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1. Introduction

Data analysis in scientific research plays an essential role in the extraction of valuable
insights from data sets that are continuing to increase in amount and complexity. The
field of High-energy physics (HEP) has seen substantial progress in its methods of data
analysis, advancing with the increased possibilities of machine learning (ML) techniques
and improving the accuracy of the obtained physics results. Neural Networks (NN) have
become an integral part of classification tasks, discriminating between processes, and are
frequently used for the extraction of ML-derived variables, utilizing them for statistical
inference.
The typical analysis objective in HEP is the retrieval of the parameter of interest (POI)
and its uncertainty by applying statistical inference, where the POI usually corresponds to
the signal strength that is defined as a fraction of the measured signal process cross-section
compared to its prediction. The thereby obtained uncertainty of the POI consists of a
statistical and systematic part and is under constant scrutiny of ongoing reduction through
the improvement of analysis techniques and the increase of the amount of analyzed data.
HEP experiments are continuing their measurements, steadily increasing the amount of
available data. The Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC)
of the European Organization for Nuclear Research (CERN) as a prominent example will
double the number of measured collisions after the third data-taking period (Run3) of
the LHC [1] and further multiply the amount of available data after the upgrade to the
High-Luminosity LHC [2]. The thereby achieved reduction of statistical uncertainties
in many analyses will emphasize the importance of adequately addressing of the then
dominant systematic uncertainties present in the analyses. Their mitigation is paramount
in the next step on the improvement of the analysis objective uncertainty and requires the
development of more sophisticated ML methods that are able to address them.
This work presents a strategy to minimize statistical and systematic uncertainties through
the usage of NN, improving upon the previously proposed implementation [3]. The
necessary HEP fundament for this work, with an emphasis on the CMS experiment, is
given in chapter 2. Chapter 3 describes the POI estimation provided from statistical
inference, where ML-derived variables are utilized. The same chapter also discusses the
general usage of NNs and a method of NN optimization (training) based on the analysis
objective. In chapter 4, a new training method is introduced, and the previously proposed
implementation is examined upon its stability during the training. Based on the observation
of the resulting training process, a modification of the existing method is presented that
improves the stability of the training procedure and thereby provides the basis which
allows for an application of the method in highly complex analyses. Further, the improved
method is applied to a pseudo experiment consisting of one signal and one background
process comparing the results to a conventional NN optimization as a benchmark. Chapter
5 introduces the extension of the new method to problems with multiple signal and
background processes, thereby enabling the application for experiments that perform
differential measurements. The results of the application are then discussed, demonstrating
the conceptual differences to the usual NN optimization in the case of multiple processes.
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In chapter 6 the developed technique is then applied on a subset of the data set that is
used for the Standard Model H→ττ analysis of the CMS experiment [4] containing multiple
signal processes and several experimental and theoretical uncertainty sources that are
utilized in the improved training method, achieving a reduction of the analysis objective
that could not be addressed by the conventionally used NN optimization.



2. Analysis of H→ττ events in eτ final
state at the CMS experiment

This chapter gives an overview the physics background necessary for high-energy physics
experiments and discusses the process of data acquisition from detection to reconstruction
exemplified by the CMS experiment at CERN. Furthermore, an outline of the CMS
Standard Model H→ττ Analysis is presented, discussing the relevant physics processes for
the analysis and the uncertainty sources.

2.1. The Standard Model and the Higgs Boson

The most accurate explanation of our understanding of elementary particles and their
interaction is currently described by the Standard Model (SM) of particle physics [5–8],
which was developed in the early second half of the 20th century. Classification of elemen-
tary particles within the Standard Model divides the known particles into fermions, which
possess half-integer spin, and bosons with integer spin. These are summarized in figure 2.1.
Fermions, which comprise matter particles, are further divided into quarks and leptons
of three generations each. Quark types, also referred to as flavors, can be differentiated
within their generation by their electric charge, with the up (u), charm (c), and top quark
(t) possessing a positive electric charge of 2/3, and the down (d), strange (s), and bottom
quark (b) having a negative electric charge of −1/3. Leptons within a generation can
also be distinguished by their charge, with the negatively charged electron (e) in the first,
muon (µ) in the second, and tau lepton (τ) in the third generation, paired with their
corresponding neutrinos (νe, νµ, ντ) that have a neutral electric charge.
Bosons, which act as mediators of the three fundamental forces (excluding gravity), couple
to particles with a corresponding charge. Photons (γ), as the mediator of the electromag-
netic force, described by quantum electrodynamics (QED) couple only to particles with an
electric charge. Similarly, gluons (g), which are the mediators of the strong nuclear force
that is described through quantum chromodynamics (QCD), couple only to particles with
a so-called color charge, specifically quarks and gluons themselves. The weak nuclear force
is described by the exchange of Z and W± bosons, which couple to quarks and leptons.
The Standard Model is constructed on the principle of gauge invariance, where the un-
derlying symmetries of the strong nuclear force (SU(3)), weak nuclear force (SU(2)), and
electromagnetic force (U(1)) are maintained leading to the necessity of the introduced
gauge fields, that are representing the bosons above, to be massless. The unification of the
electromagnetic and weak nuclear force into the electroweak force, by Sheldon Glashow,
Abdus Salam, and Steven Weinberg [9] however necessitated an explanation for symmetry
breaking resulting in the emergence of a massive neutral Z and two charged W± bosons
whose existence was confirmed by their discovery at CERN in 1983 [10–13].
A solution to this arising problem of massive gauge bosons of the weak nuclear force
and the general problem of a mass-acquiring mechanism of the particles was resolved by
the Brout-Englert-Higgs (BEH) mechanism [14–19] which proposed the introduction of a
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Figure 2.1.: A categorization of elementary particles of the Standard Model divided
by colors corresponding to the particle types. Quarks (purple) and leptons (green) are
separated into three generations. Bosons (orange) are shown on the right. The interaction
between particles is described by the bosons in the enclosed groups shown by the thin
lines. The Standard Model Higgs boson (yellow) on the right is shown without an enclosed
group interacting with all particles except the gluon and photon. The mass (estimation),
electric charge, and spin is provided for each particle in the upper left corner. Taken from
[22]

spontaneous symmetry-breaking of the SU(2) × U(1) electroweak symmetry providing the
mass to the Z and W± bosons and predicting an additional scalar boson. Furthermore, the
BEH mechanism was also able to provide an explanation for the origin of the masses of the
fermions through the Yukawa coupling of the Higgs boson to the fermions. This last piece
of the Standard Model was confirmed by the discovery of the predicted Standard Model
Higgs boson with a measured mass around 125 GeV/c2 by the CMS [20] and ATLAS [21]
Collaborations at CERN in 2012.
The SM Higgs boson, an electrically neutral scalar boson, couples to all particles, with
the exception of gluons and photons, and provides the mechanism through which the
particles obtain their mass. The coupling to the Higgs boson is quadratic to the mass
of the vector bosons and linear to the mass in the case of fermions as described by the
Yukawa mechanism for the latter and can be depicted in figure 2.2. The ongoing goal
at the Large Hadron Collider (LHC) is the study of the coupling structure of the Higgs
boson which includes the studies of its production and decay rates. The main production
mechanisms in descending occurrence given from the measured proton-proton collisions
at the LHC are the gluon fusion (ggh), vector boson fusion (qqh), and the production in
association with a vector boson (VH). The corresponding Feynman diagrams and measured
cross sections are given in figure 2.3 and table 2.1. The branching ratios for the main decay
modes are listed in table 2.2. The decay into two photons (H → γγ) and four leptons
via two Z bosons (H → ZZ → 4`) had a significant contribution to the discovery in 2012
despite their low branching fractions, as those decay products can be accurately measured
by the detector. Other decay channels of the Higgs boson, pose several challenges e.g. a
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Figure 2.2.: Shown are the measured couplings of the Higgs boson to fermions and
vector bosons as a function of the Higgs boson mass that was measured by the CMS
collaboration to mH = 125.38 GeV/c2 on the full data set of the LHC second data taking
period. The dotted line corresponds to the Standard Model expectation with the square
root of the coupling in the case of vector boson interaction with the Higgs boson and a
linear coupling in the case of fermions, divided by the vacuum expectation value v. Taken
from [23]

Table 2.1.: Shown are the cross-sections of the three main production modes at the LHC
from the second data-taking period of LHC at a center of mass energy of 13 TeV/c2 with
the largest contribution from the gluon fusion (ggh) process. The Higgs boson production
in association with a vector boson (VH) is the sum of ZH and WH processes and the
vector boson fusion (qqh) production mode lists the fiducial cross-section with QCD and
electroweak corrections considering only on shell Higgs boson without off-shell effects as
stated in [24].

Production process ggh qqh VH
Cross section 48.31 pb 1.97 pb 2.24 pb
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Figure 2.3.: Feynman diagrams of the three main Higgs production processes at the
LHC with gluon fusion in (a), vector boson fusion in (b) and Higgs boson production
associated with a vector boson in (c).



6

Table 2.2.: Branching fractions of the Higgs decay for a Higgs boson mass of mH =
125.38 GeV/c2 as measured by CMS at a center of mass energy of 13 TeV/c2 as stated in
[24].

Decay mode Fraction
bb 0.58

WW 0.22
gg 0.082
ττ 0.062
cc 0.029
ZZ 0.028
γγ 0.0023
Zγ 0.0016
µµ 0.0002

large number of indistinguishable background processes in the decay into W bosons and b
quarks, a weak coupling due to low mass (e.g. H→µµ) or difficulty in reconstructing final
states that contain neutrinos.
The direct coupling of the leptons to the Higgs boson allows the measurement of the Yukawa
coupling where the H→ττ decay channel poses the advantage of manageable background
rates in comparison to the bb decay channel. A differential study of the Higgs production
modes is another crucial step in improving the understanding of the couplings of the Higgs
boson and is a main target for searches of deviations from Standard Model expectations.
The Standard Model, despite its great success, is limited in its description of more fun-
damental questions such as the reason for the observed wide mass range of the known
particles or the explanation of dark matter which can be indirectly observed today [25].
A search for a deviation from the Standard Model might therefore be a first hint at new
physics and coincides with the goal of this work towards a method development resulting
in more precise measurements.

2.2. Compact Muon Solenoid experiment

The Compact Muon Solenoid (CMS) experiment at the European Organization for Nuclear
Research (CERN) is one of the primary experiments operating along the 27 km Large
Hadron Collider (LHC) used for proton-proton acceleration (figure 2.4). During the second
data-taking period of the LHC (Run2) between 2016 and 2018, which operated at a center
of mass energy of 13 TeV/c2, a total of 162.85 fb−1 of collision data 1 was produced, of
which 150.25 fb−1 was recorded by the CMS experiment [26].
The CMS detector is a classic 4π detector, that surrounds the LHC beam pipe at the
collision point, arranging the four main detector elements, and the superconducting solenoid
with a magnetic field of 3.8 T concentrically around the beam pipe, with only the muon
system not enclosed by the solenoid, as illustrated in figure 2.5.
The determination of the trajectory of charged particles is performed using the tracker
system which is the innermost layer of the detector. The curvature of the said trajectory
is also used for the determination of the transverse momentum, which is utilized in the
reconstruction of particle candidates that uses information from multiple detector parts.
The tracking system is composed of silicon detector elements, specifically pixel detectors
arranged around the beam pipe followed by silicon strips in two layers, with larger strips
in the outermost layer. This configuration allows for a resolution of a few micrometers,

1The collision data is represented by the integrated luminosity
∫

t
L where the Luminosity L = N2A−1f

describes the number of collisions given N particles inside two bunches over their crossing collision area
A and their collision frequency f . The conventionally used unit of barn correspond to 1 b = 10−28 cm2.
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Figure 2.4.: An illustration of the accelerator complex with ongoing experiments. The
CMS experiment is located at the LHC accelerator and can be seen in the upper part
of the schematic. The coloring of the arrows corresponds to the particle types that are
accelerated (decelerated) [27].

Figure 2.5.: A partial slice of the CMS detector is depicted highlighting the detector
components used for particle detection. The signatures, seen in the detector, are dis-
tinguished between particles with only a track through all detector components for the
muon, electromagnetic shower in ECAL with an additional track in the case for electrons,
and no visible track in the tracker system for photons as well as a hadronic shower in
HCAL with the distinguishing between neutral and charged hadrons upon the visible
track in the tracker system. [28]
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enabling a precise extrapolation to the interaction points of the decaying mother particles.
The electromagnetic calorimeter (ECAL) is a scintillator detector and comprises the second
layer. The energy measurement is conducted from the created electromagnetic showers by
the electromagnetic interaction of particles such as electrons and photons. The ECAL is
built of PbWO4 crystals, which have a short radiation length of X0 = 0.89 cm, allowing
for a compact design with around 25 radiation lengths and enabling the placement of the
ECAL within the solenoid.
Particles that interact via the strong force propagate through the ECAL unaffected. Their
energy deposit is measured in the hadronic calorimeter (HCAL), which is the last detector
system placed within the solenoid. In contrast to the ECAL, which utilizes a homogenous
design, layers of brass and plastic are used in the HCAL, with brass serving as an absorption
material for the creation of hadronic showers, while plastic is used as the scintillation
material for the energy measurement.
The muon system of the CMS detector serves as the final layer for measuring propagating
muons, as these particles remain unaffected by prior detector systems. Drift tubes within
the barrel region and cathode strip chambers in the endcaps, both integrated into the return
yoke of the magnet, are used for measuring muon momentum through their curvature
as they propagate through the last part of the detector. The information obtained from
these detectors is then combined with that of the inner tracker system to achieve a better
consistency of muon identification that originated from the collision point.
A crucial step after the initial measurement of the propagated decay products by the
individual detector components is the trigger system which consists of two parts. The first-
level trigger is implemented using field-programmable gate arrays (FPGAs) [29] utilizing
the information from the ECAL, HCAL, and the muon system. The initial rate of the
measured events, which corresponds to the bunch crossing rate of 40 MHz is reduced down
to 100 kHz [30] by the utilization of the first level trigger. A further reduction down to
manageable 1 kHz [31] is achieved by the final application of the high-level trigger (HLT)
incorporating tracker information for the initial event reconstruction.
The trigger system utilizes kinematic variables such as the transverse momentum pT or the
direction of the reconstructed particle and its separation from nearby particles ∆R. Due
to the invariance of the detected particles within the detector relative to the beam pipe,
the cylindrical coordinate system is used for the description of particle trajectories. To
address the direction of the particles the combination of the angle φ and pseudorapidity η
is used, replacing the θ angle by the definition given by equation 2.1.

η = − ln
(

tan
(

θ

2

))
. (2.1)

Hence the convenient representation of the distance between two objects ∆R is expressed by
the differences between those two quantities (equation 2.2) and is used mainly for particle
selection as discussed in the following section.

∆R =
√

(∆φ)2 − (∆η)2 . (2.2)

2.3. Reconstruction and event selection of eτ final state from the H→ττ
decay

The proton-proton collision products are tracked within the detector parts in form of
multiple electric signals. The reconstruction of those signals into actual physics objects is
performed utilizing the Particle Flow (PF) algorithm [32]. A combination of information
from multiple detector components, as the particles or their decay products, propagate
through the detector, is used by the PF for the reconstruction and assignment of physics
objects to their observed tracks and originating points, the vertices. The primary vertex
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is selected from cadidates of clustered reconstructed tracks that are closest to the z-axis
and are compatible with the beam line. Collisions that are not originating from the
primary vertex are referred to as pileup. The reconstructed objects consist e.g. of directly
reconstructed electrons or muons and objects that require additional reconstruction steps
e.g. jets or tau leptons. The following discussion briefly presents the used reconstruction
and selection strategies for these physics objects.

• Electron selection is conducted upon electron candidates reconstructed by the PF
algorithm, which utilizes the information from energy depositions in the ECAL and
track information. The selection of these candidates is performed by the usage of
a boosted decision tree (BDT) [33] incorporating additional information about the
shape and specific energy depositions in the ECAL as well as further information
about the track and optionally an isolation criterion with respect to other particles
that is applied separately if not incorporated in the BDT.

• Muons are also derived from the PF reconstruction, incorporating information from
the tracking system and the muon system. The selection applies constraints on the
distance of the muons from the primary vertex (impact parameter) and the track
quality to ensure the primary vertex is the muon origin point. Additionally, an
isolation criterion, to photons, neutral, and charged particles from the particle flow
reconstruction, is applied in order to suppress fake muon candidates originating from
particle decays inside of jets.

• The identification of jets is initially conducted through clustering of PF reconstructed
objects utilizing the anti-kt algorithm [34] and only using objects originating from
the primary vertex. Subsequently, the reconstructed jets are classified by the Deep-
Jet algorithm [35], a neural network-based approach for the identification of jets
originating from b quark decays. Selected jets are required to have a separation of
∆R > 0.5 from the selected tau lepton candidates and have a transverse momentum
of pT > 30 GeV/c within |η| < 4.7.

• Reconstruction of tau leptons is conducted in two steps by the application of the
Hadron-Plus-Strip (HPS) algorithm [36] using the firstly reconstructed charged and
neutral particles from PF as input. A grouping of hadronic tau decay is performed
by the algorithm based on the quantity of charged hadrons, with a maximum of
up to three, and the number of strips representing the π0 of the tau lepton decay,
with a maximum number of up to two. The corresponding fractions of thereby
considered decays are summarized in table 2.3. Further identification and selection of
the resulting reconstructed tau lepton candidates are conducted using the DeepTau
algorithm [37], which utilizes a deep convolutional neural network. This final step
completes the selection step, reducing the occurrence of falsely reconstructed tau
leptons from jets, muons, and electrons.

The CMS SM H→ττ Analysis [4] uses for the differential measurement of the Higgs boson
production modes the final states of the ττ decays listed in table 2.4, excluding ee and
µµ final states due to their low branching fractions. For the application of the presented
method, only a subset of the Run2 data is selected, namely the eτ final state of the 2017
data-taking year. The selection of those chosen eτ events that are used in the analysis
is divided into three parts, each involving the application of various requirements and
thresholds on the electron and tau lepton in order to reduce the misidentification rate and
enrich the remaining data set with analysis-relevant processes.
The first step of the selection is represented by the mentioned trigger system with the
level-one triggers and subsequent filters that need to be passed by an event in order to be
recorded. An eτ event is required to have an electron in |η| < 2.1 with pT > 24 GeV/c as
well as a hadronic decayed tau lepton with pT > 30 GeV/c and the same pseudorapidity
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Table 2.3.: Leptonic and hadronic decay fractions of the tau lepton [38]. Decays with
charged hadrons (h±) summarize the decay fractions including π± and K± mesons.

Decay mode Fraction
Leptonic 35.2

τ− → e−νeντ 17.8
τ− → µ−νµντ 17.4

Hadronic 64.8
τ− → h−π0ντ 25.9
τ− → h−ντ 11.5
τ− → 2h−h+ντ 9.8
τ− → h−2π0ντ 9.5
τ− → 2h−h+π0ντ 4.8
Other 3.3

Table 2.4.: Summary of the final state fractions of the ττ decay where τh denotes a
hadronic tau decay as provided in table 2.3 and [38]. The ee and µµ final states are not
used by the standard model analysis.

Final state τhτh eτh µτh eµ µµ ee
Fraction 0.42 0.23 0.23 0.06 0.03 0.03

region. Both objects are required to activate two preceding triggers, referred to as cross
triggers, with a lower transversal momentum but an additional requirement of spacial
separation of ∆R > 0.3 between both objects. All events that pass those selections of the
trigger and initial filter system (online analysis) are stored for later usage (offline analyses).
The electrons that are present in the offline analysis are further required to fulfill either
pT > 28 GeV/c and pass the single-electron trigger or have a 25 < pT ≤ 28 GeV/c and
passing the electron-tau cross trigger with |η| < 2.1. Furthermore, the score generated by
the BDT from the electron selection step must surpass the specified working point of 90 %
efficiency. Additionally, the track of the electron has to match the primary vertex with a
transverse (longitudinal) distance smaller than 0.045 cm (0.2 cm) and fulfill a pT dependent
isolation criterion if it was not used in combination with the BDT.
The recorded hadronic decayed tau lepton is required to fulfill pT > 30 GeV/c and |η| < 2.3,
as well as passing a channel-specific criterion of the HPS algorithm. The displacement of the
leading charged track from the reconstructed tau lepton must be smaller than 0.2 cm in the
longitudinal direction. Furthermore, the discrimination value obtained from the DeepTau
algorithm must exceed the threshold for the tight working point, and the discriminator
against a false classification of electrons and muons as tau must surpass the threshold for
the very loose working point, as defined in [37].
The distance of the electron and hadronic tau is required to fulfill ∆R > 0.5 and both
leptons must pass a missing energy filter based on the detection region within the CMS
detector. Additionally, all considered electron-tau pairs must possess opposite charges and
have a combined mass from electron and missing transverse energy mass smaller than
70 GeV/c2 to avoid an event overlap with the FF method, which is discussed in the following
section. The selection of the optimal electron-tau pair from the remaining candidates within
an event is based on the transverse momentum and relative isolation, with preference given
to the tau candidate with a DeepTau value closest to one and higher transverse momentum
and better isolation in case of an unambiguous choice.
After the selection, an event contains either a background or a signal process that is known
in the case of simulated events and is indicated by a corresponding label used for the
machine learning application that will be discussed further in chapter 3. The Standard
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Model analysis performs a differential measurement of the Higgs production modes given
by the stage 1 Simplified Template Cross Section scheme (STXS) as described in [39],
which provides a standardized binning approach within high energy physics. This binning
introduces 14 signal classes, that are separated by the Higgs production mode, a number
of jets, and kinematic variables, such as the transverse momentum of the reconstructed
Higgs system or the invariant mass of two leading jets within an event. Within the scope
of this work, this number is reduced to two signals that are derived from the Monte Carlo
(MC) simulated signal events including the gluon fusion and vector boson fusion production
modes which are described by the stage 0 STXS binning. Events containing background
processes are further split into five classes and are described in the following section.

2.4. Background estimation

An accurate determination of the cross-section of signal processes requires a comprehensive
understanding of the existing background processes, which cannot be further reduced due
to the similarity in the final states. One approach to the background process estimation
is the application of the MC simulation technique, conducting the event simulation and
retrieving the full detector response of these events. This method is used for the signal
processes and is applied for the following background processes, that are considered in the
analysis.

• Z → `` processes contain the decays of the Z boson into electrons (muons) in case
of the eτ (eµ) final state, having the same branching ratio as tau leptons due to
lepton universality. The inclusion of this process is particularly crucial when muons
or electrons are incorrectly identified as tau leptons in areas with additional jets
resulting from pileup.

• tt processes mainly refers to the common decay mode of top quarks into bottom
quarks and a W boson. Misidentification can occur in cases of leptonic and hadronic
decay of the W bosons, thus creating decay products that can similarly be found in
the signal process of eτ final state. This misidentification can be mitigated through
the identification of jets originating from bottom quarks and a part of the estimation
is covered by the FF method described below.

An alternative method for background estimation for processes involving genuine tau
leptons, not resulting from misidentification during reconstruction, is the τ-embedding
method [40] that utilizes the principle of lepton universality. This approach involves the
selection of an event containing a decay of a Z boson into two muons and the removal of
those from the event. The two removed muons are then replaced with two tau leptons
that are derived from the simulation accounting for the muon kinematics observed in the
event. The benefit of this estimation method is the inclusion of additional effects such as
pileup and detector effects directly from the measurement since they are more complex to
simulate and present a source of uncertainty. Another benefit is the resulting high number
of events that can be used for background estimation due to the high number of present
Z→µµ events. The events containing the background process, estimated by this method,
are assigned to a designated class for the machine learning application.

• Z→ττ process has its primarily contribution from the Drell-Yan process [41]. This
background process can only be distinguished from signal processes by the invariant
mass of the two tau leptons. As the decay of tau leptons includes neutrinos, which
cannot be directly detected by the CMS detector, the reconstruction of the correct
invariant mass poses an additional challenge of distinguishing from the signal processes.

Another technique used for background estimation directly from the data is the FF method
[42, 43]. It is used to estimate the below discussed QCD, W+jets, and tt processes, in
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which jets from quarks or gluons can be misidentified as hadronic taus. For the machine
learning application events that are derived by this method are assigned to a single class.
The method measures the number of events not contained in the signal region in which
hadronically decaying tau leptons would be identified similar to the signal region and the
number of events in which the criteria for a hadronically decaying tau lepton are present
but the reconstruction of it fails. The ratio of these two numbers defines the FF value,
which is determined separately in the QCD, W+jets, and tt-enriched process regions, which
are orthogonal to the signal region. The FF factors obtained in this way are combined and
applied as weights to events in the application region that correspond to the signal region
but where the criterion for a reconstructed hadronically decayed tau lepton has not been
met. The resulting number of events is then the estimate of the number of events in the
signal region in which jets are misidentified as hadronic tau leptons.

• W+jets process results in the potential misidentification of a jet as a hadronically
decayed tau lepton in combination with a leptonic decayed W boson, or the misiden-
tified jet as an electron and a hadronically decayed tau lepton from the W boson
decay in the eτ final state.

• QCD process includes the remaining processes that contain multiple jets and also
lead to the potential misidentification of jets as hadronic taus.

Minor background processes, such as the EWKZ and di-boson process contribute to
final states similarly as the other background processes by introducing vector bosons
which can produce similar final states as the signal processes due to misidentification
with additional jets from pileup that are always present in pp collisions. For the machine
learning application, both processes are assigned to a common class.

2.5. Systematic uncertainties considered for the eτ final state

An integral part of any analysis is the appropriate addressing of systematic uncertainties
as those contain effects that do not result from statistical fluctuations and the result of this
address leads to an understanding of the impacts on the analysis objective. Systematic
uncertainties are usually applied on histogram level resulting in a bin-wise upward and
downward variation of bin contents and thus can be referred to as systematic variations. The
application of such systematic variations can be achieved by two methods: the introduction
of correction weights modifying the bin content without changing the bin assignment of an
event, or through systematic shifts of specific quantities, e.g energy or momentum, and
the subsequent propagation of these changes resulting in a different bin assignment in the
analyzed distribution.
Systematic variations can affect the distribution to which they are applied in two ways:
affecting the shape of the distribution of interest while preserving the yield or changing
the yield without affecting the shape. In cases where both variations occur due to the
introduced systematic uncertainty, both variations are treated as fully correlated during
the statistical inference. In the following the main uncertainty sources of the eτ final state
of the 2017 data set which is considered in the Standard Model analysis are discussed.

Efficiency uncertainties comprises lepton trigger efficiencies including single lepton
triggers and cross triggers as well as the identification efficiency and tracking efficiencies
of tau leptons in the embedding samples. Electron identification efficiency and lepton
trigger efficiency introduce normalization uncertainties and are applied to yield estimations
derived from the MC and embedded samples. Tau lepton efficiency uncertainties comprising
identification, trigger, and tracking efficiency in embedding samples introduce normalization-
changing variation in specific transversal momenta regions or certain decay modes where
the combination of those uncertainties leads to shape and normalization-changing effects.
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FF method uncertainties introduce shape-altering effects that are arising from the usage
of this method for background estimation and are split depending on the correction from
QCD, W/Z/tt (+jets) events. Those uncertainties are divided into statistical uncertainties
that are derived from fit uncertainties and systematic uncertainties representing non-closure
corrections. A detailed derivation of individual uncertainties related to the FF method can
be found in [44].

Energy scale uncertainties introduce a shape-altering effect that is applied in the MC
data sets containing electrons, jets, tau leptons, and for missing transverse energy (MET).
In the case of events created with the embedding method, a mixing of energy depositions
in the calorimeters between tau leptons and previously cleaned muons might occur. Due to
this reason, the energy scale uncertainties for tau leptons are additionally correlated with
the MC samples per decay mode.

Bin-by-bin uncertainties introduce a shape-variation effect that originates from the
limited number of used Monte-Carlo generated events for background process estimation.
Those uncertainties are addressed as statistical uncertainties during the fit by the Barlow-
Beeston approach [45] and its further adaption [46] (Barlow-Beeston lite) producing
alternative shapes with the use of bin-associated errors simulating the statistical uncertainty
in each bin.

Re-weighting uncertainties account for the correction of missing higher-order effects
of matrix element calculation in Monte-Carlo simulated tt and Z → `` processes. A
re-weighting is applied for the transverse momentum for both processes. In the case of
Z → `` process an additional re-weighting correction is applied on the di-lepton mass.

Luminosity uncertainty affects the yield introducing a normalization variation of 2.6 %
for all MC generated events not affecting embedding events and events from the FF method
as they are derived directly from the measurement data.

Signal theory uncertainties comprises cross-section and branching ratio uncertainties
and introduces a combination of shape and normalization-changing effects that are applied
on single signal bins split into gluon fusion and vector boson fusion as defined by the
STXS stage 0 binning in [39]. Further splits are applied e.g. along the Higgs boson
transverse momentum scale, the number of jets, or the mass of two leading jets. Additional
uncertainties account for the migration between the distinct bins and addresses for missing
higher-order corrections from the MC simulations. Normalization uncertainties resulting
from the parton density functions are addressed separately for each of the chosen Higgs
boson production modes.

Lepton to τh fake rate uncertainty accounts for the misclassifications of leptons as
tau leptons and differentiates between the endcap and barrel region of the detector by
introducing a corresponding uncertainty each.

Prefiring uncertainty mitigates the issue of the CMS detector in years 2016 and 2017
where a timing drift in the forward calorimeter caused the objects from the level one trigger
to be assigned to previous events. This resulted in a lower efficiency as only one of three
consecutive events are recorded due to trigger configurations.

Further uncertainties account for background normalization uncertainties of e.g. Z+jet
events affecting the Z → `` process or shape-affecting variation in case of contamination of
tt events with embedded samples with two genuine tau leptons.

For the application on the selected data set in chapter 6 only the uncertainties applied by
the changing weights are considered since they are more advantageous for the calculation.
All systematic uncertainties that are used for the application are given in appendix C. The
collection does not include i.e. energy scale uncertainties, bin-by-bin uncertainties, or other
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uncertainties that cannot be applied according to the above procedure of re-weighting. The
following paragraph will shortly describe the abbreviation pattern of the used uncertainties
that will be utilized and partly shown in the application step in chapter 6.
The selected uncertainties are distinguished by the corresponding in-, pre-, or suffixes,
e.g. the uncertainties derived from the FF method which are identified by the _ff_ infix.
Theory uncertainties are distinguished by their Higgs production mode, including gluon
fusion (_ggH_) and vector boson fusion (_qqH_, _vbf_), separating between correlated
uncertainties between experiments (THU_) and non-correlated uncertainties for the CMS ex-
periment (CMS_). Uncertainties on the parton density function are introduced with the pdf_
prefix each. Systematic uncertainties accounting for trigger or cross trigger (_trigger_,
_xtrigger_) efficiencies (_eff_) are further separated between electron (_l_) and tau
leptons (_t_) of the eτ final state (_et_). The latter are also differentiated according to
their decay mode derived from the DeepTau algorithm. Efficiency uncertainties on electron
identifications are summarized as one uncertainty with the _e suffix, while tau lepton identifi-
cation is additionally differentiated by pT regions, including [30, 35, 40, 500, 1000, inf] GeV/c
bins, and are similarly introduced for embedding events (_emb_). Efficiency uncertainties on
the reconstruction from the HPS algorithm are denoted by the corresponding decay mode,
as indicated by the Prong infix including the number of charged hadrons in the beginning
and the presence of π0 at the end. Both introduced process re-weighting uncertainties are
distinguished by the corresponding suffixes: _dyShape for the Drell-Yan and _ttbarShape
for the tt process. Luminosity and prefiring uncertainties are combined into one uncertainty
each, indicated by the lumi_ prefix and _prefiring suffix respectively. Cross-section
uncertainties are denoted by xsec, for example, the cross-section uncertainty of the Z+jet
process (zjXsec). Uncertainties accounting for the fake rates of electron misidentification
as tau leptons (_fake_) are separated into the barrel (_BA_) and endcap (_EC_) region
uncertainty.



3. Statistical inference in high energy
physics

This chapter presents the basic methodology for statistical inference used for the retrieval
of parameters and their associated uncertainties from a statistical model. Additionally, the
utilization of quantities obtained from a machine learning approach is discussed together
with its usage for statistical inference. Further, the structure of neural networks that are
used in this work is given and an optimization strategy is outlined with a presentation of a
method for the computation of an optimal training objective.

3.1. Statistical model and parameter estimation

The data obtained from the measurement, as described in chapter 2, is used to determine
certain physics processes chosen depending on the analysis objective. Starting from a
counting experiment, the measurement can be represented in form of cross-sections σX when
accounting for the given Luminosity and compared against the standard model expectation
σSM. The ratio of these cross-sections (equation 3.1) is defining the signal strength µ.
The uncertainty on µ is given by σµ and is described by the confidence interval including
statistical uncertainties or a combination of statistical and systematic uncertainties if those
are included in the consideration.

µ = σX

σSM
. (3.1)

The estimation of the signal strength is conducted by maximizing the likelihood function
which represents the probability of measuring {x1, x2, ...xN } events given a probability
density function (pdf) p that depends on {θj} parameters, with µ ∈ {θj}. The difficulty of
this method is that the pdf p(xi|{θj}) is intractable in high energy physics and therefore
a priori not known. This problem is mitigated by the usage of the Monte Carlo method,
by simulating particle collisions for the experiment in order to retrieve an estimation of p.
The simulated events can be summarized in histograms providing the physics expectation
for chosen quantities such as the invariant mass. In combination with the conducted
measurement, the statistical inference step can be applied, retrieving µ ± σµ. For this
approach, the content of every bin i of a histogram is viewed as an independent counting
experiment that follows the Poisson distribution (equation 3.2), described by the number
of observed events ni given the expectation λi per bin i. The expectation in each bin is
composed of the number of expected background and signal events from the simulation
with the signal events being weighted by µ. Thus the Likelihood function to observe a set
of specific bin configurations can be constructed as a product of the Poisson distributions
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of all bins as done in equation 3.3. The resulting Likelihood is then only dependent on µ
and the total number of observed events N .

P (ni|λi) = λni
i

ni!
e−λi , (3.2)

L (N, µ) =
Nbins∏
i=1

P (ni|µsi + bi) . (3.3)

The parameter of interest (POI) µ and its uncertainty σµ is determined by minimizing the
negative logarithm of the likelihood function and determining the 68 % confidence interval.
This approach tends to be more stable than the maximization of the direct likelihood
consisting of probabilities that usually have small numbers. This then addresses only the
statistical uncertainty of µ that is accounted for by the Poisson distribution. The inclusion
of systematic uncertainties is accomplished by the introduction of additional nuisance
parameters (NP), that are denoted as {θj}, which affect the signal and background expecta-
tions. Equation 3.3 is thereby extended to equation 3.4, accounting for the effects of the NP
on the processes and multiplying the pdf {Cj} that is chosen for each nuisance parameter
individually e.g. as the log-normal distribution in case of normalization uncertainties.

L (N, µ, {θj}) =
Nbins∏
i=1

P
(
ni

∣∣∣µsi ({θj}) + bi ({θj})
) M∏

j=1
Cj

(
θj

∣∣∣µθj
, σθj

)
. (3.4)

The confidence interval σµ can then be derived from the compatibility of the best-fit value
µ̂ with other possible µ values, which corresponds to an inverse hypothesis test. According
to Neyman and Pearson [47], the most powerful test statistic is given by the ratio of the
likelihoods of two hypotheses as sown in equation 3.5, where {θ̂j}µ corresponds to the
best-fit values of the nuisance parameters at a fixed µ.

λ =
L
(
N, µ, {θ̂j}µ

)
L
(
N, µ̂, {θ̂j}

) . (3.5)

According to Wald [48] and Wilks [49], in the asymptotic case of large sample sizes and
negligible nuisance parameter effects, λ can be approximated by a χ2

k distribution, where k
is defined as the difference of the number of degrees of freedom between two hypotheses
and in case of only one parameter of interest, k would correspond to one. For the non-
asymptotic case, the best-fit value µ̂ and the corresponding 68 % confidence interval σµ

can be determined numerically by profiling the negative logarithm of equation 3.5.
The procedure of profiling is illustrated in figure 3.1 and is exemplified for one nuisance
parameter θ. The negative log-likelihood (NLL) − ln L(N, µ, θ) is shown as a surface in
gray with the µ dependence in the x dimension and θ dependence in the y dimension.
The blue dashed line corresponds to the NLL, with a similar form as equation 3.3, having
a dependence on θ but without its consideration during the variation. In this example,
this θ dependence is fixed to a value resulting in a slice of the likelihood surface that
contains the global minimum in order to focus on the effects on σµ that are introduced
by the consideration of θ. Since θ is usually not known when not explicitly considered in
the likelihood, the overlap of the global minima and the minima given by the slice is not
necessarily guaranteed. The dashed red line in the figure demonstrates the profiling of
θ in the L(N, µ, θ) surface at a given µ within the shown interval. At each point of µ, a
minimum in the θ plane is determined. Fulfilling the condition infθ (− ln L(N, µ, θ)) for
all µ within the shown interval then leads to a slice in − ln L(N, µ, θ) that deviates from
the blue dashed line, resulting in a lower NLL value at the same µ when not evaluated at
the global minimum. This observation is visualized by the projection to one dimension,
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θ

µ

µ̂− σ−µ̂
µ̂

µ̂+ σ+
µ̂

−2
ln
L (
N
,µ
,θ̂
µ
)

L (
N
,µ̂
,θ̂

)

0

1

2

− lnL(N,µ, θ̂µ)

− lnL(N,µ)

− lnL(N,µ, θ)

Figure 3.1.: Illustration of an exemplary negative logarithm of a Likelihood function
with incorporated signal strength µ and a nuisance parameter θ dependence shown as a
gray surface with larger values at the edges and a global minimum that is indicated by
the black point. The blue dashed line shows the minimization in one dimension which
corresponds to the case of no present nuisance parameters, thus the interval (horizontal
lines) of the projected profile (solid blue) line represents the statistical uncertainty. In red
the effects of the present nuisance, the parameter is profiled out for each µ which results
in a widening of the projected profile and increased uncertainty, containing statistical
and systematic uncertainty. The uncertainty is indicated by the µ̂ ± σ±

µ̂ ticks on the µ̂
axis that projects to the height of one of the projected profiles on the z axis (−2 ln λ).

shown by the solid blue and red non-straight lines, with the same minimum, leading to
the same µ̂ in this example. The confidence interval of µ̂ is indicated by the blue and red
straight lines, which are determined by the values of the NLL scans at a height of one,
leading to a lower (higher) σ−

µ (σ+
µ ) uncertainty on µ̂. As can be depicted from these scans

the uncertainty on µ̂ increases upon the consideration of θ describing the statistical and
systematic uncertainty on µ̂ whereas in comparison the blue scan describes the statistical
only uncertainty on µ̂.
The study of the effects of the nuisance parameters on the uncertainty of the estimated
signal strength and potential optimization of the analysis is performed blind, without
knowledge of the measured data utilizing an Asimov data set [50, 51] as a replacement.
The Asimov data represents the expectation value, thereby guaranteeing the independence
from statistical fluctuations for the statistical inference, resulting in µ̂ = 1, and is also used
for the machine learning application which is discussed further in the next sections.
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3.2. Feed forward neural networks

The application of the statistical inference using the statistical model described by equa-
tion 3.4 requires provided values of process expectations and the performed measurement.
Those values can be extracted from physical quantities that can discriminate well between
the processes, e.g. the invariant mass. Including additional quantities may enhance this
discrimination and further improve the result of statistical inference. The limitation of this
approach, however, is given by the finite number of simulated and performed measurements
leading to low-populated bins e.g. in the case of multidimensional histograms.
A possible solution to the problem of high dimensionality can be a function f that maps a
set of dimension RN×M to a set with the dimension RN×C , where N represents the number
of events present in a given data set and M the number of considered physics variables
retrieved from those events. The best approach to finding the appropriate function for
the mapping between two finite-dimensional spaces is given by utilizing a neural network
(NN) as it can approximate any function if sufficiently many free parameters are provided
for the representation [52]. The NN is then capable to reduce those M numbers of given
variables to C ML-derived variables, with C < M or a single number (C = 1), while ideally
maintaining correlations between the provided M variables. In the case of simulated events,
the physics process leading to the specific ML-derived variable is known and is associated
by a corresponding label in the data set. Those variables and labels can subsequently be
used in the statistical model e.g. equation 3.4 for the inference step, replacing physical
quantities with the condensed information contained in a single or a handful of ML-derived
variables which are summarized into one or two-dimensional histograms, circumventing the
problem of high dimensionality.
The type of NN that is utilized by the CMS Standard Model H→ττ analysis and used
throughout this work is a Feed Forward NN, which comprises several artificial neurons [53]
that are organized into l layers. All neurons in a layer are connected to each neuron in the
subsequent layer, and the information from M variables (NN input) is thereby propagated
through the complete NN, ending with the NN output as the output of the neurons from
the last layer. Those neurons are specifically referred to as NN output nodes to distinguish
them from the neurons used in the hidden layers, which are defined as the layers between
the NN input and the NN output nodes. The information propagation of a single neuron
in layer l is described by equation 3.6 where the outputs of the neurons from the previous
layer {x

(l−1)
i } are multiplied by the weights {w

(l)
i } of the current layer l. Additionally, a

bias value b
(l)
i of the current layer is added to the sum of the Oi products. The resulting

value is then transformed by a non-linear activation function ϕ and is used as input for the
neurons in the subsequent layer:

x
(l)
i = ϕ

 Oi∑
j=1

w
(l)
ij x

(l−1)
i + b

(l)
i

 . (3.6)

The choice of non-linear activation functions ϕ is made for each layer of the neural network.
The rectified linear unit (ReLU) [54, 55] as depicted in equation 3.7 is preferably used as the
activation function for hidden layers as it tends to show better performance in comparison
to symmetric activation functions e.g. tangent hyperbolic function [56]. For the activation
function of the NN output layer, the Sigmoid or Softmax function is typically applied,
depending on the number of present neurons as both have a codomain of [0, 1]. The
Sigmoid function (equation 3.8) can be applied for binary classification tasks, differentiating
between two processes. The statistical inference is then performed on a one-dimensional
histogram of the NN output.
In contrast, the Softmax activation function (equation 3.9) is used in presence of multiple
NN output nodes, representing the number of classes (Cclass) that are targeted by an
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analysis. The softmax function further applies a normalization between all classes for
each event propagated through the NN, allowing for an interpretable probabilistic class
association of the NN output. The Softmax codomain thereby consists of Cclass numbers
in the [0, 1] interval for each class.

ReLU(x) =
{

x if x > 0 ,

0 else
, (3.7)

Sigmoid(x) = 1
1 + e−x

, (3.8)

Softmax(xc) = exc∑Cclass
i exc

for c ∈ {1, 2, ...Cclass} . (3.9)

As the H→ττ analysis performs a differential measurement of the Higgs production assigning
the production modes to unique classes on top of the background classes, the Softmax
activation function is used for the present multiple output nodes. After the training, which
optimizes the weights of the NN, and is discussed further in the following section, N events
are propagated through the NN resulting in Cclass ML-derived variables given by the NN
output nodes. To avoid double counting only the nodes with the maximal output values are
used for the statistical inference process. The NN output node with the maximal numerical
value is used as the assignment of the propagated N events to one of the Cclass classes.
The position within the resulting class histograms is then determined by the numerical
values. The resulting Cclass histograms after the summarization of N events are then used
in the statistical inference to retrieve µ ± σµ as discussed in section 3.1.

3.3. Neural network optimization

The optimization of the NN is conducted through an iterative process referred to as training.
The weights {wij} and biases {bi} of the NN are initialized randomly according to the
Glorot normal method [57]. The iterative optimization of the weights and biases utilizes the
method of gradient descent [58], by calculating the gradient of a loss function with respect
to the NN weights and biases. The loss function is selected as the training objective and
reduces the NN output to a scalar and serves as a metric for optimization with decreasing
values for a successful training process, leading to a minimum in the parameter space of
the NN weights and biases.
A common choice for the loss function in presence of multiple classes is the categorical
cross-entropy, which can be depicted in equation 3.10 and will be referred to as CE. The CE
function considers the number of classes for N events and calculates the score of the class
assignment given by the data set corresponding to y

(c)
i in an ideal case, and computes the

logarithm of those NN prediction f(xi)(c). The class assignments y
(c)
i thereby have the value

of one for a specific class c and are zero otherwise. The weights for the individual classes,
denoted as w(c), are given by the data set. They indicate the importance of the contribution
of individual events to the total loss or can be chosen to mitigate an imbalance of events
from different classes used for the training. The training on CE in combination with the
Softmax activation function can be interpreted as the maximization of the likelihood of
finding an event xi in the corresponding class c. The minimization of CE loss improves
the certainty of the NN upon an event classification leading to an event separation in the
introduced number of classes in an optimal training result.

LCE = −
Cclass∑
c=1

w(c)
N∑

i=1
y

(c)
i log

(
f(xi)(c)

)
. (3.10)

In the case of binary classification problems, the separation of two processes, such as
one signal and one background process, can be achieved by maximizing the distance of
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those processes in the codomain of the activation function, with the Sigmoid function as a
commonly used option. The computation of the training objective can be accomplished
by modifying the CE loss for the binary case consisting of two classes Cclass = {0, 1} as
shown in equation 3.11. This special case will be referred to as binary cross-entropy (BCE).
The logarithm of the NN output can thereby be interpreted as the probability of an event
corresponding to one of the two classes, with increased probability for events that are
classified close to the class values of one (P (yi = 1) = f(xi)) or zero (P (yi = 0) = 1 − f(xi))
that are given by the yi labels, derived from the data set. The weights wi of an event are
corresponding to the two class weights and are chosen with the same reasoning as w(c) in
CE.

LBCE = LCE

∣∣∣∣
Cclass={0,1}

= −
N∑

i=1
wi [yi log (f(xi)) + (1 − yi) log (1 − f (xi))] . (3.11)

The choice of the loss thereby provides the measuring of the difference between the current
NN output prediction and a target given by the label yi. This difference is successively
minimized by the optimization process by adjusting the NN weights and biases. The
optimization step t involves the gradient computation and is carried out on the computed
loss from all N events for each epoch, or multiple times on the loss derived from successively
propagated subsets of N ′ events with 0 < N ′ < N of the full training data set. The first
approach is referred to as full-batch training, whereas the latter, that utilizes a split
of the training data set into subsets, is referred to as mini-batch training. During the
event propagation through the NN and the computation of the loss (forward pass) all
applied operations for each event are stored in a computational graph. In the following
backpropagation, the numeric computation of the derivatives of the previously applied
operations is performed in the backward direction through the created graph (backward pass)
utilizing the automatic differentiation of PyTorch package [59]. This calculation can be
exemplarily expressed as a chain rule application, shown for weights wij in equation 3.12,
starting with the derivation of the loss L at the optimization step t (L(t)) with respect
to the NN output, denoted as f(x), followed by the derivative of the NN output with
respect to the activation function of the last layer l (ϕl) and ending with the last derivative
with respect to the selected weights wij . This resulting gradient is then multiplied by
the learning rate η, which scales the performed gradient step. The product is then used
as a correction for the weights at the current epoch w

(t)
ij as shown in equation 3.13. An

analogous procedure is applied for the biases bi.

∂L(t)

∂wij
= ∂L(t)

∂f(x)
∂f(x)
∂ϕl

∂ϕl

∂x
(l−1)
i

· · · ∂ϕi

∂wij
, (3.12)

w
(t+1)
ij = w

(t)
ij − η · ∂L(t)

∂wij
. (3.13)

This optimization process can be further improved by utilizing enhanced optimization
algorithms, such as Adam [60] or NAdam [61, 62]. These algorithms change the basic
gradient descent method by replacing the gradients in the product with the learning rate
by adaptive moments. Those are calculated with the usage of the computed gradients and
lead to faster convergence of the optimization process. Specifically, the Adam optimizer
utilizes the gradient of the current epoch in its calculation of moments, while NAdam
also incorporates the gradient from a previous epoch. This combination of gradients from
the current and previous optimization steps results in an adjusted momentum, known as
Nesterov momentum, that can further improve the optimization process.
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3.4. Neural network optimization on the analysis objective

Both training objectives discussed in section 3.3 are commonly used in physics analysis and
aim toward process separation. The resulting distributions exhibit process-enriched bins
when summarized into histograms, thereby inherently leading to a reduction in statistical
uncertainty upon the application of statistical inference. The important point however is
that this reduction of statistical uncertainty is only a byproduct of the chosen training
objectives and is not explicitly targeted during the training. Also, neither of those training
objectives addresses systematic uncertainties that are present in an analysis.
In this regard, selecting σµ as the new training objective is an optimal choice, as it aligns
with the analysis objective, addressing the statistical and systematic uncertainties of µ,
thereby making the training uncertainty-aware. This consistency between the training
and analysis objective is thereby of uttermost importance as it enables the learning of an
appropriate dimensionality reduction of the M variables by the NN.
The utilization of σµ as a training objective rises the necessity of an analytical calculation
of σµ, since the presented numeric approach of profiling, as described in section 3.1, is
not applicable for the backpropagation. An asymptotic estimation of σµ can be obtained
from the calculation of the Fisher information [63] as depicted in equation 3.14, where the
calculation corresponds to the expectation of the Hessian matrix of NLL by calculating the
second order derivative of NLL with respect its parameters µ and {θj}.

Fij = E

( ∂2

∂xn∂xm

[
− log L (N, µ, {θj})

])
xn,xm={µ,{θj}}

 . (3.14)

The denoted expectation is addressed through the utilization of the Asimov data set and
the full-batch training, as this approach improves the asymptotic estimation with the
increased sample size used for the calculation. With this ansatz, the covariance matrix
can be obtained by inverting the calculated Hessian matrix as it corresponds to the Fisher
Information, resulting in the estimations of the variances for µ and θj given by

Vii = (Fii)−1 . (3.15)

The utilization of the likelihood in this estimation is thereby asymptotically efficient,
ensuring that the estimation approaches the Cramer-Rao bound [64, 65]. By construction
of equation 3.14, the uncertainty σµ corresponds to the square root of the first diagonal
element of the covariance matrix

√
V11 and provides the confidence interval on µ.

The thereby conducted calculation steps leading to the estimation of σµ provide a tractable
gradient that is utilized by the backpropagation for the weight optimization as described
in section 3.3. The only step in this calculation that poses a problem is the histogram
creation step since the gradient of a histogram is not well defined for optimization purposes.
A solution to this problem can be the introduction of a custom function that replaces
the corresponding inapplicable gradient of the histogram, represented by a derivative in
equation 3.12 during the backpropagation. A further discussion upon the choice of the
appropriate custom function as the replacement will is presented in section 4.2.





4. Studies on a pseudo experiment for
binary classification

This chapter introduces the general procedure for the performed pseudo-experiment studies,
that have been used for this, and the next chapter, by defining the used data set for the
binary classification and the neural network architecture as well as the general training
procedure. Subsequently, an issue associated with calculating the signal strength uncertainty
on binned NN output for weight optimization is demonstrated. An additional modification
to the existing approach is presented to mitigate this problem and enable the extension of
the training to more complex classification tasks e.g. the reduced CMS Standard Model
H→ττ analysis that will be described in chapter 6. Given this modification, the uncertainty-
aware training on σµ as discussed in section 3.4 is then compared to the classical training
on BCE loss in a simplified example. In the last step, a Taylor Coefficient Analysis (TCA)
of the NN output function is conducted to highlight the differences in the NN response
upon a performed uncertainty-aware and BCE training.

4.1. Neural network and experimental setup

The pseudo experiments in this and the following chapter consist of multiple processes
that are each synthetically generated with 105 events from two-dimensional Gaussian
distributions with a covariance matrix represented by a two-dimensional identity matrix.
The processes are distinguished by their predefined expectation values and their normal-
ization. For binary classification, the expectation value of the signal process is set to
(x1, x2) = (0, 0), and the background process to (x1, x2) = (1, 1) as shown in figure 4.1. The
normalizations are chosen to represent the case of 50 signal and 1000 background events
for the statistical inference and uncertainty-aware training. The introduced shape-altering
systematic variation changes the position of the background distribution in the x2 by ±1.
For the training, the generated data set is divided into two halves, one half is used for
weight optimization, and the other half for validation. The training results are evaluated
on an independently generated test data set that is not further divided and contains a
total of 2 · 105 events.
For the classification of signal and background, a fully connected feed-forward NN with a
single hidden layer of 100 nodes and an applied ReLU activation function is used. The NN
weights and biases are randomly initialized using Glorot normal initialization [57]. The
number of input nodes, output nodes, and the activation function of the output layer will
vary depending on the data set and considered task. The variables x1 and x2 are chosen as
the inputs to the NN. For the binary classification the number of NN output nodes is set
to one, for which the Sigmoid function is selected as the final activation function.
A full batch training is applied, with the consequence of one performed gradient descent
step per epoch. The use of full batch training, instead of the commonly used mini-batches,
is necessary to achieve the best asymptotic estimation of the covariance matrix and the
associated uncertainty on the signal strength, as discussed in chapter 3. The training
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Figure 4.1.: A representation of the signal and background processes that are obtained
from 105 events following a two-dimensional Gaussian distribution with a unity matrix
used as covariance matrix. The mean values to model the distributions are (x1, x2) = (0, 0)
for signal and (x1, x2) = (1, 1) for background. Systematic variations of the background
process are shown as dashed and dotted lines for the ±1 shift along the x2 axis.

starts with a "warm-up" phase of 300 epochs, which uses BCE as the training objective
and will be further motivated in the following sections. After the warm-up phase, the
training objective is changed to σµ and stops after no improvement on the validation set
is achieved for 1000 consecutive epochs. This stopping criterion will be referred to as
patience with additional number of chosen epochs. The NN weights of the epoch with
the best performance on the validation data set are saved and applied to the test sample
after training. Further, NAdam is selected as the optimizer with a learning rate of 0.001
during the warm-up phase and 0.01 during the training on σµ. This setup will be used
for the application steps and the comparison between the classic training approach and
uncertainty-aware training unless stated otherwise.

4.2. Discretization of the neural network output

The discretization of the NN output for the calculation of σµ poses a challenge for weight
optimization since the gradient of a histogram bin is either zero or infinity. Therefore the
backpropagation, as described in chapter 3 cannot be based on a naive gradient calculation.
To address the issue of the inapplicable backpropagation, two approaches can be taken.
The first option, for approximating the histogram bin-wise with a differentiable function
[66] has the disadvantage of training only on an approximation of the analysis objective.
An alternative approach, which is adapted in this work, involves the replacement of the
histogram gradient in the backpropagation step with a custom function [3] and not altering
the calculation of the analysis objective in the forward path.
One option for the custom function is to use a constant non-zero gradient across the entire
histogram, effectively skipping this step in the backward pass and introducing only a scaling
factor for the final gradient. This approach has the caveat that during the training the
used optimizer cannot derive information from the change of the NN output for events
inside of bins unless a given event undergoes a change in the bin assignment.
Therefore, a more sophisticated modification to the backward pass is applied, by replacing
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the histogram gradient with a custom function as proposed in [3]. To demonstrate the
effect of this proposal and its future modification, the setup as described in [3] is chosen
for a better comparison of the influence on the training upon the choice of the custom
function. The setup further utilizes the Adam optimizer with a learning rate of 0.001. The
replacement function for the histogram gradient is built up from the gradients of Gaussian
distributions with the standard deviation equal to half of the bin width and the bin center
as the mean. The substitution is performed bin-wise, and the resulting bin gradients are
combined into a total histogram gradient.
This procedure is illustrated for 20 individual samples in figure 4.2a, where the first line of
the figure shows the NN output as vertical lines, indicating the predicted numerical value of
the NN, lying between zero and one. The figure below summarizes those 20 samples in form
of a histogram, that is further used for the Likelihood calculation in the forward pass. The
following blue lines below the histogram correspond to the custom functions used for the
replacement of the bin gradients in the backward pass. Each bin gradient thereby exhibits
maxima at the bin edges with a sign flip within each bin and are approaching zero outside
the corresponding bin. The total histogram gradient, as a combination of those gradients,
is shown at the bottom in form of an orange line and is used in the backpropagation as
a replacement for the histogram gradient. The calculation of the histogram gradient is
conducted by performing a summation of all bin gradients. From the overlapping extrema
of each bin gradient, the sum exhibits low amplitudes in the central bins of the histogram
and maxima at the edges.
To illustrate the effect of this custom function in the backpropagation, the evolution of the
NN output f(x) for 50 randomly picked signal and background events is tracked during
the training, as shown in figure 4.2b. The figure is vertically divided by the dashed line
at epoch 300, indicating the training on BCE loss in the warm-up phase, followed by the
training on σµ and the black horizontal lines correspond to the bin edges of the histogram
used to summarize the the NN output. The evolution of the NN output shows a signal
and background process separation during the warm-up phase, populating all bins of
the histogram. After the warm-up phase, a steep aggregation of events into a few bins
is observed, followed by oscillations that spread the NN classification. This oscillation,
however, does not lead to a redistribution of the events into more bins, leaving the remaining
bins of the histogram unpopulated for the remaining training.
Figure 4.2c shows the loss evolution for the corresponding training procedure and is divided
into two parts: the upper part of the figure shows the evolution of the BCE loss, whereas
the lower part shows the evolution of σµ loss. The training is performed on BCE during
the warm-up phase and on σµ afterward. The solid blue line shows the training loss and
indicates the switch from BCE to σµ by the dashed vertical black line at epoch 300. The
validation loss, which is calculated for both losses at each epoch, is shown by the orange
lines and is further divided into two parts, indicating its usage for the validation step as a
solid line and a calculation only for the illustrative purpose in form of a dotted line. As
observed, the evolution of the BCE loss decreases during its usage in the warm-up phase
and is followed by a steep increase after the switch leading to a plateau after epoch 400.
The σµ loss, on the other hand, exhibits a short-term fluctuation before settling into a
plateau that lasts until the end of the warm-up phase. Afterwards σµ decreases briefly and
shows erratic behavior for the remaining training.
The observed separation between signal and background processes during the warm-up
phase, as the result the training on BCE, also reduces the σµ as indicated by 4.2c. A good
separation of signal and background events, which leads to the enrichment of events in the
lowest and highest bins of the histogramming NN output, is maximized after a fraction
of the warm-up phase, as indicated by the emerging plateau in the σµ evolution. Further
adjustments to the NN weights do not affect σµ as the focus of the NN optimization shifts
to the adjustment of event position inside the central bins, which poses only a minor
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Figure 4.2.: The bin-wise calculation of the histogram gradient as proposed in [3] is
shown in (a) for 20 individual random samples. The evolution of the NN classification of
50 randomly chosen signal and background event each is displayed in (b) for the complete
full training. The end of the BCE warm-up phase is indicated by the dashed line at epoch
300. The loss evolution of the training (c) also indicates this switch. The loss evolution is
further split into the BCE loss (top) and σµ loss (bottom). The dotted line indicates the
computed validation loss that is not used for the validation step and switches from σµ to
BCE after the warm-up phase. Further information is provided in the text.

contribution to σµ.
After the completion of the warm-up phase, a collapse of events into fewer bins occurs
during the next 50 epochs where the minimum of σµ is found. Since this collapse mainly
moves the background events up to the signal events, the BCE value increases, indicating a
misclassification from the perspective of BCE that is not further affecting the training. The
distribution after this collapse however does not necessarily correspond to an unambiguous
absolute minimum of the training process, as demonstrated by the subsequent jumps in σµ

loss and the attempts to redistribute events into neighboring bins as shown in figure 4.2b.
The phenomenon of the NN output function f(x) collapsing into very few bins is thereby
independent of the exact configuration of the warm-up phase. Training without a warm-up
phase does not show a prominent collapse since the events are located inside the central
bins of the histogram at the start of the training due to the NN weights initialization and
the usage of Sigmoid as the final activation function. Their movement throughout the
training however remains grouped within a few bins showing a similar erratic loss evolution
but at a slower pace. The exact number of populated bins and their position is task-specific
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Figure 4.3.: Shown are the same quantities as in figure 4.2 differ in the bin-wise calculation
of the histogram gradient, as shown in (a) by the introduction of the maximum affecting
range of each bin gradient. This modification further affects the NN classification that
does not result in the collapse into a few bins after the warm-up phase (dashed black line)
as shown in (b) for the same 50 randomly selected signal and background events as in
figure 4.2b. The corresponding loss evolution, shown in (c) indicates a stable training in
comparison to figure 4.2c with a minimum at epoch 459.

and further depends on the weight initialization.
With such a collapse or the absence of a spread of events, the optimal minimum may not
be found without a warm-up phase, as the performed search requires a persistent spread
across all bins. In the following, a modification to the custom function is proposed that
replaces the gradient during backpropagation with the goal to mitigate the collapse of the
NN output function into a few histogram bins. This modification still relies on the gradient
of a Gaussian distribution, but restricts its range to each corresponding bin boundary,
thereby only locally affecting events within each bin. The impact of this modification on
the total histogram gradient is shown in figure 4.3a. In contrast to figure 4.2a no long-range
effects occur that affect the amplitude of the total gradient that shows the same maximal
amplitude for bins in the center of the histogram as well as the outermost bins.
The backpropagation that contains this modification leads to a better distribution of events,
reducing the tendency of NN outputs aggregation in only a small number of bins, as shown
in figure 4.3b. This allows for a more stable search for an optimal result. The found
loss of 0.382 in this course (figure 4.3c) is numerically comparable to the minimal loss of
0.388 found with the previously proposed modification of the backpropagation. The main
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Figure 4.4.: Evolution of the momentum of the NN output node (blue) and all other
nodes (gray) of the used NN. The in [3] proposed histogram gradient used during the
backpropagation is shown in the top part and its modification as discussed in the text
and illustrated in figure 4.3a is shown at the bottom. A window of [240, 360] epochs is
zoomed out to indicate the major difference of both gradients after the switch from BCE
to σµ loss during the training. The shown range on the y-axis varies between the figures
as the amplitude differs between both histogram gradients.

differences between the two approaches are the event distributions and the fact that with
the previously proposed modification the optimal solution is only found during the collapse
phase. With more complex data sets or additional uncertainties, the search for an optimal
solution might take much longer and turn the search during the collapse phase unfeasible.
The training procedure, as stated above, uses the Adam optimizer where the weights are
updated by utilizing the adaptive momentum as shown in equation 4.1. Therefore, the
collapse can also be examined by observing the momentum during the optimization process.
The estimation of this momentum mt is calculated for each weight in the NN after an
epoch t for the full batch training by performing a sum of the momentum from the previous
epoch mt−1 (m0 = 0) multiplied by a constant decay rate β and the gradient of the current
epoch gt weighted with (1 − β). The decay rate is chosen to be 0.9.

mt = βmt−1 + (1 − β)gt . (4.1)

In figure 4.4, the evolution of the momentum of the NN output node is shown to indicate
the differences between both custom functions used for the histogram gradient replacement.
The momentum of the NN output node is indicated by the blue line, whereas all other
neurons are shown in gray to indicate the general trend of the evolution. Both variants of
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Figure 4.5.: Evolution of the NN classification of one selected signal and background
event during the course of the training. For the training, the Adam optimizer was replaced
by the NAdam and the learning rate after the warm-up phase was increased from 0.001
to 0.01.

the used histogram gradients show an increase in momentum shortly after the warm-up
phase. The increase for the unmodified custom function (top) is about a magnitude larger
than the momentum of the modified custom function (bottom) that is used for the gradient.
In both cases, the momentum is decreasing shortly afterwards, but while the momentum
of the modified gradient returns to the previously observed magnitude, the decrease in
the unmodified gradient overshoots, followed by oscillations with amplitudes that exceed
magnitude values up to 20. In comparison, the magnitude of the momenta of the modified
custom function does not exceed 3 · 10−3 after the initial increase of up to 7 · 10−3. This
oscillatory behavior can also be observed for the momenta of the other weights. In the
case of the modified custom function that is used for the gradient replacement, a more
independent evolution of the remaining momenta is observed after a decrease around epoch
400. From this observation, it can be concluded, that a reduction of the collapsing effect,
caused by the introduction of the unmodified custom function for the histogram gradient,
can be achieved and stabilize the training procedure as indicated by the evolution of the
momenta. This enables further weight optimization after the warm-up phase, achieving an
optimal result, as can be observed for the lower figure after epoch 400, where the optimizer
further adapts several weights to the new training objective.
As a final step, in addition to the modification of the proposed function for the histogram
gradient, an increase in the learning rate and the change of the optimizer from Adam
to NAdam is applied. Thereby enhanced event movement improves the search for the
optimal minimum by increasing the exploration of more bin combinations in order to find
an optimal distribution of signal-enriched bins and a minimal effect from the systematic
variations. NAdam incorporates the gradient from the previous optimization step gt−1 in
addition to the current gradient gt in the calculation of the momentum mt. This extension
of the calculation of the momentum provides the possibility to incorporate information
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about different bin configurations in case of an undergone bin change of specific events
between t and t − 1. Since the numeric change in the σµ loss only occurs by a performed
bin change of at least one event the introduction of an increased learning rate accelerates
the rate of performed bin changes. The effect of those changes is illustrated for one signal
and one background event in figure 4.5.
As this problem of the discretization of the NN output is fundamentally caused by the
choice of the function that is used for the replacement of the histogram gradient it is not
limited to the specific data set that is chosen in this chapter and can also be observed
e.g. on the ATLAS Higgs Boson Machine Learning Challenge data set [67] as shown in
appendix A.

4.3. Effect of the systematic-aware training on the neural network output
function

To evaluate the effects of the uncertainty-aware training, a comparison with a classical
training method is conducted by performing training using the BCE loss, following the
same procedure as described in section 4.1. The output plane of the best performing NN
from the BCE training on the validation data set is shown in figure 4.6a, along with the
mean values of the background, signal, and the up and down background shifts induced
by the systematic variation. As expected, the BCE training is agnostic to the presence of
systematic variations, as those are not incorporated into the training process. The training
results in a decision plane that indicates the optimal spatial separation between signal
and background. The nominal NN output of the best-performing NN, together with the
propagated up and down variations for signal and background, are shown in figure 4.6b and
used as inputs for the statistical inference to retrieve the signal strength with corresponding
uncertainty. This result is presented in the form of a likelihood scan, shown in figure 4.6c.
The blue scans represents the case of only statistical uncertainties (µstat = 1.00+0.36

−0.33), while
in red both statistical and systematic uncertainties are considered leading to the benchmark
value of

µstat+sys = 1.00+0.45
−0.44 .

Performing the uncertainty-aware training as described in section 4.1 leads to an identical
result of µstat = 1.00+0.36

−0.33 when considering only statistical uncertainties. Taking into
account both statistical and systematic uncertainties leads then to an improved result of

µstat+sys = 1.00+0.39
−0.37 ,

as can be seen in figure 4.7c. The shown values in the decision plane presented in figure 4.7b
can not be interpreted anymore as the probability of an event being associated with signal
or background, as for the BCE training. The order of bins is not relevant for the statistical
inference nor for the calculation of σµ, the observed enhancement of signal events on
the right side of the histogram does not indicate any inherent significance. Rather, this
distribution is a result of the initial classification of signal events being on the right side
after the warm-up phase. Similarly, the values around 0.5 in the decision plane (figure 4.7a)
that predominantly include the regions affected by the systematic variation in the used
data set should not be interpreted as an indication of the NN being indecisive about the
association of the events to be signal or background. It should be noted that the training
objective is to move background and signal events to create signal-enriched bins and
minimize the effect of the introduced systematic variation. Moving the background events
one bin away from the three signal-enriched bins seems to be sufficient separation, resulting
in a larger concentration of background events to the left of a value of approximately 0.5.
The movement of background events from the left of the histogram towards the central bin
can mostly be attributed to the not completely eliminated effect of event aggregation into
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Figure 4.6.: Results of the training on the BCE loss showing the decision-plane of the
best performing NN on the validation data set in (a), the histogram of the NN output of
the nominal and shifted signal and background processes in (b) and the likelihood scans
for the signal strength estimation in (c). The scans in blue shows the statistical-only
uncertainty, and in red the combined statistical and systematic uncertainty.
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Figure 4.7.: Results of the uncertainty-aware training. The same quantities as in
figure 4.6 are shown.

fewer bins as can be seen in figure 4.3b in the first 100 epochs after the warm-up phase.
Subsequently, two additional types of uncertainty-aware training can be performed: consid-
ering systematic variations that are induced by normalization uncertainties or the absence
of any systematic variations. An example for a normalization uncertainty can be given
in form of a 10 % up and down variation of the background process. This corresponds
to a weight correction factor of 1.1 (0.9) in case of upward (downward) variation for all
background events. The absence of systematic variations is achieved by calculating σµ

without the addition of any systematic variations laying the focus on the minimization of
the statistical uncertainty.
The loss evolution for the normalization-induced systematic variation is shown in figure 4.8a
and indicates, that the uncertainty aware-training is incapable of addressing this type
of systematic variation as it shows no further improvement after the warm-up phase. A
similar observation is seen for the case of an absent systematic variation in figure 4.8b,
showing that the best possible result of minimizing the statistical uncertainty of σµ is
achieved by BCE. The strategy of moving background events that create a systematic
variation out of signal-enriched bins is not applicable in case of normalization uncertainties
since every background event contributes to the normalization uncertainty. A shift of any
background event would also affect nearby signal events thus resulting in a worsening of
statistical uncertainty upon movement. In contrast, the presence of any sufficiently large
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Figure 4.8.: Loss evolution of the uncertainty-aware training in case of (a) 10 % uncer-
tainty in the normalization of the background process and (b) only statistical uncertainties.
The vertical dashed lines indicate the end of the warm-up phase. Evaluated dotted (inac-
tive) validation losses are not used for the validation step as discussed in section 4.2.

shape-altering systematic variation does not affect all events equally and forces the NN to
find a trade-off between an increase of the reduced statistical uncertainty as obtained during
the warm-up phase and the reduction of the uncertainty resulting from the systematic
variation. The determination of a sufficiently large shape-altering systematic variation
in the given example and the effects of the NN decision are investigated in the following
section.

4.4. Neural network decision taking in presence of systematic uncertainties
To identify the most influential input variables on the NN output function, either individually
or in combination with other variables, a TCA, as described in [68], can be performed. For
this analysis, only Taylor coefficients (TC) of the first 〈txi〉 and second order 〈txi,xj 〉 are
considered. The approach followed here deviates from [68] by not summarizing the TCs,
that are obtained from the test data set as the aim is set to the identification of specific
regions in the parameter space that are important for the NN decision.
The derived TCs from the test data set are used as weights for one or two-dimensional
histograms that are created from the NN input variables of the test data set. Thereby
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Figure 4.9.: Distributions of event coordinates weighted by their corresponding TCs with
(a) for 〈tx1〉 and 〈tx1,x1〉, (b) for 〈tx2〉 and 〈tx2,x2〉 and (c) for 〈tx1,x2〉. Filled histograms
in (a) and (b) as well as 1σ and 2σ contours in (c) visualize the signal and background
process. The unfilled histograms in (a) and (b) show the first (second) order TC in red
(blue). Each TC is further divided upon the used events for the TC calculation by unfilled
histograms with solid thick lines for all events, solid thin lines for signal events, and thin
dotted lines for background events. This separation in (c) is shown by three different
subfigures with a corresponding annotation.

resulting histograms are exemplarily created on the performed benchmark from section 4.3
and are shown in figure 4.9. The one dimensional histograms of 〈tx1〉 and 〈tx1,x1〉 TCs are
summarized in figure 4.9a, whereas the 〈tx2〉 and 〈tx2,x2〉 TC are summarized in figure 4.9b.
The 〈tx1,x2〉 TC is shown in form of a two-dimensional histogram in figure 4.9c. The filled
histograms in figures 4.9a and 4.9b correspond to the signal and background distributions.
These have been added for illustrative purposes to provide a context of the associated TCs
with respect to the events in the existing data set. For 〈tx1,x2〉 in figure 4.9c, the signal,
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and background processes are shown as 1σ and 2σ contours. Further, all histograms of a
figure are scaled by an arbitrary factor to display the relative difference between different
TCs of the same input variables.
The unfilled histograms in figures 4.9a and 4.9b show the first and second order TCs of
the x1 and x2 coordinates respectively with the red colored histograms indicating the first
order and in blue the second order TCs. The thick light red and blue unfilled histograms
represent the corresponding TCs that are created using all events of the test data set. TCs
that are created only using signal (background) processes are indicated by the unfilled
histograms with thin red and blue solid (dotted) lines. The filled histograms in figure 4.9c
are equivalent to the TC histograms from the one-dimensional distributions of figures 4.9a
and 4.9b. The separation of the TCs in figure 4.9c are given by three subfigures that show
TCs calcuated on all events in the upper subfigure, followed by the TCs that are calculated
using only signal events in the middle subfigure and TCs calculated on background events
in the subfigure at the bottom.
The high amplitude of the first-order TC relative to the second-order TC is partially
induced by the use of the ReLU activation function in the hidden layer. Due to this choice,
the second derivatives yield non-zero values only for the derivatives of the NN output node.
Based on figures 4.9a and 4.9b, the first derivative with respect to the given coordinates
appears to be most significant for the decision of the NN in the overlap region between
the signal and background process. Further, a distinction between signal and background
events of the first derivative can be seen with the maximal values being located closer to
the corresponding processes. Second-order TC display a definite process contribution, as
indicated by the sign flip in their distribution, where the sum of second-order TCs is close
to zero except in the vicinity of the mean of the corresponding processes, which exhibits
negative (positive) TC values for TCs from signal (background) events.
To investigate the effect of the uncertainty-aware training on NN output function the
described procedure for the creation of the TC histograms is applied on the systematic
variation, as introduced in section 4.1 and varied from 0 to ±1. This variation is performed
in steps of 0.01 between 0 and 0.2 and in steps of 0.1 onwards. In order to account for any
fluctuations resulting from the random weight initialization 100 trainings for each changing
systematic variation are performed and the mean of thus resulting Taylor coefficients is
used as a weight for the described Taylor coefficient histograms. The histograms of the
Taylor coefficient that results from the systematic variations of 0, 0.08, and 1.0 are shown
in figures 4.10a, 4.10b and 4.10c. The effects between 0.08 and 1.0 show a gradual change
in the TCs with increasing systematic variations and no change between 0 and 0.08 is
observed.
For an absent systematic variation, the obtained Taylor coefficients are comparable with
the BCE training, which is assuring in view of the discussion in section 4.3 and can be
depicted from the left figures in figure 4.10 where in case of 〈tx1,x2〉 the left three figures
show a separation similar to figure 4.9c. A deviation from this state can be seen after the
systematic variation exceeds the value of 0.08 which is data set and task-specific.
The distinction between signal and background events from 〈tx1〉 vanishes, as the TCs
originating from signal and background events, overlap and move towards the mean of the
signal process as can be seen in the central subfigure in figure 4.10a. Further, the overall
importance of 〈tx1〉 and the contribution from the background events decreases with an
increasing systematic variation, visible by comparing the TCs of x2 ± 0.08 and x2 ± 1.0
whereas the 〈tx1,x1〉 maintains its importance, for the signal events. In contrast, 〈tx2〉 and
〈tx2,x2〉 preserve their importance with increasing systematic variations but also perform
a shift, in this case towards the background process. The 〈tx2〉 TC maintains the long
tail in the region of signal process but decreases in importance upon the increase of the
systematic variation as can be seen in the middle and right subfigure of figure 4.10c.
With increasing systematic variations the importance of 〈tx1,x2〉 (figure 4.10c) decreases
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similarly to 〈tx1〉 and 〈tx1,x1〉 in comparison to the BCE training. Especially the background
and signal process regions that are affected by the systematic variations lose importance
for the decision of the NN since the possibility of the selection of signal processes decreases
with increasing systematic variation. On the other hand, the signal region that is unaffected
by the systematic variations maintains its importance with increasing systematic variation
as it remains the only region of signal processes that are less affected by the systematic
variations and has the largest contribution to the signal enriched bins of figure 4.7b.
Hence the overall observation indicates a decorrelating effect of most of the second-order
TCs upon the application of uncertainty-aware training in comparison to the BCE training,
no longer exerting a separating power between signal and background processes. The focus
is shifted towards the identification of signal-enriched regions in case of 〈tx1〉, 〈tx1,x1〉 and
〈tx1,x2〉. The 〈tx2〉 and 〈tx2,x2〉 TCs shows a shift towards the background process but
otherwise remains comparable to the results from the BCE training.
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Figure 4.10.: The same quantities as in figure 4.9 are shown. The figures are further
divided upon the addressed systematic variation during the uncertainty-aware training of
x2 ± 0 in the left, x2 ± 0.08 in the middle, and x2 ± 1 in the right subfigure.



5. Extension of the pseudo experiment to
multiple classes

In this chapter, an extension to the application of the uncertainty-aware training is
performed in order to solve classification tasks with multiple classes. Two approaches are
presented in this chapter. A comparison of the effectiveness of the introduced modification
and the unmodified approach of uncertainty-aware training in presence of multiple classes
is conducted afterwards with regard to an extension to more complex problems.

5.1. Extension of experiment configuration

For an application of uncertainty-aware training to a task that introduces multiple classes
modifications to the existing setup are required. Two additional processes that are modeled
similarly to the signal and background process in the binary case are added to the data set
with an additional signal process at (x1, x2) = (0.5, 3) and a second background process
at (x1, x2) = (−1, 2) as shown in figure 5.1. This extension increases the total number
of events of the training, validation, and test data set by a factor of two. In addition
to the existing systematic variation of the first background process, a second systematic
variation affecting the second background process is introduced, with a ±1 variation along
the x1 axis. Additionally, the signal processes are reweighted to yield 100 signal events
per signal process instead of the previously chosen 50 events for the binary classification.
The yield of 1000 events for each background process remains unchanged. An increase in
the yields of the signal processes reduces the resulting dominating statistical uncertainty
of the signal strengths that inevitably increases due to the introduction of additional
background processes shifting the importance back to addressing the reduction of the
systematic uncertainties introduced by the systematic variations.
To align the network architecture with the extended data set, the number of output nodes
is raised to four, assigning each process uniquely to an output node. The Sigmoid activation
function of the output node is replaced with the Softmax activation function and the
loss function is changed to CE. With this regard, the loss of the warm-up phase of the
uncertainty-aware training is also changed from BCE to CE in order to align with the
binary application by addressing the minimization of statistical uncertainty during the
warm-up phase.
The class assignment of propagated events for the uncertainty-aware training is performed
analogously to the class assignment that is performed for the statistical inference step
as described in section 3.2. The likelihood used for the computation of σµ and the
statistical inference in the binary case as defined in equation 3.4 is extended to multiple
classes with Cclass being the total number of classes and P (P ′) distinguishable signal sk

(background bk′) processes as shown in equation 5.1. With this extension, the introduced
nuisance parameters {θj} that represent the systematic uncertainties affect specific signal
or background processes or a combination of those. In the presence of multiple signal
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Figure 5.1.: A representation of the signal and background processes where each process
is modeled with 105 events by a two-dimensional Gaussian distribution each with a
two-dimensional unity matrix used for the covariance matrix for all processes. The mean
value used to model the distributions is (x1, x2) = (0, 0) for Signal 1 and (x1, x2) = (0.5, 3)
for Signal 2 process. The mean value of the Background 1 process is set to (x1, x2) = (1, 1)
whereas the mean of the Background 2 is chosen to be at (x1, x2) = (−1, 2).

processes the training objective of the uncertainty-aware training is extended to a sum of
signal strength uncertainties, denoted as

∑
i σµi .

L (N, µ, {θj}) =
Cclass∏
c=1

Nbins∏
i=1

P

ni

∣∣∣∣∣
P∑

k=1
µksi,k ({θj}) +

P ′∑
k′=1

bi,k′ ({θj})


×

M∏
j=1

C
(
θj

∣∣∣µθj
, σθj

)
.

(5.1)

5.2. Application in presence of two systematic uncertainties and multiple
classes

To indicate the improvement in the signal strength uncertainties by applying the uncertainty-
aware training in presence of multiple classes a benchmark is conducted, by performing a
CE training. To avoid problems from overtraining a lower patience threshold of only one
epoch is chosen since the combination of the simplified data set and the chosen full-batch
training strategy allows for fast learning of the correct process assignment to the appropriate
classes. The resulting classification of the CE training is shown in figure 5.2a, where bins
that contained fewer than 10 events have been merged with the neighboring bins for the
statistical inference. As the occurrence of low-populated or empty bins is observed in the
histogram edges the merging is performed adding those bins with their neighboring bins
towards the center of the histogram until the condition of 10 events in the combined bin
is fulfilled. Additionally to the nominal processes the effect of the systematic variation
of the Background 2 in the x1 plane by ±1 is shown in gray, where all up and downward
variations of individual background processes resulting from this shift are added up in each
bin. The resulting variations on signal processes are shown individually. The evolution of
the loss, displayed similarly to the loss evolution in chapter 4, is shown in figure 5.2b a
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Figure 5.2.: NN output on the test data set after the CE training is shown in (a)
displaying nominal signal and background processes. The total effect of the systematic
variation of Background 2 by ±1 along x1 is summed up for all background processes in
each bin and is shown in gray. The effect of systematic variation on signal processes is
displayed separately for each signal process. Further information about binning is given
in the text. The loss evolution, shown in (b), is displayed similarly to chapter 4 and
shows the evolution of the CE loss in the upper part and the illustrative

∑
i σµi

loss in
the lower part.

displays a continuous decrease of the CE loss in the upper part of the figure. On the other
hand, the illustrative displayed

∑
i σµi loss increases after a short decrease to a minimum

around 0.75 in the first 100 epochs. It indicates, that the optimization based on the CE
does not automatically imply a minimal result also for

∑
i σµi , particularly in presence of

systematic variations. This can be explained by the aggregation of the events into a few
bins leading to an increase in

∑
i σµi as discussed in chapter 4. Resulting likelihood scans

extracted from the signal strength estimations after the statistical inference are presented
in figure 5.3. Figure 5.3a shows the inclusive signal strength of both signal processes.
Figures 5.3b and 5.3c show the results for one of the signal strengths being selected as the
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Figure 5.3.: Inclusive signal strength estimation from the CE training are shown in (a).
Further, (b) shows the differential signal strength estimation of Signal 1 and (c) of Signal
2. The blue likelihood scans show statistical-only uncertainties whereas the red scans
display statistical and systematic uncertainties.

parameter of interest. The signal strength uncertainties from the performed benchmark,
taking into account statistical and systematic uncertainties, results in:

µinclusive = 1.00+0.19
−0.19 ,

µSignal 1 = 1.00+0.34
−0.35 ,

µSignal 2 = 1.00+0.38
−0.41 .

In the next step, uncertainty-aware training is applied with the in section 5.1 discussed
changes. The application is expected to result in a slight deviation from the results of the
CE training, as obtained after the warm-up phase, accounting for the presence of systematic
variations in the final distribution. Figure 5.4a shows an example training that follows
this expectation. The distributions are broadened with respect to the CE training and
the event associated to their assigned event classes are preserved. From the loss evolution
in figure 5.4b the observed increase in

∑
i σµi during the warm-up phase is successfully

minimized after the warm-up phase. The CE loss shows a steep increase remaining at a
plateau of around 1.380 for the rest of the training. This increase can be mainly attributed
to the observed movement of events from the right, broadening the distribution. The
signal strength estimations, given this result of the uncertainty-aware training, are shown
in figure 5.5 and are split similarly to the benchmark, to:

µinclusive = 1.00+0.17
−0.16 ,

µSignal 1 = 1.00+0.25
−0.24 ,

µSignal 2 = 1.00+0.29
−0.28 .

A central issue of the uncertainty-aware training in this extension to multiple classes is that
prior assumptions about the event classification induced by the CE warm-up phase are not
taken into account anymore during the training on

∑
i σµi . The introduction of additional

classes as stated in equation 5.1 leads only to an introduction of additional bins, but the
order of the bins or the information about the allocated classes is not used beyond the
CE warm-up phase. This problem becomes more pronounced when introducing additional
processes, additional systematic variations, or a more complex task than the one outlined
in this chapter. This is demonstrated by the introduction of an additional systematic
variation increasing the number of total systematic variations up to three. The third
introduced systematic variation affects the second background, introducing its variation
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Figure 5.4.: Resulting NN output (a) and the loss evolution (b) of an uncertainty-aware
training in presence of multiple classes that preserves the event assignments to classes
from the warm-up phase on CE loss. The same quantities as in figure 5.2 are shown.
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Figure 5.5.: Results of the statistical inference after the uncertainty-aware training of
figure 5.4 with similar quantities as shown in figure 5.3, displaying (a) the inclusive signal
strength estimation and the differential signal strength estimations of (b) Signal 1 and (c)
Signal 2.
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Figure 5.6.: Resulting NN output (a) and the loss evolution (b) of an uncertainty-aware
training in presence of multiple classes that shows the problem of empty classes and
misclassified events. Shown are the same quantities as in figure 6.6 but not merged
low-populated bins inside of not empty classes.

along the x2 plane by ±1 analogous to the systematic variation on the first background
process. The NN output of the best-performing epoch on the validation data set is shown in
figure 5.6a. The corresponding loss evolution is shown in figure 5.6b and indicates a similar
behavior of the NN in the first 200 epochs after the warm-up phase, where the broadening
of the distributions in each class leads to a steep increase in the CE loss that then stays
at a plateau with a slightly decreasing value. This training however shows a second
steep increase after epoch 500 to a new plateau, indicating a further change in the event
classification. The short increase in

∑
i σµi during the same epochs indicates a grouping

and redistribution of events. The resulting distribution of the best-performing NN of this
training, indicates a deviation in the event assignment from the classification obtained by
the CE training and the appearance of empty classes. The problem of misclassification
is mainly illustrated by the Signal 1 events being classified and further enriched in the
Background 2 class or the increased number of background events in the Signal 2 class.
Further, the Background 1 class remains empty after the redistribution. This result is
not unexpected as the training process does not have to reproduce the previous class
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assigned of events or populate the introduced classes after their changes when training
on
∑

i σµi . In terms of the training process the performed redistribution decreased
∑

i σµi

and the loss evolution shows no further irregularities in the training process, finding the
best result around epoch 2400. The goal of the uncertainty-aware training is only the
minimization of

∑
i σµi , which is not penalized in any way, upon the removal of events from

their associated classes. Based on the NN output, two main issues can be stated. The first
issue is the lack of a classification of events during training into predefined classes, leading
to misclassification in the standard interpretation. Since the minimization of

∑
i σµi as

the training objective does not correspond to a standard classification task, the weight
optimization can lead to phase space regions where such a form of misclassification may
occur. The second related issue is the potential occurence of empty classes. In general,
the presence of very low-populated or even empty bins may lead to technical problems
during the statistical inference and needs to be addressed, e.g. by merging of low-populated
bins. Aside from its necessity, the application of bin merging implies a deviation from the
actual training result, as the smaller number of bins was not used during training. This
should be avoided as the bin configuration where the systematic variations of neighboring
bins lead to a cancelation of systematic variations may be compromised. The problem
of empty classes, however, cannot be solved by bin merging and can lead to difficulties
during the statistical inference if the application to data might results in a classification of
events inside an empty class. Two approaches are presented in the following two sections
to address the issue of empty classes and potentially maintain the desired classification as
implied by the warm-up phase.

5.2.1. One-class modification

The following ansatz addresses two issues of the unmodified multi-class uncertainty-aware
training. One of the issues is the emerging empty classes, while the second issue poses a
more fundamental problem of losing NN output information when performing the training.
During the training on

∑
i σµi in case of multiple signal classes or on σµ for one signal

class, all non-maximal NN output nodes are discarded for every event, leaving only the
output node with the maximum value, which is then used for uncertainty-aware training.
This discard of NN output reduces the amount of information that can be used for weight
optimization during the training.
Both issues can be addressed by using only one class, reducing the number of NN output
nodes to one, and switching back to the Sigmoid activation function. During the warm-up
phase, all signal and background processes are combined into one signal and one background
class correspondingly for the training on the BCE, resulting in a binary classification task,
as described in chapter 4. When switching to the training based on

∑
i σµi , all individual

processes are distinguished again considering all signal and background processes for the loss
minimization. To account for the fact that additional bins are introduced when considering
multiple classes, as discussed in section 5.1, the number of used bins for the training is
increased from previously used 8 to 16 bins.
A typical result from a performed training is shown in figure 5.7. The NN output exhibits
signal-enriched regions near histogram edges with the remaining background events being
classified towards the central bins. The interpretation is comparable to the result obtained
for the binary case in section 4.3 with the main difference of multiple present signal processes
that leaves the position of signal-enriched bins within the histogram arbitrarily up to the
point of least overlap between the signal processes and the remaining backgrounds.
The resulting signal strength estimations are presented in form of a performed ensemble
test in section 5.3 and are compared to the naive uncertainty-aware training of the previous
section and the second introduced modification that is presented in the following section.
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Figure 5.7.: Summarized NN output of the one-class modification of uncertainty-aware
training in presence of multiple classes. Displayed are the nominal signal and background
processes. The total effect of the systematic variation of Background 2 by ±1 along x1
is summed up for all background processes in each bin and shown in gray. Resulting
systematic variations on signal processes are shown separately for each signal process.

5.2.2. Constrained uncertainty aware training

The problem of empty classes can also be addressed by enforcing the preservation of the
classification after the warm-up phase maintaining the multiple output nodes of the NN for
the unique assignment of events to selected classes. The realization is built on the Modified
differential Method of Multipliers as presented in [69] to solve constrained differential
optimization problems. An extension of the present loss is performed by introducing a
penalty term of form λg(·) as noted in equation 5.2 where g(·) represents an additional
function that is calculated during the training and multiplied by a learnable parameter λ
that is set to zero if g(·) < 0, evaluated for each epoch. This function is constructed as
the difference between the loss function L that is used during the warm-up phase and an
arbitrarily selected constant L′ as shown in equation 5.3. The goal of this approach is the
preservation of the event classification that is obtained at the end of the warm-up phase of
the uncertainty-aware training using L. Therefore the constant is set to the value of the
warm-up loss at the end of the warm-up phase and is denoted as L′.

Loss =
∑

i

σµi + λg(·) , (5.2)

g(·) = L − L′ . (5.3)

Further, the difference from the unmodified multi-class approach is the change in the warm-
up loss and the final activation function of the NN. The latter is changed from Softmax to
Sigmoid and the warm-up loss is set to a modified BCE (LBCE′), as defined in equation 5.4,
to address multiple classes. The constant value L′ is chosen as the value of LBCE′ at the
end of the warm-up phase (L′

BCE′). Similar to BCE, as defined in equation 3.11, this
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Figure 5.8.: NN outputs of the constrained-loss modification of uncertainty-aware
training in presence of multiple classes on the test data set (a) at the end of the warm-up
phase and (b) for the best-performing NN on the validation data set. Shown are the
nominal processes, the total background shift, and individual signal variations that are
resulting from the same systematic variations and are further described in figure 5.2a.

modification accumulates processes in the corresponding classes as defined by the label
y

(c)
i in the data set (y(c)

i = 1). The prediction given by the NN output can be interpreted
similarly as the probability that a given process corresponds to a specific class. All processes
that do not correspond to a certain class (y(c)

i = 0) are predicted with a low value. Since
only the maximum valued node of the NN output of each event enters the

∑
i σµi calculation

the values of the remaining classes are discarded and an additional normalization of the NN
output in form of an introduced Softmax activation function is an unnecessary constraint.

LBCE′ = −
N∑

i=1
wi

Cclass∑
c=1

[
y

(c)
i log

(
f(xi)(c)

)
+
(
1 − y

(c)
i

)
log

(
1 − f(xi)(c)

)]
. (5.4)

The NN output, evaluated on the test data set from a NN at the end of the warm-up phase
and the best-performing NN on a validation data set is exemplarily shown in figures 5.8a
and 5.8b respectively and displays a broad event distribution inside the classes. This
broader event distribution, especially at the end of the warm-up phase, is the reason for
not using the CE in favor of the modified BCE. Training on CE results in a less broad
distribution with the most populated bins at the right of each corresponding class histogram.
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The use of CE during the warm-up phase therefore requires a broadening of the distribution
afterwards, as indicated by the steep increase observed in figure 5.6b that is followed by a
plateau. Given this observation, the construction of g(·) can also be accomplished with
the CE and this known plateau value as the set constant representing the ideal result of
the uncertainty-aware training that maintains the class assignment. Unfortunately, this
plateau value is apriori not known for a specific task. It might vary depending on the
randomly initialized weights, or could not be identified if the movement of events into
different classes and fewer bins after the warm-up phase.
The constraint placed upon λ is conditionally based on the value of g(·). In cases where
the uncertainty-aware training reduces

∑
i σµi and improves the class assignment of events,

compared to the end of the warm-up phase, λ is set to zero. According to this condition, λ
affects the loss only in cases where the class assignment gets worse in comparison to the
retrieved classification at the end of the warm-up phase forcing a recreation of a similar
class assignment. This procedure allows the NN to temporarily perform a redistribution of
events, thereby worsening the LBCE′ and performing the optimization in a different phase
space after the recreation of a similar class assignment that is also evaluated to L′

BCE′ . A
continuous update of L′

BCE′ would result in a continuous constraint, limiting the phase
space exploration of the optimizer by restricting the possible event redistributions.

5.3. Comparison of the modifications of the uncertainty-aware training in
presence of multiple classes

To compare the effectiveness of the two proposed modifications of the uncertainty-aware
training to the unmodified version, the results are compared based on ensembles of 100
trainings conducted for each approach by randomly initializing the NN weights using
varying seeds. The comparison is performed on the results of the statistical inference
summarizing the extracted signal strengths uncertainties similarly to figure 5.3.
The results of the ensembles, combined with the previously created benchmark of the
training on the CE are displayed in figure 5.9. The figure is divided into an inclusive signal
strength estimation, as shown in figure 5.9a and differential signal strength estimation
shown in figure 5.9b for Signal 1 and in figure 5.9c for Signal 2. The benchmark result
of the CE training is indicated by the solid vertical lines, which show the uncertainties
from the likelihood scan for the case of considering only statistical uncertainties (blue) and
both statistical and systematic uncertainties (red). The black line marks the best-fit value,
which, as expected, does not differ from one due to the use of an Asimov data set. The
resulting uncertainties of the likelihood scans from the 100 trainings are indicated in form
of histograms. The lower part of the figures thereby summarizes the results of statistical
uncertainties whereas the upper histograms summarize the results of the statistical and sys-
tematic uncertainties. The filled histograms show the results of the unmodified multi-class
uncertainty-aware training as described in section 5.2, while the unfilled histograms show
the results of the two introduced modifications as a comparison. The unfilled histograms
with a dashed gray line summarize the one-class approach as discussed in subsection 5.2.1
and the unfilled histograms with a solid gray line the results of the in subsection 5.2.2
discussed constrained-loss approach. All lines and histograms on the left (right) side of the
best-fit value corresponds to the lower (upper) value of the signal strength uncertainties.
For this comparison, all trainings of the unmodified multi-class uncertainty-aware training,
which showed the issue of empty classes have been re-initialized. Cases without empty
classes were considered regardless of the degree of misclassification. For the benchmark
values, only one training result is shown.
The successful reduction of the overall uncertainty of all three variants of the multi-class
uncertainty-aware training can be observed in the upper parts of the figures, where the
distributions are not exceeding the overall uncertainty given by the CE training. An-
other important point is an improvement in cases where only the statistical uncertainty is
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Figure 5.9.: Results of the statistical inference comparing the unmodified uncertainty-
aware training to the two introduced ansatzes in form of an ensemble test with a sample
size of 100. Inclusive signal strength estimations are shown in (a). Differential signal
strength estimations are shown in (b) for Signal 1 and in (c) for Signal 2. The vertical
black lines indicate the estimated signal strength. Statistical (statistical and systematic)
uncertainties from the likelihood scans of the conducted benchmark are shown as blue (red)
vertical lines. Filled histograms summarize the result of the unmodified uncertainty-aware
training in a similar way. Unfilled histograms with a solid (dashed) line show the results
for the constrained-loss (one-class) approach. Further information on the figure is given
in the text.
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considered during the statistical inference. This can be seen independent of the applied
training where regions of the distributions in the lower parts of the figures exceed the set
benchmark value towards the estimated value, indicating a lower statistical uncertainty.
This can exemplarily be described by the comparison of the constrained-loss approach or
the unmodified uncertainty-aware training with the CE training.
All these three trainings utilize multiple classes for event separation. During the CE train-
ing, an attempt is made to achieve the best possible assignment of events to the appropriate
classes. A misclassification to some extent is inevitable, especially in particle physics
problems where events with the same topology arise from different processes. Optimization
on CE corrects the occurring misclassification across all processes performing a trade-off
where the purity of e.g. a background class is improved at the expense of increasing the
contamination by misclassified events in other classes including the signal classes and
vice versa. This is a common occurrence since the CE loss does not differentiate between
the individual classes that have been defined for the training and the event weights only
introduce a correction upon the observed number of process events.
The goal of minimizing

∑
i σµi on the other hand is achieved by enriching the signal classes

with signal events and is conducted during uncertainty-aware training independent of the
number of signal processes. A trade-off, where the purity of a background class is increased
at the cost of an increased contamination of or by signal events can ideally only occur for
one scenario: The reduction of the systematic variation outweighs the increase in statistical
uncertainty. Since the warm-up phase reduces the statistical uncertainty this trade-off
leads to a decrease in the overall uncertainty. The purity of the background classes is no
longer a relevant factor, as they contribute little to the calculation of

∑
i σµi , due to the

significantly lower number of signal events in these classes compared to the signal classes
with enriched signal events.
Overall, the one-class approach shows worse results when compared to the other two
approaches. Individual trainings even show an inclusive overall uncertainty that is not
minimized despite the minimization of the uncertainties of the differential signal strengths.
This issue can be attributed in the first place to the increased instability in training that
becomes more dependent on the initialized NN weights, which is reflected in the larger
spread of the distributions of the one-class approach in comparison to the other approaches
with the most probable value being consistently worse.
On the other hand, the constrained-loss approach significantly reduces the spread of the
distributions and shows a better most probable value than the other approaches. This result
leaves the one-class ansatz with the only advantage of having a performed training purely on
the analysis objective whereas the constrained-loss approach depends on the introduction
of two additional hyperparameters, namely the function g(·) and the constant value L′

BCE′ .
The second issue of the one-class approach is the limited space when considering multiple
signal processes in addition to the considered background processes in a single histogram.
With an increasing number of signal processes the challenge to achieve a good signal
separation between the individual signal processes and the background processes leads to
an overall worse result.
The introduction of additional histograms is more advantageous as it introduces an addi-
tional dimension for the event separation. An increase in the number of used bins for the
one-class approach does not resolve this issue, as shown in appendix B, since the movement
of the events from the NN output remains grouped in the event overlapping regions where
signal and background processes cannot be distinguished. Therefore, the one-class approach
might be particularly suitable for tasks that introduce only one signal process in addition so
several background processes whereas the constrained approach is more suitable for tasks
comprising multiple signal processes in addition to the present background processes.



6. Application on reduced standard model
H→ττ data set

This chapter presents the application of the uncertainty-aware training on a more complex
problem, namely on the reduced CMS data that is used in [4]. First, the modified
setup resulting from the changed data is described, followed by an application of binary
classification with an additional outline of the necessity of including the most important
systematic uncertainties during the training. The chapter concludes with the application
of the uncertainty-aware training on this data set considering multi-class classification by
using the modified versions of uncertainty-aware training that were introduced in chapter 5.

6.1. Setup, analysis procedure, and CMS data set

The application of the uncertainty-aware training on a realistic example is performed
utilizing the data set that is used for the CMS Standard Model H → ττ analysis [4]. To
set the focus on the demonstration three reductions to the analysis and the considered
data set are applied. From the three years of the second data-taking period of LHC and
four final states, only the data of 2017 and the eτ final state are considered with the aim of
data reduction to reduce the training time. The selection of the eτ final state described
in chapter 2 is sufficient, as an analogous approach for the training of NN with the same
architecture is applied for the other final states and the outputs of all NNs are combined
using the nominal and shifted test data sets for the statistical inference. The choice on eτ
final state over µτ is done from the consideration of resulting higher uncertainty sources
from the combination of electrons and hadronic taus in comparison to muons and the
introduction of electron uncertainty sources in comparison to the ττ final state. Further, as
described in section 2.5, only systematic uncertainties that are provided in form of weight
corrections are used in this chapter. The 86 thereby considered systematic uncertainties
are summarized in appendix C in descending order by their impact on the estimated
signal strength from the statistical inference performed on the BCE training for binary
classification that will be discussed in detail in the following section. This restriction
also contributes to the reduction of training time, as these uncertainties do not require
an additional propagation of shifted data sets to quantify the effects of the systematic
variations on the NN output. Instead, a direct application of the weights to the NN output
is performed.
The data set used for this application is divided into two halves, referred to as the first and
second fold, following the proposed approach from the analysis to make use of the full data
set for the NN training and the statistical inference. The following split of the resulting
data set from each fold that is used for the training (validation) step is changed from
previously used 75 % (25 %), respectively, to 50 % with the goal to improve the validation
result due to the applied full-batch training. Testing and thus the extraction of the NN
outputs for the statistical inference is performed on the correspondingly other folds and
combined afterwards, allowing for the benefit of not losing data due to the performed
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training and thereby improving the statistical uncertainty of the final measurement. The
NN architectures are identical for both folds, as described in section 4.1 with the number
of output nodes varying according to the specific task being addressed. The number of
input nodes is set to 15, based on the input variables proposed by the analysis, with an
importance-based selection determined by the impact on the NN output obtained from the
method described in [3]. The variables are scaled by their standard deviation and shifted
by their mean before the training.
These variables include the visible di-τ mass mvis and the fully reconstructed di-τ mass
mPuppi

sv using the pile-up per particle (PUPPI) algorithm [70]. The variable mvis mainly
discriminates signal events against Z → ττ background by considering only the visible
decay products, whereas the latter variable includes the undetectable neutrinos in the
reconstruction. Further di-τ properties are considered in addition to the reconstructed
masses such as the transverse momentum of the first (second) tau lepton pT (τ1) (pT (τ2))
as well as their combined visible transverse momentum pvis

T and their angular distance
∆R(τ1, τ2). For the characterization of the different jet topologies additional kinematic
quantities are added including the transverse momentum of the leading (subleading) jet
pT (j1) (pT (j2)), their difference in pseudorapidity ∆ηjj , as well as the combined mass of
those jets mjj and the transverse momentum pT (jj) resulting from this combination. The
number of jets NJet alongside the number of jets that are classified to be originating from
a bottom quark decay NBtag are added mainly to identify events from the tt background.
Since the number of jets can increase due to the presence of pile-up resulting from additional
pp collisions or a misidentification of additional jets the combination of those two variables
can be used for the identification of a signal event from the selected eτ final state as it is
expected to observe at least one jet that is not originating from a bottom quark decay. To
synchronize the NN input across final states two additional quantities using the matrix
element likelihood approach (MELA), MELA_q2v1 and MELA_q2v2, as described in [71, 72],
are added to the input variables. These discriminating variables estimate the momentum
transfer for the first and second exchanged vector bosons, differentiating between the vector
boson fusion originating signal process and Drell-Yan process topologies by calculating
their likelihood ratio, thus reflecting the probability of the observation of their occurrence.
For the application of multi-class uncertainty-aware training, the separation of signal and
background processes is performed as proposed in the original analysis. Background events
that contain genuine ττ events, which are obtained through the τ -embedding method, as
described in section 2.4, are assigned to the emb class analogous to the ff class, which
consists of events that contain jets that are misidentified as tau leptons and are estimated
using the FF method. All remaining classes contain events that are purely derived from
simulation. For the signal processes the STXS stage 0 binning [39] is applied, which splits
the signal process into the qqh and ggh production modes which are assigned to two unique
classes. The estimated events resulting from the tt background, are assigned to the tt class,
while the zll class contains events from the Z → `` process. Events resulting from the
electro-weak production of Z bosons and di-boson production, as mentioned in section 2.4,
have a minor contribution to the overall background due to the choice of the final state
and are therefore subsumed into the additional misc class preventing the misidentification
of those events with the signal processes.

6.2. Application of uncertainty-aware training for binary classification

For an application of binary classification, all signal and background processes that have
been discussed in the previous section are combined into one single signal and background
process correspondingly. This changes the influence of the normalization uncertainties
that are described in section 2.5. Due to the aggregation of the background and signal
processes systematic variations introduced by normalization uncertainties affect only a part
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Figure 6.1.: Likelihood scans of the estimation of the signal strength (a) for the BCE
training and (b) the uncertainty-aware training, considering all 86 uncertainties. The
estimation of only statistical uncertainty is shown in blue, whereas the estimation of
statistical and systematic uncertainties is shown in red.

of the background or signal process or their combination, thus introducing a shape-altering
effect and are addressed correspondingly in the statistical inference. The benchmark for
the application of binary classification is conducted using the BCE loss, followed by the
statistical inference applying all 86 systematic uncertainties and using the NN output of
the simulated data. This yields an estimation of the signal strength, as shown in figure 6.1a
of

µstat+sys = 1.00+0.62
−0.60 .

By performing uncertainty-aware training and considering all systematic uncertainties
during the training step, an improvement in the signal strength uncertainty to

µstat+sys = 1.00+0.47
−0.44 ,

can be achieved, as can be depicted from the scan of the likelihood shown in figure 6.1b.
In addition to the estimation of the signal strength and its uncertainty through the

statistical inference, the effects of the introduced systematic uncertainties can be examined
to estimate their impact on the retrieved signal strength estimation. This impact estimation
is acquired by the measurement of the strength of the dependence of the resulting shift on
the estimated signal strength upon a variation of a nuisance parameter by ±1σ. This can be
performed for each introduced systematic uncertainty, represented by their corresponding
nuisance parameter and thus creating a ranking of the impact on the estimated signal
strength. The 20 uncertainties with the highest impact on the signal strength, according to
the benchmark result, are shown in figure 6.2 as gray lines. The change in the impact after
the application of uncertainty-aware training is depicted as colored bars corresponding
to the ±1σ shift of the individual nuisance parameters. Notable is the reduction of the
impact on the estimated signal strength from the 10 leading uncertainties. The observed
trend, of performed reduction of uncertainties with a higher impact at the cost of an
impact increase of less important uncertainties, can be further seen in appendix C for
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Figure 6.2.: Summary of 20 uncertainties with the highest impact on the estimated
signal strength from the training on the BCE loss (gray) in comparison to the applied
uncertainty-aware training where the colored bars indicate the impact of a performed
±1σ shift of the nuisance parameter that corresponds to the systematic uncertainty. The
full comparison is shown in appendix D.

the remaining uncertainties. The first two examples of an increase are the differential
theory uncertainties on the ggh production mode in the transverse momentum bins of
pT = 120 GeV/c and pT = 60 GeV/c. Their overall lower importance compared to the
results of the original analysis is due to the restriction on a subset of the data, as these
uncertainties arise throughout all final states, while most of the uncertainties considered in
this study only affect this specifically chosen subset of the data.
The systematic uncertainty with the highest impact on the estimated signal strength in
both the benchmark analysis and the analysis based on the uncertainty-aware training
is the shape-altering uncertainty from the Drell-Yan (DY) process. Its effects on the NN
output are shown in figures 6.3a and 6.3b for the BCE and uncertainty-aware training,
where the upper plots correspond to the nominal NN outputs, supplemented by the relative
up and down variations of the signal (blue ratio) and background processes (orange ratio)
for DY as the selected systematic variation with respect to the corresponding nominal
process in each bin. As this uncertainty only applies to events originating from the Z → ``
process, the signal process remains unaffected. For the BCE training, the largest effect of
this systematic variation is observed for the background process in the bins with enriched
signal, thereby explaining the observed large impact on the estimated signal strength. The
effect of the same systematic variation after the application of uncertainty-aware training
changes to a flatter distribution with comparable high relative amplitude, as shown in
figure 6.3b. This reduction in the shape-altering effect is achieved through the redistribution
of affected events across more bins, creating a systematic variation similar to one that can
be introduced by a normalization uncertainty. The deviation of the first bin, which exhibits
a lower relative variation in comparison to the remaining bins can be attributed to the
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Figure 6.3.: NN output of (a) the BCE training and (b) uncertainty-aware training.
Shown are the nominal signal and background processes (top rows) supplemented by
the relative up and down variation of the signal (blue ratio) and background processes
(orange ratio) with respect to the corresponding nominal processes in each bin. Shown is
the systematic variation resulting from DY uncertainty affecting the Z → `` process in
the combined background.

large number of overall background events contained in this bin, thus resulting in a lower
ratio despite having a higher absolute difference between the up and downward variation.
Thus changed effects of the systematic variation are better constrained by the performed
fit, leading to a reduced impact in comparison to the result from the CE training.
To indicate the effects of both training methods on the NN output function, the change of
the importance of the input variables is investigated using the TCA method as described in
[68], considering Taylor Coefficients (TC) up to the second order. The computation of the
mean of the absolute values of the TCs is performed by combining the TCs retrieved from
the NNs of both folds. Figure 6.4 shows the resulting importance ranking displaying the 20
most important input variables and their correlations. The ordering is based on the results
from the BCE training that are shown in gray with the results of the uncertainty-aware
training shown in black for comparison.
After the application of the uncertainty-aware training, an overall decrease in the importance
of variables is observed that previously showed high importance during the BCE training.
This reduction is similar to the observation seen in section 4.4 and is e.g. displayed by the
first order TC of the mvis input variable. In the case of the BCE training, this variable
shows the second highest importance, thus indicating high separation power upon the
distinction between signal and background process. However, as mvis does not incorporate
the information of present neutrinos in comparison to mPuppi

sv a misclassification due to a
wrong mass reconstruction is more likely to occur. In the case of wrong-reconstructed masses,
the resulting discrimination using mvis can lead to an undesired increased aggregation of
misidentified background events in signal-enriched regions. Thus the introduced systematic
variations in signal-enriched bins, with the DY uncertainty as one of the prominent
examples, are leading to an increase in the uncertainty on the estimated signal strength.
The conducted application of uncertainty-aware training indicates the consideration of the
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Figure 6.4.: The change of the 20 highest Taylor coefficients (TC) from the training on
the BCE loss (gray) in comparison to the uncertainty-aware training (black) is shown
indicating the most important input variables or the correlation between input variables
for the NN decision. The shown Taylor coefficients are summarized by performing a mean
of the absolute values of the TC from each event as proposed in [68]. The remaining TC
can be depicted in appendix E.

present uncertainties by the NN leading to a reduction of 〈tmvis〉 and the decrease of the
impact of the DY uncertainty in figure 6.2. A summary of all following first and second-order
TC of this comparison can be further depicted in appendix E. Similar to the conducted
ensemble test, which is discussed in section 5.3 an additional study regarding the stability
of the training is conducted due to the increased complexity resulting from the usage of a
higher number of systematic variations. The results of the statistical inference from the
performed ensemble tests are summarized similarly to figure 5.9 in figure 6.5a. The filled
histograms show the results of 100 performed statistical inferences of uncertainty-aware
trainings, which utilized all 86 systematic variations. The shown distribution indicates
the ability of the uncertainty-aware training to minimize the effects of those systematic
variations in most of the training runs. Only a few exceptions are observed where no
improvement compared to the benchmark analysis is seen, as indicated by the end of the
tails of the upper distributions. This can partly be attributed to the discretization of
the NN output discussed in section 4.2 resulting in the inability to find an optimal bin
combination. An unfavorable initialization of the NN weights that compromise a successful
optimization is another possibility.
An additional examination is performed as to whether a subset of the considered systematic
variations used during the training might be sufficient for a comparable minimization of the
overall uncertainty compared to an evaluation using the entire set of provided uncertainties.
To address this, the 30 and 10 systematic variations with the largest impact, as identified
for the benchmark analysis, are selected and used for 100 training runs each. The performed
statistical inference in both cases accounts for all 86 uncertainties. The results are shown in
figure 6.5a by the unfilled histograms with solid (dashed) lines indicating a training on 30
(10) systematic variations. The observation shows that the consideration of only a subset
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Figure 6.5.: Summarized results of the application of statistical inference upon 100
performed uncertainty-aware trainings similar to figure 5.9. The filled histograms show
the results of trainings that uses all 86 uncertainties. The trainings using 30 (10) most
important systematic uncertainties are shown as unfilled histograms with a solid (dashed)
line in (a). The results of the utilization of only the most important uncertainty is
shown as an unfilled histogram in (b). The vertical blue (red) lines correspond to the
statistical (statistical and systematic) uncertainties that are retrieved from the BCE
training. Further information is given in the text.

of the systematic variations, in particular, the uncertainties with the highest impact is
sufficient for a successful minimization of the overall uncertainty. This results in a decrease
of the task complexity and the training time of an epoch by approximately a factor of 5.6
(7.5) comparing 86 to 30 (10) systematic variations1. This reduction originates mainly
from the reduction of complexity of the calculation of the inverse of the Hessian matrix
for each epoch2. However, problems arise when too few systematic variations are included
during the uncertainty-aware training, making the application of a specifically targeted

1The calculated factors refer to the required time per epoch, whereby the average value of 1000 epochs
from a single training is used. The mean time that is required for an epoch for this specific data set
training with 86, 30, and 10 uncertainties are (5.77 ± 0.07) s, (1.03 ± 0.02) s and (0.77 ± 0.01) s.

2The approximate fraction of the total time for an epoch that is used for this calculation in the case of 86
(30, 10) systematic variations is 85 % (74 %, 63 %).
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systematic variation reduction less applicable. An extreme example is shown in figure 6.5b,
where only the systematic variation caused by the DY uncertainty is considered during the
training. The summarized results are shown by the unfilled histogram, displaying prominent
tails. This indicates a worse result than the training on the BCE loss showing the lack of
flexibility to perform the described trade-off between the increase of impact of less important
systematic variations and a decrease of systematic variations with a greater impact on
the overall uncertainty. This can lead to an increase in the effect of systematic variations
raising the impact of the next most important uncertainties that are not considered during
the training, eventually worsening the overall uncertainty. Therefore, in the case of an
application, where the number of considered systematic variations differs between the
training and the statistical inference, the uncertainties that have the highest impact on the
estimated signal strength must be identified beforehand e.g. given a performed benchmark.

6.3. Application of uncertainty-aware training in presence of multiple
classes

In the following, an extension of the uncertainty-aware training to multiple classes that are
discussed in section 6.1 is performed. The usage of seven classes, without the consideration
of the additionally introduced complexity by systematic variations, fulfills the condition of
a complex problem as mentioned in section 5.2. An application of the unmodified approach
of the uncertainty-aware training is therefore impractical and will not be considered in
the comparison due to the issue of potentially emerging empty classes during the training.
With this regard, only the two introduced modifications to the uncertainty-aware training
are compared against each other, and against the performed benchmark analysis.
The benchmark analysis is conducted with a lower patience for the training than the
uncertainty-aware training, similar to the discussion in section 5.2. However, due to the
complexity of the current task, the patience is set to 100 epochs. To ensure better compara-
bility between the benchmark and the uncertainty-aware trainings, the NN architecture and
binning described earlier are used for this task instead of the optimized NN architecture
and binning of the original analysis.
The resulting NN output of the CE training is shown in figure 6.6a. The upper part shows
the nominal background and signal processes on a log scale and indicates a high level of
contamination of ggh events in the qqh class, which could only be marginally improved
with a larger NN architecture as this feature is also observed in the original analysis. All
low-populated bins are merged by the procedure described in section 5.2. The lower part of
the figure shows the ratio between the summed yields of all background processes and the
corresponding signal process divided by the summed yields of all background processes for
each bin, indicating signal-enriched regions. For this purpose, the scaling of signal processes
as indicated in the upper part of the figure is not applied. The systematic variation of all
background processes that are affected by the selected uncertainty is shown similarly in
gray in the ratio plot. The chosen systematic variation represents the effects of the DY
uncertainty as its impact on the estimation of inclusive signal strength remains high as can
be depicted in appendix F.
The results of the statistical inference are shown in figures 6.6b, 6.6c and 6.6d . They are
divided into an inclusive measurement and the differential measurements of individual
Higgs boson production modes. As indicated by the NN output, the overall uncertainty
on qqh production is dominated by statistical uncertainties. This is supported by the
inability of the NN to distinguish between the qqh and ggh processes, which results in
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Figure 6.6.: The NN output for the CE training is shown in (a), displaying the nominal
processes on a log scale in the upper half. Low-populated or empty bins are merged
with the neighboring bins as exemplarily shown in the zll or misc classes. The lower
part shows the ratio between the summed yields of all background processes and the
corresponding signal process, divided by the summed yields of all background processes in
each bin, indicating signal-enriched regions. The systematic variation is shown similarly
in gray and displays the effect of the DY uncertainty. Used classes and processes are
described in the text. The inclusive (b) and differential signal strength estimation of the
(c) qqh and (d) ggh process of preformed statistical inference of CE training are shown,
considering all 86 uncertainties. Results that only consider statistical uncertainties are
indicated by the blue scans and the consideration of statistical and systematic uncertainties
is shown in red.

only one highly enriched bin with qqh events. The resulting values of the signal strength
uncertainties that are used as benchmark for the uncertainty-aware training are:

µinclusive = 1.00+0.64
−0.62 ,

µqqh = 1.00+1.62
−1.61 ,

µggh = 1.00+0.89
−0.85 .

For the application of the uncertainty-aware training using the constrained-loss modification
an adaption to the described procedure in chapter 5 is made. An increase in the learning
rate from 0.001 to 0.01 and a reduction of the warm-up phase from 300 epochs to 150
epochs are applied. The usage of the lower learning rate and a warm-up phase of 300
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Figure 6.7.: The NN output of the (a) constrained-loss approach and for the (b) one
class approach of the uncertainty aware training, shown similarly to figure 6.6a.

epochs results in a worse classification of events into the corresponding classes and requires
a longer warm-up phase that is mediated by the increase of the learning rate to 0.01. with
this increase, an optimal distribution after around 200 epochs is acquired leading to a
plateau in the loss evolution. To ensure the possibility of λ being able to be set to zero or
become sufficiently small after the warm-up phase, the duration of the warm-up phase is
reduced to 150 epochs in order to allow for enough flexibility in the event redistribution
before the penalty comes into action. On the other hand, the training procedure of the
one-class approach remains unchanged with respect to the study described in section 5.2.1.
Two exemplary NN outputs of those modifications are illustrated in figure 6.7 and indicate
an improved signal separation in comparison to the CE training. Both approaches leads to
bins with enriched qqh events, thereby significantly reducing the statistical uncertainty
on the qqh process, which is inherently present in any trainings due to the imbalance of
the signal yields. The nominal yield of the qqh process exhibits only around 51 events,
compared to 516 events from the ggh process.
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The results of the statistical inference are shown in figure 6.8 in form of conducted ensemble
test with a sample size of 100, similar to the discussion in section 5.3. The filled histograms
summarize the result given by the constrained approach, and the unfilled histograms are
the results of the one-class approach. The benchmark values, indicating the statistical and
systematic uncertainties of the conducted CE training, correspond to the values given in
figure 6.6. Since both approaches use the sum of the signal strength uncertainties as the
loss, a successful minimization of the inclusive signal strength can generally be achieved, as
indicated in figure 6.8a. For the given example the one-class approach primarily minimizes
the overall uncertainty by minimizing the uncertainty on qqh, separating the qqh events
to the right edge of the histogram, while the constrained-loss approach mainly achieves
this by sorting out non-qqh events from the qqh class. The additional class histograms
of the constrained-loss approach show more benefit for the uncertainty minimization of
the ggh Higgs production mode, as both methods exhibit significant confusion between
the ggh events and the background events. As indicated by figure 6.8c, the minimization
of statistical and systematic uncertainty of the differential ggh signal strength does not
always improve with respect to the benchmark analysis in case of the one-class approach,
as shown by the distributions lying partly outside of the benchmark boundary of the CE
training. A similar behavior is observed in the study in section 5.3, with the main difference
of the large imbalance between the different signal processes in terms of their expected
yields. Therefore, the minimization of the uncertainty of the qqh signal process is favored
at the expense of an increase in the uncertainty of the ggh process, under the condition of
minimizing the sum of the signal strength uncertainties of both processes. In this regard,
the constrained-loss modification leads to a better result.
An extension to a more granular binning of the Higgs boson production modes that are
introduced in the STXS stage 1 binning [24] would lead to 14 individual signal classes that
have to be considered during the training and statistical inference in addition to the five
present background classes. With the results shown in this chapter and in light of the
application on a task that comprises multiple classes, the constrained-loss approach shows
an overall more promising performance by consistently minimizing the signal strengths
of the considered signal classes individually, irrespective of observed imbalances in the
expected signal yields. Further, the constrained-loss approach provides more deterministic
results as indicated by the lower spread upon the training repetition in comparison to the
one-class approach, making it less error-prone upon different weight initializations.
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Figure 6.8.: Summary of the statistical inference results from 100 trainings comparing
the one-class and constrained-loss approach of the uncertainty-aware training, utilizing 86
systematic uncertainties. The results in the case of an estimation of the inclusive signal
strength are shown in (a) whereas the differential signal strength estimations are depicted
in (b)for qqh and in (c) for ggh process. The structure is similar to figure 5.9 and is in
detail explained in section 5.3.



7. Summary and outlook

The application of several machine learning (ML) techniques in high energy physics (HEP)
has proven to be valuable in many areas of conducted analyses. The contribution to object
identification and reconstruction in the detector, process classification or the extraction of
ML-derived variables, that are used for statistical inference has led to a steady improvement
of the measurement of the parameter of interests (POI) and its confidence interval. The
differential measurement of the Higgs production modes that was performed within the
Standard Model H→ττ analysis [4] with provided data from the Compact Muon Solenoid
(CMS) experiment utilized several of those ML techniques and improved the analysis results
in comparison to the traditional analysis strategy [73].
In chapter 3 an outline of the classic utilization of neural networks (NN) was presented
describing the training objective of process separation given a data set using the cross-
entropy (CE) as the training objective for tasks with multiple classes or the binary
cross-entropy (BCE) in case of two classes, that are referred to as signal or background
processes. In contrast to that, a novel method for NN training was presented introducing
an optimization directly on the analysis objective: the uncertainty of the POI.
A demonstration of this novel technique was presented in chapter 4 and the proposed
implementation was examined with regard to the stability of the training procedure. Upon
this examination, the occurring problem of a collapsing NN output during the training
was identified and a solution was introduced by modifying the existing training procedure,
thereby mitigating the collapse, allowing for more explorative training. This method was
then first demonstrated in a pseudo experiment with one signal and one background process,
where the direct training on the analysis objective achieved an uncertainty reduction of
approximately 15 % compared to conventional training on BCE. On top of that, a Taylor
Coefficient Analysis was conducted, investigating the differences in the NN decision between
the two methods. It was found that in the case of the training on the analysis objective,
the focus of the NN shifts to the signal process identification with a consideration of the
additionally introduced uncertainty effects on it.
Chapter 5 extended this novel NN optimization method further to be applicable for tasks
that contain multiple processes, by presenting two variants in order to maintain the
interpretability that is given by the conventional utilization of CE. In addition to the
successful minimization of the systematic uncertainties, that were added to the problem, the
new training approach was also able to provide an optimal minimization of the statistical
part of the POI uncertainty which outperformed the conventional CE training.
In chapter 6 this method was applied to a subset of CMS data set that was used for the
H→ττ analysis evaluating the improvement on the POI uncertainty in the binary case
and upon the introduction of multiple processes using several realistic detector and theory
uncertainties whose effects were applied as weight corrections on histogram level. The
conducted application of this novel approach has achieved a significant reduction in the
uncertainty of around 25 % one single POI and 35 %, 57 % and 25 % for multiple POIs
and provided a better signal separation in comparison to CE for signal processes whose
uncertainties are dominated by statistics.
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This study showed an optimized inference based method on a reduced data set of the CMS
experiment considering a subset of uncertainty sources. A possible further step would
be the inclusion of the remaining uncertainties and the extension of the training on the
complete data set that is provided by the second data-taking period of the Large Hadron
Collider. Another direction would be the building of a statistical model with incorporated
uncertainties without the necessity of a histogram creation and an incorporation of an
appropriate penalty for the process misclassification. This approach would thereby improve
the training procedure as it would not be hindered by the discretization of the NN output
and not necessitate a modification for an appropriate class assignment for problems that
introduce multiple processes.



Appendix

63



64

A. Neural network output collapse on ATLAS Higgs Machine Learning
data set

In the following, the problem of the collapsing NN output function due to the discretization
of the NN output is displayed on the ATLAS Higgs Boson Machine Learning Challenge
data set [67]. The collapse and the proposed modifications are visualized in form of event
movement, similar to section 4.2 and the same NN architecture is used as described in
section 4.2.
Utilized the proposed setup of [3], where the following variables are used for the NN
input:DER_mass_vis, DER_pt_h, and DER_deltaeta_jet_jet. The systematic variation is
introduced by a 10 % variation of PRI_met variable. The correction weights retrieved from
this variation are applied as weight corrections to the NN output.
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Figure A.1.: Shown are the event movements of 50 randomly chosen signal and back-
ground events of the ATLAS Higgs Boson Machine Learning Challenge data set. A
warm-up phase of 300 epochs on BCE is applied in both cases. The resulting event
movements of the proposed custom function for the histogram gradient [3] are shown
in (a), whereas the results of the modification of the custom function as proposed in
section 4.2 are shown in (b). Further information is given in section 4.2.
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B. One-class ansatz on toy data set with an increased number of bins

Shown are the summarized results of a conducted study on the used number of bins for
the one-class approach on the pseudo experiment as discussed in section 5.1. Figure B.2
summarizes the results considering 24 and 32 bins in comparison to the 16 bins that are
shown in section 5.2. A lower number of bins is not used due to separation issues of the
processes.
The displayed figure is split into multiple figures, that are shown across multiple pages in
order to improve readability.
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Figure B.2.: Results of the statistical inference comparing different numbers of used
bins in the one-class approach on the pseudo experiment as discussed in subsection 5.2.1
as an ensemble test with a sample size of 100. Inclusive signal strength estimations are
shown in (a). Differential signal strength estimations are shown in (b) for Signal 1 and
in (c) for Signal 2. The vertical black line in each figure indicates the estimated signal
strength. Statistical (statistical and systematic) uncertainties from the likelihood scans
of the conducted benchmark using the CE loss are shown as blue (red) vertical lines.
Filled histograms summarize the result of the one-class approach training using 16 bins
as shown in section 5.2. Unfilled histograms with a solid (dashed) line show the results
for the one-class approach using 24 (32) bins.
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C. Uncertainty impacts in case of binary classification for the reduced
CMS SM H→ττ data set

Listed are all uncertainties, that are considered in the application of the uncertainty-aware
training on the reduced CMS data set that is used for the CMS Standard Model analysis
[4]. The following figures list the uncertainties in descending order, depending on their
impacts on the estimated signal strength uncertainty (right) that are retrieved from the
statistical inference of a BCE training as discussed in section 6.2. The showed pulls are
not deviating from zero due to the use of the Asimov data set and are omitted in following
plots. A description of the used pre-, in-, and suffixes for the names are given in section 2.5.
The shown list is split into multiple parts, that are shown across multiple pages in order to
improve readability and show the change between different scales of the impacts.
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Figure C.3.: Impacts of the used uncertainties from the BCE training as conducted in
section 6.2.
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D. Impact changes of uncertainties between BCE and uncertainty-aware
training in case of binary classification for the reduced CMS SM H→ττ
data set

Changes of the impacts of all uncertainties between BCE and uncertainty-aware training
on the reduced CMS data set that is used for the CMS Standard Model analysis [4]. A
description of the used pre-, in-, and suffixes are given in section 2.5. The following figures
list the uncertainties in descending order, depending on the impacts retrieved by the
statistical inference from the results of BCE training as discussed in section 6.2.
The displayed list is split into multiple parts, that are shown across multiple pages in order
to improve readability and show the change between different scales of the impacts.
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Figure D.4.: Impact changes on the estimated signal strength from the training on the
BCE loss (grey) in comparison to the applied uncertainty-aware training as described in
section 6.2. Colored bars indicate the impact of a performed ±1σ shift of the nuisance
parameter that corresponds to the systematic uncertainty. The impacts are split from (a)
to (d) in descending order, showing different ranges. Further information is given at the
beginning of appendix D and in section 6.2.
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E. Comparison in the change of the importance of the input variables in
the binary case of the reduced CMS Standard Model H→ττ data set

Full list of the Taylor Coefficient Analysis [68] conducted on the reduced CMS data set
that is used for the CMS Standard Model H→ττ analysis in case of binary classification as
discussed in section 6.2.
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Figure E.5.: Shown are the results of a conducted Taylor Coefficient Analysis [68] on a
reduced CMS data set used for the CMS Standard Model H→ττ Analysis [4] in case of a
binary classification as discussed in section 6.2. The Taylor coefficients are retrieved from
both folds of used NNs as proposed by the analysis. The results of the BCE training
are shown in gray, whereas the results of the uncertainty-aware training utilizing all 86
introduced systematic uncertainties are shown in black. The Taylor coefficients are shown
descending in their importance based on the BCE loss ranging across multiple figures
form (a) to (g).
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F. Comparison of the uncertainty impacts in the multi-class case on the
reduced CMS Standard Model H→ττ data set

Changes of the impacts of the 20 most impactful uncertainties of the conducted training
on CE and the two introduced modifications to the uncertainty-aware training in presence
of multiple classes that are discussed in section 5.2. The following results are retrieved
from the reduced CMS data set that is used for the CMS Standard Model analysis [4]. A
description of the used pre-, in-, and suffixes are given in section 2.5 and further information
about the used data is provided in chapter 6.
The shown list is split into multiple parts, that are shown across multiple pages in order to
improve readability and show the change between different scales of the impacts.
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Figure F.6.: Shown are the 20 most impactful uncertainties on the estimated signal
strength, ordered by the results of the training on CE loss. Utilized is the reduced CMS
data set used for the CMS Standard Model H→ττ analysis [4] using multiple classes as
described in section 6.1. The change is shown between the CE loss (gray) and one of the
introduced approaches for the uncertainty-aware training that are described in section 5.2.
Colored bars indicate the impact of a performed ±1σ shift of the nuisance parameter that
corresponds to the systematic uncertainty. The impacts are split into two parts. The
first half displays the results of the estimated (a) inclusive signal strength, (b) differential
signal strength of the qqh process, and (c) differential signal strength of the qqh process
of the constrained-loss approach, whereas the second half, containing (d), (e), and (f)
displays the results of the one-class approach accordingly. Further information is given at
the beginning of appendix D.
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