be used to create
a dataset for machine learning and machine learning could in turn be used to estimate
good initial configuration parameters. It may also be possible to learn the mapping from
optimal LO configuration parameters to optimal NNLO configuration parameters, making
the iterative approach much cheaper.

Appendix

41

A. Implementation Details

This chapter describes the implementation of the new mode NodeDensity, how to use it,
how it is integrated into existing workflows, and how the code had to be changed.

A. Configuration

In fastNLO run parameters can be set via a configuration file that is referred to as the
“steering file”. For example, steering files can specify the bin edges of the observable bins
for which a fastNLO coefficient table should be calculated. These steering files are written
in human-readable form and prior to the work of this thesis the specification already had
a parameter X_NNodeCounting that specifies how the momentum fraction x nodes for
PDF interpolation should be placed. When X_NNodeCounting is set to NodesPerBin a
constant number of x nodes per observable bin is used, as determined by the parameter
X_NNodes. When set to NodesPerMagnitude the number of nodes for an observable bin
with minimal x value xmin is multiplied by a factor of − log10 xmin. With this thesis a new
value for X_NNodeCounting was added: if set to NodeDensity then the new x node density
implementation described in chapter 4 is used.

For the scale nodes new parameters Mu1_NNodeCounting and Mu2_NNodeCounting that con-
trol how the minimum and maximum scale values µmin, µmax are determined for the produc-
tion run scale nodes were added. If set to NodesPerBin then µmin, µmax are determined from
a warmup run (default value, same behavior as prior to this thesis). If set to NodesPerDim1,
NodesPerDim2, or NodesPerDim3 then the bin edges of the first/second/third observable
dimension are used as µmin, µmax.

Prior to this thesis, when running a fastNLO binary, the program would first check whether
a fastNLO warmup file containing the min./max. values for the coefficient table already
exists. If the file exists, a production run is started. Otherwise a warmup run to produce
the file is started. In the current version, if the user specifies both an x node density and
that µmin, µmax should be taken from the observable binning then no warmup run is needed
and fastNLO immediately starts with a production run regardless of the warmup file’s
existence. Figure A.1 shows an activity diagram for code used to determine whether a
warmup run is needed.

B. Workflow Integration

In principle fastNLO can be used directly by end users to calculate coefficient tables.
In practice however, at least one layer of indirection is needed. The first reason for this
indirection is that the large number of CPU hours needed for NNLO calculations necessitates
the use of massive parallelism via compute clusters. To achieve good hardware utilization
these compute clusters typically provide computing resources to a large number of users
and use specialized job scheduling software to assign computing resources to individual
jobs. So typically a user will need to use code outside fastNLO to specify the logic of the

43

44 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Figure A.1.: Activity diagram of the fastNLO code for determining whether a warmup
run is needed.

Appendix 45

overall workflow for creating coefficient tables. This external code then serves as an entry
point that the job scheduling software can use to indirectly launch fastNLO once it decides
that the corresponding job should receive computing resources. As an additional benefit,
explicitly formulating the logic of a workflow as code also makes the workflow easier to
reproduce since it reduces the amount of (potentially undocumented) manual steps.

The new code added by this thesis was tested with both Slurm[5] (Simple Linux Universal
Resource Manager) and HTCondor[3], the latter of which with one more layer of indirection
via Luigi[4] and LAW (Luigi Analysis Workflow)[24]. The SLURM workflow was compara-
tively light-weight (essentially just a small Bash script that launches the SLURM jobs) and
only required manually initiating a production run without a previous manual warmup
run. The LAW workflow was more elaborate, particularly in regards to its automatic
handling of dependent tasks: when a task that depends on another task is run by the user,
it first checks whether all tasks listed as dependencies have been successfully run. If not,
then these dependencies are run first. Though there are more steps in-between, with the
original code the FastProd task (fastNLO production run) depended unconditionally on the
completion of the FastWarm task (fastNLO warmup run). However, due to the code changes
of this thesis fastNLO warmup runs are now only necessary if the steering files specify the
pre-existing modes for X_NNodeCounting, Mu1_NNodeCounting, or Mu2_NNodeCounting.
Therefore, as part of this thesis the logic for determining whether a warmup is needed (see
figure A.1) was reimplemented as part of the LAW workflow: the LAW code now reads
in the fastNLO steering file(s) at runtime and dynamically sets the dependencies of the
FastProd task to reflect the behavior of the fastNLO code. This way the user only has to
edit the steering file(s) and run the FastProd task. The workflow will then automatically
schedule a warmup run if needed.

One additional thing to note in this context is that the aforementioned LAW workflow
makes use of NNLOJET as the event generator. As such there is additional program
logic in the NNLO Bridge 1 code that also needs to be accounted for. More specifically,
the effective configuration used for fastNLO can be a combination of multiple steering
files. Firstly, there are multiple possible paths for global steering files. These paths have
different priorities and the first existent file will be read and used to set default values for all
NNLOJET histograms. Afterwards the code checks for the existence of a histogram-specific
steering file for each NNLOJET histogram. If such files exist they can potentially override
the options set in the global steering file. If at least one NNLOJET histogram is configured
in such a way that a fastNLO warmup is needed then the production run as a whole requires
a fastNLO warmup.

C. Table Filling

fastNLO has methods that are called by user code to increment (to “fill”) the coefficient table
with events from an event generator. To dynamically extend the x nodes upon encountering
a new minimal x value it was therefore necessary to modify these methods. Unfortunately the
original code had five different methods that modified the coefficient table. Figure C.2 shows
an activity diagram for the original code. In it, when the method FillContribution of the
class fastNLOCreate is called it checks whether the fastNLO coefficient table is calculated
as fixed or flexible scale and whether the physical scenario describes deep inelastic scattering
or hadron-hadron collisions. In the method FillAllSubprocesses, if a two-dimensional
vector of hadron-hadron-collision events is used to fill a fixed-scale table, then the coefficients
are incremented in this method via a dedicated implementation that was added for better
performance. Otherwise the filling is delegated to one of the following methods inside a

1As a reminder, NNLO Bridge is the adapter for fastNLO and APPLGrid shipped with NNLOJET, see
section 2.2

46 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Figure C.2.: Activity diagram of the original fastNLO table filling code. Red indicates
code that modifies the coefficient table.

Appendix 47

loop: FillContributionFixDIS, FillContributionFixHHC, FillContributionFlexDIS,
or FillContributionFlexHHC. As a consequence an implementation of x node density
would have required code modifications in five different places. The code for each fill
method was mostly the same. Therefore, the fill methods were refactored and deduplicated
as part of this thesis prior to the x node density implementation: the filling of events is now
always handled in the method FillContribution. Figure C.3 shows an activity diagram
for the refactored table filling code. There is no longer a special treatment of fixed-scale two-
dimensional vectors. The differentiation between fixed and flexible scale is handled via poly-
morphism: the pre-existing classes fastNLOCoeffAddFix and fastNLOCoeffAddFlex (both
subclasses of fastNLOCoeffAddBase) were extended with a method Fill that handles the
differentiation. The method Fill is then simply called from the method FillContribution.
This is more consistent with object-oriented design philosophy since the fastNLOCreate
class can now always handle objects of type fastNLOCoeffAddBase in the same way via
an interface. Previously the class fastNLOCreate would directly modify attributes of
fastNLOCoeffAddBase. The new implementation ensures consistent behavior regardless
of the implementation details of the subclasses of fastNLOCoeffAddBase. As a side effect
the code for filling flexible-scale tables has also become faster (see section 5.1).

The program logic of table filling is shown in more detail in figure C.4 via a sequence
diagram. Figure C.5 shows the corresponding class diagram (reduced to the relevant parts).
The user code is intended to work with a single fastNLOCreate object (a subclass of
fastNLOTable) which encapsulates all relevant information for a fastNLO coefficient table.
Each fastNLOCreate object has four fastNLOInterpolBase objects per observable bin to
represent the nodes: two for the momentum fraction (one for a proton PDF and a second
one for a potential antiproton PDF) and one each for up to two possible scales. The prop-
erty fGrid/fHGrid represents the locations of the nodes in non-transformed/transformed
space. The two-dimensional vectors XNode1 and XNode2 contain a duplicate of the in-
formation stored in fGrid. The method CalcNodeValues determines which nodes are
affected by an event and how the event weight should be distributed across those nodes.
It is the main point where the subclasses of fastNLOInterpolBase differ: different sub-
classes will distribute the event weight differently. Each fastNLOCreate object has at
least one fastNLOCoeffAddBase object to represent the actual coefficient table values.
fastNLOCoeffAddFix has only a single five-dimensional vector to store the grid values.
The vector’s dimensions are in order:

1. the observable bin index,

2. the scale variation index,

3. the scale node index,

4. the momentum fraction node index,

5. and the subprocess index.

By contrast fastNLOCoeffAddFlex has six different five-dimensional vectors. One to store
the factors independent of scale values as well as five to store the scale-dependent factors.
Specifically the scale-dependent coefficient tables are factors of: log µr, log µf , log2 µr,
log2 µf , and log µr log µf . A scale variation index is therefore not needed. Instead the
vectors’ dimensions are in order:

1. the observable bin index,

2. the momentum fraction node index,

3. the first scale node index,

4. the second scale node index,

48 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Figure C.3.: Activity diagram of the refactored fastNLO table filling code. Red indicates
code that modifies the coefficient table.

Appendix 49

Figure C.4.: Sequence diagram of the refactored fastNLO table filling code.

50 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

Figure C.5.: Class diagram of the fastNLOCreate class showing only the parts relevant
for the table filling code. Vectors are shown as arrays for simplicity.

5. and the subprocess index.

Note that the order of the indices for the momentum fraction and scale nodes has changed.
The scale variation index is replaced with a second scale node index.

To explain the way the x node density implementation works, first the implementation for
deep inelastic scattering (i.e. for a single proton) with a fixed number of x nodes should be
considered. In the first step, the code calls GetNodeValues to determine which x nodes will
be affected by the events to be filled. For the Lagrange and Catmull-Rom x interpolation
kernels this will usually be the two nodes directly adjacent to either side of the x value of an
event for a total of four nodes. For the linear x interpolation kernels only the one directly
adjacent node to either side is affected for a total of two nodes. The information regarding
how the event weight should be distributed between nodes is represented as sparse vectors
of pairs: the first value of each pair is an integer representing the index of an x node while
the second value is a floating point number representing the weight assigned to the node
(from the interpolation kernel only). In the case of proton-proton or proton-antiproton
collisions two partons are involved. Therefore, each event has two separate x values and
requires two separate vectors of indices and weights for the partons from both particles.
In practical terms this means that GetNodeValues is called two times with two different
x values. The calculation is otherwise identical (but protons and antiprotons may use
different x nodes and therefore different fastNLOInterpolBase objects).

In addition to the x dimensions at least one scale dimension needs to be interpolated
(flexible scale can have two scale dimensions, the corresponding function calls are not shown
in the sequence diagram). The weights are again obtained by a call to GetNodeValues on a
different object. The final interpolation weights for a given coefficient table value are then
obtained by simply multiplying the individual interpolation weights from each dimension.
All possible combinations are calculated and added to the coefficient table.

Once the weights from interpolation have been determined the final weight to be added

Appendix 51

to the coefficient table can be obtained by multiplying the interpolation weight with the
weight of the event. The x nodes can be treated in the same way for fixed and flexible scale
tables and as such the same code is used. The scale nodes need to be treated differently
between fixed and flexible scale tables and the corresponding code is split across the
fastNLOCoeffAddFix and fastNLOCoeffAddFlex classes.

The first part of the code specific to x is an iteration over the x nodes affected by the event.
Afterwards the effective x index needs to be calculated from the nominal x indices of the
first proton and a potential antiproton or second proton. While the nominal x indices can
be two-dimensional the effective x index (which corresponds to the x index of the coefficient
table) is always flattened to one dimension. In the case of deep inelastic scattering the
nominal and effective x indices are identical. In the case of proton-antiproton collisions the
combinations of the nominal x indices are simply iterated over and the effective x index
corresponds to an element of a flattened matrix (with the nominal x indices corresponding
to the column and row indices of the matrix). In the case of proton-proton collisions the
same scheme as with proton-antiproton collisions could be used and still produce correct
results. However, it is possible to exploit the symmetry in the PDFs of the ingoing particles
to reduce the size of the coefficient table: nominal x index combinations in which the
second index is smaller than the first index are flipped so that the first index is smaller.
This way only a triangular matrix is needed to store the coefficient table which reduces its
size by roughly 50%. Once the effective x index has been determined the coefficient table
can be modified by iterating over the scale indices.

The NodeDensity implementation differs from the previously described code as follows:
firstly the fGrid and fHGrid properties of the x-associated fastNLOInterpolBase object(s)
and the x dimension of the coefficient table start out with a small size of only four nodes
(the minimum for Lagrange/Catmull-Rom kernels). The first index corresponds to the
lowest x value while the last index corresponds to x = 1. Then, when GetNodeValues
is called to determine the x interpolation weights, one of the first things it does is to in
turn call FindLargestPossibleNode (also for methods other than NodeDensity). This
method then iterates over the nodes and returns the index of the largest node that is still
below the x value of the event. The aforementioned method also handles the case when
the x value is smaller than the lowest node. For the pre-existing implementations this case
is handled by rounding up the x value to the lowest node, potentially introducing some
bias to the coefficient table. When using NodeDensity that case is instead handled by
extending the node vectors to accommodate the new minimum x value. The nodes are
equidistantly spaced in the transformed space (fHGrid). This makes adding more nodes
below the ones that already exist simple. The new non-transformed values for fGrid can
then be calculated by simply applying the inverse of the transfer function. After expanding
the node vectors the x node weights can be calculated as normal.

However, it is important to note that because the node vector is sorted in ascending order
the new nodes have to be inserted at the beginning of the vector. As a consequence the
indices for the pre-existing nodes change as new nodes are inserted. These index changes
must be carefully synchronized between objects to ensure correct results. This is done
by calling fastNLOCoeffAddBase::ExtendX. This method copies the new entries from
fGrid to XNode1 and XNode2. Afterwards the coefficient table represented by one or more
SigmaTilde properties is extended. This extension needs to be handled differently for deep
inelastic scattering, proton-proton collisions, and proton-antiproton collisions. The case of
deep inelastic scattering is the simplest since the x coefficient table dimension is a simple
one-dimensional vector. Therefore it is sufficient to simply insert zeros at the front of the
node until the x dimension of the coefficient table is the same size as the node vector. For

52 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

example, inserting a single zero at the beginning of a vector with three elements:(
x1 x2 x3

)
→

(
0 x1 x2 x3

)
, (C.1)

where the values xi are simply the values that were stored in the coefficient table prior to
the expansion. Because the coefficient table as a whole is five-dimensional these are not
simple scalars but they can be treated as such without affecting the logic of the expansion.
Also, while in this example only a single zero is inserted at the front this procedure can
simply be repeated until the desired size is reached. For the more complex cases this greatly
simplifies the implementation. For instance, when simulating proton-proton collisions the
x dimension of the coefficient table is stored in half-matrix form. The coefficient table
extension from 3 to 4 nodes then takes on this form:x1

x2 x3
x4 x5 x6

→


0
0 x1
0 x2 x3
0 x4 x5 x6

 . (C.2)

In this case the first zero is inserted at index 0 at the front of the vector. The second zero
is then inserted at index 1, immediately behind the first zero. The third index is then
inserted at index 3, the fourth zero is inserted at index 6, the fifth zero is inserted at index
10, and so on. The next index at which a zero should be inserted is the previous index
plus the number of already inserted zeros. For proton-antiproton collisions the insertion is
relatively simple: x1 x2 x3

x4 x5 x6
x7 x8 x9

→


0 0 0 0
0 x1 x2 x3
0 x4 x5 x6
0 x7 x8 x9

 . (C.3)

Assuming the x dimension is a matrix of size N the first step is to insert N zeros at the
front. Then simply a single zero at the beginning of each row needs to be inserted. After
both the node vectors and the coefficient table have been extended the event can be filled
as normal.

D. Table Merging

Due to the large amount of CPU hours necessary to create fastNLO coefficient tables at
NNLO it is necessary to parallelize the computation. This is done by running multiple
fastNLO processes in parallel using different starting seeds. Each process creates its own
coefficient table. Afterwards the results from individual processes are merged to create a
single final coefficient table.

When using NodesPerBin or NodesPerMagnitude all processes use the same fastNLO
warmup file as input. The lower bound of the momentum fraction x as well as the number
of nodes for each individual bin is therefore the same. Tables can be merged by simply
iterating the individual values and summing up those with the same indices. However,
when using NodeDensity this is no longer the case. Depending on the starting seed, the
minimum x values encountered by a process during the production run will vary. The size
of the coefficient tables between processes can therefore also vary. To complicate matters
further, the indices of the coefficients that need to be merged are not the same: because
the coefficient table is extended by inserting zeros at the front of a vector the indices of
the pre-existing coefficients change with each extension. This problem is very similar to
the one encountered during table filling and luckily the same code can be reused for table
merging. By simply inserting zeros into the smaller coefficient table until it is the size of
the larger one the indices can be made to align. Afterwards the tables can be merged in

Appendix 53

the same way as the other tables. Inserting zeros into the smaller table is slightly inefficient
in terms of memory and runtime (compared to computing which indices should align for
merging) but maintainability was judged to be more important.

E. Testing

In order to ensure that the NodeDensity implementation is consistent with NodesPerBin au-
tomated tests have been added to the project. The tests first generate two LO fixed/flexible
scale tables each for both NodesPerBin and NodeDensity using the same seeds for both
methods. The warmup file for NodesPerBin has been manually edited so that the nodes
are expected to align. First the contents of the calculated individual coefficient tables are
compared. Again, care must be taken to compare the correct values since the indices only
align if the minimum x node is the same. Next the tables using the same method for x
node spacing are merged and the merged tables are compared again. If all compared tables
are the same (within numerical precision) then the test is passed, otherwise it fails.

B. NNLOJET Runtime Percentages

With the profiling data already collected for section 5.1, further analysis was done to aid in
the development of the NNLOJET project. Firstly the performance regression of rev6591
relative to rev5918 was investigated. To this end the RRa profiling data was compared
and functions with a disproportionate increase in runtime were identified (see table .1).
RRa was chosen because it is the contribution with by far the highest runtime per event.
The method __evalobs_mod_clearcache_obs in particular stands out because while its
purpose seems to be the clearing of caches it takes up 19.8% of the total runtime.

In addition, differences between leading color and full color (with or without multichanneling)
were investigated. Table .2 shows how the percentage of runtime taken up by the previously
investigated functions varies depending on LC/FC and multichanneling. No significant
difference in terms of runtime percentages was observed. LC/FC/multichanneling was also
investigated for RV (see table .3). There are some differences in runtime percentages but
there is nothing that immediately stands out (without inspecting the source code).

55

56 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

T
able

.1.:
C

om
parison

ofR
R

a
profiling

results
for

select
N

N
LO

JET
m

ethods.

M
ethod/program

Incl.
rev5918

[s]
Selfrev5918

[s]
Incl.

rev6591
[s]

Selfrev6591
[s]

N
N

LO
JET

w
ithout

fastN
LO

74.350
155.033

_
_

observables_
m

od_
M

O
D

_
evalall_

obs
27.154

24.121
90.421

1.576
_

_
m

apping_
m

od_
M

O
D

_
set_

m
ap

0.000
0.000

39.996
5.318

_
_

m
apping_

m
od_

M
O

D
_

apply_
m

ap
0.000

0.000
33.118

5.366
_

_
evalobs_

m
od_

clearcache_
obs

0.000
0.000

30.682
30.682

_
_

evalobs_
m

od_
M

O
D

_
applycuts_

jet
0.586

0.195
28.739

11.512
_

_
kindata_

m
od_

M
O

D
_

fills_
kin

0.391
0.069

20.762
2.930

_
_

kindata_
m

od_
M

O
D

_
spinab_

kin
0.322

0.287
17.833

15.301
log

(libm
.so.6)

0.000
0.000

8.375
8.375

_
_

evalobs_
m

od_
M

O
D

_
initrecom

b_
jet:

0.195
0.057

7.961
2.627

atan2
(libm

.so.6)
0.103

0.103
6.496

6.496

Appendix 57

Table .2.: Comparison of inclusive rev 6591 RRa profiling results for select NNLOJET
methods.

Method/program LC FC FC MC

__mapping_mod_MOD_set_map 25.12% 23.98% 25.95%
__mapping_mod_MOD_apply_map 20.80% 19.88% 21.49%
__evalobs_mod_clearcache_obs 19.27% 19.29% 19.49%
__evalobs_mod_MOD_applycuts_jet 18.05% 17.09% 18.69%
__kindata_mod_MOD_fills_kin 13.04% 12.40% 13.45%
__kindata_mod_MOD_spinab_kin 11.20% 10.65% 11.56%
log (libm.so.6) 5.26% 4.99% 5.35%
__evalobs_mod_MOD_initrecomb_jet: 5.00% 4.74% 5.16%
atan2 (libm.so.6) 4.08% 3.77% 4.16%

Table .3.: Comparison of inclusive rev 6591 RV profiling results for select NNLOJET
methods.

Method/program LC FC FC MC

hpl2_ 37.69% 65.46% 42.26%
zzcf_ 28.70% 61.12% 32.55%
hpl2else_ 34.58% 60.51% 38.59%
cli2_ 26.42% 47.64% 29.48%
_gfortran_pow_c8_i4 17.26% 30.90% 19.38%
cli2_’2 12.64% 24.43% 14.33%
__evalobs_mod_clearcache_obs 10.61% 5.49% 9.33%
__mapping_mod_MOD_set_map 6.13% 2.60% 5.20%
__evalobs_mod_MOD_applycuts_jet 5.11% 2.86% 4.55%
log (libm.so.6) 4.10% 2.58% 4.10%
__mapping_mod_MOD_apply_map 5.03% 2.13% 4.26%
__kindata_mod_MOD_fills_kin 3.07% 1.30% 2.61%
__kindata_mod_MOD_spinab_kin 2.63% 1.11% 2.24%
__evalobs_mod_MOD_initrecomb_jet: 1.34% 0.73% 1.19%
atan2 (libm.so.6) 1.26% 0.60% 1.09%

58

Bibliography

[1] Catastrophic Cancellation. https://en.wikipedia.org/wiki/Catastrophic_
cancellation. Accessed: 2023-12-13.

[2] Cubic Hermite Spline. https://en.wikipedia.org/wiki/Cubic_Hermite_spline.
Accessed: 2023-12-13.

[3] HTCondor. https://htcondor.org/. Accessed: 2023-12-08.

[4] Luigi. https://github.com/spotify/luigi. Accessed: 2023-12-08.

[5] Slurm (Simple Linux Universal Resource Manager). https://slurm.schedmd.com/
overview.html. Accessed: 2023-12-08.

[6] Valgrind. https://valgrind.org/. Accessed: 2023-12-08.

[7] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, Seiten 1–70, 2008.

[8] Ball, Richard D, Valerio Bertone, Stefano Carrazza, Christopher S Deans, Luigi
Del Debbio, Stefano Forte, Alberto Guffanti, Nathan P Hartland, José I Latorre, Juan
Rojo et al.: NNPDF. arXiv preprint arXiv:1410.8849, 2014.

[9] Bothmann, Enrico, Gurpreet Singh Chahal, Stefan Höche, Johannes Krause, Frank
Krauss, Silvan Kuttimalai, Sebastian Liebschner, Davide Napoletano, Marek Schönherr,
Holger Schulz, Steffen Schumann und Frank Siegert: Event generation with Sherpa
2.2. SciPost Physics, 7(3), September 2019, ISSN 2542-4653. http://dx.doi.org/
10.21468/SciPostPhys.7.3.034.

[10] Britzger, Daniel, Klaus Rabbertz, Fred Stober und Markus Wobisch: New features in
version 2 of the fastNLO project. In: 20th International Workshop on Deep-Inelastic
Scattering and Related Subjects, Seiten 217–221, 2012.

[11] Carli, Tancredi, Dan Clements, Amanda Cooper-Sarkar, Claire Gwenlan, Gavin P.
Salam, Frank Siegert, Pavel Starovoitov und Mark Sutton: A posteriori inclusion
of parton density functions in NLO QCD final-state calculations at hadron colliders:
the APPLGRID project. The European Physical Journal C, 66(3):503–524, Apr 2010,
ISSN 1434-6052. https://doi.org/10.1140/epjc/s10052-010-1255-0.

[12] Carrazza, S., E. R. Nocera, C. Schwan und M. Zaro: PineAPPL: combining EW and
QCD corrections for fast evaluation of LHC processes. JHEP, 12:108, 2020.

[13] Catmull, Edwin und Raphael Rom: A CLASS OF LOCAL INTERPOLATING
SPLINES. In: BARNHILL, ROBERT E. und RICHARD F. RIESENFELD
(Herausgeber): Computer Aided Geometric Design, Seiten 317–326. Academic
Press, 1974, ISBN 978-0-12-079050-0. https://www.sciencedirect.com/science/
article/pii/B9780120790500500205.

[14] Collins, John C., Davison E. Soper und George Sterman: Factorization of Hard
Processes in QCD, 2004.

59

https://en.wikipedia.org/wiki/Catastrophic_cancellation
https://en.wikipedia.org/wiki/Catastrophic_cancellation
https://en.wikipedia.org/wiki/Cubic_Hermite_spline
https://htcondor.org/
https://github.com/spotify/luigi
https://slurm.schedmd.com/overview.html
https://slurm.schedmd.com/overview.html
https://valgrind.org/
http://dx.doi.org/10.21468/SciPostPhys.7.3.034
http://dx.doi.org/10.21468/SciPostPhys.7.3.034
https://doi.org/10.1140/epjc/s10052-010-1255-0
https://www.sciencedirect.com/science/article/pii/B9780120790500500205
https://www.sciencedirect.com/science/article/pii/B9780120790500500205

60 Master Thesis: Workflow and perf. optimization for fast NNLO pQCD Calculations

[15] Gehrmann, T., X. Chen, J. Cruz-Martinez, J. R. Currie, E. W. N. Glover, T. A.
Morgan, J. Niehues, D. M. Walker, R. Gauld, A. Gehrmann De Ridder, A. Huss und
Joao Pires: Jet cross sections and transverse momentum distributions with NNLOJET,
2018.

[16] Gross, David J. und Frank Wilczek: Ultraviolet Behavior of Non-Abelian Gauge
Theories. Physical Review Letters, 30(26):1343–1346, Juni 1973.

[17] Horzela, Maximilian Maria: Measurement of Triple-Differential Z+Jet Cross Sections
with the CMS Detector at 13 TeV and Modelling of Large-Scale Distributed Computing
Systems. Dissertation, Karlsruher Institut für Technologie (KIT), 2023.

[18] Kloek, T. und H. K. van Dijk: Bayesian Estimates of Equation System Parameters:
An Application of Integration by Monte Carlo. Econometrica, 46(1):1–19, 1978,
ISSN 00129682, 14680262. http://www.jstor.org/stable/1913641, besucht: 2023-
12-13.

[19] Kluge, T., K. Rabbertz und M. Wobisch: FastNLO: Fast pQCD calculations for PDF
fits. In: 14th International Workshop on Deep Inelastic Scattering, Seiten 483–486,
September 2006.

[20] Lagrange, Joseph Louis: Leçon Cinquième. Sur l’usage des courbes dans la solution
des problèmes. Leçons Elémentaires sur les Mathématiques, 1795.

[21] Nagy, Zoltan: NLOJet++. https://www.desy.de/~znagy/Site/NLOJet++.html.
Accessed: 2023-12-07.

[22] Politzer, H. David: Reliable Perturbative Results for Strong Interactions? Physical
Review Letters, 30(26):1346–1349, Juni 1973.

[23] Pumplin, Jonathan, Daniel Robert Stump, Joey Huston, Hung Liang Lai, Pavel
Nadolsky und Wu Ki Tung: New Generation of Parton Distributions with Uncertainties
from Global QCD Analysis. Journal of High Energy Physics, 2002(07):012–012, Juli
2002, ISSN 1029-8479. http://dx.doi.org/10.1088/1126-6708/2002/07/012.

[24] Rieger, Marcel, Martin Erdmann, Benjamin Fischer und Robert Fischer: Design and
Execution of make-like, distributed Analyses based on Spotify’s Pipelining Package
Luigi, 2017.

[25] Rodgers, David P.: Improvements in Multiprocessor System Design. In: Procee-
dings of the 12th Annual International Symposium on Computer Architecture, ISCA
’85, Seite 225–231, Washington, DC, USA, 1985. IEEE Computer Society Press,
ISBN 0818606347.

[26] Runge, Carl: Über empirische Funktionen und die Interpolation zwischen äquidistanten
Ordinaten. Zeitschrift für Mathematik und Physik, 1901.

[27] Weierstrass, Karl: Über die analytische Darstellbarkeit sogenannter willkürlicher
Functionen einer reellen Veränderlichen. Sitzungsberichte der Königlich Preußischen
Akademie der Wissenschaften zu Berlin, 1885.

http://www.jstor.org/stable/1913641
https://www.desy.de/~znagy/Site/NLOJet++.html
http://dx.doi.org/10.1088/1126-6708/2002/07/012

	Contents
	1 Introduction
	2 fastNLO: Fast pQCD Calculations for a posteriori PDF choices
	2.1 Scale Nodes
	2.2 Software Architecture and Context

	3 Parton Distribution Function Interpolation Techniques
	3.1 Node selection
	3.2 Monte Carlo Integration

	4 NodeDensity: A New Method for x Node Spacing
	4.1 Scale nodes

	5 Results
	5.1 Performance optimization
	5.2 Node Density Efficiency Benchmarks

	6 Conclusion
	6.1 Outlook

	Appendix
	A Implementation Details
	A Configuration
	B Workflow Integration
	C Table Filling
	D Table Merging
	E Testing

	B NNLOJET Runtime Percentages
	Bibliography

