
Feasibility and Reliability Studies of
Graph Neural Networks for

Multivariate tt̄+X Event Classification
at the CMS Experiment at CERN

Master Thesis

Yee-Ying Christina Cung

At the Department of Physics
Institute of Experimental Particle Physics

Reviewer: Prof. Dr. Ulrich Husemann
Second Reviewer: PD Dr. Roger Wolf
Advisor: Emanuel Pfeffer

December 06, 2022

ETP-KA/2022-19

KIT -- The Research University in the Helmholtz Association www.kit.edu

This thesis has been accepted by the first reviewer of the master thesis.

Karlsruhe, December 06, 2022

. .
(Prof. Dr. Ulrich Husemann)

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, December 06, 2022

. .
(Yee-Ying Christina Cung)

Contents

1 Introduction 1

2 High Energy Physics at the CMS Experiment at CERN 3
2.1 Standard Model of Particle Physics . 3
2.2 Large Hadron Collider . 7
2.3 The CMS Detector . 9
2.4 Kinematic Quantities . 11
2.5 Physics Processes . 13
2.6 Jet Reconstruction and b Tagging . 14

3 Machine Learning Algorithms 17
3.1 Deep Neural Networks . 17
3.2 Graph Neural Networks . 20

3.2.1 Graph Theory . 20
3.2.2 Graph Data and Tasks . 22
3.2.3 Message Passing Neural Networks 23
3.2.4 Graph Network Formalism . 26

3.3 Explainable AI . 29
3.3.1 GNNExplainer . 29
3.3.2 Taylor Coefficient Analysis . 32
3.3.3 Comparison . 33

4 Multivariate Event Classification with GNNs 35
4.1 Reproducibility and Data . 35
4.2 Architecture and Hyperparameters . 37
4.3 Binary and Multiclass Classification . 38
4.4 Further Optimization Approaches . 43
4.5 Applying Preclassified Category Flags to Input Features 46

5 Modeling of the Dependency of a GNN-Based Event Classification on the
Goodness of the Jet Assignment 51
5.1 Modeling Strategies . 51
5.2 Validation . 52

6 In-Depth Analysis of GNNs by Applying Explainable AI Methods 55
6.1 Identifying the Decision Basis of Models Trained with Different Information

Levels . 56
6.1.1 Category Importance and Category Specific Feature Importance . . 56
6.1.2 Feature Importance . 57
6.1.3 Conclusion . 61

6.2 Evolution of the Feature Importance in AddB-LTB Modeling 61

vii

viii Contents

7 Benchmark Study on Equivalent GNNs and DNNs 67
7.1 Comparability Challenges and Solutions . 67
7.2 Comparison of Models with an Equivalent Architecture 69

7.2.1 Model Performance and Training Stability 73
7.2.2 Convergence Speed and Degrees of Freedom 79

7.3 Comparison of Models with a Similar Number of Degrees of Freedom 82
7.3.1 DNNs with a Tuned Number of Degrees of Freedom 82
7.3.2 DNNs with a Restricted Number of Degrees of Freedom 83
7.3.3 GNNs with an Expanded Number of Degrees of Freedom 83

7.4 In-Depth Analysis of the Best-Performing Models 83

8 Summary and Outlook 91

Bibliography 93

Appendix 99
A Distribution of Observables . 100
B Decision Basis for Outlier Criterion (b) . 101
C Normalized Performance Rates of NLP-GGSNN 102
D Properties of the Manipulated Data Sets . 103
E Derivation of Δ𝑟*

max . 104
F Supplementary Information to Chapter 6 105
G Supplementary Information to Chapter 7 119

viii

1 Introduction

Ten years have passed since the announcement of the world-wide attention-grabbing
discovery of the Higgs boson at the ATLAS and CMS experiments at CERN in 2012 [1, 2].
While the Higgs boson is known as the last puzzle piece of the Standard Model, the
theory that successfully explains phenomena ranging over several orders of magnitude with
great precision, the structure of the universe is still not fully understood. In fact, many
phenomena observed in nature are not even covered by the Standard Model, leading to the
development of new theories and the search for new physics beyond the Standard Model
(BSM) for answering these pending questions. For this reason, as well as for measuring the
Higgs sector with even greater precision, the Large Hadron Collider (LHC) at CERN has
recently resumed operations after a three-year break for maintenance and upgrades.

Top quark-antiquark pair production in association with a bottom quark-antiquark pair
(tt + bb) plays a central role in this thesis. On the one hand, this process is interesting
per se as large uncertainties, caused by the very different energy scales associated with
tt and bb, are attached to its mathematical description and simulation [3]. On the other
hand, the tt + bb process is an irreducible background to the tt̄H(bb̄) process, in which
tt and a Higgs boson (tt + H) are produced in association, followed by the subsequent
decay of the Higgs boson into a bottom quark-antiquark pair (H → bb). Equally, the
tt̄Z(bb̄) process (tt + Z, Z → bb) forms an irreducible background to both processes. It is
crucial to separate these processes with high efficiency as the tt̄H(bb̄) process is – thanks
to the large top quark mass – predestined for probing the coupling strength of the Yukawa
coupling, which in turn serves as an important consistency check for both the Standard
Model and BSM models [4].

As the physics processes under scrutiny are more naturally representable as graphs, graph
neural networks (GNNs), a novel machine learning algorithm dedicated to processing graph
data, are presumably a promising approach for multivariate tt̄+X event classification. The
goal of this thesis is to examine the feasibility of GNNs for this classification task as well as
to probe their reliability with explainable AI methods. Additionally, a detailed comparison
with a machine learning technique already well-established in high energy physics (HEP),
deep neural networks (DNNs), is conducted.

1

2 1 Introduction

After introducing the theoretical and experimental foundations of this thesis in Chapters 2
and 3, the general feasibility and reliability of graph neural networks for multivariate tt̄+X
event classification are examined in Chapters 4-6. The studies are subsequently concluded
with a comparison of GNNs and DNNs in Chapter 7. Lastly, a summary of the results and
an outlook is given in Chapter 8.

2

2 High Energy Physics at the CMS
Experiment at CERN

The theoretical basis of particle physics is the Standard Model of Particle Physics (SM), a
theory that describes the matter in the universe and its interactions. Albeit the Standard
Model is commonly known to be the best experimentally verified theory in the world, it
covers neither gravitation nor various other phenomena that have already been observed,
leading to the development of new theories beyond the Standard Model (BSM). In order to
further probe the consistency of the Standard Model as well as search for BSM physics in a
controlled environment, powerful colliders, such as the Large Hadron Collider (LHC) at the
European Organization for Nuclear Research (CERN), and reliable detectors are inevitable.
Since the colliders operate at highest energies, particle physics is often referred to as high
energy physics (HEP). Consequently, in order to comprehend the studies conducted with
(simulated) HEP data in the scope of this thesis (cf. Chapters 4-7), knowledge of the
mathematical background of the Standard Model and of the LHC is necessary and are
therefore briefly introduced in Section 2.1 and Section 2.2. Subsequently, the CMS detector
is described in Section 2.3, before several important kinematic quantities for describing
HEP data as well as the physics process under scrutiny in this thesis and the reconstruction
of jets, including b tagging, are presented in Sections 2.4-2.6.

2.1 Standard Model of Particle Physics
The Standard Model is a Quantum Field Theory (QFT) and forms the theoretical fun-
dament of today’s comprehension of matter and its electromagnetic, weak and strong
interactions. This theory enables a quantitative explanation of observed natural phenomena
over a range of eleven orders of magnitude of energy, although the SM only comprises
of 17 fundamental particles (when neglecting color quantum numbers and antiparticles).
Fundamental particles are objects with no further inner structure. They either possess
half integer or integer spin in units of ℏ, resulting in fundamentally different behavior.
Accordingly, the particles are further differentiated in fermions and bosons on the basis of
their spin. The former form the matter in our universe whereas the latter are the mediators
of the aforementioned interactions between matter. [7]

Fermions are further distinguished in leptons and quarks. As presented in Table 2.1, there
are six leptons in total, whereby half of them, the electron (𝑒), the muon (𝜇) and the

3

4 2 High Energy Physics at the CMS Experiment at CERN

Table 2.1: Properties of fundamental fermions. Except for the electron neutrino
mass, which corresponds to the value of the latest finding in Ref. [5], all values
are taken from Ref. [6]. The uncertainties for the electron and muon mass
are omitted for the sake of readability as they are more than seven orders
of magnitudes smaller than the respective mass. Incidentally, up, down and
strange quarks are also referred to as light flavors, due to their small mass.

fermion name type mass electric interactioncharge
up (u) up-type quark 2.16+0.49

−0.26 MeV 2/3 all
charm (c) up-type quark (1.27± 0.02) GeV 2/3 all
top (t) up-type quark (172.69± 0.30) GeV 2/3 all
down (d) down-type quark 4.67+0.48

−0.17 MeV −1/3 all
strange (s) down-type quark 93.4+8.6

−3.4 MeV −1/3 all
bottom (b) down-type quark 4.18+0.03

−0.02 GeV −1/3 all
electron (𝑒) lepton 0.511 MeV −1 electroweak
muon (𝜇) lepton 105.66 MeV −1 electroweak
tau (𝜏) lepton (1776.86 ± 0.12) MeV −1 electroweak
electron neutrino (𝜈𝑒) lepton < 0.8 eV 0 weak
muon neutrino (𝜈𝜇) lepton < 0.19 MeV 0 weak
tau neutrino (𝜈𝜏) lepton < 18.2 MeV 0 weak

tau (𝜏), carry an electric charge of −1 in units of 𝑒, while the associated neutrinos (𝜈𝑒, 𝜈𝜇,
𝜈𝜏) are electrically neutral. Equally, there are six quark flavors. The quarks up (u), charm
(c), top (t) possess an electric charge of 2/3 and the quarks down (d), strange (s), bottom
(b) an electric charge of −1/3. In addition to the electric charge, a color charge (red, green,
blue) is assigned to each quark.
Furthermore, the fermions can be grouped in three generations in ascending order with
respect to their mass, whereby each generation consists of an up-type quark, a down-type
quark, a charged lepton and the corresponding neutrino. Only the first generation (u, d, e,
𝜈𝑒) is known to form stable matter while the particles of the remaining generations eventu-
ally decay to particles from the first generation. It should be noted that an antiparticle of
each fermion exists, leading to 48 fermions in total. [8]

The following explanations follow Ref. [7] and Ref. [9] if not stated otherwise.
For describing the dynamics of the particles in the Standard Model or, more generally
speaking, in QFT, the Lagrangian formalism is used. In this formalism, the Lagrangian
density ℒ(𝜑(𝑥), 𝜕𝜇𝜑(𝑥)), where 𝑥 denotes space-time coordinates and 𝜕𝜇 corresponds to
the covariant derivative, plays a central role as it fully describes the state of the field 𝜑(𝑥).
In particular, it turns out that all aforementioned interactions and their mediators (gauge
bosons) are a direct consequence of requiring the Lagrangian density to be invariant under
certain continuous local gauge transformations.
The Lagrangian density for free fermions is, for instance, given by

ℒ = 𝜓(𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜓 , (2.1)

where 𝑚 corresponds to the fermion mass, 𝜓(𝑥) is a spinor field, 𝜓(𝑥) = 𝜓†(𝑥)𝛾0 the
spinor adjoint and 𝛾𝜇 denote the Dirac matrices. This Lagrangian density is invariant
under global 𝑈(1) gauge transformation 𝜓(𝑥)→ 𝜓′(𝑥) = 𝑒𝑖𝜃𝜓(𝑥), but not under local 𝑈(1)
symmetry operations (𝜃 = 𝜃(𝑥)) unless a gauge field 𝐴𝜇(𝑥) and the covariant derivative

4

2.1 Standard Model of Particle Physics 5

𝜕𝜇 → 𝐷𝜇 = 𝜕𝜇 + 𝑖𝑞𝐴𝜇(𝑥) are introduced. Thereby, the gauge field 𝐴𝜇(𝑥) emerges as the
photon field from electrodynamics and it turns out that the variable 𝑞 coming alongside
the photon field can be identified as the electric charge. As known already since 1918, each
continuous symmetry is accompanied with a conserved quantity (Noether’s theorem) [10].
For 𝑈(1) this is indeed the electric charge.
The full quantum electrodynamic (QED) Lagrangian density is

ℒQED = 𝜓(𝑖𝛾𝜇𝐷𝜇 −𝑚)𝜓 − 1
4𝐹𝜇𝜈𝐹

𝜇𝜈 (2.2)

= 𝜓(𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜓 − 𝑞(𝜓𝛾𝜇𝜓)𝐴𝜇 −
1
4𝐹𝜇𝜈𝐹

𝜇𝜈 , (2.3)

where 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 is the field strength tensor. Solely the last two terms are new in
comparison to Equation 2.1. The third term is required for covering the dynamics of 𝐴𝜇(𝑥)
while the second term describes the interaction between a fermion and the photon field
coupled through the electric charge. Thus, it can indeed be seen that the electromagnetic
interaction is a direct consequence of conservation of local gauge invariance. In particular,
a mass term for the mediator would break gauge invariance, i.e., the mediator particle
has to be massless, which is the case for the photon and results in an infinite range of
the electromagnetic force. The infinite range neither holds for the strong nor the weak force.

For deriving the strong and the weak interaction, non-Abelian symmetry groups, i.e.,
groups that are not commutative, need to be introduced and potentially lead to more
sophisticated fields. The strong force is described by Quantum Chromodynamics (QCD)
and arises from the 𝑆𝑈(3)𝐶 symmetry in color space (hence the subscript 𝐶), which builds
upon eight generators 𝜏𝑎 = 1

2𝜆
𝑎, with 𝑎 = 1..8 and 𝜆𝑎 being the Gell-Mann matrices.

Accordingly, there are eight fields 𝐴𝑎
𝜇 in total, i.e., eight particles mediating the strong

force. These mediators are called gluons and each of them possesses a color charge (mixture
of red, green, blue and antired, antigreen and antiblue), which is, equally to the electric
charge, a conserved quantity. The QCD Lagrangian density is given as

ℒQCD =
∑︁

𝑞

(︁
𝜓𝑞,𝑖(𝑖/𝜕 −𝑚)𝜓𝑞,𝑖 − 𝑔S(𝜓𝑖𝛾

𝜇𝜏𝑎
𝑖𝑗𝜓𝑗)𝐴𝑎

𝜇

)︁
− 1

4𝐹
𝑎
𝜇𝜈𝐹

𝑎,𝜇𝜈 , (2.4)

with the color indices 𝑖, 𝑗 = 1, 2, 3 and 𝑔S denoting the strong coupling constant. The sum
runs over all quark flavors 𝑞 and the field strength tensor 𝐹 𝑎

𝜇𝜈 = 𝜕𝜇𝐴
𝑎
𝜈 − 𝜕𝜈𝐴

𝑎
𝜇 + 𝑔S𝑓

𝑎𝑏𝑐𝐴𝑏
𝜇𝐴

𝑐
𝜈 .

The second term in the equation for the field strength tensor does not appear in QED as
the structure constants 𝑓𝑎𝑏𝑐 equal zero for Abelian symmetry groups. This however enables
self-interactions between the mediators (incorporated in the third term in Equation 2.4).
Analogous to QED, the second term in Equation 2.4 represents the interaction between
color charge carrying fermions (quarks) and gluon fields. A mass term for gluons would
break the gauge invariance in QCD as well, resulting in massless gluons equally to photons.
However, a peculiarity is still incorporated in QCD. With increasing energy/decreasing
distances, the strength of the strong coupling constant decreases, while the opposite applies
to decreasing energy/increasing distances. The consequences are asymptotic freedom, i.e.,
quarks and gluons are quasi free at high energies, and confinement, i.e., only color neutral
objects exist. Accordingly, as of a certain distance between fundamental particles with
color charge, it is energetically more favorable to create new particles while conserving
color charge, called hadrons. Eventually, this hadronization process results in collimated
bunches of hadrons forming a cone (jet).

The weak and electromagnetic force can be unified into the electroweak force (Glashow-
Weinberg-Salam theory for high energies [11–13]), which stems from 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌

5

6 2 High Energy Physics at the CMS Experiment at CERN

symmetry on a theoretical level. The former gauge group comes with three generators
𝜏𝑎 = 1

2𝜎
𝑎, where 𝑎 = 1, 2, 3 and 𝜎𝑎 are the Pauli matrices, and therewith three gauge fields

𝑊 𝑎
𝜇 . As seen for QED already, the 𝑈(1)𝑌 gauge group results in one postulated gauge

boson, denoted 𝐵𝜇. The observed quantities in this combined gauge group are the third
component of the weak isospin 𝐼3 and the hypercharge 𝑌 , which are connected through
the Gell-Mann-Nishijima relation 𝐼3 = 𝑌 /2− 𝑞.
What is special about the weak force in particular is that it is confined to fermions
with certain chirality. These are left-handed components of particles and right-handed
components of antiparticles, hence the subscript 𝐿 for 𝑆𝑈(2)𝐿, which can be projected
out of spinors with the projection operator 𝑃R/L = (1 ± 𝛾5)/2, with 𝛾5 ≡ 𝑖𝛾0𝛾1𝛾2𝛾3.
Eventually, this characteristic of the weak interaction leads to parity violation, i.e., no
invariance of physics processes under point reflection, and violation of the combination of
charge conjugation and parity symmetry (CP violation).
Furthermore, the physically observable mediators (𝑊±

𝜇 , 𝑍𝜇 and 𝐴𝜇) do not directly
correspond to the postulated gauge fields, unlike for QCD or QED, but they are found to
be linear combinations of the postulated gauge fields.
Moreover, the W and Z bosons are experimentally proven to be massive [14–16], which
is however not straightforward obtainable from the conservation of the 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌

symmetry. Even the mass of weakly interacting leptons poses a problem to the gauge
invariance. Fortunately, the introduction of spontaneous symmetry breaking in the scope
of the Brout-Englert-Higgs mechanism [17–19] solves this. In this concept, the Lagrangian
density still possesses the 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 symmetry but the energy ground state of the
physical system does not. This is induced with an additional complex scalar field (Higgs
field)

𝜑 =
(︃
𝜑+
𝜑0

)︃
, 𝜑† =

(︁
𝜑*

+ 𝜑*
0

)︁
≡
(︁
𝜑− 𝜑*

0

)︁
, (2.5)

which is an weak isospin doublet and obeys the 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 symmetry, and the
corresponding Lagrangian density

ℒHiggs = (𝐷𝜇𝜑)†(𝐷𝜇𝜑)− 𝑉 (𝜑) (2.6)

= (𝐷𝜇𝜑)†(𝐷𝜇𝜑)− 𝜇2𝜑†𝜑− 𝜆
(︁
𝜑†𝜑

)︁2
. (2.7)

As the components in 𝜑 are complex, four degrees of freedom are introduced with the
Higgs field and the index of these components corresponds to their electric charge. For
the parameters 𝜇 and 𝜆, it holds 𝜇2 < 0 and 𝜆 > 0 since otherwise the ground state of the
potential is not degenerate and thus no spontaneous symmetry breaking is inducible. It
can be derived that these parameters are related to each other via 𝑣 =

√︀
−𝜇2/(2𝜆), which

is referred to as the non-zero vacuum expectation value of the Higgs field 𝜑, i.e., the value
of 𝜑 for which the Higgs potential is minimal (ground state). Choosing a specific ground
state of the degenerate ground states, e.g., 𝜑 =

(︁
0 𝑣

)︁⊺
leads to the desired spontaneous

symmetry breaking of 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 . The consequence of a radial excitation of the
Higgs field 𝜑 can be seen with a Taylor expansion around this ground state

𝜑 =
(︃

0
𝑣 + 𝐻√

2

)︃
. (2.8)

It results in a new field 𝐻, called the Higgs boson field. The postulated neutral scalar
boson with the mass 𝑚𝐻 =

√
4𝜆𝑣2 was eventually found in 2012 at CERN [1, 2] after

almost 50 years of search and is known as Higgs boson.
The remaining degrees of freedom of 𝜑 are absorbed in 𝑊+

𝜇 , 𝑊−
𝜇 and 𝑍𝜇, which allows

6

2.2 Large Hadron Collider 7

Table 2.2: Properties of fundamental bosons. Both the mediator of the strong force
and of the electromagnetic force are massless. The 𝑊± bosons are the only
gauge bosons with charge and the Higgs boson is the only scalar boson (spin-0)
in the Standard Model. Moreover, the latter is the only boson that does not
serve as mediator for a force. The values are taken from Ref. [6].

boson name mass electric spin mediatingcharge
gluon (g) — 0 1 strong force
photon (𝛾) — 0 1 electromagnetic force
Z0 boson (80.377 ± 0.012) GeV 0 1 weak force
W± boson (91.1876 ± 0.0021) GeV ± 1 1 weak force
Higgs boson (H) (125.25 ± 0.17) GeV 0 0 —

them to be massive while the photon remains massless. The masses of the W and Z boson
relate to 𝑣 as follows

𝑚W = 𝑔

2𝑣 , 𝑚Z =
√︀
𝑔2 + 𝑔′2

2 𝑣 . (2.9)

The fermion mass 𝑚𝑓 issue is, on the other hand, solved with the Yukawa coupling between
the fermion and the Higgs field

ℒYukawa = −𝑦𝑓

[︁(︁
𝜓R𝜑

†𝜓L
)︁
−
(︁
𝜓L𝜑𝜓R

)︁]︁
(2.10)

with the coupling constant 𝑦𝑓 = 𝑚𝑓/𝑣.

In summary, all interactions (except for gravitation) arise from the local 𝑆𝑈(3)𝐶×𝑆𝑈(2)𝐿×
𝑈(1)𝑌 gauge symmetries to which the Standard Model is internally subject. The properties
of the corresponding mediators and of the Higgs boson are summarized in Table 2.2.

2.2 Large Hadron Collider

As the name implies, the Large Hadron Collider is a hadron accelerator and collider at
CERN. It is, until this day, the most powerful particle accelerator with respect to the
provided center-of-mass energy

√
𝑠 [20]. The LHC consists of two accelerator rings with a

circumference of 26.7 km, which are utilized for either colliding protons or heavy (Pb) ions.
There are four interaction regions, each with a dedicated experiment, as depicted in Fig. 2.1.
These experiments are ALICE [21], which is dedicated to heavy ions, LHCb [22], which is
mainly focused on B hadrons, as well as the high luminosity, multi-purpose experiments
ATLAS [23] and CMS [24]. The latter is further presented in Section 2.3, as the data used
in this thesis is simulated in correspondence to real data taken at the CMS experiment. [25]

A key property of colliders is called instantaneous luminosity

𝐿 ∝ 𝑓 𝑁
2
b𝑛b

4𝜋𝜎2 , (2.11)

with 𝜎 denoting the geometric cross section of the beams (with an assumed Gaussian
profile), 𝑓 denoting the revolution frequency of the bunches and 𝑁b and 𝑛b being the

7

8 2 High Energy Physics at the CMS Experiment at CERN

proton

injection

pr
ot
on

inj
ec
tio

n

beam cleaning beam cleaning

CMS

ATLAS

ALICE LHCb1

2

3

4

5

6

7

8

acceleration
system

beam dump

Figure 2.1: Top view of a schematic representation of the LHC. The LHC can
be divided into eight octants. The clockwise proton beam (red) and the
counterclockwise proton beam (blue) are inserted in the second and eighth
octant of the LHC, respectively. The two beams are caused to collide at
four points (yellow) which coincided with the position of the four experiments
ATLAS, ALICE, CMS and LHCb. Figure adapted from Ref. [26].

number of particles in a bunch and the number of bunches, respectively. The reason for
its importance is that it has a direct effect on

d𝑁event
d𝑡 = 𝐿𝜎process , (2.12)

the generated number of events per second. [25] The only other factor in Equation 2.12
is the cross section 𝜎process for the particular physics processes, which is a measure of the
probability of the occurrence of a certain physics process and as such obviously constrained
by physics and non-tunable.

As presented in Fig. 2.2, the data-taking at the LHC started in 2010 and operated for
three years until 2013. During this first data taking period (LHC Run 1), an integrated
luminosity of 𝐿int = 25 fb−1 was reached at

√
𝑠 = 7, 8 TeV in proton-proton collisions. The

integrated luminosity is thereby given as 𝐿int =
∫︀
𝐿d𝑡 and serves as measure of the amount

of generated data over a certain period of time. Among various physics highlights of this
run, see Ref. [27], the discovery of the Higgs boson, simultaneously at CMS and ATLAS,
stands out in particular. Although, this main goal of the LHC, which has been pursued
since day one, is successfully achieved, the accelerator is not yet obsolete. For instance,
despite of the experimentally verified predictive power of the SM in various experiments,
there are, even apart from the gravitational force, many pending questions that are not
covered by the SM. It fails to elucidate dark matter, which makes up 96 % of the matter
content of the universe, or the baryon asymmetry, i.e., the matter-antimatter imbalance in
the universe, to just name a few issues, and it is strived to answer them in the subsequent
LHC runs. [27]
Thanks to various upgrades of the LHC and detectors during the first Long Shutdown (LS1)
phase, the center-of-mass energy was doubled (

√
𝑠 = 13 TeV) for LHC Run 2 (2015–2018)

8

2.3 The CMS Detector 9

Figure 2.2: Schedule of the LHC with the corresponding forecasts of the nominal
instantaneous luminosity and integrated luminosity for each run. So
far, two data taking periods and two upgrade phases have been successfully
completed. Unlike scheduled, Run 3 started in 2022 and not in 2021, partly
due to the coronavirus pandemic [20]. It is aimed to achieve significantly higher
luminosities (HL-LHC) in the upcoming data taking periods (after LS3). Figure
taken from Ref. [31].

and the originally planned peak luminosity of 𝐿 = 1034 cm−2s−1 [25] at the LHC has been
exceeded in 2016 [28]. At the end of this period, the integrated luminosity in proton-proton
collisions was in total about 160 fb−1 [28]. Due to this amount of data, e.g., the properties
of the Higgs boson could be measured with greater precision on the one hand. On the other
hand, also the exclusion limits on physics beyond the Standard Model could be further
constrained [29]. After a second Long Shutdown with upgrades, the current data taking
period (LHC Run 3,

√
𝑠 = 13.6 TeV) started in 2022 [30]. Yet, three further runs with a

further upgraded LHC (High Luminosity LHC, HL-LHC) are already scheduled [20].

2.3 The CMS Detector

In the following, the Compact Muon Solenoid (CMS) detector will be elucidated on the
basis of Ref. [24] if not stated otherwise.

The CMS detector is designed in a way that enables the detection of all types of particles
(multi-purpose detector), i.e., it has to match some prerequisites like having a large
hermetic geometric coverage, high energy and momentum resolution for photons, leptons,
in particular muons, as well as hadrons, efficient online event filtering (trigger) and many
more. The result is a detector composed of several layers of different sub-detectors arranged
cylindrically around the interaction point and are designed in such a compact way that
it is still (financially) feasible to fit the entire tracker system and calorimeters inside the
magnet coil (Fig. 2.3). In total, the CMS detector only possesses a diameter of 14.6 m and
a length of 21.6 m.

9

10 2 High Energy Physics at the CMS Experiment at CERN

Figure 2.3: Schematic representation of a slice of the CMS detector. The CMS
detector consists of four different sub-detectors. These are from the innermost
to the outmost sub-detector, the silicon tracker, the electromagnetic and hadron
calorimeters as well as the muon system. Additionally, exemplary traces of
different particles through the CMS detector as well as their interaction with
the sub-detectors are depicted. Figure taken from Ref. [32].

The inner tracking system is the innermost sub-detector and dedicated to vertex and
track reconstruction of charged particles. It comprises several layers of pixel as well
as silicon microstrip detectors in order to ensure a high granularity. This enables a
precise measurement of the particle trajectories and the origin of particle tracks, which is
indispensable due to the high luminosities reached at the LHC.
As the whole detector is penetrated by a homogeneous, almost 4-T magnetic field, provided
by a superconducting solenoid, the tracks of charged particles are bent. Given

𝑝T ∝ 𝑞 ·𝐵 ·𝑅 , (2.13)

with 𝑞 denoting the electric charge, 𝐵 being the strength of the magnetic field and 𝑅 the
radius of the track curvature, the bent trajectories can be exploited for determining the
transverse momentum 𝑝T of the produced charged particles.

Subsequently, the energy measuring systems in the form of the electromagnetic calorime-
ter (ECAL) and the hadron calorimeter (HCAL) are positioned.
As a homogeneous calorimeter, the ECAL uses the same material (PbWO4 crystals) for
emitting scintillation light and absorbing the incident particles. With the scintillation light,
it is then possible to measure the energy of electrons, positrons and photons. The ECAL
energy resolution follows (︂

𝜎𝐸

𝐸

)︂2
=
(︂

𝑎√
𝐸

)︂2
+
(︂
𝑏

𝐸

)︂2
+ 𝑐 , (2.14)

whereby 𝑎, 𝑏 and 𝑐 are inherent calorimeter parameters that need to be determined with
a beam test, for instance. The first term is known as the stochastic term, e.g., caused
by statistical fluctuations, and the second term arises due to noise. With the energy

10

2.4 Kinematic Quantities 11

independent third term, for example, calibration, errors or energy leakage are taken into
account.
On the contrary, the HCAL, surrounding the ECAL, is a sampling calorimeter. It is
mainly dedicated to measuring the energy of hadrons, which have a longer interaction
length than electrons, for example. The HCAL consists of alternating absorber (brass)
and plastic scintillator layers, leading to lower achievable energy resolutions than with
the ECAL. For that reason, the Particle Flow algorithm is introduced. With that, a
higher energy resolution can be realized, as the algorithm fully exploits the advantageous
conditions prevailing at CMS (large magnetic field, compact design, i.e., fewer dead spots,
and each per se highly optimized sub-detector) in the best possible way by combining the
measured information from all sub-detectors to determine the energy of particles (and
track reconstruction) instead of solely relying on the HCAL for charged hadron [33].

The muon system as outmost sub-detector completes the CMS detector. It is composed
of three different types of gaseous ionization detectors and has the purpose to exclusively
measure both the momentum and charge of muons, as the only remaining particles that
are able to pass through the entire construction without being absorbed are muons and
the non-detectable neutrinos. Equally to the inner trackers, the momentum is measured
via the bending radius of the muon tracks in a magnetic field. Hence, the muon system is
embedded in the iron return yoke of the superconducting solenoid. Among all sub-detectors,
the muon system is probably the most important tool for BSM searches as muons are
comparatively easy to detect since they are not subject to strong interaction and suffer
less from radiative losses than electrons.

An efficient online trigger system is also essential in order to cope with the vast amount
of data produced at the LHC. Its goal is to select only the potentially interesting events
produced out of approximately 109 proton-proton collisions per second at 𝐿 = 1034 cm−2s−1

for storage and further analysis. The trigger system at the CMS consists of a hardware-
based Level-1 (L1) trigger and a High-Level Trigger (HLT), which corresponds to a large
computing farm. In the L1 trigger, only information provided by the calorimeters and
the muon system serves as basis for the initial event selection. As the subsequent HLT
then only needs to process a data rate of around 100 kHz, more sophisticated selection
criteria, involving calculations with consideration of the complete detector information, are
applicable. Eventually, only the much more feasible data rate of approximately 1 kHz [34]
remain for offline processing.

2.4 Kinematic Quantities

For describing the direction and the kinematic quantities of the particles produced at
LHC, it is reasonable to introduce a coordinate system whose origin is placed in the
nominal interaction point, which coincides with the center of the CMS experiment. The
corresponding 𝑥-axis is thereby directed towards the center of the LHC ring. The 𝑦-axis
is perpendicular to it and points upwards and the 𝑧-axis coincides with the axis of the
counterclockwise rotating beam in order to form a right-handed coordinate system. Being
a cylindrical detector, using cylindrical coordinates (𝑟, 𝜑, 𝜃) facilitates the description.
The radial coordinate 𝑟 lies in the plane spanned by 𝑥 and 𝑦. The azimuthal angle 𝜑
corresponds to the angular distance from the 𝑥-axis in this plane and the polar angle 𝜃 is
the angular distance from the 𝑧-axis in the (𝑟, 𝑧)-plane. [24]

11

12 2 High Energy Physics at the CMS Experiment at CERN

The pseudorapidity

𝜂 = − ln tan
(︂
𝜃

2

)︂
(2.15)

is however more commonly used for describing the direction of an object than the polar
angle. In the limit of momentum 𝑝 being significantly larger than the mass 𝑀 of the
corresponding object, which is ubiquitous in HEP, it is a good approximation of the rapidity

𝑦 = 1
2 ln

(︂
𝐸 + 𝑝𝑧

𝐸 − 𝑝𝑧

)︂
, (2.16)

which is a measure of the velocity of the particular object along the beam axis. The variable
𝐸 in the equation denotes the energy of the particular object.

The spatial distance

Δ𝑅𝑖𝑗 =
√︁

(𝜂𝑖 − 𝜂𝑗)2 + (𝜑𝑖 − 𝜑𝑗)2 (2.17)

between two objects 𝑖 and 𝑗 is constructed on the basis of the pseudorapidity and azimuthal
angle.

The transverse momentum

𝑝T =
√︁
𝑝2

𝑥 + 𝑝2
𝑦 (2.18)

is another important quantity. It is transverse with respect to the beam axis and as
such also invariant under Lorentz transformations along the beam axis. Its importance
is attributed to the fact that protons are not fundamental particles, i.e., actually not the
proton as a whole but rather its substructures (partons) participate in the collisions. Thus,
the actual momenta of the colliding partons along the beam axis are unknown.

As mentioned in Section 2.3, neutrinos (or neutral, at most weakly interacting, particles
that are not described in the SM) are not detectable as they hardly interact with matter.
Neutrinos do, however, possess momentum, which in turn also cannot be detected. The
corresponding missing transverse momentum /𝐸T, which is also referred to as missing
transverse energy (MET), can be reconstructed via the vectorial sum over the transverse
momenta of all detected particles

/𝐸T =
⃒⃒⃒⃒
⃒−∑︁

𝑖

pT,𝑖

⃒⃒⃒⃒
⃒ , (2.19)

given there are no uninstrumental or ineffective areas in the detector through which
particles can escape.

An invariant mass 𝑀inv can be assigned to each system of objects. For that, it is
necessary to sum over the four momenta of all objects. The invariant mass then reads as

𝑀 =
√︁
𝐸2 − 𝑝2

T − 𝑝2
𝑧 , (2.20)

with 𝐸, 𝑝T and 𝑝𝑧 denoting the energy, the transverse momentum and the momentum
along the beam axis of the particular system of objects, respectively. In this manner, a
mass can also be assigned to jets, which is however referred to as jet mass and not as
invariant mass.

12

2.5 Physics Processes 13

(a) (b) (c)

Figure 2.4: Exemplary LO Feynman diagrams of tt + bb (a), tt̄H(bb̄) (b) and
tt̄Z(bb̄) (c) in the t-channel. All three processes share the exact same final
state objects and hence are irreducible backgrounds to each other. The only
difference in their event topology is highlighted in color, namely the particle
from which b jets that do not directly stem from a top decay originate.

2.5 Physics Processes
Being the heaviest fermions in the Standard Model and only possessing a lifetime of
5 · 10−25 s, top quarks behave significantly different than other quarks. For instance, no
bound-states can be formed with these short-lived quarks (tt-quarkonium) and instead of
producing jets, as other strongly interacting particles do due to confinement (cf. Section 2.1),
they decay into a W boson and a b quark with a branching ratio ℬ of (99.7±1.5) %. Hence,
it is only reasonable to classify top decays with respect to the decay products of the W
boson. For a tt pair, three decaying scenarios exist with different associated branching
ratios. In the all-hadronic channel (ℬ = 45.7 %), both W bosons decay into qq̄′ pairs,
which in turn produce jets. In the single-lepton channel (ℬ = 43.8 %), only one W boson
decays hadronically and the other W boson decays into a charged lepton and a neutrino.
Accordingly, both W bosons decay leptonically in the dilepton channel (ℬ = 10.5 %). [6]

The physics focus of this thesis is on the single-lepton channel of tt + bb processes as it
combines both a large branching ratio and a clear signature (due to the charged lepton).
Moreover, it suffers less from large QCD backgrounds. An exemplary Feynman diagram at
leading order (LO) of QCD perturbation theory for this process is depicted in Fig. 2.4a. In
total, six jets, one charged lepton and one neutrino are produced at LO. In this thesis, the
neutrino counts as a final state object as well, leading to eight final state objects at LO.
The b jets in the event name thereby refers to the b jets that stem from gluon decay. As
they are not regarded as part of the tt system, these jets are considered additional jets.

The motivation behind studying tt+bb is that there are still big uncertainties in mathemat-
ically describing and therefore also simulating this process. This traces back to the large
top quark mass, which has the consequence that the production of tt and the associated b
jets in tt + bb events take place on completely different energy scales [3]. On the other
hand, the tt + bb process is of outstanding importance from a broader perspective as well
since it is an irreducible background to the tt̄H(bb̄) process (Fig. 2.4b), in which tt pairs are
produced in association with a Higgs boson (tt + H) combined with a subsequent decay of
the Higgs boson in a bb pair (H→ bb). The tt̄H(bb̄) process is, in turn, a promising process
for measuring the coupling strength of the Yukawa coupling to the top quark 𝑦𝑡 as 𝑦𝑡 ∼ 𝑚𝑡

holds (cf. Section 2.1), i.e., the large top quark mass is, in this case, indeed advantageous
and leads to a coupling strength of order unity [6]. This allows both the consistency
of the Standard Model and BSM models predicting a different coupling strength to be
probed [4]. But also the tt̄Z(bb̄) process (tt + Z, Z → bb) is an irreducible background

13

14 2 High Energy Physics at the CMS Experiment at CERN

HadTopB

2x AddB

LepTopB

Lepton

Missing

2x HadTopQ

categories

Unknown+ additional jets

Figure 2.5: Category assignment. In total, seven different categories are introduced.
All jets that are neither part of the tt system nor an additional b jet, i.e., the b
jets from gluon, Higgs or Z boson decay, are assigned to the category Unknown.

to tt + bb and tt̄H(bb̄) processes (Fig. 2.4c). In order to separate these tt̄+X events,
mainly graph neural networks are deployed in this thesis. In a binary classification, tt + bb
is treated as signal events while tt̄H(bb̄) and tt̄Z(bb̄) are summarized as background events.

To facilitate the differentiation between the final state objects, seven categories are in-
troduced. As showcased in Fig. 2.5, b jets that are produced in association with the
hadronically/leptonically decaying W bosons correspond to the categories HadTopB and
LepTopB, respectively. The jets emerging from the hadronically decaying W boson are
assigned to the category HadTopQ and the categories Lepton and Missing are assigned to
the decay products of the leptonically decaying W boson. Jets that are not included at
leading order, are aggregated in the category Unknown. While, strictly speaking, only b
jets that stem from a radiated gluon decay are real additional b jets, the b jets resulting
from the decay of the Higgs or Z boson, are equally assigned to the category AddB in this
thesis.

2.6 Jet Reconstruction and b Tagging
It already becomes evident from the Feynman diagrams of the presented tt̄+X events (cf.
Fig. 2.4) that b jets play a crucial role for the studies performed in this thesis and hence it
is important to identify them correctly.

At the LHC, jets are generally reconstructed via the anti-𝑘T algorithm (𝑘T := 𝑝T) [35],
which is both infrared and collinear safe. That is, the reconstruction of the jet is neither
influenced by the radiation of low-energy gluons (soft gluons) nor gluons radiated at small
angles. The distance measure for a pair of objects 𝑖, 𝑗

𝑑𝑖𝑗 = min
(︃

1
𝑝2

T,𝑖

,
1
𝑝2

T,𝑗

)︃
Δ𝑅2

𝑖𝑗

𝑅2 , (2.21)

with 𝑅 being a radius parameter (usually 𝑅 = 0.4), and the distance measure between an
object 𝑖 and the beam B

𝑑𝑖𝐵 = 𝑝−2
T,𝑖 (2.22)

14

2.6 Jet Reconstruction and b Tagging 15

form the core of this algorithm. The algorithm sequentially combines in each iteration the
pair of objects (particles or pseudoparticles) with the smallest 𝑑𝑖𝑗 to a new pseudoparticle
until 𝑑𝑖𝑗 < 𝑑𝑖B does not hold anymore. All particles within the same pseudoparticle are
constituents of the same reconstructed jet.

For identifying b jets out of the reconstructed jets, the DeepJet b tagging algorithm, which
is based on a deep neural network (DNN), is utilized [36]. The DNN exploits, for instance,
properties of the jet constituents as well as secondary vertices related information for its
predictions. Especially the latter is relevant for b tagging as secondary vertices usually
stem from the exceptionally long lifetime of b hadrons in the order of picoseconds [6]. This
results in their production and decay points not coinciding. The DNN response for a jet,
which ranges from zero to one, is referred to as b tag and the threshold (working point) at
which a jet is regarded as b jet depends on the accepted rate of confusing light flavor jets
with actual b jets. The working point for which 10 %, 1 % and 0.1 % of the light flavor
jets are misidentified as b jets are referred to as loose, medium and tight working points,
respectively. [36]
Here, the medium working point is chosen, which corresponds to a DNN response value of
0.304 for data taken in the year 2017, i.e., only jets with a b tag exceeding this value are
identified as b jets.

15

3 Machine Learning Algorithms

Thanks to technological advances more sophisticated detectors can be constructed and as
ever-increasing computation power can be used for analyzing the big HEP data detected
by these detectors. In order to cope with this vast amount of data, often machine learning
techniques are employed. While, at the beginning, rather simple methods were applied to
HEP data, there is now rather a trend towards using more complex, i.e., deeper, machine
learning algorithms such as deep neural networks. In general, machine learning algorithms
are extremely versatile and can be used for various HEP tasks, including reconstruction of
tracks in detectors, event classification, jet tagging, triggering and many more. [37, 38]
The machine learning algorithms used in this thesis are both deep neural networks and
the novel, yet increasingly popular, graph neural networks, introduced in Section 3.1 and
Section 3.2. In Section 3.3, two explainable AI methods, which are useful for gaining a
deeper understanding of the behavior of neural networks, are introduced.

3.1 Deep Neural Networks
The following explanations are based on Refs. [39–41] if not stated otherwise.

An artificial neural network (ANN) comprises a set of neurons 𝑁 , organized in layers and
connected via edges 𝐸 with each other. The first and the last layer of an ANN is referred
to as input layer 𝐼 and output layer 𝑂, respectively. Layers that are in between the input
and output layer are called hidden layers. Thus, an ANN can be fully described via the
tuple (𝐼,𝑁,𝑂,𝐸). Figure 3.1 depicts a generic ANN consisting of the input layer, one
hidden layer and the output layer.
This thesis is confined to feed-forward neural networks, meaning that only neural networks
which pass the data strictly from left-to-right (input layer → optional hidden layer(s)
→ output layer) in the forward pass are considered. Accordingly, loops or, for instance,
intra-layer connections are prohibited. Moreover, the ANNs are fully-connected, i.e., each
node of a layer is connected to all other nodes of the subsequent layer and each connection
is associated with a (trainable) scalar, the weight.

The input layer can be mathematically described with a vector (input vector)

x =
(︁
𝑥1 𝑥2 . . . 𝑥𝑚

)︁⊺
(3.1)

17

18 3 Machine Learning Algorithms

Figure 3.1: Generic ANN consisting of one input, one hidden and one output
layer. Bias nodes are not depicted for the sake of simplicity. The single-colored
rectangles exemplify the input features x and the multi-colored rectangles
indicate the change of these feature values after the linear transformation of
the inputs (cf. Equation 3.3).

whereas the weights of each layer 𝑙 can be described with a matrix (weight matrix)

W(𝑙) =

⎛⎜⎜⎝
𝑤

(𝑙)
11 𝑤

(𝑙)
12 . . . 𝑤

(𝑙)
1𝑑′

...
...

𝑤
(𝑙)
𝑑1 𝑤

(𝑙)
𝑑2 . . . 𝑤

(𝑙)
𝑑𝑑′

⎞⎟⎟⎠ . (3.2)

Thereby, 𝑥𝑖, 𝑖 ∈ {1, 2, . . . ,𝑚
}︀

denotes the features provided to the neural network and 𝑑
and 𝑑′ denote the number of nodes in a layer 𝑙 and the number of nodes in the previous
layer 𝑙− 1, respectively. The computation performed in each non-input layer 𝑙 corresponds
to

x(𝑙) = 𝑓(W(𝑙)x(𝑙−1) + b(𝑙)) , (3.3)

where x(𝑙−1) equals x and 𝑑 equals 𝑚 for 𝑙 = 1 and 𝑓 denotes an activation function applied
elementwise on its argument. Optionally, a so-called bias b ∈ R𝑑 can be additionally
applied to each neuron in each hidden and output layer. What is special about the bias is
that the associated value is always the constant 1. The purpose of the bias is to shift the
activation function along the 𝑥-axis. The activation function used after each hidden layer
in this thesis is ReLU [42, 43]

𝑓ReLU(x(𝑙)) = max(0,x(𝑙)) (3.4)

as it is, despite of its simplicity, still often the function of choice in state-of-the-art deep
learning architectures [44]. On the contrary, sigmoid and its generalized version softmax

ŷ := 𝑓softmax(x(𝑙)) = exp(x(𝑙))∑︀𝐾
𝑘=1 exp(x(𝑙))𝑘

, (3.5)

are applied after the output layer for binary and multiclass classification, respectively, since
this allows a probability interpretation of the neural network response (logits). However, it
should be noted that only one neuron is used in the output layer for the binary classification
instead of multiple neurons. Hence, a value closer to zero indicates a rather background-like
event and a value closer to one rather a signal-like event.

Consequently, an ANN is nothing else than a function composition Φ : R𝑚 → R𝑜 mapping
the input vector of the length 𝑚 to an output vector of the length 𝑜. The target is

18

3.1 Deep Neural Networks 19

to find the set of weights, so that the ANN is most suitable for solving the given task
(training), i.e., approximating the underlying true function 𝑓 as best as possible. However,
only 𝑃 examples of the true function 𝑓 are known and given as input to the ANN. In
supervised learning the target of the ANN’s output is known beforehand. Thus, these
examples (training set) correspond to a set of tuples {(x1, t1), . . . , (x𝑃 , t𝑃)}, where t𝑖,
𝑖 ∈ {1, 2, . . . , 𝑃} denotes the targeted output of the ANN for the 𝑖-th example. In order
to train the ANN on the given tasks, i.e., output the desired targets, a loss function ℒ
measuring the deviation between the outputs ŷ and the targets as well as an optimization
algorithm for finding the (global) minimum of ℒ are required. If the latter is found, then
the model is converged.
A widely used loss function for classification tasks is called categorical cross-entropy,
which is called binary cross-entropy when applied to binary classification tasks and
which can be additionally scaled with a factor 𝜆. The scaled loss of an example 𝑖 is
calculated as

ℒ𝑖 = −𝜆𝑖

𝑜∑︁
𝑗=1

𝑡𝑖𝑗 log(𝑦𝑖𝑗) . (3.6)

In this thesis, the factor 𝜆 corresponds to the inverse of the sample size of the class of the
processed example.
A simple approach for optimizing the weights on the basis of the calculated loss is gradient
descent. This algorithm updates the weights through

𝑤
(𝑙)′
𝑑𝑑′ ← 𝑤

(𝑙)
𝑑𝑑′ − 𝛾

𝜕ℒ
𝜕𝑤

(𝑙)
𝑑𝑑′

, (3.7)

with 𝛾 being the learning rate. This is a hyperparameter that is chosen prior to the training
and controls how much the weights are updated at once. Due to the necessity for calculating
the gradients of ℒ, the loss function must be continuous and differentiable. Incidentally, it
is rather computationally inefficient to update the weights only after having propagated
the whole training set. It is faster to only calculate an estimation of the true gradient of
ℒ by updating the weights after the propagation of a mini-batch, i.e., already after the
propagation of a sub-group of the full training samples. Accordingly, this approach is
named stochastic gradient descent. However, this method can be even further improved
by replacing the constant learning rate by an adaptive learning rate during training. This
more sophisticated approach is used in the form of Adam in this thesis, as Adam appears
to outperform other adaptive learning methods such as AdaGrad [45]. After having
propagated the entire training set through the ANN and having updated the weights, one
training step is completed.

Since the training set has a limited size and the presence of noise is inevitable, there is
the possibility that the neural network starts to memorize this unwanted noise during
training instead of learning the underlying concept of the data (overfitting). Overfitting
leads to the consequence that a ANN performs well on the training data but will perform
poorly on unseen data. A possible solution for this issue is early-stopping, for example.
Here, the data is divided into three subsets, a training, validation and test set. In order
to monitor when overfitting begins, the neural network is evaluated on the validation set
after each training step. As soon as the monitored metric, such as the validation loss or
the validation accuracy, on the validation set has not improved for a predefined number of
epochs, the training is stopped. Afterwards, the neural network can be evaluated on the
test set in order to get the final performance metrics of the trained model. [46]
Apart from early-stopping, there are many regularization techniques for addressing the

19

20 3 Machine Learning Algorithms

overfitting issue such as L2 regularization or dropout. The first approach modifies
the loss function by adding a term to it penalizing big weights. The latter influences the
learning process by randomly turning a fraction of hidden nodes in the neural network tem-
porarily off and therewith each neuron needs to focus on robust features. With dropout
it is basically possible to train several neural networks at once. The model inference step,
where the dropout is omitted, profits from that since due the indirect averaging of the
model responses, it is expected that the differently pronounced overfitting in each model is
neutralized, leading to a higher model performance. [41]

Depending on the source, different definitions apply to when an ANN is considered as a
deep neural network. This thesis follows the definition of the authors in Refs. [40, 41], who
consider a neural network with at least two hidden layers as a deep neural network.
Using more hidden layers should support the neural network at learning more abstract
concepts of the data. There is empirical evidence that multi-layer neural networks are
more powerful than single-layer neural networks, although a single-layer neural network
can theoretically provide the same results as a multi-layer neural network. This is shown
in Ref. [41], for instance.
Since the number of trainable parameters increases with each additional hidden layer, an
effective algorithm for optimizing the trainable weights is required. The backpropagation
algorithm fulfills this as, in this algorithm, the gradients are calculated backwards for each
layer starting from the output layer until the input layer is reached (backward pass). Thus,
the desired gradients can all be simultaneously calculated with only one backward pass
(after the forward pass) instead of calculating each gradient separately.

3.2 Graph Neural Networks
Deep neural networks are only applicable to data represented as vectors. In some domains,
vectors are however not the best choice for representing the data. Instead, graphs turned
out to be a more natural way for representing many real-world data. Presumably due
to the increasing importance of graph data, graph neural networks (GNNs), which are
particularly designed for processing this kind of data, gained more popularity in recent
years. Moreover, as stated in Ref. [38], there are many examples showcasing that GNNs
outperform other methods. [38, 47]

3.2.1 Graph Theory

The subsequent overview over the graph theory follows Refs. [48, 49] if not stated otherwise.

A graph 𝐺 is defined as a tuple (𝑉 ,𝐸) of a set of vertices 𝑉 = 𝑉 (𝐺) and a set of edges
𝐸 = 𝐸(𝐺). Vertices are also commonly referred to as nodes. Due to the ambiguity with
the nodes in an ANN, the term vertex/vertices is predominantly used in this thesis when
referring to nodes in a graph. The vertex set is finite and non-empty whereas the edge
set may be empty and otherwise consists of pairs 𝑒 = (𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝑉 . If a connection, i.e.,
an edge, between the vertices 𝑢 and 𝑣 exists, 𝑢 and 𝑣 are called adjacent to one another
and they are incident with the associated edge. In general, graphs having multiple edges
between the same pair of vertices (skeins) is not precluded. Nevertheless, such graphs
are not considered here. Being undirected and, if 𝐸 is not empty, complete are the only
constraints on the graphs examined in this thesis. This means that the edges must not
possess any direction and each vertex is connected with all other vertices. Loops, i.e.,
edges 𝑒 = (𝑢, 𝑣) with 𝑢 = 𝑣 ∈ 𝑉 , are in fact allowed, yet not necessary for a graph to be

20

3.2 Graph Neural Networks 21

1

2

34

5

1

2

3 4

5

Figure 3.2: Different representations of the same graph. Despite the different
representations, the left and the right graph are considered the same graph
since the mathematical expression for both is the exact same. Figure adapted
from Ref. [48].

A B

C D 1

2 3

4

Figure 3.3: Example of an isomorphic graph. Figure adapted from Ref. [49].

considered as complete.

The vertices and edges of 𝐺 are usually illustrated as a graph diagram, which consists of
dots as well as lines connecting the particular adjacent dots. However, it should be noted
that many representations can exist for the exact same graph, as shown in Fig. 3.2. These
graphs are considered equal since their vertex set and edge set are equal, independently of
permutations of the elements in the sets. Given this definition, two graphs 𝐺 = (𝑉 ,𝐸) and
𝐺′ = (𝑉 ′, 𝐸′) with, for instance, solely different naming of their vertices are not considered
equal anymore. But, if it is possible to define a one-to-one correspondence 𝑔 : 𝑉 → 𝑉 ′ for
the two graphs in question with

(𝑢, 𝑣) ∈ 𝐸 ⇔ (𝑔(𝑢), 𝑔(𝑣)) ∈ 𝐸′ , (3.8)

then 𝐺 and 𝐺′ are referred to as isomorphic (cf. Fig. 3.3).

Although the graph diagrams are visually appealing for humans, they are not a handy
format for computers. For the latter, it is more useful to consecutively number the vertices
of 𝐺 and represent a graph via an adjacency matrix A ∈ R𝑛×𝑛, where 𝑛 = |𝑉 |. The
elements 𝑎𝑖𝑗 of A are either one or zero depending on whether the vertices 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}
are adjacent or not. Since only undirected graphs are considered here, the adjacency matrix
is symmetric without any exceptions. The adjacency matrix for the complete graphs
depicted in Fig. 3.2 is

A =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠ . (3.9)

If A is sparse, adjacency matrices are not an efficient way to store the graph anymore. For
a comparison of different storing methods, see Ref. [50], for instance.

21

22 3 Machine Learning Algorithms

(a)

jet

MET

jet

(b)

Figure 3.4: Examples of HEP data represented as graphs. A possible transformation
of detector hits into a graph representation is depicted in (a). In (b), a
transformation of detected physics objects of an illustrative event into a complete
graph is shown. Figure adapted from Ref. [38].

3.2.2 Graph Data and Tasks

The following descriptions are based on Refs. [38, 47] if not noted otherwise.

Graphs are an equally powerful and natural data representation for many real-world
applications in engineering or science, especially including HEP. Daily-life examples of data
suitable for being represented in a graph structure are social relationships or traffic on
roads. Examples of HEP data represented as graphs are depicted in Fig. 3.4.

One advantage of dealing with graph data is the possibility to assign three different types
of attributes to it, node-level-attributes

X =
(︁
x1 x2 . . . x𝑛

)︁⊺
, (3.10)

edge-level-attributes

Ã =

⎛⎜⎝ã11 . . . ã1𝑛
...

ã𝑛1 . . . ã𝑛𝑛

⎞⎟⎠ (3.11)

and global-level attributes g (cf. Fig. 3.5). The edge-level-attributes are denoted Ã to
show the close relationship to the adjacency matrix A, as it is already sufficient to replace
the entries of A by the corresponding edge-level-attributes.
Due to the rich information preserved in these attributed graphs, there are in general
many tasks that can be accomplished with GNNs. These include node classification (also

22

3.2 Graph Neural Networks 23

attributed graph

Figure 3.5: Visualization of an attributed graph. An attributed graph can comprise
vertex attributes X, edge attributes Ã as well as global attributes g. In this
thesis the colored rectangles represent the attributes of the vertices and the
thickness of the edges indicates the different edge attributes.

node-level-prediction, (NLP)), relational prediction (also edge-level-prediction, (ELP)) or
graph classification (also graph-level-prediction, (GLP)), just to name a few. The goal
of ELP is to infer information about the connections between a set of vertices in a given,
partially connected graph. A possible application of that is the reconstruction of tracks
in a detector, as shown in Fig. 3.6a. By contrast, in NLP, a graph with partially labeled
and partially unlabeled vertices is given. The goal is to predict the label of the unlabeled
vertices based on the given graph, i.e., the relational information to the other, labeled,
vertices in the graph (cf. Fig. 3.6b). In GLP, the focus of interest is to predict a label
for the graph as a whole. An exemplary application of GLP is shown in Fig. 3.6c, where
the class of event to which the graph belong needs to be determined (event classification).
However, it should be stated that these three tasks are not associated with the same
conventional machine learning categories. Strictly speaking, NLP is rather regarded as
semi-supervised learning since there are no unlabeled data points in supervised learning
and ELP is both supervised and unsupervised learning. Only GLP can be considered a
real supervised learning task. Moreover, it is assured in the latter task that each data
point, i.e., each graph in this case, is independent and identically distributed (i.i.d.). The
i.i.d. assumption, which is usually demanded in machine learning models, as this otherwise
complicates the training and harms the generalization abilities of trained models, does
not apply to NLP. Quite the contrary, the relationships between the vertices in a graph
is intentionally exploited in NLP. In fact, this is often the main factor for the success of
GNN-based approaches for node classification.

3.2.3 Message Passing Neural Networks

This section is as well based on Refs. [38, 47] if not noted otherwise.

Graph neural networks are graph-to-graph functions, meaning they take a graph as input
and update it either way but without changing the vertex and edge structure of the original
input graph. Throughout the years, several types of GNNs have been evolved for various
problem domains [52]. The key feature of many of these GNNs is called message passing
between adjacent vertices in the graph and they are embraced in the Message Passing
Neural Network (MPNN) framework, introduced in Ref. [53].
The message passing is used for updating the features associated with the vertices in a
graph based on the current features associated with the vertices (embedding) as well as
the aggregated information (messages) from the particular graph neighborhoods. The

23

24 3 Machine Learning Algorithms

0.92

0.92

0.88

0.95
0.03

0.89

0.90

0.89

0.94

0.88

0.92

0.02 0.920.89

0.850.91
0.03
0.05
0.78

0.82

0.94

0.89

0.91
0.92

0.90

0.79

0.03

0.02
0.07

0.93
0.91

(a)

jet

MET

?

(b)

jet

MET

jet?

(c)

Figure 3.6: Different tasks performed on the graphs shown in Fig. 3.4. In (a),
track reconstruction using edge-level-prediction is depicted. Edges with high
prediction scores are seen as part of a track (red). The graphs at the bottom
represent an event and can be used for jet tagging via node-level-prediction (b)
or for classifying the event as a whole via graph-level-prediction (c). Figures
adapted from Ref. [38] and Ref. [51].

24

3.2 Graph Neural Networks 25

A

B

C

D
E

F

A

B
A
C

B

C A

F

A
B
E

C

DA
D

Figure 3.7: Message passing. The graph on which the message passing step 𝑙 = 2 for its
vertex 𝐴 is based is shown on the left. The message passing step is depicted in
an unfolded manner on the right, which is also called the computation graph
of vertex 𝐴. For clarity reasons, the colored circles denote the corresponding
vertex attributes that need to be passed to the particular aggregation functions
𝜌 instead of the colored rectangles in previous figures. Figure adapted from
Ref. [47].

graph neighborhood of the vertex 𝑢 is the subgraph being formed when only the edges
associated with 𝑢 including the vertices that are adjacent to 𝑢 are considered. Accordingly,
the updated hidden embedding x(𝑙)

𝑢 of 𝑢 after the 𝑙-th message passing iteration can be
expressed by

x(𝑙)
𝑢 = 𝜑(𝑙)

(︁
x(𝑙−1)

𝑢 , 𝜌(𝑙)
(︁{︁

x(𝑙−1)
𝑢 , ∀𝑣 ∈ 𝒩 (𝑢)

}︁)︁)︁
(3.12)

= 𝜑(𝑙)
(︁
x(𝑙−1)

𝑢 ,m(𝑙)
)︁

, (3.13)

where 𝜑 and 𝜌 represent arbitrary differentiable update and aggregation functions, respec-
tively, 𝒩 (𝑢) denotes the graph neighborhood of 𝑢 and m represents the messages. The
update function is shared across all vertices in the graph, which is referred to as parameter
sharing. It should also be noted that the aggregation function is a set function, i.e., it must
be a function whose output is independent of the order of the set elements in its input.
This is important as otherwise the aforementioned permutation invariance of graphs (cf.
Section 3.2.1) cannot be preserved.
The message passing step is performed 𝐿 times. At iteration 𝑙 = 1, x(𝑙−1)

𝑢 equals the initial
embeddings, i.e., the input features/vertex attributes x𝑢 of 𝑢. Each iteration produces
another updated hidden embedding, in the same way as each further hidden layer in an
ANN produces a new updated hidden output x(𝑙) (cf. Equation 3.3). Therefore, each
message passing iteration can be regarded as another layer of the GNN. This is especially
visible when the aggregated information in the 𝑙-th iteration for 𝑢 is drawn in an unfolded
manner, as visualized in Fig. 3.7 for vertex 𝐴 and 𝑙 = 2.

Moreover, the aggregation step is of particular importance since by aggregating the in-
formation of the neighborhood the graph structure is taken into consideration, which is
the main reason for dealing with graph data. The idea behind the iterations is that each
vertex 𝑢 in the graph is able to collect information from vertices being one-hop further
away from 𝑢 than the previous furthest vertices. That is, the vertex receptive field of 𝑢

25

26 3 Machine Learning Algorithms

increases and it can “receive” a greater part of the graph with each iteration.

The type defining factor for the different GNNs within the MPNN framework only lies
in the different implementations of the update and/or aggregation function in Equation 3.12.

Graph Convolutional Neural Networks (GCN), firstly introduced in Ref. [54], are one
of the most common and effective GNNs. They use a symmetrically normalized sum as
aggregation function and redundantize the update function by introducing (self-)loops,
i.e., they do not only aggregate the information of the neighbors of the vertex 𝑢 but the
embedding of 𝑢 as well. Accordingly, Equation 3.12 can now be expressed by

x(𝑙)
𝑢 = 𝑓

⎛⎝W(𝑙) ∑︁
𝑣∈𝒩 (𝑢)∪{𝑢}

x(𝑙−1)
𝑣√︀

|𝒩 (𝑢)||𝒩 (𝑣)|
+ b(𝑙)

⎞⎠ , (3.14)

with W(𝑙) ∈ R𝑑×𝑑′ denoting trainable parameter matrices, i.e., an ANN, b(𝑙) ∈ R𝑑 denoting
the added bias and |𝒩 (𝑢)|, |𝒩 (𝑣)| denoting the degree of 𝑢 and 𝑣, respectively, i.e., the
number of adjacent vertices. As in Equation 3.3, 𝑓 is an arbitrary activation function
applied elementwise to its argument.
However, using (self-)loops inevitably leads to the disadvantage that information coming
from the neighborhood of 𝑢 is not distinguishable anymore from the information coming
directly from 𝑢. On the one hand, this harms the expressivity of the model and on the
other hand, this facilitates an unwanted over-smoothing. Over-smoothing addresses the
problem that the hidden embeddings of the vertices in a graph resemble each other more
the more message passing iterations are performed. Thereby, information about the graph
structure in the neighborhood of 𝑢 are lost. Since the number of iterations can be under-
stood as the number of GNN layers, over-smoothing makes it difficult to build deeper GNNs.

Instead of using ANNs in the message passing as for the GCNs, update functions from
recurrent neural network (RNN) architectures can also be used. For a detailed explanations
of RNNs in general, refer to Ref. [55], for instance.
The update function used in Gated Graph (Sequence) Neural Networks (GGSNN), in-
troduced in Ref. [56], is the Gated Recurrent Unit (GRU) cell (see Ref. [57]). Thus,
Equation 3.12 becomes

x(𝑙)
𝑢 = GRU(x(𝑙−1)

𝑢 ,m(𝑙)) . (3.15)

Indeed this type of neural networks comes with a much higher number of trainable
parameters in comparison to a GCN of the same depth due to its more sophisticated update
function, but utilizing the GRU cell facilitates building models with ten or more layers.
GGSNNs are less prone to over-smoothing, which is an advantage over GCNs.

3.2.4 Graph Network Formalism

Additionally to Refs. [38, 47], the following explanations also follows Ref. [52] if not noted
otherwise.

The majority of the GNNs only concentrate on vertex attributes in message passing.
However, there is no reason for not aggregating and updating edge-level or graph-level
information as well. The Graph Network (GN) formalism, introduced in Ref. [52], provides
this but also captures GNNs that do not belong to the MPNN framework. Thus, the GN

26

3.2 Graph Neural Networks 27

formalism is an even more general framework for defining GNNs and at the same time even
extending various GNN approaches. The core computation unit in this formalism is called
GN block. It consists of three sub-blocks, an edge block (e), a vertex block (v) and a global
block (g). Every sub-block contains an update function 𝜑 (often an ANN), which outputs
the new embedding for the edges, the vertices and the entire graph. The vertex and the
graph block additionally contain aggregation functions 𝜌, which are often element-wise
sums or means since they are permutation invariant. In the case of 𝜑, its index simply
reflects the sub-block in which it is used whereas the index of 𝜌 and m indicates with
respect to which object (edge, vertex, graph) the computation is performed and to which
sub-block this result will subsequently flow. In the Graph Network formalism the message
passing step, defined in Equation 3.12, extends to

ã(𝑙)
𝑢𝑣 = 𝜑(𝑙)

e

(︁
ã(𝑙−1)

𝑢𝑣 ,x(𝑙−1)
𝑢 ,x(𝑙−1)

𝑣 ,g(𝑙−1)
)︁

(3.16)

m(𝑙)
edge→v = 𝜌

(𝑙)
edge→v

(︁{︁
ã(𝑙)

𝑢𝑣, ∀𝑣 ∈ 𝒩 (𝑢)
}︁)︁

(3.17)

x(𝑙)
𝑢 = 𝜑(𝑙)

v

(︁
m(𝑙)

edge→v,x
(𝑙−1)
𝑢 ,g(𝑙−1)

)︁
(3.18)

m(𝑙)
edge→g = 𝜌

(𝑙)
edge→g

(︁{︁
ã(𝑙)

𝑢𝑣,∀𝑢, 𝑣 ∈ 𝐸
}︁)︁

(3.19)

g(𝑙) = 𝜑(𝑙)
g

(︁
m(𝑙)

edge→g,m
(𝑙)
vertex→g,g(𝑙−1)

)︁
(3.20)

m(𝑙)
vertex→g = 𝜌

(𝑙)
vertex→g

(︁{︁
x(𝑙)

𝑢 , ∀𝑢 ∈ 𝑉
}︁)︁

, (3.21)

where ã(𝑙)
𝑢𝑣 is the hidden embedding for the edge (𝑢, 𝑣) ∈ 𝐸, 𝑣 ∈ 𝒩 (𝑢) and g(𝑙) is the hidden

embedding for the entire graph, both calculated at iteration 𝑙. Figure 3.8a shows a flow
chart of a possible order in which Equations 3.16-3.21 are calculated at each iteration 𝑙:

(1) 𝜑e: Update the hidden edge embeddings considering the current hidden edge embed-
dings and the current hidden vertex embeddings of the incident vertices as well as
the current hidden global embeddings.

(2) 𝜌edge→v: Calculate for each vertex in the graph the aggregation of the updated hidden
edge embeddings of the respective incident edges.

(3) 𝜑v: Update the hidden vertex embeddings considering the results from (2), the
current hidden vertex embeddings and the current hidden global embeddings.

(4) 𝜌edge→g, 𝜌vertex→g: Aggregate over all updated hidden vertex embeddings as well as
over all updated hidden edge embeddings.

(5) 𝜑g: Update the hidden global embeddings based on the current hidden global
embeddings and the results from (4).

As already mentioned, this is only one out of many possible orders for calculating the GN
block’s output. In fact, some of the GNN architectures captured within this GN framework
will only be obtained if rearranging or removing of functions in the edge, vertex or global
block is allowed. A representation of the aforementioned GCN in the GN framework is
depicted in Fig. 3.8b. An expression of Equation 3.14 in the GN formalism can be found in
Ref. [38].

However, despite having processed all iterations of message passings, still no final predicted
class y for a given task can be made, since GNNs only output graphs. Therefore, a readout
function 𝑅, such as a neural network, is required, which has the purpose to calculate the
final feature vector for the particular graphs. [53] The complete GNN flow is depicted
in Fig. 3.9.

27

28 3 Machine Learning Algorithms

GN block

edge block vertex block global block

time

(a)

edge block vertex block global block

time

(b)

Figure 3.8: GN blocks. The input to a complete GN block (a) are the global attributes
g(𝑙−1), the vertex attributes X(𝑙−1) and the edge attributes Ã(𝑙−1) associated
with the graph in question. All these attributes are updated in a sequential
manner, yet their update order is not fixed. In this flow chart, the edge block
is performed first, the vertex block second and lastly the global block. The
updated attributes are denoted g(𝑙), X(𝑙) and Ã(𝑙). On the contrary, a GN
block used in a GCN (b) only requires the computations made in the edge
block and the vertex block. Moreover, only the vertex attributes are updated.
Figures adapted from Ref. [38]

Figure 3.9: GNN flow. The forward pass in a GNN consists of two parts, the GNN,
which consists of 𝐿 GN blocks, and a readout [53] since the GNN per se is a
graph-to-graph function. Figure adapted from Ref. [58].

28

3.3 Explainable AI 29

Figure 3.10: Schematic comparison of model accuracy and model interpretability.
There is a tendency that less interpretable, i.e., more complex models, show
a greater prediction accuracy than simpler models such as linear regression
or decision trees. Being just another variant of neural networks, GNNs are
expected to have a similar relationship between accuracy and interpretability
as the neural networks shown in the diagram. Figure taken from Ref. [61].

3.3 Explainable AI
As stated in Section 3.1, empirically, neural networks with more hidden layers are more
performant than single-layer, less deep neural networks. In fact, deep learning methods
outperform traditional machine learning methods in many research tasks but are at the
same time naturally more complex than decision trees (cf. Fig. 3.10), for example. Thus,
while the reasons behind decisions of decision trees can be understood by simply looking at
the decision tree itself (cf. Fig. 3.11) and are therefore considered as interpretable models,
this neither holds for DNNs nor GNNs. They are hence considered not fully trustworthy,
black-box models. Of course, it is inevitable to understand the decisions of a model in
order to draw correct conclusions from data and, for instance, not mistaking noise with
new physics, on the one hand. On the other hand, using uninterpretable methods in
critical domains such as medical domains could even be life-threatening. Consequently, the
demand for explainable AI (xAI), which comprises post hoc techniques with the purpose to
explain the predictions of uninterpretable methods, arouse and is ever-increasing. It should
be noted that in this thesis, unlike in many other papers, e.g., Ref. [37] or Ref. [59], the
definitions of interpretability and explainability are not treated as interchangeable terms
and follow the definitions of Ref. [60]. A standardized notion does unfortunately not yet
exist. [59, 60]

There are already various approaches developed for explaining deep learning methods. In
the following, the GNNExplainer (Section 3.3.1), a method for exclusively explaining GNNs,
and the Taylor coefficient analysis (Section 3.3.2) will be introduced as two out of many
approaches. Both explain the predictions of uninterpretable methods by extracting the
importance of the input features for the model prediction but are otherwise fundamentally
different methods and will be compared in Section 3.3.3.

Since global attributes are not applied to graphs in this thesis, global attributes are not
considered anymore in the following explanations and visualizations.

3.3.1 GNNExplainer
The GNNExplainer (GNNX), introduced in Ref. [63], is a post hoc, model-agnostic method,
which is capable of providing explanations for predictions of GNNs performing NLP or

29

30 3 Machine Learning Algorithms

1.5

1.0

0.5

0.0

-0.5

-1.0

-1 0 1 2

class: 1

class: 1

class: 1

class: 0

class: 0

class: 1

True False

Figure 3.11: Decision tree. On the left-hand side, data points that shall be classified are
drawn in feature space including the decision boundary that is determined via
training of a decision tree. On the right-hand side, the corresponding decision
tree is depicted. New data points can be classified by evaluating the decision
tree from top (root) to bottom until a leaf (red or blue box) is reached. Thus,
the reason behind each prediction can be easily comprehended by looking at
the decision rules in the decision tree. Figure adapted from Ref. [62].

GLP. However, there are differences in terms of the mathematical foundation of the GN-
NExplainer being applied to explaining predictions on node-level or graph-level. In the
following, only the mathematical background of the latter is further explained, based on
Ref. [63], since this thesis mainly explores graph-level-prediction.

A prediction ŷ of a GNN model Φ only depends on the information derived from the
computation graph 𝐺C and the vertex attributes XC of the vertices captured in 𝐺C. The
computation graph comprises all the vertices and edges involved in computing the hidden
embedding of a vertex 𝑢 in the graph in question. In the case of an incomplete graph,
the computation graph varies between different vertices in the same graph and does not
correspond to the input graph. But, since in GLP the whole graph is taken into account for
a prediction, 𝐺C always equals the input graph 𝐺 and its adjacency matrix AC equals A.
The idea behind the GNNExplainer is that only a small fraction of edges and vertex
attributes of an input graph have a high impact on a prediction ŷ. Thus, the goal of
the GNNExplainer is to extract the small subgraph 𝐺S ⊆ 𝐺C and the small subset of
vertex attributes XS playing a crucial role for the GNN’s prediction and therefore being
considered the explanation for ŷ.
Using the mutual information (MI) between the predicted label distribution 𝑌 and the
explanation (𝐺S,XS), the task can be formulated as the optimization problem

max
𝐺S,XS

(MI (𝑌 , (𝐺S,XS))) . (3.22)

The mutual information is defined as the difference between the entropy of the computation
graph 𝐻(𝑌) and the entropy of the subgraph 𝐻(𝑌 |𝐺 = 𝐺S, 𝑋 = XS)

MI (𝑌 , (𝐺S,XS)) = 𝐻(𝑌)−𝐻(𝑌 |𝐺 = 𝐺S, 𝑋 = XS) . (3.23)

Since the GNNExplainer is applied to a model post-training, i.e., Φ is constant, the first
term in Equation 3.23 is a constant. Consequently, maximizing MI can be simplified to

30

3.3 Explainable AI 31

minimizing
𝐻(𝑌 |𝐺 = 𝐺S, 𝑋 = XS) = −E(𝑌 |𝐺S,XS)

[︀
log𝑃Φ(𝑌 |𝐺 = 𝐺S, 𝑋 = XS)

]︀
, (3.24)

where 𝑃Φ(·) denotes the probability of the particular event in question being associated with
a specific class. Accordingly, 𝑃Φ(·) equates the sigmoid or softmax transformed logits ŷ
of GNNs for the binary or multiclass classification (cf. Equation 3.5), respectively. However,
Equation 3.24 is not tractable due to the existence of exponentially many subgraphs 𝐺S.
The GNNExplainer overcomes this issue by introducing an edge mask M and a feature
mask F that act as filters on the adjacency matrix and vertex attributes, respectively. In
other words, it is possible to control the influence of all entries in the adjacency matrix
and the vertex attributes on the final prediction of the model by varying the values in the
masks. These masks are randomly initialized at the beginning and are adjusted through
training. The training of the masks should however not be confused with the training of the
model per se, which is already completed before the GNNExplainer is applied. Training the
masks figuratively means that in each training step different edges and vertex attributes
are suppressed, i.e., several subgraphs and subset of vertex attributes can be tested in
that manner until the optimal subgraph and subset of vertex attributes are found for
explaining the prediction. The loss function ℒ for this training, which is optimized via
gradient descent, is described by Equation 3.24. If the explanation for the predicted label
𝑦 and not the exact prediction ŷ (output of the GNN) is the main focus of interest, it can
be simplified to the cross-entropy between the originally predicted class 𝑦 from all possible
classes 𝐾 for an event and the prediction value 𝑃Φ(·) of the subgraph for the same event

ℒ := −
𝐾∑︁

𝑘=1
1𝑦=𝑘 log𝑃Φ (𝑌 = 𝑦|𝐺 = AC ⊙ 𝜎(M), 𝑋 = XS ⊙ 𝜎(F)) , (3.25)

with 𝜎(·) denoting the sigmoid function, which is applied to keep the range of the mask
entries between zero and one, and ⊙ denoting an elementwise multiplication. For a detailed
derivation of Equation 3.25, see Ref. [63].
Moreover, regularization terms such as the sum over the elements in the masks or the
elementwise entropy of the masks are added to Equation 3.25 in order to ensure a small
size of the explanation on the one hand and to favor more discrete masks on the other
hand.

The subgraph and subset of vertex attributes that are responsible for the prediction of the
GNN are consequently

𝐺S = AC ⊙ 𝜎(M) (3.26)
XS = XS ⊙ 𝜎(F) . (3.27)

The sigmoid-transformed edge and sigmoid-transformed feature mask are the ones actually
capturing the information about the magnitude of the influence (and therefore the impor-
tance) of the particular edges and vertex attributes for the GNN response. The larger
the values in the entries, the higher the impact of the corresponding vertex and feature.
Therefore, the masks are regarded as the actual explanation provided by the GNNExplainer
for the predictions in this thesis and not (𝐺S,XS).

The GNNExplainer is able to perform different independent tasks for explaining both NLP
and GLP depending on the dimensions of the matrixes with which the feature mask F is
originally initialized. If F ∈ R1×𝑚, F ∈ R𝑛×𝑚 or F ∈ R𝑛×1, the GNNExplainer delivers
the importance of vertex attributes, the importance of each vertex attribute of each vertex
and the importance of each vertex per se for the prediction, respectively (cf. Fig. 3.12).
Conversely, the dimension of the edge mask M remains R𝑛×𝑛 at all times.

31

32 3 Machine Learning Algorithms

m features
n vertices

m features
or or

(a) (b) (c)

GNNX

Figure 3.12: GNNExplainer flow. The GNNExplainer explains the predicted class 𝑦 for
an input graph by determining an edge mask M and a feature mask F through
training. These masks determine which part of the subgraph (AC ⊙ 𝜎(M))
and which node features (XS ⊙ 𝜎(F)) need to be considered for getting 𝑦.
Thereby, the edge mask captures the influence of the edges on the prediction,
which is illustrated through the different thicknesses of the edges of the graphs
and depending on the dimensionality of F, either the importance of the vertex
attributes (a), the importance of each vertex attribute of each vertex (b)
or the importance of each vertex (c) of the input graph for the prediction
are delivered by the GNNExplainer. This is visualized by the different color
intensities of the sub-rectangles and the vertices.

3.3.2 Taylor Coefficient Analysis

The Taylor expansion of a function is a powerful tool for approximating and thus sim-
plifying complicated problems, as shown in Ref. [64], for instance. As already stated in
Section 3.1, a neural network model Φ is essentially an analytic function, consisting of a
great number of parameters, mapping the input vector to an output vector. Consequently,
as proposed in Ref. [65] and further examined in Ref. [66], the Taylor expansion is applicable
to approximating Φ around the expansion points, given that Φ is differentiable at the
expansion points, which is guaranteed here since the applied activation functions are all
differentiable [39]. In this context of application, the data points from the test set serve as
expansion points z ∈ R𝑚.
The multidimensional Taylor expansion 𝑇 , see, for example, Ref. [67], for Φ in its input
features x ∈ R𝑚 at the expansion points z can be generally expressed by

𝑇Φ(𝑥1, . . . , 𝑥𝑚) =
∞∑︁

𝑛1=0
· · ·

∞∑︁
𝑛𝑚=0

(︃
𝜕
∑︀𝑚

𝑖=1 𝑛𝑖Φ(𝑧1, . . . , 𝑧𝑚)
𝜕𝑥𝑛1

1 · · · 𝜕𝑥
𝑛𝑚
𝑚

)︃
Π𝑚

𝑖=1(𝑥𝑖 − 𝑧𝑖)𝑛𝑖

Π𝑚
𝑖=1𝑛𝑖!

= Φ(𝑧1, . . . , 𝑧𝑚) +
𝑚∑︁

𝑗=1

𝜕Φ(𝑧1, . . . , 𝑧𝑚)
𝜕𝑥𝑗

(𝑥𝑗 − 𝑧𝑗)

+ 1
2!

𝑚∑︁
𝑗=1

𝑚∑︁
𝑘=1

𝜕2Φ(𝑧1, . . . , 𝑧𝑚)
𝜕𝑥𝑗𝜕𝑥𝑘

(𝑥𝑗 − 𝑧𝑗)(𝑥𝑘 − 𝑧𝑘) + higher-orders

=: 𝑡0 +
𝑚∑︁

𝑗=1
𝑡𝑥𝑗 (𝑥𝑗 − 𝑧𝑗) + 1

2!

𝑚∑︁
𝑗=1

𝑚∑︁
𝑘=1

𝑡𝑥𝑗𝑥𝑘
(𝑥𝑗 − 𝑧𝑗)(𝑥𝑘 − 𝑧𝑘) + h.-o. ,

(3.28)

where 𝑡𝛼, 𝛼 ∈ {0, 𝑥𝑗 , 𝑥𝑗𝑥𝑘, . . . } denotes the Taylor coefficients. Except for the zeroth-order
Taylor coefficient 𝑡0, all Taylor coefficients correspond to the derivative in a summand
and the subscript of the Taylor coefficients indicates which input feature(s) a particular

32

3.3 Explainable AI 33

Table 3.1: Comparison of the explanation abilities of GNNX and TCA. If the
particular xAI method is able to explain the given aspect, it is marked with ✔

and otherwise with ✗ in the table. Since the GNNExplainer is theoretically able
to explain the importance of edges but do not take edge attributes into account
in calculating the explanation, this ability is put in parentheses.

explained aspects GNNExplainer Taylor coefficient analysis
importance of edges/relational information (✔) ✗

importance of vertices ✔ ✗

importance of vertex attributes ✔ ✔

importance of relations of vertex attributes ✗ ✔

importance of vertex attributes per vertex ✔ ✗

Taylor coefficient contains information about. Since 𝑡0 does not contain any input feature
related information, the authors in Ref. [65] utilize Taylor coefficients as of the first-order
for extracting the impact of the input features on the prediction of a neural network.
This method, called Taylor coefficient analysis, exploits that the influence of the bare
input features on the prediction, which is calculated via Φ, is captured in the first-order
features {𝑡𝑥𝑗 , ∀𝑗 ∈ {1, 2, . . . ,𝑚}} and the influence of relations among the input features is
contained in the higher-order features.

3.3.3 Comparison

The GNNExplainer and the Taylor coefficient analysis are two different approaches for
shedding light on black-box models in (deep) machine learning. While the GNNExplainer
itself, or rather the particular mask, needs to be trained, the Taylor coefficient is based on
a well-understood mathematical foundation. Therefore, the explanations provided by the
GNNExplainer are not necessarily deterministic or stable and are moreover dependent on
the chosen hyperparameters. However, since the GNNX is specially designed for explaining
GNNs, it is capable of explaining the importance of relational information, i.e., edges, as
well as the importance of vertices or the importance of features per vertex, also named
vertex specific feature importance in the following, for the GNN response, unlike the TCA,
as summarized in Table 3.1. Yet, the GNNX still does not take edge attributes into
consideration when determining the edge mask. In Chapter 6, these two xAI methods are
applied to the GNNs that are studied in this thesis by which it is possible to probe the
actual plausibility of the delivered explanations.
The advantage of the TCA is that it is applicable to both GNNs and DNNs and can
give further insight into the importance of relations across input features for the model
predictions when higher-orders of the Taylor expansion are taken into account. This
versatility of TCA is exploited in Section 7.4 for a more detailed comparison of DNNs and
GNNs.

33

4 Multivariate Event Classification with
GNNs

As described in Section 2.5, the physics goal of this thesis is to classify tt + bb, tt̄H(bb̄) and
tt̄Z(bb̄) events in the single-lepton channel of tt decays in both a binary and a multiclass
manner. For the binary case, tt + bb is treated as signal process and tt̄H(bb̄) and tt̄Z(bb̄)
as background processes. In order to accomplish these tasks, graph neural networks
performing graph-level-predictions are the method of choice for this thesis. In a former
study [68], GNNs were only examined for identifying additional b jets in tt + bb events,
which is a node-level-prediction task. This thesis builds on this work and the goal of this
first chapter is thus to probe the general feasibility of GNNs for classification of tt̄+X
events, i.e., conduct a proof of concept study1.
In Section 4.1, the data used are presented and remarks on the reproducibility of the results
are given. Afterwards, the model architecture and hyperparameters used for this study are
introduced in Section 4.2. The resulting binary and multiclass classification models are
subsequently compared in Section 4.3 and in Section 4.4 further optimization approaches
are examined on the models. As generator-level information, i.e., ground-truth, is used in
a part of the trainings, a method for circumventing this is introduced in Section 4.5. The
latter section also contains a performance comparison of these models with models from
the previous sections trained with generator-level information.

4.1 Reproducibility and Data
All models that are evaluated in this thesis are implemented in PyTorch Geometric
(PyG) [70] v2.0.3, a PyTorch-based library [71] designated to developing graph neural
networks, and are trained on an NVIDIA GeForce GTX 1080 Ti graphic card. Albeit
the same machine is deployed and seeds are set wherever possible, the trained models are
not fully reproducible. This traces back to internal PyTorch functions behaving non-
deterministically when applied to CUDA tensors and for which no deterministic alternative
is provided yet. A list of functions to which this applies can be found in Ref. [72]. It is also
not feasible to circumvent this by completely refraining from using GPUs and only utilize
CPUs for training the neural networks due to the time frame of this thesis. Yet, since
each training is repeated ten times, still robust results are receivable and well-grounded

1In a parallel study [69], GNNs were applied to the separation of tt̄+X events as well, yet in the dileptonic
channel and with a different GNN architecture.

35

36 4 Multivariate Event Classification with GNNs

conclusions can be drawn accordingly.

For accomplishing the multivariate tt̄+X event classification task with GNNs, simu-
lated data provided by the CMS collaboration is applied to training the models. Origi-
nally, this simulated data is obtained through Monte Carlo event generators, which are
Powheg + Pythia8 [73, 74] being set up with the CMS Pythia8 tune 5 (CP5) [75]. The
generated data are here all simulated in a way that reflects real data taken under the
experimental conditions of the CMS experiment in 2017. What is special about the tt + bb
events is that, due to the small number of events, both simulations based upon a 4-flavor
scheme (4FS) and simulations that are based on a 5-flavor scheme (5FS) description of
the b quarks in QCD are used without further differentiation [76]. Using both simulation
approaches jointly for training machine learning models is possible as it does not have an
impact on the model performance, according to a study conducted in Ref. [77].
Since it is known beforehand that the events of interests consist of at least six jets with at
least four b-tagged jets (≥ 6 jets, ≥ 4 b-tagged jets phase space), this selection criterion is
applied to the simulated data. Furthermore, each of the additional b jets must contain
one and only one b hadron on generator-level.
As the jets are not yet labeled, i.e., not yet assigned to their particular category, this
has to be performed manually by comparing the flavor of the jets (light flavor, c, b) to
the particle from which the jets originate (unassigned, additional particle, t, t̄, H, Z, W,
hadronically decaying W). Nevertheless, it can occur that not all six jet categories, i.e.,
HadTopB, 2x HadTopQ, 2x AddB and LepTopB (cf. Section 2.5), are incorporated in an
event. When this happens to the category AddB then the particular event is discarded,
otherwise the missing categories HadTopB, LepTopB or 2x HadTopQ are assigned to the
remaining jets in the event in descending 𝑝T order. This auxiliary assignment approach is
justified by physics since it is expected that a big fraction of the energy that is contained
in the large mass of top quarks is transferred to momentum when decaying into a b quark
(and a W boson) due to the small mass of b quarks.
With all these restrictions, there are 189131 events remaining in total, of which 53477
belong to tt + bb, 102464 to tt̄H(bb̄) and 33190 to tt̄Z(bb̄) events. These events are then
split into training, validation and test set in the ratio 60/20/20.

Graph neural networks are deployed for this classification task since the physics processes
to be classified can be naturally described as graphs. Each final state object simply forms
a vertex in the graph and then each vertex is connected to every other vertex, leading to
complete graphs, as illustrated in Fig. 4.1. Thereby, only kinematic observables and the b
tag value of jets serve as vertex attributes

x𝑖 =
(︁
𝑝T 𝜑 𝜂 𝑀 𝐸 b tag

)︁⊺
(4.1)

for each vertex 𝑖 in a graph and Δ𝑅 is added as edge weight to the graph. For leptons and
neutrinos, not all of this information exists. In that case, the particular feature is set to
zero. These features are selected since promising results are therewith achieved in Ref. [68]
in node-level-prediction. The distribution of the selected vertex attributes can be found in
Fig. A.1.

In order to facilitate the training process, each input feature 𝑥𝑖 is transformed to a similar
scale (feature scaling). For vertex attributes, this is archived via standardization

𝑥′
𝑖 = 𝑥𝑖 − 𝜇𝑖

𝜎𝑖
(4.2)

36

4.2 Architecture and Hyperparameters 37

HadTopB

2x AddB

LepTopB

Lepton

Missing

2x HadTopQ

categories

Figure 4.1: Schematic depiction of the translation of the physics processes under
scrutiny to a graph representation. At leading order, the graph repre-
sentation only consists of eight vertices corresponding to the eight final states
showcased in the Feynman diagram.

whereas normalization

𝑥′
𝑖 = 𝑥𝑖 −min(𝑥𝑖)

max(𝑥𝑖)−min(𝑥𝑖)
(4.3)

is applied to edge weights. The variables 𝜇𝑖 and 𝜎𝑖 correspond to the mean and standard
deviation (square root of the unbiased sample variance) of the distribution of the particular
feature 𝑥𝑖. Using normalization instead of standardization for edge weights ensures that
these values share a similar scale with the vertex attributes but are still non-negative. The
disadvantage of this technique is that its scaling depends on the minimal and maximal
values of the distribution and is hence not suitable for distributions with outliers. For this
reason, normalization is used for vertex attributes.

4.2 Architecture and Hyperparameters
Since Gated Graph Sequence Neural Networks (GGSNN) have shown promising results in
identifying additional b jets in Ref. [68] and these jets are expected to play a crucial role
in binary and multiclass classification of tt + bb, tt̄H(bb̄) and tt̄Z(bb̄), this type of graph
neural networks is deployed for the graph-level-prediction task at hand as well. Equally,
the majority of the selected hyperparameters, summarized in Table. 4.1, are inspired by
the findings in Ref. [68]. A hyperparameter for which this does not completely hold is the
metric that is monitored in early-stopping and that is also relevant for adaption of the
learning rate. Originally, both early-stopping and the adaption of the learning rate
depend on the true positive rate (TPR) of a model, which is however not reasonable as it
may prohibit the convergence of a training. The true positive rate is the fraction of events
being correctly classified as signal (true positive) by a model with respect to the total
number of signal events, i.e., positives. Consequently, also a poorly performing model that
classifies each event as signal possesses a perfect TPR and deceives the training process.
Hence, the validation loss is probed as monitored metric alongside the TPR.

It might be surprising that the input dimension can be chosen to be 24 although only
five attributes are associated to each vertex. This is possible as the excess nodes are
automatically filled with zeros, i.e., are zero padded. Incidentally, as the dimension of
the embeddings of the vertices are not or rather cannot be changed throughout the 18
GGSNN layers, the number of hidden nodes in each hidden layer (HL) 𝑛hidden equals the
number of input nodes 𝑛in. The corresponding schematic representation of the model
architecture is depicted in Fig. 4.2. A global pooling method, summarizing the adjusted

37

38 4 Multivariate Event Classification with GNNs

Table 4.1: Selected hyperparameters. Parameters that are not further specified in the
table correspond to the particular default values in PyG. The classification
threshold used to calculate the TPR is 0.5 in the binary case, i.e., all events
for which the model predicts a score higher than 0.5 are classified as signal,
otherwise as background. For calculating the TPR in multiclass classification,
no classification threshold needs to be set since the output node with the highest
prediction score determines the predicted class for an event.

hyperparameter setting
𝑛in/𝑛hidden 24
𝑛HL 18
𝑛out (of readout) 1 (binary), 3 (multiclass)
bias true
aggregation function 𝜌 (Eq. 3.21) mean
global pooling method mean
maximum number of epochs 200

early-stopping Δepoch = 15, ΔTPR = 0.01 or
Δepoch = 15, Δloss = 0.001

mini-batch size 200
optimizer Adam (𝛾 = 0.01)
activation function (in output layer) sigmoid (binary), softmax (multiclass) (Eq. 3.5)
loss function binary/categorical cross-entropy (Eq. 3.6)
number of repetitions 10

hidden embeddings of the vertices, is inserted in between the last GGSNN layer and the
readout since in GLP, a classification based on the graph as a whole is desired. With these
configurations, the models deployed for binary and multiclass classification consist of 13993
and 14043 trainable parameters 𝑁TP, respectively. This also corresponds to the number of
degrees of freedom (DOF) of the models.

4.3 Binary and Multiclass Classification
The ROC-AUC value is a common measure for determining the performance of machine
learning models. Accordingly, this is chosen as performance measure of the trained models
in this thesis. The ROC-AUC value corresponds to the area under the receiver operating
characteristic (ROC) curve, which is the graphical representation of the relationship be-
tween TPR and the false positive rate (FPR) of the model under scrutiny for every possible
classification threshold. The false positive rate is defined in an analogous manner to TPR
and the classification threshold determines the prediction score from which an event is
labeled as signal. The range of the ROC-AUC value is [0.5, 1.0], where 1.0 corresponds to
a perfect classifier and 0.5 to a model without any discriminative power, often referred to
as random estimator. For further details on ROC analysis refer to Ref. [78], for instance.
A multiclass classification model distinguishes more than two classes and thus the ROC
analysis does not seem applicable at first sight. However, there are several approaches
to handle this. Here, it is decided to calculate the ROC curve separately for each class
whereat the particular class is treated as signal that is classified against all remaining
classes in the dataset (“rest”) at the same time. This means the multiclass classification
model is simplified to several binary classifiers in order to be able to calculate the ROC
curve and the corresponding ROC-AUC value. The ROC curve describing the overall mul-
ticlass classification model is finally obtained by averaging over the ROC curves calculated

38

4.3 Binary and Multiclass Classification 39

global mean
pooling

Figure 4.2: Schematic representation of the GGSNN model for the binary case,
including readout. The vertex attributes of the input graph are updated
through the 18-layer GGSNN, yet without changing the dimensions of these
attributes. Since event classification shall be performed, i.e., a graph-level-
prediction task, a global mean pooling layer is required for transforming the
updated graph into a vector representation, which serves as input to the
subsequent readout. The readout is a conventional neural network without
hidden layers and has the purpose to transform the vector representation into
a single value, the prediction 𝑦 for an event, in the binary case. In case of
multiclass classification, three output nodes are utilized, i.e., the prediction is
not a scalar but a vector ŷ, whereby the output node with the highest output
value determine the class of the particular event.

39

40 4 Multivariate Event Classification with GNNs

separately for each class. This curve is referred to as macro-average ROC curve.

The ROC curves and macro-averaged ROC curves of the models under scrutiny averaged
over all ten repetitions of the particular trainings are depicted in Fig. 4.3. Models trained
on the same monitored metric in the training process are placed in the same column (left:
TPR, right: loss) and models performing the same task are in the same row (top: binary
classification, bottom: multiclass classification). For binary classification models, the ROC
curve of each repetition is additionally displayed in the plots. It becomes evident that
the performance spread of the models trained under TPR monitoring is larger than when
trained under loss monitoring, which indicates a comparatively more stable training of the
latter and is expected in accordance to the explanation given in Section 4.2. Moreover,
one repetition of the training sticks out in Fig. 4.3a as it possesses a perceivably lower
performance than the other repetitions and even lies outside the standard deviation of
the mean ROC curve. When looking into that model in detail, it becomes apparent that
this is indeed caused by a deceptive high true positive rate of 91.92 % while at the same
time the true negative rate (TNR), i.e., the fraction of events being correctly classified as
background (true negative) by a model with respect to the total number of background
events, is only 9.96 %. Hence, it is justified to treat this repetition as an outlier and discard
it from further analysis. In order to ease identification of further outliers, the following
objective criteria are introduced

(a) ROC-AUC = 0.5 or

(b) ROC-AUC /∈ ⟨ROC-AUC⟩ ± 1.5 · 𝜎pre
ROC-AUC and Δ𝜎 > 0.0025,

where Δ𝜎 = 𝜎pre
ROC-AUC − 𝜎

post
ROC-AUC holds. All models with a performance beyond ±1.5

times the standard deviation (square root of the unbiased sample variance) of the mean
ROC-AUC 〈ROC-AUC〉 are considered as potential outliers. If the removal of all potential
outliers results in a spread 𝜎post

ROC-AUC that is at least 0.0025 smaller than the previous
spread 𝜎pre

ROC-AUC, the potential outliers are regarded as real outliers. These thresholds
have been empirically proven to be reasonable (cf. Appendix B). Only models that pass
this outlier check, i.e., do not fulfill the outlier criteria, are further considered. This applies
to every trained model considered in this thesis.

After application of the outlier criteria, also two outliers in the multiclass classification
models trained under monitoring of the TPR are identified and discarded. One of the
outliers performed too poorly and one too well, leading to a decreased mean ROC-AUC
value post-removal. The mean ROC curves post-application of the outlier criteria are
shown in Fig. 4.4. Despite of the removal of outliers, the mean performance of the models
trained under monitoring of TPR are worse than when trained under monitoring of the loss
regardless of the task. While for binary classification the difference in model performance
is (−3.8± 1.3) %, it is only (−0.5± 0.6) % for multiclass classification. It should be noted
too that the performance of the binary model trained under monitoring of TPR is worse
than the equivalent multiclass classification model. For the loss as monitored metric, this
is vice versa. That is, the training for multiclass classification is similarly stable regardless
of the actual monitored metric. This makes sense as a perfect TPR of 1 cannot simply be
obtained by assigning every event to the same class in the multiclass classification case.
However, the slight superior performance of multiclass classifiers trained under monitoring
of the loss as opposed to monitoring of the TPR indicates that it is generally beneficial to
monitor the loss. Consequently, only this concept will be further pursued for both tasks.
Nevertheless, it should not be neglected that the performance of both binary and multiclass
classifiers are not even 45 % better than a random estimator and thus, still leaving a lot of
room for improvements.

40

4.3 Binary and Multiclass Classification 41

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R Binary classification
Monitored: TPR

CMS Simulation Work in Progress

Mean ROC curve ± 1 std.
(area = 0.681 ± 0.015 | + (36.2 ± 2.9) %)

Baseline

(a)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R Binary classification
Monitored: loss

CMS Simulation Work in Progress

Mean ROC curve ± 1 std.
(area = 0.7200 ± 0.0018 | + (44.0 ± 0.4) %)

Baseline

(b)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R Multiclass classification
Monitored: TPR

CMS Simulation Work in Progress

tt̄ + bb̄ vs. rest ± 1 std. (area = 0.7206 ± 0.0032)

tt̄H(bb̄) vs. rest ± 1 std. (area = 0.704 ± 0.004)

tt̄Z(bb̄) vs. rest ± 1 std. (area = 0.684 ± 0.008)

Mean macro-avg. ROC curve ± 1 std.
(area = 0.7027 ± 0.0031 | + (40.5 ± 0.6) %)

Baseline

(c)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R Multiclass classification
Monitored: loss

CMS Simulation Work in Progress

tt̄ + bb̄ vs. rest ± 1 std. (area = 0.7238 ± 0.0024)

tt̄H(bb̄) vs. rest ± 1 std. (area = 0.706 ± 0.004)

tt̄Z(bb̄) vs. rest ± 1 std. (area = 0.689 ± 0.007)

Mean macro-avg. ROC curve ± 1 std.
(area = 0.7064 ± 0.0028 | + (41.3 ± 0.6) %)

Baseline

(d)

Figure 4.3: Mean ROC curves pre-removal of outliers. The top row showcases the
mean performance of the binary classifiers trained under monitoring of TPR
(a) and loss (b). In addition to the mean ROC curve (dark blue) and its spread
(gray band, square root of the unbiased sample variance), which are calculated
on the basis of the ROC-AUC values obtained in the ten realized repetitions
of a training, the ROC curve of each repetition is displayed in both plots. At
the bottom row, the mean performance of the multiclass classification model
trained under monitoring of TPR (c) and loss (d) is depicted. The percentage
in the legend corresponds to the model performance improvement with respect
to a random estimator. For both classification tasks, the spread of the trainings
under monitoring of TPR is larger than under monitoring of the loss. Equally,
the mean performance of models trained under the latter condition is superior.

41

42 4 Multivariate Event Classification with GNNs

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0
T

P
R Binary classification

Monitored: TPR

CMS Simulation Work in Progress

Mean ROC curve ± 1 std.
(area = 0.693 ± 0.009 | + (38.6 ± 1.8) %)

Baseline

(a)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R Multiclass classification
Monitored: TPR

CMS Simulation Work in Progress

tt̄ + bb̄ vs. rest ± 1 std. (area = 0.7214 ± 0.0021)

tt̄H(bb̄) vs. rest ± 1 std. (area = 0.7033 ± 0.0032)

tt̄Z(bb̄) vs. rest ± 1 std. (area = 0.683 ± 0.007)

Mean macro-avg. ROC curve ± 1 std.
(area = 0.7026 ± 0.0028 | + (40.5 ± 0.6) %)

Baseline

(b)

Figure 4.4: Mean ROC curves post-removal of outliers. The outlier-adjusted mean
ROC curve of the models trained under monitoring of the TPR are depicted for
the binary case and the multiclass case in (a) and (b), respectively. In (a) the
ROC curve of each repetition is again additionally shown. The percentage in
the legend corresponds to the model performance improvement with respect to
a random estimator. While the mean performance of the binary classifier has
improved after removing the outlier, the contrary occurs to the multiclass classi-
fier as in this case also one too well performing model is discarded, additionally
to a too poorly performing model.

From a physics point of view, the additional b jets are the most useful final state objects for
classifying the events. Hence, an intuitive approach is to directly provide the information
to which category a vertex in the graph data belongs in the form of flags as additional
input feature to the trainings. These category flags are discrete features and only contain
the values 1 or 0, representing whether a vertex belongs to the particular category or not.
Although it is expected to be sufficient to add the AddB flag to the vertex attributes (cf.
Equation 4.1), also a feature set where not only the AddB flag but all possible category
flags are added is deployed. The naming scheme the feature sets follow is introduced in
Fig. 4.5. When, for instance, the feature set AddB+LTB is deployed, the vertex attributes of
a vertex assigned to the category LepTopB pre-standardization could look like

x =
(︁
𝑝T = 41.32 𝜑 = −1.93 𝜂 = 1.69 𝑀 = 8.94 . . . AddB = 0 LTB = 1

)︁⊺
. (4.4)

The category flag information is of course not inherent in real, detected data, i.e., on
reconstruction-level. Consequently, for instance, another classifier, such as a GNN per-
forming node-level-prediction on the data (cf. Section 4.5), is required for determining this
information. For now, generator-level information is used for constructing the category
flags. The dependency of the event classification on the jet classification is further analyzed
in Chapter 5.

A ranking of all investigated models with respect to their mean performance is illustrated
in Fig. 4.6. As expected, introducing AddB flag as additional vertex attribute is very
beneficial for the training of both binary and multiclass classifiers. In fact, the model
performance can be increased by (25.5 ± 1.6) % and (24.6 ± 0.5) %, respectively. When
adding the flags of the remaining categories to the feature set then in both cases the model
performance can be slightly further increased. Therefore it is decided to pursue the further
optimization approaches in Section 4.4 with the feature set extended. Moreover, due to

42

4.4 Further Optimization Approaches 43

Figure 4.5: Feature set naming scheme. The abbreviations AddB, LTB, HTB, HTQ,
MET, Unk and ℓ stand for the described category flags and contain the infor-
mation whether a vertex belongs to the category AddB, LepTopB, HadTopB,
HadTopQ, Missing, Unknown or Lepton, respectively. It will be clear from
context whether AddB refers to the category flag or the category per se.

the apparent similar impacts of the realized modifications on the binary and the multiclass
classifiers, the following studies are applied to the binary case only. It is assumed that the
further findings can be adopted to the multiclass case.

4.4 Further Optimization Approaches
So far, only the vertex attributes are modified. However, it is expected to be able to push
the model performance even further by using 𝑀inv as edge weight instead of Δ𝑅 since
especially the invariant mass of the additional b jets should give a direct indication of the
class of an event. In addition, also two modifications of the original model architecture (cf.
Fig. 4.2) are probed. The idea behind these modifications is to deploy both 𝑀inv and Δ𝑅
as weight for the edges in graphs and profit from both in training and inference. For that,
the GGSNN block from before is split into two sub-blocks. In one sub-block the messages
are weighted with Δ𝑅 only and in the other with 𝑀inv. In Fig. 4.7a, these sub-blocks
are arranged sequentially. In order to maintain the same total number of GNN layers in
the model as before, the two GNN sub-blocks are each only half as deep as before. In
total, this model possesses 17593 trainable parameters. The second approach is depicted
in Fig. 4.7b. The corresponding sub-blocks are arranged in a parallel manner, leading to
27962 trainable parameters. These two models are referred to as respectively GGSNNseq
and GGSNNpara in the following.

As shown in Fig. 4.8, all modifications on the model architecture indeed outperform the
conventional GGSNN, used up till now, though the performance gain only ranges from
(0.29±0.14) % to (0.74±0.10) %. On the other hand, the spread of the two best-performing
models is approximately only half as big, i.e., their training are, in comparison, much more
stable, which is a non-negligible factor, for instance, in terms of the reliability of their
predictions.
Furthermore, in agreement with physical intuition, the introduction of 𝑀inv as edge weight
turns out to be advantageous for the classification task. With this adjustment alone, the
model performance is only improved by (0.70± 0.10) % but it should not be overlooked
that this improvement equals to an increase in the ROC-AUC value of 0.0061, which is
noticeably larger than the spread of the corresponding data points in Fig. 4.8. This is even
more remarkable when considering that no other modification on the model architecture
can outperform this model, despite of having up to approximately twice as many DOF
for adapting to the classification task. Indeed the GGSNNseq with 𝑀inv → Δ𝑅 as edge

43

44 4 Multivariate Event Classification with GNNs

0.700 0.750 0.800 0.850
Mean ROC-AUC

extended (loss)

AddB (loss)

default (loss)

default (TPR)

F
ea

tu
re

se
t

(m
on

it
or

ed
m

et
ri

c) Binary classification

CMS Simulation Work in Progress

(a)

0.700 0.750 0.800 0.850
Mean ROC-AUC

extended (loss)

AddB (loss)

default (loss)

default (TPR)

F
ea

tu
re

se
t

(m
on

it
or

ed
m

et
ri

c) Multiclass classification

CMS Simulation Work in Progress

(b)

Figure 4.6: Mean performance ranking of models trained with various feature sets
and under different monitored metrics. The mean ROC-AUC of the best
model in the binary case (a) and in the multiclass case (b) are 0.8728± 0.0008
and 0.8780±0.0004. Data points with unfilled markers indicate that at least one
model of ten repetitions of the particular training has a performance fulfilling
the outlier criteria defined in Section 4.3 and the identified outlier(s) is/are
therefore discarded. All data points possess an error bar representing the
performance spread (square root of the unbiased sample variance), which is
calculated on the basis of the ROC-AUC values of all not discarded models (at
most ten models, one for each of the ten realized repetitions of training). If
an error bar is not visible, then this is due to the fact that the spread is too
narrow to be displayed.

weights is ranked higher but the performance increase is only (0.05±0.06) %, i.e., lies within
the standard deviation and is hence negligible. That emphasizes again the discriminating
power of 𝑀inv as edge weight. Also the fact that reversing the order of the deployed edge
weights from Δ𝑅 → 𝑀inv to 𝑀inv → Δ𝑅 in the sub-blocks in GGSNNseq already leads to
a performance gain of (0.41± 0.12) % underlines this statement. Apparently, weighting the
messages in the message passing step with the invariant mass, supports the model better
in extracting higher-level information of the data than using Δ𝑅 in the first sub-block.
The subsequent sub-block with Δ𝑅 as edge weight seems to profit from that extracted
information as well. Presumably for that reason, this model is ranked higher than the
model with 𝑀inv as edge weight only.

When all suggested optimization methods are applied, including the usage of loss as
monitored metric during training, the extension of the feature set default by category
flags and deploying a model architecture using 𝑀inv and Δ𝑅 as edge weight in that order
in subsequent GGSNN blocks, the training process is stabilized on the one hand. On the
other hand, the classification ability of the model can be improved by (26.9± 1.3) % to
(0.8793±0.0004) % in comparison to the GLP attempt presented first or by (75.860±0.008) %
with respect to a random estimator. However, it should be noted that so far no regularization
methods are applied to the GNN trainings. This would presumably further promote the
model performance but unfortunately could not be tested within the time frame of this
thesis. It should not be overlooked that the model performances measured are only achieved
by deploying generator-level information for constructing the category flags in the input
features. The determination of the category flags is nothing else than performing jet
identification on the data set prior to the training of the event classifier. This can be
fulfilled with, e.g., the help of another classifier, which of course will not perform flawlessly.
An exemplary approach for determining the category flags is shown in the next section.

44

4.4 Further Optimization Approaches 45

global mean
pooling

(a)

+

global mean
pooling

(b)

Figure 4.7: Model architecture variations. In (a) the GGSNN blocks are arranged in a
sequential manner whereas in (b) they are arranged in parallel. The remaining
architecture is the same as in the conventional GGSNN, shown in Fig. 4.2.

0.870 0.872 0.874 0.876 0.878 0.880
Mean ROC-AUC

GGSNNseq (Minv → ∆R)

GGSNN (Minv)

GGSNNseq (∆R→Minv)

GGSNNpara (∆R,Minv)

GGSNN (∆R)

M
o
d

el
(e

d
ge

w
ei

gh
t)

CMS Simulation Work in Progress

Figure 4.8: Mean performance ranking of modified models, including the best-
performing binary classifier from Fig. 4.6a for reference. The mean
ROC-AUC of the model ranked the highest is 0.8793 ± 0.0004. The error
bars represent the performance spread (square root of the unbiased sample
variance), which is calculated on the basis of the ROC-AUC values obtained
in the ten realized repetitions of a training. The arrow in some labels on the
𝑦-axis indicate the order in which the particular edge weights are used in the
GGSNN sub-blocks in the sequential approach.

45

46 4 Multivariate Event Classification with GNNs

4.5 Applying Preclassified Category Flags to Input Features
Jet identification and assignment in multijet final states have been the focus of interest
of many previous works, such as in Ref. [68] and Ref. [77]. In particular, it has been
demonstrated in Ref. [68] that GGSNNs outperform DNNs on identifying both additional
b jets in an event (2/2 rate) by more than 6 % and on identifying at least one additional b
jets in an event (1/2 rate) by more than 1 %. Moreover, the GGSNN does not correctly
identify any of the two additional b jets (0/1 rate) in only about 9 % instead of about
16 % of the cases. Accordingly, a GGSNN is selected to be the machine learning technique
for preclassifying AddB flags, which are needed as input for training the actual GGSNN
performing the event classification. To avoid confusion, the former model is named
NLP-GGSNN in the following. Since the data used in Ref. [68] does not fully match the
data used in this thesis, it is here refrained from utilizing the hyperparameters of the
best-performing model from Ref. [68]. Instead, the exact same hyperparameters as for
training a binary event classifier (cf. Table 4.1), whose selection was inspired by the findings
in Ref. [68], are applied to the training of the NLP-GGSNN. The only exceptions are that
the global mean pooling layer is dispensed with this node-level-prediction task, TPR is
again used as monitored metric and the loss function is weighted as described in Ref. [68].
Furthermore, the feature set default is deployed and the vertices of each graph to which
the two highest NLP-GGSNN output values correspond are identified as additional b jets
in the end. Hence, also no classification threshold needs to be determined for calculating
the true positive rate. As opposed to the GNNs of the previous sections, all ten repetitions
of the training of NLP-GGSNN is processed on CPUs (AMD Ryzen 9 3900X 12-Core
Processor) instead of the aforementioned graphics card, yet on the same machine. The
underlying reason for this switch is the reproducibility of the results (cf. Section 4.1). Since
the NLP-GGSNN response will be further utilized as input to the actual event classification
model, the AddB flag predictions are demanded to be deterministic/reproducible, equally
to the remaining features used for the training.
With this setup for the NLP-GGSNN, a mean ROC-AUC value of 0.93523 ± 0.00031 is
achieved, which is even (6.36±0.06) % superior than the performance of the best-performing
GNN for event classification from Section 4.4. The mean TNR 〈TNR〉, mean TPR 〈TPR〉,
mean confusion rate 〈CR〉, which corresponds to the frequency that the model mistakes
another jet category for the category AddB, as well as the 2/2, 1/2 and 0/2 rates of
the NLP-GGSNN evaluated on the test set are summarized in Table 4.2. Although the
NLP-GGSNN is trained and evaluated on all classes without further differentiation, the
respective values can be extracted for each class separately. This is added to the same table
and is relevant for the modeling strategies presented in Chapter 5. It becomes evident that
the GNN confuses jets belonging to the categories LepTopB and HadTopB far more often
than other categories with additional b jets throughout all classes. The same observation is
made with DNNs in Ref. [77]. This probably traces back to the similar b tag values of these
jets. The fact that the categories Lepton and Missing are never confused as additional b
jet underlines this assumption.

For determining the AddB flags that are provided as input to the event classification
model, the best-performing NLP-GGSNN model (TPR = 70.88 %, TNR = 91.42 %) of ten
realized NLP-GGSNN trainings is evaluated on the whole data set, i.e., also on data that
is used in its training process. This is inevitable due to the restricted number of available
samples. However, thanks to early-stopping, an overfitting of the trained model on this
data is prevented and therefore this unconventional data usage is justified in this case.

In general, two ways of replacing generator-level information in the feature sets by the
NLP-GGSNN response are conceivable. Either the actual prediction scores ŷ are used,

46

4.5 Applying Preclassified Category Flags to Input Features 47

T
able

4.2:P
erform

ance
properties

of
N

L
P

-G
G

SN
N

.
The

m
ean

values
in

this
table

are
calculated

over
ten

realized
repetitions

ofthe
training.

A
llvalues

are
given

in
%

.
T

he
subscript

ofC
R

designates
the

category
that

the
N

LP-G
G

SN
N

confuses
w

ith
an

additionalb
jet.

D
ue

to
rounding

errors,the
sum

of〈T
PR

〉
and

〈C
R

〉
per

class
is

not
necessarily

100%
.

T
he

sam
e

applies
to

the
sum

ofthe
2/2,1/2

and
0/2

rates
per

class.

class
〈T

N
R

〉
〈T

PR
〉

〈C
R

H
adT

opB 〉
〈C

R
LepT

opB 〉
〈C

R
H

adT
opQ 〉

〈C
R

U
nknow

n 〉
〈C

R
Lepton 〉

2/2
rate

1/2
rate

0/2
rate

〈C
R

M
issing 〉

tt̄H
(bb̄)

90.69±
0.049

68.50±
0.17

11.620±
0.081

16.139±
0.085

2.673±
0.025

1.0701±
0.0098

0.0±
0.0

0.430±
0.30

0.51±
0.27

0.060±
0.053

tt̄Z(bb̄)
93.25±

0.022
77.247±

0.073
7.413±

0.039
12.053±

0.051
2.466±

0.029
0.8209±

0.0073
0.0±

0.0
0.594±

0.12
0.36±

0.12
0.049±

0.050
tt+

bb
91.47±

0.016
70.695±

0.054
10.000±

0.044
14.325±

0.052
3.082±

0.025
1.898±

0.016
0.0±

0.0
0.4931±

0.072
0.428±

0.085
0.079±

0.064
total

91.36±
0.026

70.683±
0.089

10.410±
0.040

14.896±
0.049

2.751±
0.023

1.2592±
0.0089

0.0±
0.0

0.477±
0.16

0.46±
0.14

0.063±
0.030

47

48 4 Multivariate Event Classification with GNNs

NLP-GGSNN
?
? ?

?

?
??

?

NLP-score-level NLP-class-level

Figure 4.9: Illustrative representation of different information levels. Values in
the NLP-score-level are continuous whereas the values in the NLP-class-level
are discrete.

Table 4.3: True positive rates achieved with the joint b tag/𝑝T approach.
category TPR (%)
HadTopB 65.61
HadTopQ 79.04
LepTopB 52.26
Unknown 62.24
Lepton/Missing 100.00

leading to continuous AddB flags, or the discrete nature of the flags shall be maintained by
inserting the classification y derived from ŷ instead (Fig. 4.9). The former is referred to as
NLP-score-level information and the latter as NLP-class-level information in the following.
Both information levels are tested in this section and it is clear from the subscript of the
particular feature set whether the AddB flag is continuous or discrete. Since the classifier is
not flawless and hence its prediction is not equally certain for each event, it is expected that
providing this information in the form of continuous AddB flags to the event classification
model is fruitful.

The development of a multiclass classification NLP-GGSNN would unfortunately exceed
the time frame of this thesis. Therefore, the remaining category flags are instead determined
by considering the b tag value of the particular jets in combination with their transverse
momentum. In this joint b tag/𝑝T approach, only jets with a b tag value greater than the
freely chosen value 0.277 are treated as candidates for the categories HadTopB or LepTopB
whereat the jet with the highest 𝑝T value (hardest jet) is assigned to the HadTopB category
and the second hardest jet to LepTopB. The hardest and second hardest remaining jets
are then associated with the category HadTopQ. On the contrary, leptons and neutrinos
(category: Missing) can be straightaway identified with 100 % certainty via their mass and
𝜂 value. The category flags constructed in this way contain of course only discrete values.
Despite of this rather unsophisticated approach, clearly more than 50 % of the jets in the
whole data set are successfully assigned to the particular jet categories in the majority
of the cases, as specified in Table 4.3. This only does not hold for the LepTopB jet
assignment. Nevertheless, since it has been shown in Section 4.3 that the highest impact
on the performance of the event classification model mainly comes from the additional b
jets, it is expected that the poor assignment rate of LepTopB will not noticeably distort
the results in the following.

Both the worst- as well as the best-performing model architecture from the ranking in
Fig. 4.8 are trained with feature sets with category flags assigned in the described manner
instead of generator-level information. The ranking of the performance of these event
classifiers can be seen in Fig. 4.10. In correspondence to the expectation, models trained

48

4.5 Applying Preclassified Category Flags to Input Features 49

0.750 0.775 0.800 0.825 0.850 0.875
Mean ROC-AUC

GGSNNseq (extended, Minv → ∆R)

GGSNN (extended, ∆R)

GGSNNseq (extendedŷ, Minv → ∆R)

GGSNNseq (AddBŷ, Minv → ∆R)

GGSNNseq (extendedy, Minv → ∆R)

GGSNNseq (AddBy, Minv → ∆R)

GGSNN (extendedŷ, ∆R)

GGSNN (AddBŷ, ∆R)

GGSNN (extendedy, ∆R)

GGSNN (AddBy, ∆R)

M
o
d

el
(f

ea
tu

re
se

t,
ed

ge
w

ei
gh

t)

CMS Simulation Work in Progress

Figure 4.10: Mean performance ranking of the models trained without generator-
level information, including the best- and worst-performing model
from Fig. 4.8 for reference. The mean ROC-AUC value of the best-
performing model trained without using generator-level information is 0.7602±
0.0008. The error bars represent the performance spread (square root of the
unbiased sample variance), which is calculated on the basis of the ROC-AUC
values obtained in the ten realized repetitions of a training. The arrow in some
labels on the 𝑦-axis indicate the order in which the particular edge weights
are used in the GGSNN sub-blocks in the sequential approach.

with continuous AddB flags outperform congruent models that only differ in the use of
discrete AddB flags. Indeed the model performance declines by (−14.38 ± 0.06) % on
average with respect to the best ranked model, yet it is still (5.58± 0.29) % superior than a
model trained on the feature set default only (cf. Fig. 4.3b), i.e., without using category
flags at all in the feature set. It is especially noticeable that the observations made in
the previous sections also apply to the models trained without generator-level information.
For instance, the best model architecture stays GGSNNseq throughout all feature sets
considered and also using extended instead of AddB in otherwise identical models leads to a
slight model performance improvement without any exceptions, like observed before. This
is in particular interesting when considering that a rather basic approach for determining
the non-AddB categories is deployed but the information contained in these category flags
are, despite of that, still beneficial for the classifier.

As the performance of the GNNs trained with generator-level information can reach up to
be about 76 % superior than a random estimator, when trained with extended, it can be
generally concluded that the proof of concept is indeed successful, i.e., GNNs are indeed
suitable for tt̄+X event classification. A benchmark with respect to the performance and
other aspects of GNNs and DNNs is, for instance, conducted in Chapter 7. Nevertheless,
it is interesting and reasonable to investigate how much the event classification task is
actually dependent on the quality of the category flags provided to the training, for example,
to be able to assess whether it is more worthwhile to invest resources in developing a better
preclassifier or in further optimizing the event classifier per se (cf. Chapter 5) in the future.

49

5 Modeling of the Dependency of a
GNN-Based Event Classification on the
Goodness of the Jet Assignment

In Section 4.3, it was found to be in particular beneficial to extend the vertex attributes,
which mainly contain kinematic observables, by category flags for improving the perfor-
mance of the GNN on tt̄+X event classification. These category flags are (originally) a
discrete quantity that indicate the category (cf. Section 2.5) to which a vertex in a graph
structure belongs but this information is of course not directly accessible at reconstruction-
level and need to be determined. In Section 4.5, a GNN performing node-level-prediction
in combination with a joint b tag/𝑝T approach are utilized for determining the category
flags. Since this preclassification process is not flawless, the performance of the event
classifier trained with category flags preclassified in this way is significantly poorer than
the performance of an event classifier trained with category flags that are constructed using
generator-level information. For example, in order to be able to estimate in a cost-benefit
calculation whether it is more desirable to optimize the preclassification process or to
pursue a completely different approach to increase the event classification performance, it
is worth attempting to model the dependency of the GNN-based event classifier on the
jet category assignment, which is part of its input features. In addition, the modeling
could provide interesting insights into how the neural network works, like as of which
quality level the category flags only play a subordinate role for the performance of the
event classification model. This is the case when, for instance, the model performance does
not noticeably decrease anymore despite of providing category flags with increasingly poor
quality to its training. In reverse, this means that the model successfully adapts to the
data and relies on other features instead of category flags for its prediction.
In Section 5.1, two strategies for modeling the dependency are presented. These modeling
strategies are subsequently probed for their validity in Section 5.2.

5.1 Modeling Strategies
The idea behind the modeling strategies is that starting from the ground-truth of the
category flags, i.e., category flags derived from generator-level information, the category
flags of an increasingly larger fraction of the events in the data set are intentionally
manipulated. Consequently, by training GNNs with simulated data containing different

51

52
5 Modeling of the Dependency of a GNN-Based Event Classification on the Goodness of

the Jet Assignment

fractions of manipulated events, the dependency of the event classifier on the goodness of
the pre-assignment of the category flags can be modeled. However, as the results in the
previous chapter suggest that the model performance mainly depends on the AddB flag
(compared to all other category flags), the modeling can be simplified from modeling the
dependency on the goodness of the jet assignment to modeling in particular the additional
b jet assignment correctly.

Two strategies are developed in this thesis for modeling the dependency. In the first,
rather naive modeling approach (AddB-LTB modeling) only the AddB flag value and the
LepTopB flag value of the additional b jet and the jet assigned to the LepTopB category
are exchanged in the manipulated events. That is, the actual additional b jet is labeled as
a LepTopB jet and vice versa. To avoid any bias in choosing which of the two additional
b jets in an event shall be manipulated as LepTopB jet, this is randomized. However the
fact that there are only half as many LepTopB jets than additional b jets in an event
and hence in the whole dataset, leads to the consequence that when 100 % of the data is
manipulated with this approach, still 50 % of the total additional b jets in the data set
contain the correct AddB flag whereas 100 % of the LepTopB jets possess a manipulated
LepTopB flag. The motivation behind the AddB-LTB modeling is that the trained with
NLP-GGSNN confuses these two jet categories the most often in its predictions and hence
it could already be sufficient to only manipulate the events in this regard.
On the contrary, all jets are taken into account for manipulating the events in the second,
more sophisticated approach (AddB-X modeling). Here, the AddB flag value of the
additional b jet in an event is exchanged with the flag value of one of the remaining
categories (except for AddB) in correspondence to the (normalized) class specific mean
confusion rates of the NLP-GGSNN (cf. Table 4.2). That means that in this approach
the confusion rate determines how likely a specific jet category is intentionally mislabeled
as additional b jet and vice versa in an event. Moreover, the probability whether both
additional b jets in an event shall be manipulated or only one is based on the (normalized)
1/2 and 0/2 rates from Table 4.2. For better comprehension, the normalized rates are
included in the appendix (cf. Table C.1).

5.2 Validation
To check the validity of the presented strategies for modeling the real dependency of the
event classifier on the quality of the preclassified data, ten data sets with a manipulated
proportion of the events from 10 % to 100 % in increments of 10 % are generated for each of
the two modeling strategies. To better distinguish the different data sets, the manipulated
portion of events in a feature set is encoded in the subscript of the name of the respective
feature set. The corresponding fraction of manipulated objects per category in these data
sets is specified in Table D.1.
The manipulated data sets are used for training GNNs following the best model archi-
tecture so far, i.e., GGSNNseq in combination with the usage of 𝑀inv and Δ𝑅 as edge
weights in that order in the sub-blocks. Since the TPR of the NLP-GGSNN used for
determining the AddB flags is 71.76 %, i.e., 28.24 % of the additional b jets are assigned
to the wrong category, it is expected that the performance of the event classifiers trained
with NLP-score-level and NLP-class-level information lie within the performance of models
trained with data sets containing 50 % and 60 % of manipulated events, respectively. This
expectation applies to both modeling strategies.

The performance of the models trained with data sets manipulated as suggested by AddB-
LTB modeling is summarized in Fig. 5.1. Interestingly, the worst-performing event classifier

52

5.2 Validation 53

0.760 0.780 0.800 0.820 0.840 0.860 0.880
Mean ROC-AUC

AddB+LTB0.0

AddB+LTB0.1

AddB+LTB0.2

AddB+LTB1.0

AddB+LTB0.3

AddB+LTB0.4

AddB+LTB0.9

AddB+LTB0.8

AddB+LTB0.5

AddB+LTB0.6

AddB+LTB0.7

AddB+LTBŷ

AddB+LTBy

F
ea

tu
re

se
t

CMS Simulation Work in Progress

Figure 5.1: Mean performance ranking of models trained with data sets manipu-
lated according to AddB-LTB modeling, including models trained
with actual preclassified category flags for reference. In addition to the
fact that the performance of the two models trained with actual preclassified
category flags are both far behind the modeled performances, also models
trained with a higher fraction of manipulated events are ranked higher than
models trained with better category flags quality. Both is not expected and
desired. The error bars represent the performance spread (square root of the
unbiased sample variance), which is calculated on the basis of the ROC-AUC
values obtained in the ten realized repetitions of a training.

is not the model trained with fully manipulated events but with 70 % manipulated events.
The former is even the fourth best model in the ranking. Equally, models trained with
AddB+LTB0.8 and AddB+LTB0.9 are ranked higher than trainings with a smaller portion of
manipulated events, which is however only counterintuitive at first sight. As only the
values of the AddB flags and LTB flags are exchanged in this naive modeling approach, at a
certain point probably no further confusion is added to the data set. Yet, this turning point
is certainly not at a fraction of 50 % manipulated events in the data set as there are twice
as many additional b jets than LepTopB jets in an event. The GNNs might have adapted
to that, which can be verified by unveiling these black-box models with xAI methods (cf.
Section 6.2). Accordingly, it is hardly surprising that this modeling strategy turns out
to be too naive for properly capturing the real dependency of the event classifier on the
preclassification. Both models trained with AddB+LTB𝑦 and AddB+LTB𝑦 have a performance
about 6 % lower than the worst-performing model trained with a manipulated data set.

The models trained with data manipulated according to AddB-X modeling behave more
as expected in comparison to the previous modeling strategy (cf. Fig. 5.2). The higher
the manipulated portion of events in the data the worse the resulting performance of the
model trained with these data without any exceptions. Equally, it can be observed that the
spread of the model performance is larger for models that are provided with lower quality
data for training, i.e., their training stability decreases. Apart from that, it is noticeable
that also the difference in mean performance of the models decreases with decreasing data
quality. In other words, beyond a certain proportion of manipulated events, the impact of
the quality of the AddB flags on the model performance diminishes as the models have

53

54
5 Modeling of the Dependency of a GNN-Based Event Classification on the Goodness of

the Jet Assignment

presumably learnt to rely less on this obscure information and focus on other features
instead, which is desirable since this shows that they indeed adapt to the provided data.
The most important finding is clearly that the mean performance between models trained
with either AddB𝑦 or extended𝑦 exactly lie in between the predicted performance range of
models trained with 50 % and 60 % manipulated events, respectively. The mean performance
of models trained with either AddB𝑦 or extended𝑦 are outside of this range, yet are still in
correspondence with the performance of models trained with AddB0.6. Hence, on the one
hand, it is shown that it is well-justified to only focus on manipulating the AddB flags in
the data sets correctly and not necessary to invest resources in finding a more sophisticated
modeling strategy that captures the correct manipulation of the non-AddB category flags
as well. On the other hand, the validity of the AddB-X modeling strategy for capturing
the real dependency of the event classifier performance on the provided quality of the
AddB flags is successfully demonstrated. Moreover, thanks to the AddB-X modeling, it can
be derived that increasing the TPR of NLP-GGSNN by just 0.17 % leads to an expected
performance gain of the event classifier by about 2 %, i.e., it is indeed worth it to develop a
better preclassifier in the future. A possible candidate for this could be a multi-task model
that learns to identify the additional b jets in the events and classify the respective events
at the same time as opposed to the sequential approach used so far with two separate
sequential trainings, one for identifying the additional b jets and one for event classification.
However, a subsequent further optimization of the preclassifier is probably not reasonable,
since a further 2 % increase in performance of the event classifier requires an improvement
of the TPR of the preclassifier by approximately 6 %.

0.740 0.760 0.780 0.800 0.820 0.840 0.860 0.880
Mean ROC-AUC

AddB0.0

AddB0.1

AddB0.2

AddB0.3

AddB0.4

AddB0.5

extendedŷ

AddBŷ

AddB0.6

extendedy

AddBy

AddB0.7

AddB0.8

AddB0.9

AddB1.0

F
ea

tu
re

se
t

CMS Simulation Work in Progress

Figure 5.2: Mean performance ranking of models trained with data sets manipu-
lated according to AddB-X modeling, including models trained with
actual preclassified category flags for reference. As desired and expected,
the higher the proportion of manipulated events used for training, the worse the
particular model performance. Moreover, the performance of the models trained
with NLP-score-level and NLP-class-level information are ranked exactly within
the predicted range. The error bars represent the performance spread (square
root of the unbiased sample variance), which is calculated on the basis of the
ROC-AUC values obtained in the ten realized repetitions of a training.

54

6 In-Depth Analysis of GNNs by
Applying Explainable AI Methods

The focus of this chapter is on examining the underlying decision basis for the predictions
of a selection of models from previous chapters by applying explainable AI methods to
them. The explainable AI methods considered in this chapter are the GNNExplainer
(GNNX, cf. Section 3.3.1) and the Taylor coefficient analysis (TCA, cf. Section 3.3.2). As
opposed to TCA, GNNX requires training, in which the edge and feature masks that serve
as explanation for a model are adjusted. However, since the GNNExplainer does not take
edge features into account and it is revealed in Section 4.4 that edge weights indeed have
a noticeable impact on the model performance, it is chosen to only train and consider the
feature mask in the following. For feasibility reasons, the default choice in PyG of using
only 100 attempts for adjusting the feature mask remains unchanged. Both the calculations
of the TCA and the GNNX trainings are carried out on CPUs (cf. Section 4.5) in order to
guarantee reproducibility of these explanations. As the spread of the model performance of
each configuration is comparatively narrow, it is decided to analyze the best-performing
model of ten realized repetitions only.

Both xAI methods only provide single-instance explanations, i.e., they are only capable
of explaining one single prediction of the trained model under scrutiny at a time. Thus,
in order to get an idea on how the model generally extracts its information from the
inputs, the trained model is evaluated on the test set of size 𝑆 = 37827 events and for
each prediction the explanation is calculated separately by the xAI methods. The overall
explanation for the model then simply corresponds to the arithmetic mean over the ex-
planations or, since Taylor coefficients can also be negative, rather the arithmetic mean
over absolute values. Incidentally, as the Taylor coefficient analysis outputs are of the
same dimension as the NN inputs, i.e., of size R𝑛×𝑚 for each explained graph instance, the
arithmetic mean corresponds for TCA applied to GNNs to averaging over the total number
of vertices in the test set instead of over 𝑆. As a reminder, 𝑛 is the number of vertices
in the graph under scrutiny and 𝑚 denotes the number of attributes assigned to each vertex.

The goal is to gain, with the explanations, a further understanding of the achieved model
performance in previous chapters and therewith probing their reliability as well as leveraging
the optimization of the event classification model (Section 6.1). Furthermore, the reasons

55

56 6 In-Depth Analysis of GNNs by Applying Explainable AI Methods

for the observed apparent peculiar behaving models in AddB-LTB modeling shall be
unraveled (Section 6.2). At the same time, the plausibility of the explanations provided by
GNNX and TCA is inspected in each section.

6.1 Identifying the Decision Basis of Models Trained with
Different Information Levels

As observed in Section 4.5, GNNs trained with NLP-score-level (NLP-score-level GNN) or
NLP-class-level (NLP-class-level GNN) information perform about 14 % worse than GNNs
trained with generator-level information (generator-level GNN). Hence, it is interesting
to investigate whether GNNs trained with generator-level information indeed identify the
same features and vertices as important for its classification as expected from a physics
perspective. Moreover, it can be investigated in this manner whether more underlying
explanations exist for the performance drain of the poorer performing GNNs, except for
the worse data quality of the category flags. The xAI methods are applied to the best-
performing GGSNNseq model (according to the ranking in Fig. 4.10) trained with the
feature set extended, extended𝑦 and extended𝑦, respectively.

For facilitating the comparison of the rankings in the following, the measure ⟨Δ𝑟⟩ is
proposed in this thesis. It is obtained by calculating the difference between the ranks of
each object 𝑞 in ranking 𝐴 and ranking 𝐵 and subsequently taking the arithmetic mean
over the absolute rank differences. Hence, it holds

⟨Δ𝑟⟩ = 1
𝑀

𝑀∑︁
𝑖=1

Δ𝑟(𝑞𝑖) (6.1)

= 1
𝑀

𝑀∑︁
𝑖=1

⃒⃒
𝑟𝐴(𝑞𝑖)− 𝑟𝐵(𝑞𝑖)

⃒⃒
, (6.2)

where 𝑀 is the number of objects 𝑞 in a ranking. The range of this measure is
[︁
0,Δ𝑟*

max

]︁
with Δ𝑟*

max being 1
𝑀 ·

𝑀2−1
2 if 𝑀 is odd and 1

𝑀 ·
𝑀2

2 otherwise. A detailed derivation of
this range is included in Appendix E. The closer the value of this metric is to zero, the
more alike are the two compared rankings. Alternatively, the conformity between two
rankings can be expressed as 1− ⟨Δ𝑟⟩/Δ𝑟*

max.

6.1.1 Category Importance and Category Specific Feature Importance

With GNNX, there is the possibility to calculate the importance of vertices or the ver-
tex specific feature importance for the GNN response, for instance. As the impact of
the vertices belonging to the same category are summarized in an average in this thesis,
strictly speaking, the category importance and the category specific feature importance are
examined in the following.

The impact of the different categories on the response of the GNNs under scrutiny according
to GNNX is showcased in Fig. 6.1. It becomes evident that the most important category
by far is AddB, regardless of the information level of the category flags provided to the
training. This fully matches physics expectations. The importance of the other categories
for the GNNs are, on the contrary, rather obscure as the three GNNs under scrutiny do
not agree in their rankings anymore. But at the same time, it should not be overseen that
the difference in the actual calculated importance of these categories are not as distinct

56

6.1 Identifying the Decision Basis of Models Trained with Different Information Levels57

as between AddB and the second highest ranked category in all three rankings. Hence, it
can be derived from that observation that there is no clear importance hierarchy in the
remaining categories for trained GNNs. This is presumably physically reasonable as well.
When, for instance, looking at the distribution of the transverse momentum of the b jets
originating from the top quark decays (HadTopB and LepTopB), no discriminating power
for the tt̄+X events can be spotted (cf. Fig. F.1). The same holds for the invariant mass
of the tt system (cf. Fig. F.2). Of course, these are only three out of various numbers of
conceivable observables and multivariate methods possibly are able to extract relevant
information also from these observables for classifying the tt̄+X events. Hence, further
studies are required.

Since AddB turns out to be the most important category, it is also worth looking at the
feature importance hierarchy of this very category (cf. Fig. 6.2). It is striking that these
GNNX-based rankings are almost identical for all three GNNs. The conformity between
them is above 90 %. In all three cases, the AddB flag, the transverse momenta and the
b tag of the final state objects are the three highest ranked features. At the same time,
all remaining category flags are positioned in the lower half of the ranking without any
exceptions. This is no surprise considering these flag values are zero at all times for vertices
representing additional b jets.

For the sake of completeness, the rankings containing the category specific feature impor-
tance for the remaining categories are included in the appendix (cf. Figs. F.3-F.8). Like for
AddB vertices, the most important category flag in these ranking is the one denoting the
actual category of the particular vertex while the other category flags are only of minor
importance for the GNN response. This solely do not apply to the feature importance
rankings of the category LepTopB for the NLP-score-level GNN, i.e., the category that the
NLP-GGSNN confuses with additional b jets the most often. Instead, the AddB flag is the
most important category flag and the LTB flags is only the second most important category
flag. This observation is regarded as the final proof of the validity of the assumption
made in Section 4.5, i.e., providing continuous AddB flags, indicating the uncertainty of
the preclassifier, is indeed fruitful information for the event classification model. As a
matter of fact, in that ranking, the AddB flag is even the most important feature for the
NLP-score-level GNN.

6.1.2 Feature Importance

The feature importance rankings for the generator-level, the NLP-score-level and the
NLP-class-level GNN, calculated by GNNX, are depicted in Fig. 6.3. Also from a global
perspective, the AddB flag is the most important feature for each GNN albeit the additional
b jets are not correctly assigned by the NLP-GGSNN in about 30 % of the cases. In fact,
this is as well reflected in the ranking. It is noticeable that only for the generator-level
GNN the AddB flag is the most important flag by far. For the other two GNNs, the
differences in the impact of the features are not as distinct. Yet, it is unexpected that
the LTB flag is only one of the least impactful features for the two GNNs as well, as the
NLP-GGSNN confuses additional b jets with jets assigned to this category the most often.
About 14 % actual additional b jets are misidentified as LepTopB jets to be precise (cf.
Table 4.2). Apart from the AddB flag, the transverse momentum and the b tag of the final
state objects are identified as relevant information for accomplishing the classification task,
while 𝜑 is a rather not valuable observable throughout all GNNs. This also corresponds
to physics expectations since b jets radiated by top quarks are highly more probable to
achieve greater transverse momentum than additional b jets due to the comparatively large
top quark mass. Hence, this feature supports the neural network in finding the correct
additional b jets and therewith assists the event classification.

57

58 6 In-Depth Analysis of GNNs by Applying Explainable AI Methods

0.294 0.325 0.355 0.386 0.417

〈σ(F)j〉

AddB

Unknown

Missing

HadTopB

HadTopQ

LepTopB

Lepton

C
at

eg
or

y

CMS Simulation Work in Progress

Generator-level

0.318 0.357 0.396 0.435 0.475

〈σ(F)j〉

AddB

HadTopB

LepTopB

Unknown

Missing

Lepton

HadTopQ
C

at
eg

or
y

CMS Simulation Work in Progress

NLP-score-level

0.335 0.369 0.404 0.438 0.473

〈σ(F)j〉

AddB

Unknown

Missing

Lepton

LepTopB

HadTopQ

HadToB

C
at

eg
or

y

CMS Simulation Work in Progress

NLP-class-level

GNNX:

Generator-level vs. NLP-score-level:
〈∆r〉 = 1.71 (=̂ 50.0 %)
∆rmax = 3.00 (LepTopB)

Generator-level vs. NLP-class-level:
〈∆r〉 = 1.14 (=̂ 66.67 %)
∆rmax = 3.00 (HadToB, Lepton)

Figure 6.1: Ranking of the GNNX-based category importance for the generator-
level (top left), NLP-score-level (top right) and NLP-class-level
(bottom left) GNN response. As expected, the most important category
by far is AddB throughout all GNNs. The percentage in the parentheses
corresponds to the conformity 1− ⟨Δ𝑟⟩/Δ𝑟*

max of the compared rankings. The
variable Δ𝑟max denotes the highest number of rank difference between the
compared rankings and should not be confused with Δ𝑟*

max, which denotes the
maximum mean number of absolute rank differences between the compared
rankings. The objects to which this applies are specified in the subsequent
parentheses.

58

6.1 Identifying the Decision Basis of Models Trained with Different Information Levels59

0.265 0.326 0.388 0.450 0.511

〈σ(F)AddB
j 〉

AddB

pT

b tag

M

η

φ

E

HTQ

Unk

MET

LTB

`

HTB

F
ea

tu
re

CMS Simulation Work in Progress

Generator-level

0.265 0.323 0.382 0.441 0.500

〈σ(F)AddB
j 〉

AddB

pT

b tag

η

E

M

φ

Unk

HTQ

MET

LTB

`

HTB
F

ea
tu

re

CMS Simulation Work in Progress

NLP-score-level

0.265 0.327 0.390 0.452 0.515

〈σ(F)AddB
j 〉

AddB

b tag

pT

η

M

E

φ

Unk

HTQ

MET

LTB

`

HTB

F
ea

tu
re

CMS Simulation Work in Progress

NLP-class-level

GNNX:

Generator-level vs. NLP-score-level:
〈∆r〉 = 0.62 (=̂ 90.48 %)
∆rmax = 2.00 (M , E)

Generator-level vs. NLP-class-level:
〈∆r〉 = 0.62 (=̂ 90.48 %)
∆rmax = 1.00
(pT, φ, η, M , E, b tag, HTQ, Unk)

Figure 6.2: Ranking of the GNNX-based AddB specific feature importance for
the generator-level (top left), NLP-score-level (top right) and NLP-
class-level (bottom left) GNN response. Across all three rankings, AddB
flags, 𝑝T and the b tag are identified as the most important features of AddB
vertices for the GNN response. All other category flags occupy the lower
positions in the rankings without exception. The percentage in the parentheses
corresponds to the conformity 1− ⟨Δ𝑟⟩/Δ𝑟*

max of the compared rankings. The
variable Δ𝑟max denotes the highest number of rank difference between the
compared rankings and should not be confused with Δ𝑟*

max, which denotes the
maximum mean number of absolute rank differences between the compared
rankings. The objects to which this applies are specified in the subsequent
parentheses.

59

60 6 In-Depth Analysis of GNNs by Applying Explainable AI Methods

0.277 0.331 0.385 0.439 0.493

〈σ(F)j〉

AddB

pT

HTQ

b tag

η

Unk

HTB

M

MET

LTB

E

`

φ

F
ea

tu
re

CMS Simulation Work in Progress

Generator-level

0.299 0.353 0.408 0.462 0.517

〈σ(F)j〉

AddB

pT

η

b tag

HTB

E

MET

Unk

M

HTQ

`

LTB

φ

F
ea

tu
re

CMS Simulation Work in Progress

NLP-score-level

0.285 0.343 0.402 0.460 0.518

〈σ(F)j〉

AddB

b tag

pT

η

HTQ

Unk

M

E

HTB

LTB

φ

`

MET

F
ea

tu
re

CMS Simulation Work in Progress

NLP-class-level

GNNX:

Generator-level vs. NLP-score-level:
〈∆r〉 = 1.85 (=̂ 71.43 %)
∆rmax = 7.00 (HTQ)

Generator-level vs. NLP-class-level:
〈∆r〉 = 1.38 (=̂ 78.57 %)
∆rmax = 4.00 (MET)

Figure 6.3: Ranking of the GNNX-based feature importance for the generator-
level (top left), NLP-score-level (top right) and NLP-class-level
(bottom left) GNN response. The information captured in 𝜑 forms the
smallest part of the decision basis and the information contained in AddB flags
forms most of the decision basis for all GNNs. The difference in importance
between the AddB flag and the second highest ranked feature is however
for both GNNs trained on actual preclassified flags not as distinct as for the
generator-level GNN. The percentage in the parentheses corresponds to the
conformity 1 − ⟨Δ𝑟⟩/Δ𝑟*

max of the compared rankings. The variable Δ𝑟max
denotes the highest number of rank difference between the compared rankings
and should not be confused with Δ𝑟*

max, which denotes the maximum mean
number of absolute rank differences between the compared rankings. The
objects to which this applies are specified in the subsequent parentheses.

60

6.2 Evolution of the Feature Importance in AddB-LTB Modeling 61

The first-order TCA (cf. Fig. 6.4) identifies, like GNNX, the AddB flag as the most relevant
category flag by far. Except for the NLP-class-level GNN, it is at the same time the most
important feature for the predictions of the GNNs here as well. Yet, it must be noticed that
the TCA sees category flags in general as rather impactful to the prediction throughout
all GNNs, while the predictions are less dependent on the b tag value according to the
first-order TCA. However, the b tag value is among the four most relevant features in the
GNNX-based ranking in Fig. 6.3. At this point, it cannot fully be judged yet whether the
explanations provided by the first-order TCA or GNNX are more reasonable. As on the one
hand, a performance gain can in fact be achieved when the feature set extended, containing
all category flags, is deployed for training instead of only AddB (cf. Chapter 4). But on
the other hand, the improvement is below 1 %. Thus, both rankings of the importance of
the category flags are reasonable. The rank of the b tag value expected from a physics
point of view is also ambiguous. It is conceivable that the b tag value is only of minor
importance for a classification between tt + bb, tt̄H(bb̄) and tt̄Z(bb̄) samples as each of
them contain b jets. Yet, at the same time, it is possibly a helpful feature for identifying
additional b jets, which are crucial for the event classification, if the AddB flags are not
correctly assigned. Within the three GNNs under scrutiny, the NLP-class-level GNN is the
worst-performing model and should therefore also be the one trained with the worst AddB
flag quality. The second-order TCA, which reveals the impact of relations across input
features to neural network responses, supports this assumption (cf. Fig. F.9). Indeed, for
that particular GNN, the b tag value is a more relevant feature than for the remaining
two GNNs according to both the first-order TCA and the corresponding GNNX ranking.
Though, both xAI methods agree on 𝑝T being the most valuable kinematic jet feature and
as well agree on the rather minor importance of 𝜑 for the GNN response, regardless of the
information level with which the GNN is trained. As described above, this is also expected
in terms of physics. Consequently, although the identified dependencies for GNN responses
are not really congruent between the xAI methods – the conformity between both GNNX-
and TCA-based rankings is for all GNNs only 54.76 % (cf. Fig. F.10) – both xAI methods
appear to deliver plausible explanations so far.

6.1.3 Conclusion
In the majority of the cases, the GNNX-based rankings of GNNs trained without generator-
level information are quite similar to the GNNX-based ranking of the generator-level
GNN according to the ⟨Δ𝑟⟩ measure. To be precise, the conformity is above 80 % in
two-thirds of the GNNX-based rankings. In first-order TCA rankings, the conformity
between the rankings for the GNNs trained on different information levels is at about
70 %. Thus, according to both xAI methods both the NLP-score-level and NLP-class-level
GNN indeed have learnt to extract similar high-level features from the provided data as
the generator-level GNN or, to put it the other way around, xAI reveals that all GNNs
under scrutiny behave as expected and hence are reliable. Accordingly, it is presumably
more reasonable and recommended to enhance the quality of the provided AddB flags
by developing a superior preclassifier (as also concluded in Section 5.2 through AddB-X
modeling) or construct new, more discriminating features for optimizing the event classifier
than investing resources in finding a more suitable GNN architecture for achieving better
performance results, for example.

6.2 Evolution of the Feature Importance in AddB-LTB Mod-
eling

In Section 5.2, it is observed that some GNNs trained with data sets in which beyond 70 %
of the events are manipulated according to the AddB-LTB modeling have a peculiarly

61

62 6 In-Depth Analysis of GNNs by Applying Explainable AI Methods

0.005 0.024 0.043 0.063 0.082

〈txj〉

AddB

Unk

MET

HTB

pT

HTQ

M

LTB

`

b tag

η

E

φ

F
ea

tu
re

CMS Simulation Work in Progress

Generator-level

0.007 0.041 0.076 0.111 0.146

〈txj〉

AddB

MET

pT

Unk

HTB

LTB

`

η

M

E

HTQ

b tag

φ

F
ea

tu
re

CMS Simulation Work in Progress

NLP-score-level

0.008 0.024 0.041 0.057 0.073

〈txj〉

pT

AddB

HTQ

Unk

MET

b tag

HTB

LTB

η

M

`

E

φ

F
ea

tu
re

CMS Simulation Work in Progress

NLP-class-level

TCA:

Generator-level vs. NLP-score-level:
〈∆r〉 = 1.85 (=̂ 71.43 %)
∆rmax = 5.00 (HTQ)

Generator-level vs. NLP-class-level:
〈∆r〉 = 2.0 (=̂ 69.05 %)
∆rmax = 4.00 (pT, b tag)

Figure 6.4: First-order Taylor coefficient ranking of the generator-level GNN
(top left), NLP-score-level GNN (top right) and NLP-class-level
GNN (bottom left). The top positions of the rankings are mainly covered
by category flags. Among all of them, the AddB flag turns out to be the
most important category flag by far throughout all three rankings. The most
important kinematic jet feature is 𝑝T and the least important feature is 𝜑. This
also holds for all GNNs under scrutiny. The percentage in the parentheses
corresponds to the conformity 1− ⟨Δ𝑟⟩/Δ𝑟*

max of the compared rankings. The
variable Δ𝑟max denotes the highest number of rank difference between the
compared rankings and should not be confused with Δ𝑟*

max, which denotes the
maximum mean number of absolute rank differences between the compared
rankings. The objects to which this applies are specified in the subsequent
parentheses.

62

6.2 Evolution of the Feature Importance in AddB-LTB Modeling 63

high mean ROC-AUC value. In fact, these GNNs were superior to GNNs trained with a
smaller portion of manipulated events, i.e., with better data quality. This appears to be
counterintuitive at first sight but could probably be traced back to the fact that beyond a
certain fraction of manipulated events, no further confusion or manipulation is added to
the data set, since the concept inherent in AddB-LTB modeling is simply to exchange the
values of AddB and LTB flags. In order to verify this, all eleven models that are trained
with different fractions of manipulated events are further investigated with the help of
xAI. The xAI methods are expected to reveal that with increasing fraction of manipulated
events, the importance of the AddB flag is decreasing while the importance of the LTB
flag should simultaneously increase.

Like in the previous section, the xAI methods are only applied to the best-performing
model of ten repetitions, yet instead of evaluating the trained best-performing model on the
full test set of size S, for feasibility reasons, only 5 % of the test set are provided to GNNX
for training the feature mask in this section. This has the advantage that the duration
for obtaining the feature importance with GNNX reduces from approximately 𝒪(10 h) to
𝒪(30 min). For comparison, the duration required for calculating the Taylor coefficients
up to the second-order is only about 15 min. Accordingly, the TCA is still performed
on the entire test set. Empirically, the reduction of the samples used for evaluating the
trained models appears to have basically no impact on the actual ranks of the objects
in GNNX-based rankings, as shown in the appendix (cf. Fig. F.11-F.13) for the models
considered in Section 6.1. Therefore, this approach is justified.

Figure 6.5 depicts the normalized explanations provided by GNNX and by the first-order
TCA in dependence of the deployed fraction of manipulated events in the GNN inputs. In
this manner, the evolution of the basis for the GNN response with respect to the provided
data quality can be examined. It becomes evident that the GNNX explanations are not as
distinct as the ones delivered by TCA. Nevertheless, both xAI methods agree on 𝜑 being
the least important feature regardless of the data quality. Yet, the first-order TCA and
GNNX are not equally powerful in explaining the peculiar behavior of the aforementioned
GNNs. The first-order Taylor coefficient analysis demonstrates clearly that the AddB flag
is the by far most important feature for GNNs trained with a manipulated fraction of
events below 70 %. At the same time, it shows that the impact of the LTB flag on the
GNN response increases, as expected, with increasing manipulated fraction of events until
it becomes clearly the most important feature as of a fraction of 80 % manipulated events.
This is indeed plausible as, for instance, for a completely AddB-LTB manipulated data set,
only 50 % of the additional b jets can be identified via the actual AddB flag while, due to
the flag swap, 100 % of the LTB flags points to an additional b jet.
At a manipulated fraction of 70 %, the importance of the AddB and the LTB flag is about
the same, i.e., the corresponding GNN is probably confused the most by the manipulated
data set among all GNNs. The comparison of the fraction of additional b jets identifiable
via the AddB flag and the fraction of additional b jets identifiable via the LTB flag (cf.
Fig. F.14) reveals indeed that the information content of AddB and LTB flags is indeed
the most similar for the data set with 70 % manipulated events. In data sets with a
fraction of manipulated events higher than 70 %, more additional b jets are identifiable
via the LTB flag than via the AddB flag. The observation that a GNN trained with
AddB+LTB0.7 is the most confused perfectly corresponds to the observation that this GNN
is the worst-performing GNN in this scope as well. In contrast to that, none of these
findings is discovered by GNNX. The GNNExplainer only gives a light indication of the
increasing importance of the LTB flag but, according to GNNX, the AddB flag contains

63

64 6 In-Depth Analysis of GNNs by Applying Explainable AI Methods

0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of manipulated events

0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n

im
p

or
ta

n
ce

(n
or

m
al

iz
ed

)

0.18

0.14

0.13

0.12

0.12

0.12

0.11

0.09

0.17

0.14

0.13

0.12

0.12

0.12

0.1

0.1

0.17

0.14

0.13

0.13

0.12

0.11

0.1

0.1

0.16

0.15

0.14

0.14

0.11

0.11

0.1

0.09

0.15

0.14

0.14

0.14

0.12

0.11

0.11

0.09

0.16

0.15

0.14

0.12

0.12

0.12

0.1

0.09

0.15

0.14

0.14

0.13

0.12

0.11

0.1

0.09

0.16

0.14

0.14

0.14

0.12

0.12

0.1

0.09

0.15

0.14

0.14

0.13

0.12

0.12

0.11

0.09

0.16

0.15

0.13

0.13

0.12

0.12

0.1

0.09

0.17

0.14

0.14

0.13

0.13

0.11

0.1

0.09

CMS Simulation Work in Progress GNNX

pT

φ

η

M

E

b tag

AddB

LTB

(a)

0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of manipulated events

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
im

p
or

ta
n

ce
(n

or
m

al
iz

ed
)

0.28

0.25

0.13

0.1

0.08

0.07

0.07
0.02

0.57

0.13

0.09

0.08

0.05

0.05
0.03
0.01

0.45

0.17

0.13

0.09

0.06

0.06
0.04
0.01

0.38

0.21

0.16

0.09

0.07

0.04
0.04
0.01

0.39

0.2

0.16

0.09

0.06

0.05
0.04
0.01

0.29

0.28

0.15

0.09

0.07

0.06

0.04
0.01

0.32

0.28

0.16

0.08

0.07

0.05
0.04
0.01

0.21

0.21

0.19

0.15

0.09

0.07

0.06
0.02

0.3

0.24

0.16

0.1

0.08

0.06

0.05
0.01

0.39

0.19

0.14

0.09

0.07

0.07

0.04
0.01

0.48

0.14

0.13

0.09

0.06

0.05
0.03
0.01

CMS Simulation Work in Progress TCA

pT

φ

η

M

E

b tag

AddB

LTB

(b)

Figure 6.5: GNNX-based (a) and TCA-based (b) feature importance in depen-
dence of the proportion of AddB-LTB manipulated events in the
deployed data sets. Each bar is normalized to a total height of one. The
explanations provided by GNNX are not as distinct as the ones obtained with
TCA. Nevertheless, both xAI methods successfully identify 𝜑 as the least im-
portant feature regardless of the fraction of manipulated events in the deployed
data sets. Yet, only TCA reveals that there is a change in focus from AddB
flags as the most important feature to LTB flags as of a manipulated fraction
of 70 %.

64

6.2 Evolution of the Feature Importance in AddB-LTB Modeling 65

the most valuable information for the GNN response throughout all data sets. But this is
clearly not possible due to the exchange of the values in the LTB and AddB flags. Thus,
the GNNExplainer fails in explaining the performance of the worst-performing model as
well as in explaining the apparent superior classification ability of models trained with a
manipulated fraction of above 70 %, which is not only successfully explained by the TCA
but can also be derived from Fig. F.14.

Consequently, at least for this application, the Taylor coefficient analysis seems to deliver
more plausible explanations than GNNX, while requiring a significantly lower time for
calculating the explanations as well. Only the Taylor coefficient analysis is able to
successfully shed light on the behavior of the, at first sight, peculiarly behaving GNNs
and verifies the assumption made at the beginning that this is caused by the fact that no
further confusion is added to the data set as of a certain fraction of manipulated events.

65

7 Benchmark Study on Equivalent GNNs
and DNNs

Many papers, such as Refs. [79, 80], have been praising the performance gain achieved with
different variants of graph neural networks in contrast to other approaches, boosting the
popularity of graph neural networks in this way. However, at the time this thesis is being
written, no published paper could be found that deals with a detailed comparison of GNNs
and DNNs, which are simpler in architecture and already well-established in HEP (e.g.
DeepJet), on fair premises. A comparison on fair premises, between equivalent GNNs and
DNNs, e.g., in terms of their number of hidden layers or the number of degrees of freedom,
is indispensable as otherwise it is not possible to probe whether performance increases
achieved with GNNs are due to their intrinsic properties or not. If not, it should be in
principle possible to achieve the same performance with other machine learning techniques,
like DNNs, by using more suitable hyperparameters, novel regularization methods, etc.
A comparison of equivalent GNNs and DNNs is accomplished in this chapter in the scope
of the tt̄+X event classification. At first, the comparability challenges between DNNs and
GNNs are addressed and solutions are proposed in Section 7.1 before models with equivalent
architectures are benchmarked against each other in Section 7.2. In Section 7.3, models
with similar numbers of degrees of freedom are being exclusively focused on. Section 7.4
completes this chapter with an in-depth analysis of the best models according to the
findings in the preceding sections.

7.1 Comparability Challenges and Solutions
Deep neural networks and graph neural networks are two different types of neural networks
that are specialized in operating on vectors or graph structures (cf. Chapter 3), respectively.
Being variants of neural networks, the same loss function, activation functions and optimizer
can be employed for the training of both DNNs and GNNs. However, this does not hold for
other aspects of these two types of neural networks such as the hyperparameter selection
or the data-related information provided for training due to the intrinsic properties of
DNNs and GNNs and therewith leading to comparability issues. Parameter sharing is, for
instance, an intrinsic property of GNNs (cf. Section 3.2.3). This cannot be applied to DNNs
or rather its usage would be quite against the natural information processing of DNNs,
leading to the necessity of DNNs for higher numbers of trainable parameters for performing
the same task as GNNs. A bigger obstacle poses the fact that DNNs only deal with vectors

67

68 7 Benchmark Study on Equivalent GNNs and DNNs

Figure 7.1: Consequence of the lack of permutation invariance in DNN inputs.
Due to the lack of permutation invariance in DNN inputs, DNNs have to be
trained on all 𝑛! permutations of the 𝑛 final state objects in an event. For the
case of three final state objects with five associated features each, the form of
all six permutations on which the DNN need to be trained is illustrated on the
left. The corresponding graph representation, which would serve as input for
GNNs and do not possess any intrinsic order, is depicted on the right.

as input, i.e., the matrices used as input in GNNs have to be “flattened”, yet leading to
the further disparity that no differentiation between vertex or edge attributes is possible
anymore as well as to a larger DNN input layer. Also the lack of permutation invariance
in the inputs of DNNs hinders an accurate comparison with GNNs. Since the final states
objects of tt̄+X events do not possess any intrinsic order, i.e., no specific number can be
assigned to them, the DNNs either have to be trained on all permutations of the final state
objects (cf. Fig. 7.1), as realized in Ref. [77] for finding additional b jets in tt events, or,
alternatively, the category flags, originally used in the training of GNNs on a voluntary
basis (cf. Section 4.3), must be determined. With this information, it is then possible to
assign the attributes, captured in graphs, to the same position in the input vector for every
event.

The disadvantage of the first solution would be a more time-consuming training whereas
the latter approach provides an artificial order of the final state objects to the DNN training
and is moreover incompatible with node-level prediction. However, since the category flags
serve as features in the GNN trainings anyway, the latter approach is selected for this
comparison. Another intrinsic property of DNNs is their fixed input size. In particular for
the tt̄+X event classification task, this is a difficulty since the number of final state objects
varies in each event due to additional unknown jets coming from higher-order effects or
misreconstruction. In order to circumvent this limitation, the input size 𝑛in is fixed to
the maximum number of objects 𝑁max

obj that appears in the data, which is 17, times the
number of features in the feature set. Thus, the input size of the DNNs for the feature
set extended (cf. Fig. 4.5) would be 17 · 13 = 221 and adding edge weights of a complete
graph to the input vector would even lead to an input size of 17 · 13 + 17 · 16 = 493. In
cases with smaller numbers of final state objects in an event than 𝑁max

obj , zero padding
is introduced, meaning that the empty entries in the input vector are filled with zeros.
Figure 7.2 showcases the composition of an exemplary input vector for the training of
DNNs. The increased input size of DNNs comes with the unfortunate side effect that either
the same number of hidden layers and hidden nodes as of the GNN or the same number of
trainable parameters of the compared models can be assured. However, both can be crucial
aspects for the performance of models and therewith for defining whether two models are
considered alike. If the number of hidden layers differs, then one model can potentially
extract more abstract concepts of the data, as stated in Section 3.1, and might profit from
these information when performing the classification. At the same time, a higher number

68

7.2 Comparison of Models with an Equivalent Architecture 69

of trainable parameters gives a model a wider scope and more freedom to adapt on the
task at hand. On the other hand, this increases the risk of overfitting [41]. Therefore, the
comparison is split in two parts in the following, where only models with the same number
of hidden layers and hidden nodes in these layers are compared in Section 7.2 and only
models with similar numbers of trainable parameters are compared in Section 7.3.

In order to isolate the comparison from other possible model intrinsic properties, only
fully-connected feed-forward neural networks without any further modifications, such as
skip connections, are utilized and a rather basic GNN type shall be deployed. In addition,
all regularization methods are deliberately dropped for the sake of keeping the contemplated
models as simple as possible.
The GCN from Ref. [54] and presented in Section 3.2.3 seems to be predestined for this task
since it only uses simple neural networks as update functions 𝜑 and a sum as aggregation
function 𝜌. However, according to pretests performed with this GNN variant, it turned
out to be rather not suitable for the tt̄+X event classification task. Instead, a related
GNN variant, named GraphConv in PyG and which was first introduced in Ref. [81], is
applied. GraphConv equally utilizes neural networks and a sum for 𝜑 and 𝜌, respectively,
in the most basic variant. The difference lies in their different treatment of aggregated
information from the neighborhood and the embedding of the vertex to be updated. This
is achieved by using two separate neural networks for updating the particular information
before a summation over the output of both neural networks is performed in the end.
Consequently, Equation 3.14 becomes

x(𝑙)
𝑢 = 𝑓

⎛⎝W(𝑙)
1 x(𝑙−1)

𝑢 + b(𝑙)
1 +

∑︁
𝑣∈𝒩 (𝑢)

W(𝑙)
2 x(𝑙−1)

𝑣 + b(𝑙)
2

⎞⎠ (7.1)

for GraphConv. For a detailed explanation of all variables, see Chapter 3.

7.2 Comparison of Models with an Equivalent Architecture
In this section, only models with the exact same number of hidden layers 𝑛HL, with the
exact same number of hidden nodes 𝑛hidden in the particular hidden layers and that are
trained with equivalent feature sets are defined as equivalent or comparable. For the sake
of simplicity, feature sets that are seen as equivalent in this thesis possess the same names
for DNNs and GNNs. Though, it must be kept in mind that, as opposed to GNNs, due to
the nature of DNNs, no differentiation between non-relational and relational information,
i.e., vertex and edge attributes, can be made, and the input vector is zero padded. The
name of the feature sets matches the following naming scheme

base_feature_set(relational_information) .

The base feature set corresponds to the vertex attributes that were used in the previous
chapters, e.g., default or extended. By optionally adding relational information to the
input (for DNNs in the input vector and for GNNs in the form of edge weights), variations
of the base feature set are created. For 𝑀inv as additional information, the feature set is
named default[𝑀inv] or extended[𝑀inv], for example. If all variations of the base feature
set shall be addressed, then the parentheses are omitted and the superscript * is added to
the name of the base feature set.

As shown in Table 7.1, models with one or two hidden layer(s), denoted as DNN1HL/GNN1HL
and DNN2HL/GNN2HL, respectively, are examined in this comparison. The hidden layers

69

70 7 Benchmark Study on Equivalent GNNs and DNNs

flatten

. . .
. . .
. . .

. . .
. . .
. . .

. . .
. . .

. . .
. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .0 00

(b)

or (e.g.)

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

HadTopBHadTopQ

AddB

AddBHadTopQ

LepTopB

MissingLepton

1

2
34

5

6

7 8

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

HadTopBHadTopQ

AddB

AddBHadTopQ

LepTopB

MissingLepton

2

3
45

6

7

8 1

(a)

Figure 7.2: Exemplary generation of the input vector for DNNs for an event
with eight final state objects. In (a), an exemplary graph representation
of an event with eight final states and the corresponding matrices X and Ã,
describing the 𝑚 attributes per vertex and the edge weights, respectively, are
depicted. The rectangles in Ã are bicolored for visualizing the start vertex (left
color) and the end vertex of the incident edge (right color). Since the graph
is undirected, Ã is symmetric. As a graph does not possess an intrinsic order,
permutations of the rows and columns of X and Ã are also valid matrices
for describing the depicted graph mathematically. This does not hold for the
positions of the vertex and edge features in the input vector x, shown in (b).
The “flattening” of both depicted possible matrices results in the same input
vector for training DNNs. Thereby, the vertex attributes and edge features
belonging to the respective vertex are always concatenated directly in succession.
Due to the symmetric nature of Ã, each edge feature appears twice in the input
vector and despite of having only eight final state objects in the exemplary
event, the input vector of DNNs is as big as for an event with 17 final state
objects since that is the maximum number of final state objects in the data set.
Thus, zeros have to be incorporated into the input vector.

70

7.2 Comparison of Models with an Equivalent Architecture 71

Table 7.1: Selected hyperparameters for GNNs and DNNs. The variations of the
base feature sets for both DNNs and GNNs include 𝑀inv, Δ𝑅 or Δ𝑅−1 as
relational information. In the case of the GNNs, feature sets with zero, one or
random values as relational information, i.e., as edge weights, are introduced,
additionally. Except for 𝑛in, which for DNNs depends on the feature set, the
DNNs and GNNs share the same hyperparameters. Parameters that are not
further specified in the table correspond to the default values in PyG.

hyperparameter DNN GNN

𝑛in (feature set)

102 (default)

13 (extended*)221 (extended)
374 (default*)
493 (extended*)

𝑁HL {1, 2}
𝑁hidden {13, 26, 39}𝑛HL∈𝑁HL (cf. Eq. 7.2)
𝑛out (of readout) 1
bias true
aggregation function 𝜌 (Eq. 3.21) sum
global pooling method mean
maximum number of epochs 200
early-stopping Δepochs = 15, Δloss = 0.001
mini-batch size 200
optimizer Adam (𝛾 = 0.01)
activation function (in hidden layers) ReLU (Eq. 3.4)
activation function (in output layer) sigmoid (Eq. 3.5)
loss function binary cross-entropy (Eq. 3.6)
number of repetitions 10

71

72 7 Benchmark Study on Equivalent GNNs and DNNs

consist of 13, 26 or 39 hidden notes. The number of hidden nodes 𝑛hidden in two-layer
models is

𝑛hidden ∈ 𝑁hidden = {13, 26, 39}𝑛HL=2

= {13, 26, 39} × {13, 26, 39} (7.2)
= {(13, 13), (13, 26), . . . } .

That is, all permutations of the given number of hidden nodes are deployed. The values
selected as number of hidden nodes are arbitrarily chosen and correspond to multiples of
the number of attributes per vertex used in extended, which is 13. The models are trained
with different feature sets. Like in the previous studies in this thesis, the edges of the graph
data are associated with physically motivated values such as 𝑀inv or Δ𝑅. Additionally,
Δ𝑅−1 as edge weight is tested because, from a physics point of view, it should be more
reasonable to weight messages between final state objects stronger that are closer to each
another. Furthermore, some GNN specific properties shall be probed in a more isolated
way and therewith enhance the comparability between DNNs and GNNs even further. The
approach for that is to train the GNNs with different graph connectivity schemes. (cf.
Fig. 7.3). With the choice of setting every edge weight to zero, the message passing in
GNNs is entirely prohibited. Using random edge weights, on the contrary, shall resemble
the first hidden layer in fully-connected DNNs where a linear transformation with all input
features on the basis of (in the first epoch of the training) randomly initialized weights
is performed. Since graph representations were selected because they can describe the
relations between objects in tt + bb, tt̄H(bb̄) and tt̄Z(bb̄) events in a more natural way, it
is expected that the performance of GNNs trained with graphs with physically motivated
edge weights are superior.
Since the aforementioned DNN weights are adjusted throughout the training, this serves as
motivation for training the edge weights in the graph data via an additional neural network
(addNN). These GNNs are denoted tGNNs in the following whereas the simple GNNs
operating (as before) without addNN are denoted sGNNs. The interplay between updating
edge weights and vertex attributes takes place in the way described in Section 3.2.4 and
depicted in Fig. 3.8b. That is, the input of addNN (=∧ 𝜑(𝑙)

e in Equation 3.16) for updating
the weight of an edge with the incident vertices 𝑢 and 𝑣 at iteration 𝑙 comprises the
current edge weight itself x(𝑙−1)

𝑢𝑣 and the current embeddings of the incident vertices x(𝑙−1)
𝑢 ,

x(𝑙−1)
𝑣 . The subsequent hidden layer has as many hidden nodes as the corresponding update

function 𝜑
(𝑙)
v and the output layer consists of one output node. Thereby, ReLU serves as

activation function for both hidden and output nodes. In total, 120 GNNs are taken into
account in this section (cf. Table G.1).

It is expected that DNNs will not perform as poorly as GNNs (cf. Section 4.3) when trained
with default. The reason is that the additional information preserved in the category flags
in extended is already implicitly stored in the (fixed) position of the features in the input
vector due to the lack of permutation invariance in the inputs of DNNs. For example, in
the feature set extended the first thirteen elements of the input vector always contain the
vertex attributes of the harder additional b jet. Thus, for DNNs, category flags capture
redundant information and by omitting them the number of input nodes and therewith
the number of DOF of the DNNs under scrutiny could be strongly decreased. However,
since DNNs and GNNs then do not receive the same explicit information for training, it is
arguably whether the feature sets default* provided to DNNs are really similar to the
feature sets extended* provided to GNNs. To avoid this discrepancy, these models are
not regarded as comparable. On the other hand, in order to prove the assumption that
the category flags do not contain highly relevant information for DNNs, DNNs trained
with default* are still considered, leading to eight different feature sets for training DNNs.

72

7.2 Comparison of Models with an Equivalent Architecture 73

(a) (b) (c) (d)

Figure 7.3: Graph connectivity schemes. Since the edge weights are all set to zero
in (a), the corresponding graph does not possess any edges at all, meaning
message passing is inaccessible for the GNN training. On the contrary, the
graphs depicted in (b), (c) and (d) are complete. While the edge weights in
(b) are all chosen to be one, in (c) and (d) the messages exchanged between
vertices are differently weighted. The edge weights tested in this comparison
are both physically motivated values (𝑀inv, Δ𝑅, Δ𝑅−1) and random values.
The dotted edges in (d) shall indicate that the same edge weights as in (c)
are used at first but they are adapted in the course of the training. Thus, the
aforementioned edge weights only serve as initialization in this case.

In total, this comparison comprises 48 (96 including the DNNs trained with default*)
different DNNs (cf. Table G.1).
Together with the GNNs, there are in total 168 (216) models or rather 1680 (2160) trained
neural networks for benchmarking against each other since each training is repeated ten
times in order to be able to draw statistically more sound conclusions.

7.2.1 Model Performance and Training Stability

In Fig. 7.4, the model performance of GNNs consisting of one hidden layer in de-
pendence of the feature set used for training and the selected 𝑁hidden is depicted. At first
glance, it becomes apparent that data points of the same color, indicating the same feature
set being used for training, form groups. That means using different edge weights, i.e.,
different graph connectivity schemes, has a greater impact on the model performance than
the variation of the number of hidden nodes and therewith the number of DOF of the
particular models. Equally to the results collected in Section 4.4, selecting 𝑀inv as edge
weight is superior to Δ𝑅. However, it is against the initial physics intuition that utilizing
Δ𝑅−1 as edge weight is not more beneficial than Δ𝑅. On the other hand, it is striking
that using physically non-meaningful, random, edge weights or fixing every edge weight to
one lead to similar results. However, completely prohibiting message passing (edge weight
= 0) results in the worst-performing models by far, with mean ROC-AUC values at around
0.655. The corresponding models can therefore be regarded as random estimators and thus,
it becomes evident that the message passing is indeed a crucial aspect to data processing
in GNNs.
When the training of edge weights is allowed, the performance of GNNs trained with edge
weight Δ𝑅, Δ𝑅−1 or random values can be further increased in all except for one case in
comparison to equivalent GNNs. However, as hinted by the comparatively large standard
deviation and the occurrence of outliers, training such GNNs seems to be not stable. That
even leads to the consequence that the average performance improvement gained through
training the edges weighted with Δ𝑅−1 as edge weight is (0.0± 1.2) %, i.e., nonexistent.
Only the best-performing GNNs in the ranking in Fig. 7.4 appear to be completely unaf-
fected by this approach, i.e., no further enhancement of their performance is achievable. A
possible explanation for this observation could be that the invariant mass is in fact already
the best possible choice for edge weights for the binary tt̄+X event classification. This is

73

74 7 Benchmark Study on Equivalent GNNs and DNNs

consistent with the observation that when GNNs are trained with graphs with random edge
weights, i.e., on graphs with the least meaningful edge weight initialization, the largest
improvements in model performance are obtained.

All these findings basically also hold for GNNs consisting of two hidden layers and
therefore, it is renounced to investigate deeper GNNs in this section. This is in particular
visible in Fig. 7.5a, where the mean performance improvement of one-layer and two-layer
GNNs in dependence of the deployed edge weight is shown. In both cases, the baseline
is GNN1HL and GNN2HL, respectively, trained with graphs without edges. Not only the
ranking of the different edge weights between GNN1HL and GNN2HL in terms of gained
model performance matches but also the actual performance improvement through the
particular edge weights is similar between these two hidden layer configurations. The
tendency whether the model performance is improved when tGNNs are used is, according
to Fig. 7.5b, except for the edge weight Δ𝑅, also consistent between models with one and
two hidden layer(s). The big discrepancy in Δ𝑅 is probably caused by the not stable
training of tGNNs. In fact, five out of nine tGNNs trained with edges weighted with
Δ𝑅 show an outstanding high spread compared to sGNNs trained with the same feature
set but still having a standard deviation that is just low enough for passing the outlier
criterion (b). It is however interesting that for GNNs with two hidden layers, unlike for
GNNs with one hidden layer, outliers occur in trainings with fixed edge weights as well.
This could be traced back to the increased number of trainable parameters to be adjusted
and a therewith more elaborate training.

Like for GNNs, DNNs perform better on the given classification task when relational
information is included in the feature set. The choice of relational information, which is
originally used as edge weights for training GNNs, dominates the model performance of
DNNs as well. Neither the particular number of hidden nodes nor the choice of the base
feature set can outperform this effect, as shown in Fig. 7.6. When only looking at the
models trained with feature sets with 𝑀inv as relational information, it appears that using
extended as base feature set is beneficial for the model performance of DNNs. However,
this is not as clear anymore when considering the other feature set variants. In fact, the
worst-performing DNN in the ranking is also trained with the base feature set extended.
That is, in some cases, using extended is even counterproductive, presumably, since it
leads to a more complex DNN model, due to the associated increased input size, but
at the same time no additional information is provided to the training as the category
flags only contain redundant information. Thus, the assumption that the category flag
information does not need to be provided to the DNN explicitly tends to be correct. In
general, these observations can also be transferred to DNN2HL. It should be noted that
the strict separation of the models trained with the same relational information in groups
in the mean performance ranking (regardless of the base feature set being used) has been
softened a little in the case of two-layer DNNs.

Interestingly, between DNNs and GNNs, the hierarchy of the relational information in
terms of the corresponding resulting model performance is exactly the same. So, the best
expansion of the base feature set is in descending order 𝑀inv, Δ𝑅 and Δ𝑅−1. However,
for DNNs, completely omitting relational information does not result in random estimators
as the worst-performing models still possess a mean ROC-AUC of 0.7622 ± 0.0029 and
0.7856± 0.0078 for DNNs with one and two hidden layer(s), respectively. In Fig. 7.7, the
mean model performance improvement induced by the different added relational informa-
tion and separated by 𝑛HL and the base feature set used for training is depicted. In all cases,

74

7.2 Comparison of Models with an Equivalent Architecture 75

0.650 0.700 0.750 0.800 0.850 0.900
Mean ROC-AUC

extended[Minv] (39)

extended[Minv] (26)

extended[Minv] (13)

extended[∆R] (26)

extended[∆R] (39)

extended[∆R] (13)

extended[random] (39)

extended[∆R−1] (39)

extended[∆R−1] (26)

extended[random] (26)

extended[∆R−1] (13)

extended[random] (13)

extended[one] (39)

extended[one] (26)

extended[one] (13)

extended[zero] (39)

extended[zero] (26)

extended[zero] (13)

F
ea

tu
re

se
t

(n
h

id
d

en
)

CMS Simulation Work in Progress

sGNN

tGNN

Figure 7.4: Mean performance ranking of GNN1HL. The colors correspond to the
feature set used for training. The data points are color grouped. Data points
with unfilled markers indicate that at least one model of ten repetitions of the
particular training has a performance fulfilling the outlier criteria defined in
Section 4.3 and the identified outlier(s) is/are therefore discarded. All data
points possess an error bar representing the performance spread (square root of
the unbiased sample variance), which is calculated on the basis of the ROC-
AUC values of all not discarded models (at most ten models, one for each of
the ten realized repetitions of a training). In order to enhance the visibility
of the error bars of sGNNs and tGNNs, which share the same label on the
𝑦-axis, the corresponding data points are shifted in a way that they are stacked
in descending order of the corresponding mean ROC-AUC value from top to
bottom. If an error bar is not visible, then this is due to the fact that the
spread is too narrow to be displayed. Especially, the spread of the performance
of tGNNs is exceptionally higher than the spread of other models.

75

76 7 Benchmark Study on Equivalent GNNs and DNNs

0 5 10 15 20 25 30 35
Mean performance improvement (%)

GNN1HL

(extended[zero])

GNN2HL

(extended[zero])

B
as

el
in

e

10.0
10.05

26.56
28.53

33.18

21.9
21.6

30.7
32.3
33.6

CMS Simulation Work in Progress

random

one

∆R−1

∆R

Minv

(a)

random ∆R−1 ∆R Minv

Edge weight

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

M
ea

n
p

er
fo

rm
an

ce
tG

N
N

M
ea

n
p

er
fo

rm
an

ce
sG

N
N

(%
)

14.1

6.4

-0.0
-2.8

2.68

-3.6 -3.2 -3.4

CMS Simulation Work in Progress

1 HL

2 HL

(b)

Figure 7.5: Mean performance improvement of GNNs. In (a), the mean performance
improvement of one-layer and two-layer GNNs with respect to extended[zero]
is depicted separately for each edge weight variant. The ranking of the edge
weights with the highest positive impact on the model performance is the exact
same for one-layer and two-layer GNNs. In (b) the mean performance gain
with respect to the deployment of edge weight training is shown. If randomly
initialized edge weights are additionally adjusted through the training, another
huge performance improvement for one-layer and two-layer GNNs can be
achieved. This does not hold for the remaining edge weight variants, where
the model performance is often even decreased. In both plots, the error bars
correspond to the uncertainty calculated on the basis of the unbiased sample
variance.

76

7.2 Comparison of Models with an Equivalent Architecture 77

0.760 0.780 0.800 0.820 0.840 0.860
Mean ROC-AUC

extended[Minv] (13)

extended[Minv] (26)

extended[Minv] (39)

default[Minv] (13)

default[Minv] (26)

default[Minv] (39)

extended[∆R] (39)

default[∆R] (39)

extended[∆R] (26)

default[∆R] (26)

default[∆R] (13)

extended[∆R] (13)

extended[∆R−1] (26)

extended[∆R−1] (39)

default[∆R−1] (13)

default[∆R−1] (26)

default[∆R−1] (39)

extended[∆R−1] (13)

default (39)

default (26)

extended (39)

extended (26)

default (13)

extended (13)

F
ea

tu
re

se
t

(n
h

id
d

en
)

CMS Simulation Work in Progress

Figure 7.6: Mean performance ranking of DNN1HL. The colors correspond to the
particular feature set used for training. It is striking that the data points of the
DNNs trained with the same relational information form non-overlapping groups
with respect to the mean ROC-AUC value. The edge weights Δ𝑅−1, Δ𝑅 and
𝑀inv as expansions of the input vector lead, in that order, to better performing
DNNs. Except for feature sets with 𝑀inv as relational information, there is
no clear performance hierarchy between models that are only distinguishable
through the base feature set. Data points with unfilled markers indicate that at
least one model of ten repetitions of the particular training has a performance
fulfilling the outlier criteria defined in Section 4.3 and the identified outlier(s)
is/are therefore discarded. All data points possess an error bar representing
the performance spread (square root of the unbiased sample variance), which
is calculated on the basis of the ROC-AUC values of all not discarded models
(at most ten models, one for each of the ten realized repetitions of a training).

77

78 7 Benchmark Study on Equivalent GNNs and DNNs

0 2 4 6 8 10 12
Mean performance improvement (%)

DNN1HL

(extended)

DNN2HL

(extended)

DNN1HL

(default)

DNN2HL

(default)B
as

el
in

e

6.7
9.8

11.6

3.06
4.74

5.4

5.12
7.61

9.0

1.65
3.15

3.52

CMS Simulation Work in Progress

∆R−1

∆R

Minv

Figure 7.7: Mean performance improvement of DNNs separated by the com-
binations of base feature set and relational information deployed.
The base on which the mean performance improvements are calculated is a
one-layer or two-layer DNN trained on the base feature set specified on the
𝑦-axis. Accordingly, four different groups of DNNs can be distinguished and in
all cases the expansion of the base feature set by 𝑀inv provides the largest, by
Δ𝑅 the second largest and by Δ𝑅−1 the third largest performance improvement
within each group. The error bars correspond to the uncertainty calculated on
the basis of the unbiased sample variance.

78

7.2 Comparison of Models with an Equivalent Architecture 79

one-layer and two-layer DNNs trained without relational information serve as baseline.
The performance gain with added relational information seems to be not as large as for
GNNs. That appears to indicate that the embedding of relational information in the graph
structure or rather the meaningfully weighted message passing is of outstanding importance
to the learning process. Yet, it must not be neglected that the baseline performance of
GNNs trained without relational information is much lower.
How close the model performance between equivalent DNNs and GNNs really is, can be
seen in Fig. 7.8 for one-layer models or in Fig. G.1 for two-layer models. The difference in
model performance between equivalent DNNs and sGNNs is on average only (0.02±0.10) %
and (0.75± 0.04) % for models with one and two hidden layer(s), respectively. However,
it becomes evident that in general the performance spread of DNNs is larger than the
performance spread of GNNs (at least if the edge weights of the GNNs are not additionally
trained) and therewith their underlying training is less stable. The cause for the larger
standard deviation could be that the corresponding models have a much higher number
of DOF than sGNNs, such as the best-performing GNNs. Especially the best-performing
GNNs have a such narrow spread that their error bar is not even visible in the plot.
Though sGNNs having the feature set extended[𝑀inv] as input outperform the equivalent
DNNs, this does not apply to the other variations of extended in all except for two
cases. However, DNNs trained with default or extended, thus without any relational
information at all, are superior to sGNNs trained with graphs without any physically
meaningful graph structure, i.e., graphs with random, one or zero as edge weights. Hence,
this demonstrates that GNNs are not by all means a more powerful neural network type
than DNNs. Instead, only GNNs trained with a thoroughly selected graph structure are of
increased value. On the other hand, the results also reveal that two of three tGNNs using
extended[random] as input outperform the mentioned DNNs. Thus, perhaps in cases in
which no prior knowledge of the underlying relationships is available, it might be indicated
to deploy such tGNNs instead of DNNs.
It is worth mentioning that two-layer sGNNs trained with either extended[Δ𝑅] or
extended[Δ𝑅−1] also outperform the equivalent DNNs and moreover, not all DNNs
trained without relational information are superior to GNNs trained with graphs without
any physically meaningful graph structure in this case. However, these minor differences
in the results of models with one hidden layer and models with two hidden layers do not
have an impact on the conclusions.

The best-performing models in this section are summarized in Table 7.2. It should be taken
into account that increasing the number of hidden layers, i.e., deploying deeper neural
networks, is beneficial for both DNNs and GNNs. Yet, using the greatest number of hidden
nodes that is allowed in this comparison does not necessarily result in the best-performing
models.

7.2.2 Convergence Speed and Degrees of Freedom

The model performance and the training stability are not the only aspects to be considered
when comparing neural networks. For instance, a simple model, e.g., in terms of necessary
DOF (𝑁TP) for accomplishing a given task, is preferred over a more complicated one. But
in order to account for the fact that due to the zero padding in the input vector for DNNs
only a small fraction of the actual number of trainable parameters is relevant in theory,
an effective number of trainable parameters 𝑁 eff

TP is additionally calculated. For that the
average number of final state objects in an event in the data set, which is 10.80, is used as
basis for calculating 𝑁 eff

TP instead of 𝑁max
obj .

79

80 7 Benchmark Study on Equivalent GNNs and DNNs

0.650 0.700 0.750 0.800 0.850 0.900
Mean ROC-AUC

extended[Minv] (39)

extended[Minv] (26)

extended[Minv] (13)

extended[∆R] (26)

extended[∆R] (39)

default[Minv] (13)

default[Minv] (26)

default[Minv] (39)

extended[∆R] (13)

default[∆R] (39)

extended[random] (39)

extended[∆R−1] (39)

extended[∆R−1] (26)

default[∆R] (26)

default[∆R] (13)

extended[random] (26)

default[∆R−1] (13)

default[∆R−1] (26)

default[∆R−1] (39)

extended[∆R−1] (13)

default (39)

default (26)

extended (39)

extended (26)

default (13)

extended[random] (13)

extended (13)

extended[one] (39)

extended[one] (26)

extended[one] (13)

extended[zero] (39)

extended[zero] (26)

extended[zero] (13)

F
ea

tu
re

se
t

(n
h

id
d

en
)

CMS Simulation Work in Progress

sGNN

tGNN

DNN

Figure 7.8: Combined mean performance of GNN1HL and DNN1HL. The colors
correspond to the particular feature set used for training. Although now
different NN types are displayed together, the color grouping of the data points
is still clearly recognizable. Apart from that, the small performance difference
of equivalent DNNs, sGNNs as well as tGNNs can be observed. Data points
with unfilled markers indicate that at least one model of ten repetitions of the
particular training has a performance fulfilling the outlier criteria defined in
Section 4.3 and the identified outlier(s) is/are therefore discarded. All data
points possess an error bar representing the performance spread (square root of
the unbiased sample variance), which is calculated on the basis of the ROC-
AUC values of all not discarded models (at most ten models, one for each of
the ten realized repetitions of a training). Whenever models share the same
label on the 𝑦-axis, the corresponding data points are shifted in a way that
they are stacked in descending order of the corresponding mean ROC-AUC
value from top to bottom to enhance the visibility of the error bars. If an error
bar is not visible, then the spread is too narrow to be displayed.

80

7.2 Comparison of Models with an Equivalent Architecture 81

Table 7.2: Architecture and performance of the best-performing models. The
variables 𝑛hidden and 𝑁TP correspond to the number of nodes in the hidden
layer(s) and the number of trainable parameters in the particular model, re-
spectively. The effective number of trainable parameters is denoted 𝑁 eff

TP and is
calculated on the basis of the average number of final state objects in an event
(10.80) (cf. Section 7.2.2).

NN type 𝑛hidden 𝑁TP 𝑁 eff
TP 〈ROC-AUC〉 identifier

sGNN (39) 1093 — 0.87441± 0.00051 GNN*
1HL

(26, 26) 2107 — 0.87860± 0.00035 GNN*
2HL

DNN (13) 6436 2405 0.86676± 0.00050 DNN*
1HL

(13, 26) 6813 2782 0.87198± 0.00044 DNN*
2HL

Also the training and inference duration of models could be an indispensable factor when
it comes to deciding which type of neural networks should be deployed for a task at hand.
Since the models were trained on hardware that was not exclusively used for processing the
trainings, the measured training duration of the models is not guaranteed to be unbiased
and it is therefore only of reduced expressive power. Instead, the best validation epoch or
rather its inverse, defined as convergence speed in this thesis, is chosen to be the alternative
“time” measure of the training of neural networks. Though the convergence speed does
not necessarily correlate with the actual training duration, empirically, this is the case
and is therefore seen as an adequate replacement for the training duration. In Table 7.3,
the average difference in the mean convergence speed ⟨Δspeed⟩, the average difference in
the mean number of trainable parameters ⟨Δ𝑁TP⟩ as well as the average difference in the
mean number of effective trainable parameters ⟨Δ𝑁 eff

TP⟩ of one-layer and two-layer sGNNs
and tGNNs with respect to equivalent DNNs are depicted. As an example, the average
difference in the mean convergence speed is obtained by:

(1) Calculating the mean convergence speed by averaging over all not discarded repetitions
of each training.

(2) Calculating the difference in the mean convergence speed between equivalent GNNs
and DNNs.

(3) Calculating the average of these differences for each combination of neural network
type (sGNN, tGNN and DNN) and number of hidden layers separately.

In the same manner, ⟨Δ𝑁TP⟩ and ⟨Δ𝑁 eff
TP⟩ are obtained. The only difference is that the

(effective) number of trainable parameters and its mean over all not discarded repetitions
is obviously exactly the same.

Only sGNN1HL are converging slower on average than equivalent one-layer DNNs, which
is in particular surprising when considering that between these models there is the biggest
discrepancy in terms of the number of DOF among all compared models. The naive
assumption would be that convergence speed correlates with the number of trainable
parameters that need to be adjusted during training. Apparently, this correlation is not
realized in this case. In general, it can be summarized that GNNs converge faster than
equivalent DNNs. Moreover, they also appear to be more effective in the usage of the DOF
than DNNs (even when only the effective number of trainable parameters is taken into
account).

81

82 7 Benchmark Study on Equivalent GNNs and DNNs

Table 7.3: Average difference in the mean convergence speed and number of
DOF between equivalent models. The values are calculated with respect
to model B in the table, as given in the second column. Positive ⟨Δspeed⟩
values correspond to a greater convergence speed of model A in comparison to
model B.
model A model B ⟨Δspeed⟩ (%) ⟨Δ𝑁TP⟩ (%) ⟨Δ𝑁 eff

TP⟩ (%)
sGNN1HL DNN1HL −20.1± 3.3 −94.33 −84.84
tGNN1HL DNN1HL 26± 13 −88.47 −69.13
sGNN2HL DNN2HL 4.1± 2.5 −84.49 −62.10
tGNN2HL DNN2HL 31± 4 −68.36 −22.66

7.3 Comparison of Models with a Similar Number of Degrees
of Freedom

Since the DNNs considered in Section 7.2 consists of up to approximately 95 % more DOF
than GNNs, the following further questions arise naturally:

(1) Can DNNs outperform GNN*
2HL if only the number of degrees of freedom is tuned?

(Section 7.3.1)

(2) How well do DNNs perform if their number of degrees of freedom is restricted to
𝑁TP(GNN*

2HL) = 2107? (Section 7.3.2)

(3) How well do GNNs perform if their number of degrees of freedom is expanded to
𝑁TP(DNN*

2HL) = 6813 or 𝑁 eff
TP(DNN*

2HL) = 2782? (Section 7.3.3)

In this comparison, only extended[𝑀inv] is given as input to the DNNs and GNNs be-
cause this provided the best-performing neural networks in the previous comparison. In
correspondence to the observations made in Section 7.2.1, rather deeper neural networks
but not necessarily networks with a bigger 𝑛hidden shall be trained for answering ques-
tion (1). Accordingly, it is decided to allow DNNs to consist of three hidden layers and
𝑁hidden = {6, 13, 26}3. For elaborating on questions (2) and (3), models with one up to four
hidden layer(s) are trained with 𝑁hidden = {5, 6, . . . , 50}𝑛HL and 𝑁hidden = {2, 3, . . . , 12}𝑛HL

being scanned. Yet, in order to keep the numbers of models that need to be trained for
question (2) and question (3) feasible, for each hidden layer only the model(s) with 𝑁TP
closest to the particular target value are further considered. In total, 71 different models,
i.e., 710 networks, are evaluated. The remaining hyperparameters are not varied in this
comparison and follow the same selection as shown in Table 7.1.

7.3.1 DNNs with a Tuned Number of Degrees of Freedom

In contrast to the results in Section 7.2.1, having more hidden layers appears not to be
beneficial for the performance of DNNs. In fact, only one out of 27 DNNs with a three-layer
architecture is ranked higher than DNN*

2HL in terms of model performance. But it also
turns out that the mean ROC-AUC of the best three-layer DNN is 0 % higher than its of
DNN*

2HL and therewith an improvement with three-layer architectures is nonexistent. At
the same time, it is however noticeable in Fig. G.2 that in principle all DNNs with three
hidden layers show a larger spread than DNN*

2HL. At first sight, it seems reasonable to
assume that the lack of improvement despite applying a deeper DNN is promoted by the
lack of regularization methods with its stabilizing effect on the training. On the other hand,
when looking at the progression of the loss during training and validation averaged over
ten repetitions (cf. Fig. G.3), no big spread in the loss curve progression is observable and

82

7.4 In-Depth Analysis of the Best-Performing Models 83

hence this assumption is disproven. Consequently, the only remaining conclusion appears
to be that DNNs indeed cannot outperform GNNs when simply their depths and their
numbers of trainable parameters are tuned.

7.3.2 DNNs with a Restricted Number of Degrees of Freedom

Since DOF are taken away from the model for properly learning the task at hand, its
generalization abilities are more stipulated. As the DNNs do not seem to overfit yet in
the previous analysis, i.e., they are already generalizing as well as possible, it is expected
that the restriction complicates the training. Furthermore, the performance of DNNs with
𝑁TP (or 𝑁 eff

TP) being restricted to 𝑁TP(GNN*
2HL) = 2107 should decrease. These DNNs

are named restrDNNs in the following. The results, shown in Fig. G.4, supports this
expectation. Indeed, around 70 % of the trained restrDNNs contain outliers and especially
the lower ranked models still show a striking high spread, although outliers were already
removed. It is only surprising that nevertheless, on average, the mean ROC-AUC value
of restrDNNs is only (1.540± 0.027) % worse than its of DNN*

2HL although the 𝑁TP and
𝑁 eff

TP of restrDNNs are on average respectively around 56 % and 57 % lower than its of
DNN*

2HL. On the other hand, this is consistent with the observations made in Section 7.3.1,
where an increase of the numbre of DOF equally did not affect the model performance
much, i.e., the originally provided DOF were already sufficient for accomplishing the
given task. Moreover, like already seen in Section 7.2.2, it is once more shown that the
convergence speed is independent of 𝑁TP since the convergence speed of restrDNNs, where
𝑁TP ≈ 𝑁TP(GNN*

2HL), is (24± 6) % slower than the convergence speed of GNN*
2HL. Due

to that it is not recommended to choose restrDNNs over GNNs. Because of the less stable
training of restrDNNs in general, it is also not reasonable to intentionally restrict the
number of DOF of DNNs despite of the comparable performance.

7.3.3 GNNs with an Expanded Number of Degrees of Freedom

In correspondence to the explanation and observations in the previous section, it is expected
that GNNs with a higher number of 𝑁TP should perform slightly better but not necessarily
converge slower than GNN*

2HL. Both is indeed the case. In total, five models with 𝑁TP
expanded to roughly 𝑁 eff

TP(DNN*
2HL) or 𝑁TP(DNN*

2HL) are ranked higher than GNN*
2HL (cf.

Fig. G.5), whereby the performance is increased by a maximum of (0.14± 0.06) %. These
models also converge (24± 10) % faster than GNN*

2HL on average. The convergence speed
of the GNNs with 𝑁TP ≈ 𝑁TP(DNN*

2HL) is even (64± 9) % faster than the convergence
speed of DNN*

2HL. This proves once again that GNNs indeed converge faster than DNNs.
In general, the effect that can be observed when expanding the number of DOF of GNNs
is greater than when tuning (cf. Section 7.3.1) or restricting (cf. Section 7.3.2) the number
of DOF of DNNs, yet negligible in terms of performance gain, especially considering how
much more complex (regarding depth and number of DOF) these expanded GNNs are.
Thus, it is reasonable to choose expanded GNNs over simpler GNNs with less depth when
the convergence speed is a crucial aspect for the particular task at hand, for example.

7.4 In-Depth Analysis of the Best-Performing Models
The best-performing models of both comparisons, summarized in Table 7.4, shall be further
analyzed in this section. At first, the mean prediction scores of all best models for each
event in the test set are compared, so that it becomes evident whether the models perform
similarly on classifying the same events. For that, two-dimensional histograms with 50
equidistant bins in each dimension are generated. If the mean prediction scores of the two
models under scrutiny are the exact same, then the histogram equals the angle bisector.

83

84 7 Benchmark Study on Equivalent GNNs and DNNs

Table 7.4: Architecture and performance of the best-performing models of both
comparisons.

NN type 𝑛hidden 𝑁TP 𝑁 eff
TP 〈ROC-AUC〉 identifier

sGNN
(39) 1093 — 0.87441± 0.00051 GNN*

1HL
(26, 26) 2107 — 0.87860± 0.00035 GNN*

2HL
(25, 40, 50) 6816 — 0.87980± 0.00034 expGNN*

DNN

(13) 6436 2405 0.86676± 0.00050 DNN*
1HL

(13, 26) 6813 2782 0.87198± 0.00044 DNN*
2HL

(13, 13, 6) 6695 2664 0.87201± 0.00085 DNN*
3HL

(4, 8, 7, 3) 2107 867 0.86892± 0.00090 restrDNN*

(11, 3, 3, 7) 5518 2107 0.86941± 0.00062 restrDNN*
eff

In some plots, a plateau appears for mean prediction scores near zero. That is in particular
prevailing for any comparisons of restrDNN* with the remaining best models (cf. Fig. 7.9).
The plateau indicates that restrDNN* fails to notice subtle differences in non-tt + bb
samples, probably caused by the restricted number of DOF, and therefore only manages to
predict the same score for the particular events, unlike the other models in the comparisons.
The plateau is larger when restrDNN* is compared to GNNs than to DNNs. This is a
universal feature since it can be observed in general that mean prediction scores between
same neural network types are more alike than between different neural network types, i.e.,
that the corresponding histogram is distributed narrower along the bisecting line in that
cases (cf. Fig. G.6). The particular correlation coefficient 𝜌 also reflects this phenomenon.
When different neural network types are compared usually 𝜌 < 0.980 holds. Moreover,
GNNs appear to be more certain in their prediction for non-tt + bb samples since their
mean prediction scores are closer to zero than DNNs for such events. Thus, despite of the
quite similar model performance of GNNs and DNNs in terms of ROC-AUC values, it is
recommended to rather use GNNs when the correct classification of non-tt + bb samples is
more crucial than the correct identification of tt + bb events.

In order to investigate further whether the strengths of the best-performing models lie in
different areas, radial plots are introduced. In radial plots, it is possible to compare several
aspects of a model at once. The aspects of interest in Fig. 7.10 are the mean convergence
speed, the mean loss on the test set, which serves as measure of the generalization ability
of the models, the performance of the models expressed by the mean ROC-AUC and the
complexity of the model (𝑁TP, 𝑁 eff

TP).
While the ranking of the models regarding the generalization ability corresponds to the
performance of DNNs and GNNs as well, this does not hold for the other aspects. For
both neural network types, the biggest discrepancy between the different models are the
convergence speed and the number of (effective) trainable parameters. The overall best
GNN and DNN appear to be GNN*

2HL and restrDNN*, respectively, as they perform well
in all aspects compared to the other models.

Lastly, a first- and second-order Taylor coefficient analysis (TCA, cf. Section 3.3.2) is
executed for shedding light on whether all best models profit in the same way from the
information provided during the training. The advantage of the TCA is that it can be
applied to both DNNs and GNNs. However, since a Taylor coefficient is calculated for each
input feature, for DNNs, there are 493 values for the feature set extended[𝑀inv], which

84

7.4 In-Depth Analysis of the Best-Performing Models 85

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of DNN∗1HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
re

st
rD

N
N
∗

CMS Simulation Work in Progress

ρ = 0.984

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of DNN∗2HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
re

st
rD

N
N
∗

CMS Simulation Work in Progress

ρ = 0.989

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of DNN∗3HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
re

st
rD

N
N
∗

CMS Simulation Work in Progress

ρ = 0.989

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of GNN∗1HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
re

st
rD

N
N
∗

CMS Simulation Work in Progress

ρ = 0.966

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of GNN∗2HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
re

st
rD

N
N
∗

CMS Simulation Work in Progress

ρ = 0.964

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of expGNN∗

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
re

st
rD

N
N
∗

CMS Simulation Work in Progress

ρ = 0.963

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of restrDNN∗

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
re

st
rD

N
N
∗ eff

CMS Simulation Work in Progress

ρ = 0.993

100

101

102

103

Figure 7.9: Comparison of the mean prediction scores of restrDNN* to the
prediction of any other best-performing model from Table 7.4. Fifty
equidistant bins are chosen along each axis. The closer the particular correlation
coefficient is to one, the more alike the mean prediction scores of the compared
models are. Visually, this translates to a narrower distribution of the histogram
along the angle bisector (dashed line). In every plot shown, a plateau arises for
mean prediction scores near zero. This is more pronounced when the response
of restrDNN* are compared to GNNs instead of other DNNs.

85

86 7 Benchmark Study on Equivalent GNNs and DNNs

Mean convergence speed

Mean test loss/
Generalization

Mean ROC-AUCNTP

N eff
TP

0.017

0.024

0.032

0.039

0.42
0.44

0.46
0.48

0.853

0.863

0.874

0.8842262.04

3485.73

4709.42

5933.11

2090.28
3356.91

4623.54
5890.17

CMS Simulation Work in Progress

GNN∗1HL

GNN∗2HL

expGNN∗

(a)

Mean convergence speed

Mean test loss/
Generalization

Mean ROC-AUCNTP

N eff
TP

0.017

0.024

0.032

0.039

0.42
0.44

0.46
0.48

0.853

0.863

0.874

0.8842262.04

3485.73

4709.42

5933.11

2090.28
3356.91

4623.54
5890.17

CMS Simulation Work in Progress

DNN∗1HL

DNN∗2HL

DNN∗3HL

restrDNN∗

restrDNN∗eff

(b)

Figure 7.10: Comparison of various aspects of neural networks. The mean conver-
gence speed, the generalization ability, the model performance and the model
complexity of the best-performing GNNs (a) and the best-performing DNNs
(b) are compared at once. The larger the area covered by a model in this
diagram, the better its all-round ability is. For that the axes corresponding
to the generalization and the DOF of a model are inverted. The error bars
represent the spread (square root of the unbiased sample variance) of the
particular quantities and are calculated on the basis of the corresponding
quantities obtained in the ten realized repetitions of a training.

is not handy to deal with and complicates the comparison to the Taylor coefficients of
GNNs, for which only 13 Taylor coefficients are calculated. As solution, it is proposed to
calculate “global” Taylor coefficients, i.e., to average over all Taylor coefficients belonging
to the same observable. Taking the invariant mass as an example, 272 individual invariant
mass features 𝑀 𝑖𝑗

inv, one for each permutation of a final state objects 𝑖 and 𝑗 exist. The
corresponding Taylor coefficients 𝑡(𝑠)

𝑀 𝑖𝑗
inv

, calculated for each event 𝑠 in the test set of size 𝑆,
are reduced to one global Taylor coefficient

𝑡
(𝑠)
𝑀inv

= 1
𝑁max

obj · (𝑁max
obj − 1)

𝑁max
obj∑︁

𝑖=1

∑︁
𝑗 ̸=𝑖

⃒⃒⃒
𝑡
(𝑠)
𝑀 𝑖𝑗

inv

⃒⃒⃒
. (7.3)

Finally, only 14 Taylor coefficients remain. In addition, however, only the Taylor coeffi-
cients of non-padded features of an event are considered in the averaging process, because
the results are expected to be diluted otherwise. In order to extract the general decision
basis of the model, as before (see introduction of Chapter 6), the arithmetic mean over all
events in the test set is computed subsequently.

As indicated by the ⟨Δ𝑟⟩ values, the first-order TCA ranking of the features within GNNs
and within DNNs in Figs. 7.11 and 7.12, respectively, are similar. All best GNN models
have in common that the most important category flag is the AddB flag, the most important
kinematic information is 𝑝T and the least important feature is 𝜑, which is all reasonable
from a physics point of view. As observed in Section 6.1 already, each category flag appears
to be of larger importance for the GNN response, especially for GNN*

1HL, than an actual
physics observable.
For DNNs, the most important category flag is the AddB flag and the least important

86

7.4 In-Depth Analysis of the Best-Performing Models 87

feature is 𝜑, like for GNNs. Yet, the most important feature for DNNs is indeed 𝑀inv by
far, i.e., the information that is encoded in the graph structure for GNNs and has proven
to be the most impactful aspect to the GNNs’ performance (cf. Section 7.2.1). Apparently,
this relational information is of such outstanding importance that even DNNs learn to
focus on this information as well. Accordingly, this can be seen as the cause for the similar
performances of DNNs and GNNs when trained on the same feature set. The biggest
discrepancy between the first-order TCA rankings of DNNs and GNNs is the positioning
of category flags. For DNNs, they are all situated in the lower part of the ranking. This
is however not peculiar and is predicted in Section 7.2 already where it is assumed that
category flags only contain redundant information for DNNs due to the fixed positions
of the features in the input vector. Hence, with this observation, the expectation can be
regarded as fully confirmed.
The second-order Taylor coefficients, which capture relations between input features, re-
flects as well that GNN*

1HL only learns to focus on correlations of all category flags with
basically similar importance in general. In contrast to that, both GNN*

2HL and expGNN*

manage to learn that it is already sufficient to only look at correlations involving the
AddB flag (cf. Fig. G.7). This improvement cannot be observed in the second-order
Taylor coefficient plots for DNNs (cf. Fig. G.8). For all inspected DNNs basically no
correlations between features except for 𝑀inv with itself are relevant for their classification.
Interestingly, this observation can only be made when feature sets including relational
information are provided to the DNN training. Therefore, it is assumed that this effect
is not directly caused by the usage of global feature and rather traces back to a possible
incomparability of Taylor coefficents of relational information and vertex attributes. Rela-
tional information is normalized while vertex attributes are standardized (cf. Section 4.1).
Thus, their distributions differ in the mean and standard deviation, which could affect
the comparability of the Taylor coefficients since their calculation is based on gradients.
Furthermore, also the fact that any relational information occurs twice in the input vector
for DNNs, as 𝑀 𝑖𝑗

inv = 𝑀 𝑗𝑖
inv (cf. Fig. 7.2), possibly influence the results, especially since

second-order Taylor coefficients extract the relation between the input features. Further
studies are required to verify these assumptions.

An aspect that is neglected so far is the data preprocessing effort required for generating
the data set for training DNNs and GNNs, since no 100 % objective measure can be applied.
From a subjective point of view, it is easier to generate the data set for training GNNs on
tt̄+X event classification than for DNNs since for the latter, e.g., each final state object
in an event needs to be permuted so that their order matches with every other event in
the data set. For this, the category flags have to be predetermined (if no generator-level
information is used). Otherwise, the DNNs need to be trained on all permutations of
the final state objects in each event, which is time-consuming as well. On the contrary,
for GNNs, only the edges between the final state objects need to be constructed, which
is a straightforward process since only complete graphs are used so far for the tt̄+X
event classification. Of course, for other tasks with, for instance, a greater number of
objects (track reconstruction, for example) more time needs to be invested in evaluating
the best graph structure and for actually processing the graph construction. For tt̄+X
event classification, it can be concluded that it is beneficial to choose GNNs over DNNs,
especially due to their strengths in terms of convergence speed, their more effective us-
age of the provided DOF, their more stable training and the lower data preprocessing effort.

In summary, DNNs and GNNs show comparable performance on the binary tt + bb vs.
tt̄H(bb̄)/tt̄Z(bb̄) event classification task, presumably because they have learnt to focus

87

88 7 Benchmark Study on Equivalent GNNs and DNNs

0.004 0.210 0.416 0.622 0.828

〈txj〉

AddB

Unk

LTB

HTQ

HTB

`

MET

pT

M

b tag

E

η

φ

F
ea

tu
re

CMS Simulation Work in Progress

GNN∗1HL

0.005 0.142 0.280 0.418 0.555

〈txj〉

AddB

MET

HTB

Unk

LTB

`

HTQ

pT

M

b tag

η

E

φ

F
ea

tu
re

CMS Simulation Work in Progress

GNN∗2HL

0.005 0.043 0.081 0.119 0.157

〈txj〉

AddB

Unk

LTB

HTQ

MET

HTB

`

pT

M

b tag

η

E

φ

F
ea

tu
re

CMS Simulation Work in Progress

expGNN∗

0.0 0.2 0.4 0.6 0.8

〈txj〉

AddB

Unk

LTB

HTQ

HTB

`

MET

pT

M

b tag

E

η

φ

F
ea

tu
re

CMS Simulation Work in Progress

GNN∗1HL

GNN∗2HL

expGNN∗

GNN∗1HL vs. GNN∗2HL:
〈∆r〉 = 1.23 (=̂ 80.95 %)
∆rmax = 5.00 (MET)

GNN∗1HL vs. expGNN∗:
〈∆r〉 = 0.46 (=̂ 92.86 %)
∆rmax = 2.00 (MET)

Figure 7.11: First-order Taylor coefficient ranking of the best-performing GNNs.
It is striking that all three GNNs have a similar focus on the same features.
The most important features are the category flags, followed by 𝑝T, which
is the most important kinematic jet feature. The least important feature
for training is 𝜑, which is reasonable from a physics point of view. At the
bottom, on the right, the ranking for all three GNNs are combined. The
percentage in the parentheses corresponds to the conformity 1− ⟨Δ𝑟⟩/Δ𝑟*

max
of the compared rankings. The variable Δ𝑟max denotes the highest number of
rank difference between the compared rankings and should not be confused
with Δ𝑟*

max, which denotes the maximum mean number of absolute rank
differences between the compared rankings. The objects to which this applies
are specified in the subsequent parentheses.

88

7.4 In-Depth Analysis of the Best-Performing Models 89

0.004 0.084 0.164 0.244 0.324

〈txj〉

Minv

η

pT

M

b tag

E

HTQ

AddB

`

LTB

MET

Unk

HTB

φ

F
ea

tu
re

CMS Simulation Work in Progress

DNN∗1HL

0.004 0.100 0.195 0.291 0.387

〈txj〉

Minv

η

pT

M

b tag

AddB

HTQ

E

`

MET

LTB

HTB

Unk

φ

F
ea

tu
re

CMS Simulation Work in Progress

DNN∗2HL

0.004 0.098 0.191 0.285 0.379

〈txj〉

Minv

pT

M

η

b tag

HTQ

AddB

E

`

LTB

HTB

MET

Unk

φ

F
ea

tu
re

CMS Simulation Work in Progress

DNN∗3HL

0.002 0.097 0.191 0.286 0.380

〈txj〉

Minv

η

pT

M

b tag

AddB

HTQ

LTB

MET

E

Unk

HTB

`

φ

F
ea

tu
re

CMS Simulation Work in Progress

restrDNN∗

0.003 0.095 0.187 0.279 0.371

〈txj〉

Minv

pT

η

M

b tag

HTQ

E

AddB

LTB

HTB

MET

Unk

`

φ

F
ea

tu
re

CMS Simulation Work in Progress

restrDNN∗eff

0.0 0.1 0.2 0.3 0.4

〈txj〉

Minv

η

pT

M

b tag

E

HTQ

AddB

`

LTB

MET

Unk

HTB

φ

F
ea

tu
re

CMS Simulation Work in Progress

DNN∗1HL

DNN∗2HL

DNN∗3HL

restrDNN∗

restrDNN∗eff

DNN∗1HL vs. DNN∗2HL:
〈∆r〉 = 0.57 (=̂ 91.84 %)
∆rmax = 2.00 (E, AddB)

DNN∗1HL vs. DNN∗3HL:
〈∆r〉 = 0.86 (=̂ 87.76 %)
∆rmax = 2.00 (η, E, HTB)

DNN∗1HL vs. restrDNN∗:
〈∆r〉 = 1.14 (=̂ 83.67 %)
∆rmax = 4.00 (E, `)

DNN∗1HL vs. restrDNN∗eff :
〈∆r〉 = 0.86 (=̂ 87.76 %)
∆rmax = 4.00 (`)

Figure 7.12: First-order Taylor coefficient ranking of the best-performing DNNs.
For all DNNs under scrutiny, 𝑀inv is the by far most important feature. Like
for GNNs, 𝜑 is the least important feature for accomplishing the classification.
However, unlike GNNs, the category flags are all ranked in the lower half of
these plots. At the bottom, on the right, the ranking for all five DNNs are
combined. The percentage in the parentheses corresponds to the conformity
1− ⟨Δ𝑟⟩/Δ𝑟*

max of the compared rankings. The variable Δ𝑟max denotes the
highest number of rank difference between the compared rankings and should
not be confused with Δ𝑟*

max. The objects to which this applies are specified in
the subsequent parentheses. Instead of dealing with all 493 Taylor coefficients,
14 global Taylor coefficients are calculated and ranked. Moreover, only Taylor
coefficients corresponding to non-padded values in an event are considered.

89

90 7 Benchmark Study on Equivalent GNNs and DNNs

on the same features, as the Taylor coefficient analysis reveals. The biggest discrepancy
between these two neural network types clearly lies in the convergence speed, the number
of DOF necessary for performing the task and the data preprocessing effort. Regarding
all three aspects, the best-performing DNNs are weaker than the best-performing GNNs.
Moreover, GNNs tend to be more confident in classifying non-tt + bb samples than DNNs
and their training is more stable.

90

8 Summary and Outlook

The physics focus of this thesis is on classifying tt + bb, tt̄H(bb̄) and tt̄Z(bb̄) processes
in proton-proton collisions at the LHC. Since these tt̄+X processes can be more natu-
rally represented by graphs rather than, for instance, by vectors, graph neural networks
(GNNs), designed for processing exactly this data type, appear to be the best choice from
a theoretical point of view. Accordingly, the main goal of this thesis is to verify whether
this in fact applies to this special scope. For this purpose, the general feasibility of GNNs
for this task is probed first. Subsequently, explainable AI (xAI) methods are applied to
the models for unraveling the underlying decision basis of these black-box models and
therewith estimating the reliability of the GNN responses. Lastly, comparisons between
GNNs and deep neural networks (DNNs), which are already well-established in high energy
physics (HEP), are performed under fair conditions to finally assess whether these novel
GNNs are indeed more preferable for multivariate tt̄+X event classification.

In the feasibility study, Gated Graph Sequence Neural Networks (GGSNN) are deployed
for classifying tt̄+X events in a binary (tt + bb vs. tt̄H(bb̄)/tt̄Z(bb̄)) as well as a multiclass
manner. It becomes evident that, unlike for GNN-based additional b jet assignment, it is
insufficient to only provide a few kinematic observables and the b tag as vertex attributes
to the GNN training. The corresponding models are only at most 45 % better than random
estimators. The most impactful adjustment is to extend the vertex attributes by category
flags that specify for each final state object its corresponding category. For example, for jets,
information about the particle with which they were produced in association is provided in
this manner. In accordance with physics expectations, it is found that indicating which
final state objects are additional b jets (AddB flag) is very beneficial for the tt̄+X event
classification. In fact, when a GNN-based classifier (NLP-GGSNN) with a true positive
rate (TPR) of about 71 % is utilized for identifying these jets and a joint b tag/𝑝T approach
is used for assigning the remaining categories, the original model performance improves by
about 6 % in the binary case. Yet, with a flawless preclassifier even an improvement by
roughly another 16 % to a mean ROC-AUC of 0.8793 would be in theory realizable. With
respect to a random estimator that equals to a performance gain of about 76 %. Hence, it
has been successfully shown that GNNs are – even without hyperparameter optimization –
indeed a very suitable technique for tt̄+X event classification.

91

92 8 Summary and Outlook

To lay a solid foundation for estimating whether it is more worthwhile to concentrate on
enhancing the preclassifier or rather the event classification model in future optimizations,
the dependency of the event classification model on the goodness of the additional b jet as-
signment is modeled. Of two proposed modeling strategies, the AddB-X modeling strategy,
which exploits several performance related key figures of the NLP-GGSNN, emerges as a
valid approach for capturing the real dependency of the event classifier performance on the
preclassifier. Therewith, it is demonstrated that increasing the TPR of NLP-GGSNN by
just 0.17 % will presumably result in an about 2 % better performing event classifier. Thus,
in future developments, it is recommended to target the optimization of the preclassifier first.

With the help of two xAI methods, the GNNExplainer (GNNX) and the Taylor coefficient
analysis (TCA), the trustworthiness of the best-performing models is successfully probed.
Both xAI methods identify, in consistence with previous observations and physics expecta-
tions, the AddB flag by far as the most impactful feature on the GNN response and 𝑝T as
the most valuable kinematic jet information to the GNN response in general. However,
the first-order TCA and GNNX disagree in particular about the influence of the remaining
category flags and the b tag value on the GNN responses. Yet, no clear physics statements
can be made for this either. A further study reveals that the explanations provided by the
first-order TCA are more plausible. Moreover, its computations are even significantly less
time consuming.

Ultimately, two comparisons between GNNs (GraphConv) and DNNs with mutually exclu-
sive focuses and a total of 287 models are conducted. For both types of neural networks,
the type of the provided relational information has generally by far the greatest impact
on the model performance compared to the numbers of hidden layers or the number of
degrees of freedom (DOF) of the model, for instance. In particular, it becomes evident that
the difference in performance of the best-performing equivalent GNNs and DNNs on the
binary tt̄+X event classification task is less than 1 %. This could be traced back to the
fact that, according to the TCA, both focus on similar features. It should however not go
unmentioned that it is not realizable to overcome this performance gap between GNNs
and DNNs by simply tuning the number of DOF and the depth of DNNs. Furthermore,
deploying DNNs for tt̄+X event classification comes with a number of disadvantages. They
show a diminished training stability, a slower convergence speed and require a higher data
preprocessing effort. At the same time, they are also less effective in using the provided
DOF and seem to be less certain regarding classifying non-tt + bb events than GNNs.

In summary, it has been successfully verified to the full extent that GNNs are not only
reliable and suitable for tt̄+X event classification. In fact, it is also more beneficial to de-
ploy GNNs rather than DNNs for this very task despite their comparable peak performance.

Since the main focus of this thesis is not on mere performance optimization but rather
on gaining a deeper comprehension on bare GNNs, their feasibility and reliability for
multivariate tt̄+X event classification, neither regularization methods are deployed nor
a hyperparameter optimization is conducted. Yet, it is expected that both will notice-
ably increase the performance of the event classification model. Especially, the usage
of regularization methods is recommended for further stabilizing the training in future
studies. Furthermore, it is presumably beneficial to develop a multi-task network that is
simultaneously trained on both additional b jet assignment and tt̄+X event classification
as this end-to-end model would come with the advantage of being easier to be retrained,
optimized and distributed, unlike the current sequential approach.

92

Bibliography

[1] The ATLAS Collaboration. “Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC”. In: Physics
Letters B 716(1) (2012), pp. 1–29. doi: 10.1016/j.physletb.2012.08.020.

[2] The CMS Collaboration. “Observation of a new boson at a mass of 125 GeV with
the CMS experiment at the LHC”. In: Physics Letters B 716(1) (2012), pp. 30–61.
doi: 10.1016/j.physletb.2012.08.021.

[3] The CMS collaboration. “Measurement of the cross section for tt production with
additional jets and b jets in pp collisions at

√
𝑠 = 13 TeV”. In: Journal of High

Energy Physics (JHEP) 2020(125) (2020). doi: 10.1007/JHEP07(2020)125.
[4] The CMS collaboration. Measurement of ttH production in the H→ bb decay channel

in 41.5 fb−1 of proton-proton collision data at
√
𝑠 = 13 TeV. Tech. rep. Geneva:

CERN, 2019. url: https://cds.cern.ch/record/2675023.
[5] The KATRIN Collaboration. “Direct neutrino-mass measurement with sub-electronvolt

sensitivity”. In: Nature Physics 18 (2022), pp. 160–166. doi: 10.1038/s41567-021-
01463-1.

[6] R. L. Workman et al. (The Particle Data Group). “Review of Particle Physics”. In:
Progress of Theoretical and Experimental Physics (PTEP) 2022, 083C01 (2022). doi:
10.1093/ptep/ptac097.

[7] R. Wolf. The Higgs Boson Discovery at the Large Hadron Collider. Ed. by G. Höhler
et al. Vol. 264. Springer Tracts in Modern Physics (STMP). Springer Cham, 2015.
isbn: 978-3-319-18512-5. doi: 10.1007/978-3-319-18512-5.

[8] D. J. Griffiths. Introduction to Elementary Particles. Second, Revised Edition. Physics
textbook. Weinheim: Wiley-VCH, 2008. isbn: 978-3-527-40601-2.

[9] M. D. Schwartz. Quantum Field Theory and the Standard Model. New York: Cam-
bridge University Press, 2014. isbn: 978-1-107-03473-0. doi: 10.1017/9781139540940.

[10] E. Noether. “Invariante Variationsprobleme”. In: Nachrichten von der Gesellschaft
der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918 (1918),
pp. 235–257. url: http://eudml.org/doc/59024.

[11] S. L. Glashow. “Partial-symmetries of weak interactions”. In: Nuclear Physics 22(4)
(1961), pp. 579–588. doi: 10.1016/0029-5582(61)90469-2.

[12] S. Weinberg. “A Model of Leptons”. In: Physical Review Letters 19(21) (1967),
pp. 1264–1266. doi: 10.1103/PhysRevLett.19.1264.

[13] A. Salam. “Weak and electromagnetic interactions”. In: Conf. Proc. C 680519 (1968),
pp. 367–377. doi: 10.1142/9789812795915_0034.

[14] The UA1 Collaboration. “Experimental observation of isolated large transverse energy
electrons with associated missing energy at

√
𝑠 = 540 GeV”. In: Physics Letters B

122B(1) (1983), pp. 103–116. doi: 10.1016/0370-2693(83)91177-2.

93

https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1007/JHEP07(2020)125
https://cds.cern.ch/record/2675023
https://doi.org/10.1038/s41567-021-01463-1
https://doi.org/10.1038/s41567-021-01463-1
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1007/978-3-319-18512-5
https://doi.org/10.1017/9781139540940
http://eudml.org/doc/59024
https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1142/9789812795915_0034
https://doi.org/10.1016/0370-2693(83)91177-2

94 Bibliography

[15] The UA2 Collaboration. “Observation of single isolated electrons of high transverse
momentum in events with missing transverse energy at the CERN p̄p collider”. In:
Physics Letters B 122B(5,6) (1983), pp. 476–485. doi: 10.1016/0370-2693(83)
91605-2.

[16] The UA1 Collaboration. “Experimental observation of lepton pairs of invariant mass
around 95 GeV/c2 at the CERN SPS collider”. In: Physics Letters B 126B(5) (1983),
pp. 398–410. doi: 10.1016/0370-2693(83)90188-0.

[17] P. W. Higgs. “Broken symmetries, massless particles and gauge fields”. In: Physics
Letters 12(2) (1964), pp. 132–133. doi: 10.1016/0031-9163(64)91136-9.

[18] P. W. Higgs. “Broken Symmetries and the Masses of Gauge Bosons”. In: Physical
Review Letters 13(16) (1964), pp. 508–509. doi: 10.1103/PhysRevLett.13.508.

[19] F. Englert and R. Brout. “Broken Symmetry and the Mass of Gauge Vector Mesons”.
In: Physical Review Letters 13(9) (1964), pp. 321–323. doi: 10.1103/PhysRevLett.
13.321.

[20] I. B. Alonso et al., eds. High-Luminosity Large Hadron Collider (HL-LHC). Technical
design report. Vol. 10. CERN Yellow Reports: Monographs. Geneva: CERN, 2020.
isbn: 978-92-9083-587-5. doi: 10.23731/CYRM-2020-0010.

[21] The ALICE Collaboration. “The ALICE experiment at the CERN LHC”. In: Journal
of Instrumentation (JINST) 3 S08002 (2008). doi: 10.1088/1748- 0221/3/08/
s08002.

[22] The LHCb Collaboration. “The LHCb Detector at the LHC”. In: Journal of Instru-
mentation (JINST) 3 S08005 (2008). doi: 10.1088/1748-0221/3/08/s08005.

[23] The ATLAS Collaboration. “The ATLAS Experiment at the CERN Large Hadron
Collider”. In: Journal of Instrumentation (JINST) 3 S08003 (2008). doi: 10.1088/
1748-0221/3/08/s08003.

[24] The CMS Collaboration. “The CMS experiment at the CERN LHC”. In: Journal of
Instrumentation (JINST) 3 S08004 (2008). doi: 10.1088/1748-0221/3/08/s08004.

[25] L. Evans and P. Bryant. “LHC Machine”. In: Journal of Instrumentation (JINST) 3
S08001 (2008). doi: 10.1088/1748-0221/3/08/S08001.

[26] A. D. Rosso. “Particle Kickers”. In: CERN Bulletin 24-25/2014 (2014). url: http:
//cds.cern.ch/record/1708739/files/2014-24-25-E-web.pdf.

[27] D. d’Enterria. “CMS physics highlights in the LHC Run 1”. In: Proceedings of 53rd
International Winter Meeting on Nuclear Physics. Vol. 238. 2015. doi: 10.22323/1.
238.0027.

[28] B. Salvachua. “Overview of Proton-Proton Physics during Run 2”. In: Proceedings
of the 2019 Evian Workshop on LHC Beam Operations. Session 1: Overview of Run
2. Geneva: CERN, 2019, pp. 7–14. url: https://cds.cern.ch/record/2750272.

[29] J. T. Boyd. “LHC Run-2 and future prospects”. In: Proceedings of the 2019 European
School of High-Energy Physics. Ed. by C. Duhr and M. Mulders. Vol. 5. 2021. doi:
10.23730/CYRSP-2021-005.247.

[30] K. Bernhard-Novotny. First Run 3 physics result by CMS. 2022. url: https://
home.cern/news/news/physics/first-run-3-physics-result-cms. Accessed
November 16, 2022.

[31] CERN. LHC nominal lumi projection. no date. url: https://lhc-commissioning.
web.cern.ch/schedule/images/LHC-nominal-lumi-projection.png. Accessed
November 16, 2022.

94

https://doi.org/10.1016/0370-2693(83)91605-2
https://doi.org/10.1016/0370-2693(83)91605-2
https://doi.org/10.1016/0370-2693(83)90188-0
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.23731/CYRM-2020-0010
https://doi.org/10.1088/1748-0221/3/08/s08002
https://doi.org/10.1088/1748-0221/3/08/s08002
https://doi.org/10.1088/1748-0221/3/08/s08005
https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1088/1748-0221/3/08/S08001
http://cds.cern.ch/record/1708739/files/2014-24-25-E-web.pdf
http://cds.cern.ch/record/1708739/files/2014-24-25-E-web.pdf
https://doi.org/10.22323/1.238.0027
https://doi.org/10.22323/1.238.0027
https://cds.cern.ch/record/2750272
https://doi.org/10.23730/CYRSP-2021-005.247
https://home.cern/news/news/physics/first-run-3-physics-result-cms
https://home.cern/news/news/physics/first-run-3-physics-result-cms
https://lhc-commissioning.web.cern.ch/schedule/images/LHC-nominal-lumi-projection.png
https://lhc-commissioning.web.cern.ch/schedule/images/LHC-nominal-lumi-projection.png

Bibliography 95

[32] D. Barney. CMS Detector Slice. CMS Collection. 2016. url: https://cds.cern.
ch/record/2120661. Accessed November 18, 2022.

[33] A. Sirunyan et al. “Particle-flow reconstruction and global event description with
the CMS detector”. In: Journal of Instrumentation (JINST) 12 P10003 (2017). doi:
10.1088/1748-0221/12/10/P10003.

[34] S. Donato. “CMS trigger performance”. In: 6th International Conference on New
Frontiers in Physics (ICNFP 2017) 182(02037) (2018). doi: 10.1051/epjconf/
201818202037.

[35] M. Cacciari, G. P. Salam, and G. Soyez. “The anti-k𝑡 jet clustering algorithm”.
In: Journal of High Energy Physics (JHEP) 2008(04) (2008). doi: 10.1088/1126-
6708/2008/04/063.

[36] The CMS collaboration. Performance of the DeepJet b tagging algorithm using 41.9/fb
of data from proton-proton collisions at 13TeV with Phase 1 CMS detector. 2018.
url: https://cds.cern.ch/record/2646773.

[37] M. S. Neubauer and A. Roy. Explainable AI for High Energy Physics. 2022. arXiv:
2206.06632 [hep-ex].

[38] J. Shlomi, P. Battaglia, and J.-R. Vlimant. “Graph neural networks in particle
physics”. In: Machine Learning: Science and Technology 2(2) 021001 (2021). doi:
10.1088/2632-2153/abbf9a.

[39] R. Rojas. Neural Networks. A Systematic Introduction. Berlin: Springer Berlin,
Heidelberg, 1996. isbn: 978-3-642-61068-4. doi: 10.1007/978-3-642-61068-4.

[40] O. I. Abiodun et al. “State-of-the-art in artificial neural network applications: A
survey”. In: Heliyon 4(11) e00938 (2018). doi: 10.1016/j.heliyon.2018.e00938.

[41] M. A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015. url:
http://neuralnetworksanddeeplearning.com/.

[42] K. C. Fukushima. “Cognitron: A Self-organizing Multilayered Neural Network”. In:
Biological Cybernetics 20 (1975), pp. 121–136. doi: 10.1007/BF00342633.

[43] V. Nair and G. E. Hinton. “Rectified Linear Units Improve Restricted Boltzmann
Machines”. In: Proceedings of the 27th International Conference on Machine Learning
(ICML). 2010. url: https://dl.acm.org/doi/10.5555/3104322.3104425.

[44] C. E. Nwankpa et al. “Activation Functions: Comparison of Trends in Practice and
Research for Deep Learning”. In: Proceedings of the 2nd International Conference on
Computational Sciences and Technology (INCCST). 2021, pp. 124–133. url: https:
//pure.strath.ac.uk/ws/portalfiles/portal/118946797/Nwankpa_etal_
ICCST_2021_Activation_functions_comparison_of_trends_in_practice.pdf.

[45] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In:
Proceedings of the 3rd International Conference for Learning Representations (ICLR).
2015. arXiv: 1412.6980v9 [cs.LG].

[46] X. Ying. “An Overview of Overfitting and its Solutions”. In: Journal of Physics:
Conference Series 1168(2) 022022 (2019). doi: 10.1088/1742-6596/1168/2/022022.

[47] W. L. Hamilton. Graph Representation Learning. Ed. by P. S. Ronald Brachman
Francesca Rossi. Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing. Morgan & Claypool Publishers, 2020. isbn: 978-1-68173-964-9. doi: 10.2200/
S01045ED1V01Y202009AIM046.

[48] P. Hartmann. Mathematik für Informatiker. Ein praxisbezogenes Lehrbuch. 7th ed.
Springer Vieweg Wiesbaden, 2019. isbn: 978-3-658-26524-3. doi: 10.1007/978-3-
658-26524-3.

95

https://cds.cern.ch/record/2120661
https://cds.cern.ch/record/2120661
https://doi.org/10.1088/1748-0221/12/10/P10003
https://doi.org/10.1051/epjconf/201818202037
https://doi.org/10.1051/epjconf/201818202037
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://cds.cern.ch/record/2646773
https://arxiv.org/abs/2206.06632
https://doi.org/10.1088/2632-2153/abbf9a
https://doi.org/10.1007/978-3-642-61068-4
https://doi.org/10.1016/j.heliyon.2018.e00938
http://neuralnetworksanddeeplearning.com/
https://doi.org/10.1007/BF00342633
https://dl.acm.org/doi/10.5555/3104322.3104425
https://pure.strath.ac.uk/ws/portalfiles/portal/118946797/Nwankpa_etal_ICCST_2021_Activation_functions_comparison_of_trends_in_practice.pdf
https://pure.strath.ac.uk/ws/portalfiles/portal/118946797/Nwankpa_etal_ICCST_2021_Activation_functions_comparison_of_trends_in_practice.pdf
https://pure.strath.ac.uk/ws/portalfiles/portal/118946797/Nwankpa_etal_ICCST_2021_Activation_functions_comparison_of_trends_in_practice.pdf
https://arxiv.org/abs/1412.6980v9
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.2200/S01045ED1V01Y202009AIM046
https://doi.org/10.2200/S01045ED1V01Y202009AIM046
https://doi.org/10.1007/978-3-658-26524-3
https://doi.org/10.1007/978-3-658-26524-3

96 Bibliography

[49] R. Trudeau. Introduction to Graph Theory. Dover Books on Mathematics. New York:
Dover Publications Inc., 1993. isbn: 978-0-486-67870-2.

[50] I. Stanimirović and M. Tasic. “Performance comparison of storage formats for sparse
matrices”. In: Facta Universitatis. Series Mathematics and Informatics 24 (2009),
pp. 39–51. url: http://facta.junis.ni.ac.rs/mai/mai24/fumi-24_39_51.pdf.

[51] A. M. Deiana et al. “Applications and Techniques for Fast Machine Learning in
Science”. In: Frontiers in Big Data 5:787421 (2022). doi: 10.3389/fdata.2022.
787421.

[52] P. W. Battaglia et al. “Relational inductive biases, deep learning, and graph networks”.
In: Computing Research Repository (CoRR) (2018). arXiv: 1806.01261v3 [cs.LG].

[53] J. Gilmer et al. “Neural Message Passing for Quantum Chemistry”. In: Proceedings of
the 34th International Conference on Machine Learning (ICML). Vol. 70. JMLR.org,
2017, pp. 1263–1272. arXiv: 1704.01212v2 [cs.LG].

[54] T. N. Kipf and M. Welling. “Semi-Supervised Classification with Graph Convo-
lutional Networks”. In: Proceedings of the International Conference on Learning
Representations (ICLR). 2017. arXiv: 1609.02907v4 [cs.LG].

[55] R. M. Schmidt. “Recurrent Neural Networks (RNNs): A gentle Introduction and
Overview”. In: Computing Research Repository (CoRR) (2019). arXiv: 1912.05911
[cs.LG].

[56] Y. Li et al. “Gated Graph Sequence Neural Networks”. In: International Conference
for Learning Representations (ICLR) (2017). arXiv: 1511.05493v4 [cs.LG].

[57] K. Cho et al. “Learning Phrase Representations using RNN Encoder-Decoder for Sta-
tistical Machine Translation”. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, 2014, pp. 1724–1734. doi: 10.3115/v1/D14-1179.

[58] J. Zhou et al. “Graph neural networks: A review of methods and applications”. In:
AI Open 1 (2020), pp. 57–81. doi: 10.1016/j.aiopen.2021.01.001.

[59] F. Xu et al. “Explainable AI: A Brief Survey on History, Research Areas, Approaches
and Challenges”. In: Natural Language Processing and Chinese Computing. 8th CCF
International Conference, NLPCC 2019, Dunhuang, China, October 9–14, 2019,
Proceedings, Part II. Vol. LNAI 11839. Lecture Notes in Computer Science. Springer,
Cham, 2019, pp. 563–574. doi: 10.1007/978-3-030-32236-6_51.

[60] H. Yuan et al. “Explainability in Graph Neural Networks: A Taxonomic Survey”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2022). doi:
10.1109/TPAMI.2022.3204236.

[61] Kowsari et al. “Text Classification Algorithms: A Survey”. In: Information 10(4)
(2019), p. 150. doi: 10.3390/info10040150.

[62] M. Fratello et al. “Multi-View Ensemble Classification of Brain Connectivity Images
for Neurodegeneration Type Discrimination”. In: Neuroinformatics 15 (2017), pp. 199–
213. doi: 10.1007/s12021-017-9324-2.

[63] R. Ying et al. “GNNExplainer: Generating Explanations for Graph Neural Networks”.
In: Advances in Neural Information Processing Systems (NeurIPS). Ed. by H.
Wallach et al. Vol. 32. 2019. url: https://proceedings.neurips.cc/paper/2019/
file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf.

[64] J. Fosso-Tande. Applications of Taylor series. 2013. url: http://sces.phys.utk.
edu/~moreo/mm08/fosso.pdf.

96

http://facta.junis.ni.ac.rs/mai/mai24/fumi-24_39_51.pdf
https://doi.org/10.3389/fdata.2022.787421
https://doi.org/10.3389/fdata.2022.787421
https://arxiv.org/abs/1806.01261v3
https://arxiv.org/abs/1704.01212v2
https://arxiv.org/abs/1609.02907v4
https://arxiv.org/abs/1912.05911
https://arxiv.org/abs/1912.05911
https://arxiv.org/abs/1511.05493v4
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1007/978-3-030-32236-6_51
https://doi.org/10.1109/TPAMI.2022.3204236
https://doi.org/10.3390/info10040150
https://doi.org/10.1007/s12021-017-9324-2
https://proceedings.neurips.cc/paper/2019/file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf
http://sces.phys.utk.edu/~moreo/mm08/fosso.pdf
http://sces.phys.utk.edu/~moreo/mm08/fosso.pdf

Bibliography 97

[65] S. Wunsch et al. “Identifying the Relevant Dependencies of the Neural Network
Response on Characteristics of the Input Space”. In: Computing and Software for
Big Science 2(5) (2018). doi: 10.1007/s41781-018-0012-1.

[66] G. S. Heine. “Illustration of the Neural Network Learning Process during Training”.
Bachelor thesis. Karlsruhe Institute of Technology (KIT), 2019. url: https://
publish.etp.kit.edu/record/21984.

[67] G. B. Arfken and H. J. Weber. Mathematical methods for physicists. 6th ed. Elsevier
Academic Press, 2005. isbn: 0-12-059876-0.

[68] T. Halenke. “Studien zu Graph Neural Networks in tt + bb-Prozessen am CMS-
Experiment”. Bachelor thesis. Karlsruhe Institute of Technology (KIT), 2021. url:
https://publish.etp.kit.edu/record/22074.

[69] M. Erhart. “Simultaneous Cross Section Measurements of tt̄ + X processes using
Graph Neural Networks”. Master thesis. Karlsruhe Institute of Technology (KIT),
2022.

[70] M. Fey and J. E. Lenssen. “Fast Graph Representation Learning with PyTorch Geo-
metric”. In: ICLR Workshop on Representation Learning on Graphs and Manifolds.
2019. arXiv: 1903.02428v3 [cs.LG].

[71] A. Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Proceedings of the 33rd Conference on Neural Information Processing
Systems (NeurIPS). Ed. by H. Wallach et al. 2019. url: https://proceedings.
neurips . cc / paper / 2019 / file / bdbca288fee7f92f2bfa9f7012727740 - Paper .
pdf.

[72] PyTorch Contributors. PyTorch Documentation. 2022. url: https://pytorch.org/
docs/stable/generated/torch.use_deterministic_algorithms.html. Accessed
October 26, 2022.

[73] S. Alioli et al. “A general framework for implementing NLO calculations in shower
Monte Carlo programs: the POWHEG BOX”. In: Journal of High Energy Physics
(JHEP) 2010(43) (2010). doi: 10.1007/JHEP06(2010)043.

[74] T. Sjöstrand et al. “An introduction to PYTHIA 8.2”. In: Computer Physics Com-
munications 191 (2015), pp. 159–177. doi: 10.1016/j.cpc.2015.01.024.

[75] The CMS Collaboration. “Extraction and validation of a new set of CMS pythia8
tunes from underlying-event measurements”. In: The European Physical Journal C
80(4) (2020). doi: 10.1140/epjc/s10052-019-7499-4.

[76] F. Maltoni, G. Ridolfi, and M. Ubiali. “b-initiated processes at the LHC: a reap-
praisal”. In: Journal of High Energy Physics (JHEP) 2012(22) (2012). doi: 10.1007/
JHEP07(2012)022.

[77] E. L. Pfeffer. “Studies on tt̄+bb̄ production at the CMS experiment”. Master thesis.
Karlsruhe Institute of Technology (KIT), 2021. url: https://publish.etp.kit.
edu/record/22082.

[78] T. Fawcett. “An introduction to ROC analysis”. In: Pattern Recognition Letters
27(8) (2006), pp. 861–874. doi: 10.1016/j.patrec.2005.10.010.

[79] I. Henrion et al. “Neural Message Passing for Jet Physics”. In: Deep Learning for
Physical Sciences Workshop at the 31st Conference on Neural Information Processing
Systems (NeurIPS) (2017). url: https : / / dl4physicalsciences . github . io /
files/nips_dlps_2017_29.pdf.

97

https://doi.org/10.1007/s41781-018-0012-1
https://publish.etp.kit.edu/record/21984
https://publish.etp.kit.edu/record/21984
https://publish.etp.kit.edu/record/22074
https://arxiv.org/abs/1903.02428v3
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
https://doi.org/10.1007/JHEP06(2010)043
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1140/epjc/s10052-019-7499-4
https://doi.org/10.1007/JHEP07(2012)022
https://doi.org/10.1007/JHEP07(2012)022
https://publish.etp.kit.edu/record/22082
https://publish.etp.kit.edu/record/22082
https://doi.org/10.1016/j.patrec.2005.10.010
https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf

98 Bibliography

[80] E. A. Moreno et al. “JEDI-net: a jet identification algorithm based on interaction
networks”. In: The European Physical Journal C 80(58) (2020). doi: 10.1140/epjc/
s10052-020-7608-4.

[81] C. Morris et al. “Weisfeiler and Leman Go Neural: Higher-order Graph Neural Net-
works”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33(01).
2019, pp. 4602–4609. doi: 10.1609/aaai.v33i01.33014602.

98

https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1609/aaai.v33i01.33014602

Appendix

99

100 8 Appendix

A Distribution of Observables

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
b tag

0

100

200

300

400

500

600

310×

E
ve

nt
s

Simulation Work in Progress CMS

b+btt

)bH(btt

)bZ(btt

 4 b-tagged jets≥ 6 jets, ≥
Simulation Work in Progress CMS

0 100 200 300 400 500 600 700
E (GeV)

0
20
40
60
80

100
120
140
160
180
200
220
240

310×

E
ve

nt
s

Simulation Work in Progress CMS

b+btt

)bH(btt

)bZ(btt

 4 b-tagged jets≥ 6 jets, ≥
Simulation Work in Progress CMS

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2
η

0
20
40
60
80

100
120
140
160
180
200
220

310×

E
ve

nt
s

Simulation Work in Progress CMS

b+btt

)bH(btt

)bZ(btt

 4 b-tagged jets≥ 6 jets, ≥
Simulation Work in Progress CMS

0 5 10 15 20 25 30 35 40 45 50
M (GeV)

0

50

100

150

200

250

300
310×

E
ve

nt
s

Simulation Work in Progress CMS

b+btt

)bH(btt

)bZ(btt

 4 b-tagged jets≥ 6 jets, ≥
Simulation Work in Progress CMS

3− 2− 1− 0 1 2 3
φ

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

E
ve

nt
s

Simulation Work in Progress CMS

b+btt

)bH(btt

)bZ(btt

 4 b-tagged jets≥ 6 jets, ≥
Simulation Work in Progress CMS

0 50 100 150 200 250 300 350 400 450
 (GeV)

T
p

0

50

100

150

200

250

310×

E
ve

nt
s

Simulation Work in Progress CMS

b+btt

)bH(btt

)bZ(btt

 4 b-tagged jets≥ 6 jets, ≥
Simulation Work in Progress CMS

Figure A.1: Distribution of the deployed vertex attributes pre-standardization.
For each histogram 30 equidistant bins are chosen. Not all of this information
exists for leptons and neutrinos. The particular features are set to zero then.

100

B Decision Basis for Outlier Criterion (b) 101

B Decision Basis for Outlier Criterion (b)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R
CMS Simulation Work in Progress

Mean ROC curve ± 1 std.
(area = 0.849 ± 0.017 | + (69.9 ± 3.4) %)

Baseline

(a)
0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

CMS Simulation Work in Progress

Mean ROC curve ± 1 std.
(area = 0.8757 ± 0.0010 | + (75.14 ± 0.20) %)

Baseline

(b)

Figure B.1: Exemplary ROC curves. In addition to the mean ROC curve (dark blue)
and its spread (gray band, square root of the unbiased sample variance),
which are calculated on the basis of the ROC-AUC values obtained in the ten
realized repetitions of a training, the ROC curve of each repetition is displayed
in both plots. Without the second subcondition of criterion (b), the model
corresponding to the orange ROC curve in (a) and the models corresponding
to the light blue and brown curves in (b) would be discarded. With that
subcondition, only the former is identified as an outlier.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
∆σ

0

50

100

150

200

250

C
ou

n
ts

CMS Simulation Work in Progress

〈∆σ〉 = 0.0093

custom threshold:
∆σ > 0.0025

Figure B.2: Decision basis for the second subcondition of criterion (b). Histogram
of the standard deviation (square root of the unbiased sample variance) differ-
ence pre- and post-removal of models with ROC-AUC values beyond the range
of ⟨ROC-AUC⟩ ± 1.5 · 𝜎pre

ROC-AUC. The histogram consists of 50 equidistant
bins and contains the Δ𝜎 values of all models analyzed in this thesis. With
the selected threshold of Δ𝜎 > 0.0025, the majority of the falsely identified
outliers (cf. Fig. B.1b) can be avoided.

Models with ROC-AUC values beyond the empirically chosen range of ⟨ROC-AUC⟩ ±
1.5 · 𝜎pre

ROC-AUC (first subcondition of criterion (b) of Section 4.3) shall be identified as
outliers and discarded from further consideration. That applies, for instance, to the model
corresponding to the orange ROC curve in Fig. B.1a. However, if a training has an
exceptionally narrow performance spread, also models like the ones corresponding to the
light blue and brown ROC curves in Fig. B.1b fall under the outlier category. This is clearly
not desired and therefore, the additional subcondition Δ𝜎 > 0.0025 is introduced. The
histogram in Fig B.2 forms the decision basis for this choice. As shown in the histogram,
the majority of these unwanted cases can be avoided with this threshold value, while
models like the one corresponding to the orange curve in Fig. B.1a are still identified as
outliers.

101

102 8 Appendix

C Normalized Performance Rates of NLP-GGSNN

T
able

C
.1:N

orm
alized

perform
ance

rates
of

N
L

P
-G

G
SN

N
.

A
llvaluesin

the
table

are
given

in
%

.The
subscriptof

C
R

designates
the

category
that

the
N

LP-G
G

SN
N

confuses
w

ith
an

additionalb
jet.

D
ue

to
rounding

errors,
the

sum
ofthe

m
ean

confusion
rates

per
class

is
not

necessarily
100%

.
The

sam
e

applies
to

the
sum

ofthe
1/2

and
0/2

rates
per

class.
T

hese
rates

form
the

basis
ofthe

A
ddB-X

m
odeling.

class
〈C

R
H

adT
opB 〉

〈C
R

LepT
opB 〉

〈C
R

H
adT

opQ 〉
〈C

R
U

nknow
n 〉

〈C
R

Lepton 〉
1/2

rate
0/2

rate
〈C

R
M

issing 〉
tt̄H

(bb̄)
36.89±

0.19
51.23±

0.19
8.49±

0.08
3.397±

0.033
0.0±

0.0
89±

10
11±

10
tt̄Z(bb̄)

32.58±
0.14

52.97±
0.16

10.84±
0.12

3.608±
0.033

0.0±
0.0

88±
11

12±
11

t t+
bb

34.12±
0.12

48.88±
0.13

10.52±
0.08

6.48±
0.05

0.0±
0.0

84±
11

16±
11

102

D Properties of the Manipulated Data Sets 103

D Properties of the Manipulated Data Sets

T
able

D
.1:F

raction
of

m
anipulated

objects
per

category
in

the
m

anipulated
datasets.

A
llvalues

in
the

table
are

given
in

%
.

m
odeling

strategy
fraction

ofm
anipulated

events
fraction

ofm
anipulated

objects
in

the
categories

A
ddB

H
adT

opB
LepT

opB
H

adT
opQ

U
nknow

n
Lepton/M

issing

A
ddB-LT

B

10
5.00

0
.00

10.00
0
.00

0
.00

0.00
20

10.00
0.00

20.00
0
.00

0
.00

0.00
30

15.00
0.00

30.00
0
.00

0
.00

0.00
40

20.00
0.00

40.00
0
.00

0
.00

0.00
50

25.00
0.00

50.00
0
.00

0
.00

0.00
60

30.00
0.00

60.00
0
.00

0
.00

0.00
70

35.00
0.00

70.00
0
.00

0
.00

0.00
80

40.00
0.00

80.00
0
.00

0
.00

0.00
90

45.00
0.00

90.00
0
.00

0
.00

0.00
100

50.00
0.00

100.00
0
.00

0
.00

0.00

A
ddB-X

10
5.60

4
.10

5.62
0
.61

0
.34

0.00
20

11.21
8.17

11.31
1
.21

0
.66

0.00
30

16.80
12.24

16.97
1
.79

1
.00

0.00
40

22.45
16.44

22.63
2
.38

1
.34

0.00
50

28.07
20.62

28.19
2
.98

1
.70

0.00
60

33.69
24.74

33.85
3
.58

2
.03

0.00
70

39.32
28.97

39.41
4
.18

2
.39

0.00
80

44.91
33.14

45.00
4
.76

2
.71

0.00
90

50.53
37.31

50.60
5
.35

3
.07

0.00
100

56.13
41.49

56.18
5
.94

3
.40

0.00

103

104 8 Appendix

E Derivation of Δ𝑟*max

Proof. Let 𝑀 be the number of objects 𝑞 in a finite ranking and

⟨Δ𝑟⟩ = 1
𝑀

𝑀∑︁
𝑖=1

Δ𝑟(𝑞𝑖) (8.1)

= 1
𝑀

𝑀∑︁
𝑖=1

⃒⃒
𝑟𝐴(𝑞𝑖)− 𝑟𝐵(𝑞𝑖)

⃒⃒
(8.2)

the mean absolute difference in rank between a finite ranking 𝐴 and a finite ranking 𝐵.
Thereby, 𝑟𝐴(𝑞𝑖) and 𝑟𝐵(𝑞𝑖) denote the rank of 𝑞 in the finite rankings {𝐴,𝐵} and it is
assumed that 𝐴 and 𝐵 are only comprised of the exact same objects. The maximum
mean absolute difference in rank is obtained when the sum is maximal. This is the case if
each summand in the sum is maximal. As this is dependent on every other summand in
finite rankings, it is justified to start with finding the maximum of the first summand and
then continue successively with the next summands. Obviously, if the highest and lowest
ranked object in 𝐴 are ranked in the exact opposite way in 𝐵, the first two summands are
maximal and corresponds to 𝑀 − 1 each. The subsequent two summands in Equation 8.1
are maximal and corresponds to (𝑀 − 1)− 2 each if the second highest ranked object and
the next-to-last ranked object in 𝐴 switch their positions in 𝐵 and so on. This can be
executed 𝑚 times, where

𝑚 =
{︃

𝑀
2 , if 𝑀 is even.

𝑀−1
2 , if 𝑀 is odd.

(8.3)

For the maximum mean absolute rank difference, it holds

Δ𝑟*
max = 2 · 1

𝑀

(︂
(𝑀 − 1) + ((𝑀 − 1)− 2) + · · ·+

(︂(︂
𝑀 − 𝑚

2 + 1
)︂
− 𝑚

2

)︂)︂
(8.4)

=

⎧⎪⎪⎨⎪⎪⎩
2 · 1

𝑀

𝑚∑︀
𝑖=0

(2𝑖+ 1) , if 𝑀 is even.

2 · 1
𝑀

𝑚∑︀
𝑖=0

2𝑖 , if 𝑀 is odd.
(8.5)

=
{︃

1
𝑀 ·

𝑀
2

2 , if 𝑀 is even.
1

𝑀 ·
𝑀2−1

2 , if 𝑀 is odd.
(8.6)

104

F Supplementary Information to Chapter 6 105

F Supplementary Information to Chapter 6

0.000

0.002

0.004

0.006

0.008

E
ve

n
ts

(n
or

m
al

iz
ed

to
u

n
it

ar
ea

)

CMS Simulation Work in Progress

tt̄H(bb̄)

tt̄Z(bb̄)

tt̄ + bb̄

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
at

io
tt̄

H
(b

b̄
)/

tt̄
+

b
b̄

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
at

io
tt̄

Z
(b

b̄
)/

tt̄
+

b
b̄

50 100 150 200 250 300 350 400

pHadTopB
T (GeV)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
at

io
tt̄

Z
(b

b̄
)/

tt̄
H

(b
b̄

)

(a)

0.000

0.005

0.010

0.015

0.020

E
ve

n
ts

(n
or

m
al

iz
ed

to
u

n
it

ar
ea

)

CMS Simulation Work in Progress

tt̄H(bb̄)

tt̄Z(bb̄)

tt̄ + bb̄

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
at

io
tt̄

H
(b

b̄
)/

tt̄
+

b
b̄

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
R

at
io

tt̄
Z

(b
b̄

)/
tt̄

+
b

b̄

50 100 150 200 250 300 350 400

pLepTopB
T (GeV)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
at

io
tt̄

Z
(b

b̄
)/

tt̄
H

(b
b̄

)

(b)

Figure F.1: Distribution of the transverse momenta of HadTopB (a) and Lep-
TopB jets (b). All histograms consist of 100 equidistant bins and are
individually normalized to unit area for an enhanced comparability. Both
observables appear to only have minor discriminating power for tt̄+X events.

105

106 8 Appendix

0.0000

0.0005

0.0010

0.0015

0.0020

E
ve

n
ts

(n
or

m
al

iz
ed

to
u

n
it

ar
ea

)

CMS Simulation Work in Progress

tt̄ + bb̄

tt̄H(bb̄)

tt̄Z(bb̄)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
at

io
tt̄

H
(b

b̄
)/

tt̄
+

b
b̄

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
at

io
tt̄

Z
(b

b̄
)/

tt̄
+

b
b̄

500 750 1000 1250 1500 1750 2000 2250 2500

M tt̄
inv (GeV)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
at

io
tt̄

Z
(b

b̄
)/

tt̄
H

(b
b̄

)

Figure F.2: Distribution of the invariant mass of the tt system. All histograms
consist of 100 equidistant bins and are individually normalized to unit area for
an enhanced comparability. The invariant mass of the tt system 𝑀 tt

inv does
not show any discriminating power for tt̄+X events.

106

F Supplementary Information to Chapter 6 107

0.261 0.290 0.319 0.348 0.377

〈σ(F)HadTopB
j 〉

b tag

HTB

η

M

pT

E

φ

HTQ

MET

Unk

`

AddB

LTB

F
ea

tu
re

CMS Simulation Work in Progress

Generator-level

0.259 0.306 0.354 0.402 0.449

〈σ(F)HadTopB
j 〉

HTB

AddB

pT

b tag

η

E

M

φ

HTQ

MET

Unk

`

LTB

F
ea

tu
re

CMS Simulation Work in Progress

NLP-score-level

0.259 0.304 0.348 0.393 0.438

〈σ(F)HadTopB
j 〉

HTB

b tag

pT

η

M

E

φ

HTQ

MET

Unk

`

AddB

LTB

F
ea

tu
re

CMS Simulation Work in Progress

NLP-class-level

GNNX:

Generator-level vs. NLP-score-level:
〈∆r〉 = 2.0 (=̂ 69.05 %)
∆rmax = 10.00 (AddB)

Generator-level vs. NLP-class-level:
〈∆r〉 = 0.46 (=̂ 92.86 %)
∆rmax = 2.00 (pT)

Figure F.3: Ranking of the GNNX-based HadTopB specific feature importance
for the generator-level (top left), NLP-score-level (top right) and
NLP-class-level (bottom left) GNN response. The most important
category flag is the one corresponding to the actual category under scrutiny
(HadTopB) across all GNNs. The remaining category flags are only of minor
importance. The percentage in the parentheses corresponds to the conformity
1− ⟨Δ𝑟⟩/Δ𝑟*

max of the compared rankings. The variable Δ𝑟max denotes the
highest number of rank difference between the compared rankings and should
not be confused with Δ𝑟*

max, which denotes the maximum mean number of
absolute rank differences between the compared rankings. The objects to which
this applies are specified in the subsequent parentheses.

107

108 8 Appendix

0.264 0.295 0.326 0.356 0.387

〈σ(F)HadTopQ
j 〉

HTQ

η

pT

b tag

M

E

φ

Unk

MET

LTB

AddB

`

HTB

F
ea

tu
re

CMS Simulation Work in Progress

Generator-level

0.263 0.297 0.331 0.364 0.398

〈σ(F)HadTopQ
j 〉

pT

η

b tag

HTQ

E

M

AddB

φ

Unk

MET

LTB

`

HTB

F
ea

tu
re

CMS Simulation Work in Progress

NLP-score-level

0.263 0.319 0.375 0.430 0.486

〈σ(F)HadTopQ
j 〉

b tag

HTQ

pT

η

M

E

φ

Unk

MET

LTB

`

AddB

HTB

F
ea

tu
re

CMS Simulation Work in Progress

NLP-class-level

GNNX:

Generator-level vs. NLP-score-level:
〈∆r〉 = 1.23 (=̂ 80.95 %)
∆rmax = 4.00 (AddB)

Generator-level vs. NLP-class-level:
〈∆r〉 = 0.62 (=̂ 90.48 %)
∆rmax = 3.00 (b tag)

Figure F.4: Ranking of the GNNX-based HadTopQ specific feature importance
for the generator-level (top left), NLP-score-level (top right) and
NLP-class-level (bottom left) GNN response. The most important
category flag is the one corresponding to the actual category under scrutiny
(HadTopQ) across all GNNs. The remaining category flags are only of minor
importance. The percentage in the parentheses corresponds to the conformity
1− ⟨Δ𝑟⟩/Δ𝑟*

max of the compared rankings. The variable Δ𝑟max denotes the
highest number of rank difference between the compared rankings and should
not be confused with Δ𝑟*

max, which denotes the maximum mean number of
absolute rank differences between the compared rankings. The objects to which
this applies are specified in the subsequent parentheses.

108

F Supplementary Information to Chapter 6 109

0.269 0.299 0.329 0.359 0.389

〈σ(F)Lepton
j 〉

`

M

η

pT

b tag

E

φ

AddB

LTB

HTB

MET

Unk

HTQ

F
ea

tu
re

CMS Simulation Work in Progress

Generator-level

0.269 0.320 0.371 0.422 0.474

〈σ(F)Lepton
j 〉

`

pT

b tag

M

η

φ

E

AddB

LTB

HTB

MET

Unk

HTQ

F
ea

tu
re

CMS Simulation Work in Progress

NLP-score-level

0.269 0.316 0.362 0.409 0.456

〈σ(F)Lepton
j 〉

b tag

pT

M

`

η

φ

E

AddB

LTB

HTB

MET

Unk

HTQ

F
ea

tu
re

CMS Simulation Work in Progress

NLP-class-level

GNNX:

Generator-level vs. NLP-score-level:
〈∆r〉 = 0.77 (=̂ 88.1 %)
∆rmax = 2.00
(pT, η, M , b tag)

Generator-level vs. NLP-class-level:
〈∆r〉 = 1.08 (=̂ 83.33 %)
∆rmax = 4.00 (b tag)

Figure F.5: Ranking of the GNNX-based Lepton specific feature importance
for the generator-level (top left), NLP-score-level (top right) and
NLP-class-level (bottom left) GNN response. The most important
category flag is the one corresponding to the actual category under scrutiny
(Lepton) across all GNNs. The remaining category flags are only of minor
importance. The percentage in the parentheses corresponds to the conformity
1− ⟨Δ𝑟⟩/Δ𝑟*

max of the compared rankings. The variable Δ𝑟max denotes the
highest number of rank difference between the compared rankings and should
not be confused with Δ𝑟*

max, which denotes the maximum mean number of
absolute rank differences between the compared rankings. The objects to which
this applies are specified in the subsequent parentheses.

109

110 8 Appendix

0.264 0.292 0.320 0.348 0.376

〈σ(F)LepTopB
j 〉

LTB

b tag

η

M

pT

φ

E

Unk

HTQ

MET

AddB

`

HTB

F
ea

tu
re

CMS Simulation Work in Progress

Generator-level

0.263 0.313 0.364 0.414 0.464

〈σ(F)LepTopB
j 〉

AddB

pT

LTB

η

b tag

E

φ

M

Unk

HTQ

MET

`

HTB

F
ea

tu
re

CMS Simulation Work in Progress

NLP-score-level

0.263 0.318 0.372 0.427 0.482

〈σ(F)LepTopB
j 〉

LTB

pT

η

b tag

M

φ

E

Unk

HTQ

MET

AddB

`

HTB

F
ea

tu
re

CMS Simulation Work in Progress

NLP-class-level

GNNX:

Generator-level vs. NLP-score-level:
〈∆r〉 = 2.15 (=̂ 66.67 %)
∆rmax = 10.00 (AddB)

Generator-level vs. NLP-class-level:
〈∆r〉 = 0.46 (=̂ 92.86 %)
∆rmax = 3.00 (pT)

Figure F.6: Ranking of the GNNX-based LepTopB specific feature importance
for the generator-level (top left), NLP-score-level (top right) and
NLP-class-level (bottom left) GNN response. As a matter of fact, the
AddB flag is the most important flag and feature in LepTopB vertices for the
NLP-score-level GNN response. The remaining category flags are in all rankings
only of minor importance. The percentage in the parentheses corresponds to
the conformity 1−⟨Δ𝑟⟩/Δ𝑟*

max of the compared rankings. The variable Δ𝑟max
denotes the highest number of rank difference between the compared rankings
and should not be confused with Δ𝑟*

max, which denotes the maximum mean
number of absolute rank differences between the compared rankings. The
objects to which this applies are specified in the subsequent parentheses.

110

F Supplementary Information to Chapter 6 111

0.270 0.310 0.350 0.391 0.431

〈σ(F)Missing
j 〉

MET

M

b tag

pT

E

φ

`

AddB

HTQ

η

HTB

Unk

LTB

F
ea

tu
re

CMS Simulation Work in Progress

Generator-level

0.270 0.319 0.368 0.417 0.466

〈σ(F)Missing
j 〉

MET

pT

M

b tag

E

φ

`

AddB

HTQ

η

HTB

Unk

LTB

F
ea

tu
re

CMS Simulation Work in Progress

NLP-score-level

0.270 0.317 0.365 0.412 0.460

〈σ(F)Missing
j 〉

b tag

MET

pT

M

φ

E

`

AddB

HTQ

η

HTB

Unk

LTB

F
ea

tu
re

CMS Simulation Work in Progress

NLP-class-level

GNNX:

Generator-level vs. NLP-score-level:
〈∆r〉 = 0.31 (=̂ 95.24 %)
∆rmax = 2.00 (pT)

Generator-level vs. NLP-class-level:
〈∆r〉 = 0.62 (=̂ 90.48 %)
∆rmax = 2.00 (M , b tag)

Figure F.7: Ranking of the GNNX-based Missing specific feature importance
for the generator-level (top left), NLP-score-level (top right) and
NLP-class-level (bottom left) GNN response. The most important
category flag is the one corresponding to the actual category under scrutiny
(Missing) across all GNNs. The remaining category flags are in all rankings
only of minor importance. The percentage in the parentheses corresponds to
the conformity 1−⟨Δ𝑟⟩/Δ𝑟*

max of the compared rankings. The variable Δ𝑟max
denotes the highest number of rank difference between the compared rankings
and should not be confused with Δ𝑟*

max, which denotes the maximum mean
number of absolute rank differences between the compared rankings. The
objects to which this applies are specified in the subsequent parentheses.

111

112 8 Appendix

0.268 0.316 0.365 0.413 0.461

〈σ(F)Unknown
j 〉

Unk

η

pT

M

b tag

E

φ

LTB

AddB

`

HTQ

HTB

MET

F
ea

tu
re

CMS Simulation Work in Progress

Generator-level

0.265 0.311 0.356 0.401 0.446

〈σ(F)Unknown
j 〉

pT

Unk

η

b tag

E

M

φ

AddB

LTB

`

HTB

HTQ

MET

F
ea

tu
re

CMS Simulation Work in Progress

NLP-score-level

0.265 0.322 0.378 0.434 0.490

〈σ(F)Unknown
j 〉

b tag

Unk

pT

η

M

φ

E

LTB

AddB

`

HTB

HTQ

MET

F
ea

tu
re

CMS Simulation Work in Progress

NLP-class-level

GNNX:

Generator-level vs. NLP-score-level:
〈∆r〉 = 0.92 (=̂ 85.71 %)
∆rmax = 2.00 (pT, M)

Generator-level vs. NLP-class-level:
〈∆r〉 = 0.92 (=̂ 85.71 %)
∆rmax = 4.00 (b tag)

Figure F.8: Ranking of the GNNX-based Unknown specific feature importance
for the generator-level (top left), NLP-score-level (top right) and
NLP-class-level (bottom left) GNN response. The most important
category flag is the one corresponding to the actual category under scrutiny
(Unknown) across all GNNs. The remaining category flags are in all rankings
only of minor importance. The percentage in the parentheses corresponds to
the conformity 1−⟨Δ𝑟⟩/Δ𝑟*

max of the compared rankings. The variable Δ𝑟max
denotes the highest number of rank difference between the compared rankings
and should not be confused with Δ𝑟*

max, which denotes the maximum mean
number of absolute rank differences between the compared rankings. The
objects to which this applies are specified in the subsequent parentheses.

112

F Supplementary Information to Chapter 6 113

pT φ η M E b tag AddB HTB HTQ LTB ` MET Unk

pT

φ

η

M

E

b tag

AddB

HTB

HTQ

LTB

`

MET

Unk

0.144 0.029 0.093 0.258 0.073 0.102 0.554 0.25 0.226 0.2 0.204 0.252 0.316

0.029 0.003 0.013 0.026 0.009 0.015 0.073 0.035 0.031 0.029 0.028 0.036 0.041

0.093 0.013 0.018 0.059 0.022 0.032 0.166 0.076 0.07 0.064 0.061 0.08 0.097

0.258 0.026 0.059 0.126 0.066 0.089 0.528 0.218 0.198 0.172 0.182 0.223 0.292

0.073 0.009 0.022 0.066 0.015 0.035 0.187 0.081 0.076 0.067 0.067 0.087 0.107

0.102 0.015 0.032 0.089 0.035 0.032 0.241 0.119 0.107 0.098 0.096 0.124 0.142

0.554 0.073 0.166 0.528 0.187 0.241 1.463 0.849 0.886 0.687 0.7 0.888 1.11

0.25 0.035 0.076 0.218 0.081 0.119 0.849 0.154 0.242 0.232 0.208 0.259 0.297

0.226 0.031 0.07 0.198 0.076 0.107 0.886 0.242 0.141 0.223 0.209 0.271 0.305

0.2 0.029 0.064 0.172 0.067 0.098 0.687 0.232 0.223 0.13 0.201 0.261 0.287

0.204 0.028 0.061 0.182 0.067 0.096 0.7 0.208 0.209 0.201 0.138 0.29 0.32

0.252 0.036 0.08 0.223 0.087 0.124 0.888 0.259 0.271 0.261 0.29 0.187 0.353

0.316 0.041 0.097 0.292 0.107 0.142 1.11 0.297 0.305 0.287 0.32 0.353 0.268

CMS Simulation Work in Progress

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a)
pT φ η M E b tag AddB HTB HTQ LTB ` MET Unk

pT

φ

η

M

E

b tag

AddB

HTB

HTQ

LTB

`

MET

Unk

0.414 0.1 0.334 0.377 0.361 0.234 2.1 0.588 0.28 0.456 0.394 0.79 0.654

0.1 0.01 0.053 0.048 0.046 0.037 0.294 0.09 0.047 0.068 0.064 0.117 0.097

0.334 0.053 0.088 0.124 0.128 0.103 0.813 0.248 0.129 0.206 0.187 0.329 0.269

0.377 0.048 0.124 0.105 0.162 0.115 1.051 0.277 0.132 0.236 0.193 0.442 0.343

0.361 0.046 0.128 0.162 0.085 0.104 0.883 0.269 0.125 0.203 0.174 0.345 0.283

0.234 0.037 0.103 0.115 0.104 0.054 0.65 0.216 0.103 0.158 0.15 0.277 0.224

2.1 0.294 0.813 1.051 0.883 0.65 3.963 2.023 0.946 1.644 1.461 3.082 2.346

0.588 0.09 0.248 0.277 0.269 0.216 2.023 0.317 0.257 0.397 0.364 0.746 0.582

0.28 0.047 0.129 0.132 0.125 0.103 0.946 0.257 0.074 0.185 0.169 0.309 0.263

0.456 0.068 0.206 0.236 0.203 0.158 1.644 0.397 0.185 0.158 0.249 0.449 0.378

0.394 0.064 0.187 0.193 0.174 0.15 1.461 0.364 0.169 0.249 0.199 0.606 0.475

0.79 0.117 0.329 0.442 0.345 0.277 3.082 0.746 0.309 0.449 0.606 0.804 1.081

0.654 0.097 0.269 0.343 0.283 0.224 2.346 0.582 0.263 0.378 0.475 1.081 0.377

CMS Simulation Work in Progress

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(b)

pT φ η M E b tag AddB HTB HTQ LTB ` MET Unk

pT

φ

η

M

E

b tag

AddB

HTB

HTQ

LTB

`

MET

Unk

0.274 0.065 0.196 0.227 0.11 0.219 0.384 0.217 0.246 0.217 0.162 0.219 0.232

0.065 0.01 0.04 0.035 0.022 0.044 0.081 0.041 0.045 0.042 0.036 0.047 0.046

0.196 0.04 0.051 0.071 0.045 0.09 0.16 0.085 0.097 0.084 0.074 0.102 0.096

0.227 0.035 0.071 0.074 0.058 0.113 0.206 0.111 0.12 0.114 0.088 0.118 0.122

0.11 0.022 0.045 0.058 0.02 0.063 0.115 0.06 0.067 0.06 0.05 0.068 0.07

0.219 0.044 0.09 0.113 0.063 0.085 0.245 0.129 0.145 0.126 0.106 0.149 0.145

0.384 0.081 0.16 0.206 0.115 0.245 0.247 0.22 0.255 0.205 0.168 0.253 0.232

0.217 0.041 0.085 0.111 0.06 0.129 0.22 0.099 0.174 0.146 0.116 0.16 0.162

0.246 0.045 0.097 0.12 0.067 0.145 0.255 0.174 0.132 0.166 0.134 0.186 0.186

0.217 0.042 0.084 0.114 0.06 0.126 0.205 0.146 0.166 0.087 0.109 0.153 0.15

0.162 0.036 0.074 0.088 0.05 0.106 0.168 0.116 0.134 0.109 0.054 0.123 0.117

0.219 0.047 0.102 0.118 0.068 0.149 0.253 0.16 0.186 0.153 0.123 0.138 0.218

0.232 0.046 0.096 0.122 0.07 0.145 0.232 0.162 0.186 0.15 0.117 0.218 0.112

CMS Simulation Work in Progress

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(c)

Figure F.9: Second-order Taylor coefficients of the generator-level (a), NLP-
score-level (b) and NLP-class-level GNN (c). While the generator-level
GNN is mainly focused on correlations between the AddB flag and the remaining
flags (or rather it can rely on the correctness of the information captured in the
provided AddB flags), the NLP-score-level GNN response and in particular the
NLP-class-level GNN response are also dependent on information gained from
correlations between other features, e.g., correlations between 𝑝T with all other
features. Hence, the AddB flags provided to the training of the NLP-class-level
GNN are of the lowest quality of all information levels.

113

114 8 Appendix

0.00 0.25 0.50 0.75 1.00

Mean feature importance (normalized)

AddB
pT

HTQ
b tag

η
Unk

HTB
M

MET
LTB
E
`
φ

F
ea

tu
re

CMS Simulation Work in Progress

GNNX

TCA

〈∆r〉 = 2.92 (=̂ 54.76 %)
∆rmax = 6.00 (η, b tag, MET)

(a)

0.00 0.25 0.50 0.75 1.00

Mean feature importance (normalized)

AddB
pT

η
b tag
HTB

E
MET
Unk
M

HTQ
`

LTB
φ

F
ea

tu
re

CMS Simulation Work in Progress

GNNX

TCA

〈∆r〉 = 2.92 (=̂ 54.76 %)
∆rmax = 8.00 (b tag)

(b)

0.00 0.25 0.50 0.75 1.00

Mean feature importance (normalized)

AddB
b tag
pT

η
HTQ
Unk
M
E

HTB
LTB

φ
`

MET

F
ea

tu
re

CMS Simulation Work in Progress

GNNX

TCA

〈∆r〉 = 2.92 (=̂ 54.76 %)
∆rmax = 8.00 (MET)

(c)

Figure F.10: Combined GNNX- and TCA-based normalized feature importance
ranking for the generator-level (a), NLP-score-level (b) and NLP-
class-level (c) GNN. The percentage in the parentheses corresponds to the
conformity 1− ⟨Δ𝑟⟩/Δ𝑟*

max of the compared rankings. The variable Δ𝑟max
denotes the highest number of rank difference between the compared rankings
and should not be confused with Δ𝑟*

max, which denotes the maximum mean
number of absolute rank differences between the compared rankings. The
objects to which this applies are specified in the subsequent parentheses.
The conformity between the GNNX- and TCA-based rankings is in all cases
54.76 %.

114

F Supplementary Information to Chapter 6 115

0.30 0.32 0.34 0.36 0.38 0.40 0.42

〈σ(F)j〉

AddB

Unknown

Missing

HadTopB

HadTopQ

LepTopB

Lepton

C
at

eg
or

y
100 %

5 %

GNNX:

〈∆r〉 = 0.0 (=̂ 100 %)
∆rmax = 0.00

(a)

0.30 0.35 0.40 0.45 0.50

〈σ(F)j〉

AddB

pT

HTQ

b tag

η

Unk

HTB

M

MET

LTB

E

`

φ

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.0 (=̂ 100 %)
∆rmax = 0.00

(b)

0.30 0.35 0.40 0.45 0.50

〈σ(F)AddB
j 〉

AddB

pT

b tag

M

η

φ

E

HTQ

Unk

MET

LTB

`

HTB

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.0 (=̂ 100 %)
∆rmax = 0.00

(c)

0.26 0.28 0.30 0.32 0.34 0.36 0.38

〈σ(F)HadTopB
j 〉

b tag

HTB

η

M

pT

E

φ

HTQ

MET

Unk

`

AddB

LTB

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.0 (=̂ 100 %)
∆rmax = 0.00

(d)

0.26 0.28 0.30 0.32 0.34 0.36 0.38

〈σ(F)HadTopQ
j 〉

HTQ

η

pT

b tag

M

E

φ

Unk

MET

LTB

AddB

`

HTB

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.0 (=̂ 100 %)
∆rmax = 0.00

(e)

0.28 0.30 0.32 0.34 0.36 0.38

〈σ(F)Lepton
j 〉

`

M

η

pT

b tag

E

φ

AddB

LTB

HTB

MET

Unk

HTQ

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.15 (=̂ 98 %)
∆rmax = 1.00 (pT, η)

(f)

0.26 0.28 0.30 0.32 0.34 0.36 0.38

〈σ(F)LepTopB
j 〉

LTB

b tag

η

M

pT

φ

E

Unk

HTQ

MET

AddB

`

HTB

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.15 (=̂ 98 %)
∆rmax = 1.00 (φ, E)

(g)

0.275 0.300 0.325 0.350 0.375 0.400 0.425

〈σ(F)Missing
j 〉

MET

M

b tag

pT

E

φ

`

AddB

HTQ

η

HTB

Unk

LTB

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.0 (=̂ 100 %)
∆rmax = 0.00

(h)

0.30 0.35 0.40 0.45

〈σ(F)Unknown
j 〉

Unk

η

pT

M

b tag

E

φ

LTB

AddB

`

HTQ

HTB

MET

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.0 (=̂ 100 %)
∆rmax = 0.00

(i)

Figure F.11: Comparison of GNNX-based rankings calculated with both 5 %
and 100 % of the test samples for the generator-level GNN. The
percentage in the parentheses corresponds to the conformity 1− ⟨Δ𝑟⟩/Δ𝑟*

max
of the compared rankings. The variable Δ𝑟max denotes the highest number of
rank difference between the compared rankings and should not be confused
with Δ𝑟*

max, which denotes the maximum mean number of absolute rank
differences between the compared rankings. The objects to which this applies
are specified in the subsequent parentheses. In the majority of the cases, the
conformity between the rankings calculated on the basis of the whole test set
and on only 5 % of the test set is 100 %. In the worst case, the conformity is
still 98 %.

115

116 8 Appendix

0.325 0.350 0.375 0.400 0.425 0.450 0.475

〈σ(F)j〉

AddB

HadTopB

LepTopB

Unknown

Missing

Lepton

HadTopQ

C
at

eg
or

y
100 %

5 %

GNNX:

〈∆r〉 = 0.0 (=̂ 100 %)
∆rmax = 0.00

(a)

0.30 0.35 0.40 0.45 0.50

〈σ(F)j〉

AddB

pT

η

b tag

HTB

E

MET

Unk

M

HTQ

`

LTB

φ

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.15 (=̂ 98 %)
∆rmax = 1.00 (M , HTQ)

(b)

0.30 0.35 0.40 0.45 0.50

〈σ(F)AddB
j 〉

AddB

pT

b tag

η

E

M

φ

Unk

HTQ

MET

LTB

`

HTB

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.15 (=̂ 98 %)
∆rmax = 1.00 (HTQ, Unk)

(c)

0.25 0.30 0.35 0.40 0.45

〈σ(F)HadTopB
j 〉

HTB

AddB

pT

b tag

η

E

M

φ

HTQ

MET

Unk

`

LTB

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.31 (=̂ 95 %)
∆rmax = 1.00 (AddB, HTB, HTQ, MET)

(d)

0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

〈σ(F)HadTopQ
j 〉

pT

η

b tag

HTQ

E

M

AddB

φ

Unk

MET

LTB

`

HTB

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.0 (=̂ 100 %)
∆rmax = 0.00

(e)

0.30 0.35 0.40 0.45

〈σ(F)Lepton
j 〉

`

pT

b tag

M

η

φ

E

AddB

LTB

HTB

MET

Unk

HTQ

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.15 (=̂ 98 %)
∆rmax = 1.00 (φ, E)

(f)

0.30 0.35 0.40 0.45

〈σ(F)LepTopB
j 〉

AddB

pT

LTB

η

b tag

E

φ

M

Unk

HTQ

MET

`

HTB

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.15 (=̂ 98 %)
∆rmax = 1.00 (pT, LTB)

(g)

0.30 0.35 0.40 0.45

〈σ(F)Missing
j 〉

MET

pT

M

b tag

E

φ

`

AddB

HTQ

η

HTB

Unk

LTB

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.0 (=̂ 100 %)
∆rmax = 0.00

(h)

0.30 0.35 0.40 0.45

〈σ(F)Unknown
j 〉

pT

Unk

η

b tag

E

M

φ

AddB

LTB

`

HTB

HTQ

MET

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.15 (=̂ 98 %)
∆rmax = 1.00 (φ, M)

(i)

Figure F.12: Comparison of GNNX-based rankings calculated with both 5 %
and 100 % of the test samples for the NLP-score-level GNN. The
percentage in the parentheses corresponds to the conformity 1− ⟨Δ𝑟⟩/Δ𝑟*

max
of the compared rankings. The variable Δ𝑟max denotes the highest number of
rank difference between the compared rankings and should not be confused
with Δ𝑟*

max, which denotes the maximum mean number of absolute rank
differences between the compared rankings. The objects to which this applies
are specified in the subsequent parentheses. The conformity between the
rankings calculated on the basis of the whole test set and on only 5 % of the
test set is 95 % at worst.

116

F Supplementary Information to Chapter 6 117

0.350 0.375 0.400 0.425 0.450 0.475

〈σ(F)j〉

AddB

Unknown

Missing

Lepton

LepTopB

HadTopQ

HadToB

HadTopB

C
at

eg
or

y
100 %

5 %

GNNX:

〈∆r〉 = 0.0 (=̂ 100 %)
∆rmax = 0.00

(a)

0.30 0.35 0.40 0.45 0.50

〈σ(F)j〉

AddB

b tag

pT

η

HTQ

Unk

M

E

HTB

LTB

φ

`

MET

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.0 (=̂ 100 %)
∆rmax = 0.00

(b)

0.30 0.35 0.40 0.45 0.50

〈σ(F)AddB
j 〉

AddB

b tag

pT

η

M

E

φ

Unk

HTQ

MET

LTB

`

HTB

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.31 (=̂ 95 %)
∆rmax = 1.00 (pT, b tag, HTQ, Unk)

(c)

0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425

〈σ(F)HadTopB
j 〉

HTB

b tag

pT

η

M

E

φ

HTQ

MET

Unk

`

AddB

LTB

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.15 (=̂ 98 %)
∆rmax = 1.00 (HTQ, MET)

(d)

0.30 0.35 0.40 0.45 0.50

〈σ(F)HadTopQ
j 〉

b tag

HTQ

pT

η

M

E

φ

Unk

MET

LTB

`

AddB

HTB

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.0 (=̂ 100 %)
∆rmax = 0.00

(e)

0.30 0.35 0.40 0.45

〈σ(F)Lepton
j 〉

b tag

pT

M

`

η

φ

E

AddB

LTB

HTB

MET

Unk

HTQ

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.0 (=̂ 100 %)
∆rmax = 0.00

(f)

0.30 0.35 0.40 0.45 0.50

〈σ(F)LepTopB
j 〉

LTB

pT

η

b tag

M

φ

E

Unk

HTQ

MET

AddB

`

HTB

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.0 (=̂ 100 %)
∆rmax = 0.00

(g)

0.30 0.35 0.40 0.45

〈σ(F)Missing
j 〉

b tag

MET

pT

M

φ

E

`

AddB

HTQ

η

HTB

Unk

LTB

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.0 (=̂ 100 %)
∆rmax = 0.00

(h)

0.30 0.35 0.40 0.45 0.50

〈σ(F)Unknown
j 〉

b tag

Unk

pT

η

M

φ

E

LTB

AddB

`

HTB

HTQ

MET

F
ea

tu
re

100 %

5 %

GNNX:

〈∆r〉 = 0.15 (=̂ 98 %)
∆rmax = 1.00 (φ, E)

(i)

Figure F.13: Comparison of GNNX-based rankings calculated with both 5 % and
100 % of the test samples for NLP-class-level GNN. The percentage
in the parentheses corresponds to the conformity 1 − ⟨Δ𝑟⟩/Δ𝑟*

max of the
compared rankings. The variable Δ𝑟max denotes the highest number of rank
difference between the compared rankings and should not be confused with
Δ𝑟*

max, which denotes the maximum mean number of absolute rank differences
between the compared rankings. The objects to which this applies are specified
in the subsequent parentheses. In the majority of the cases the conformity
between the rankings calculated on the basis of the whole test set and on only
5 % of the test set is 98 % or 100 %. In the worst, case the conformity is still
95 %.

117

118 8 Appendix

0.5 0.6 0.7 0.8 0.9 1.0
Fraction of additional b jets identifiable via the AddB flag

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

ad
d

it
io

n
al

b
je

ts
id

en
ti

fi
ab

le
v
ia

th
e

L
T

B
fl

ag

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CMS Simulation Work in Progress

Angle bisector

Figure F.14: Fraction of additional b jets identifiable via the AddB flag
vs. fraction of additional b jets identifiable via the LTB flag.
The fraction of additional b jets identifiable via the LTB flag corre-
sponds – due to the flag swap in AddB-LTB modeling – to the frac-
tion of manipulated objects in the category LepTopB whereas the frac-
tion of additional b jets identifiable via the AddB flag equals to 1 −
(the fraction of manipulated objects in the category AddB) (cf. Table. D.1).
The figure displayed next to each data point denotes the fraction of manip-
ulated events in the data set. It is clearly noticeable that the data point
corresponding to a data set with 70 % manipulated events is the closest to
the angle bisector, i.e., in this data set, the information content of the AddB
flag and the LTB flag is the most similar among all data sets manipulated
according to the AddB-LTB modeling. Accordingly, the GNN trained with
this data set is confused the most and hence, its performance is the worst (cf.
Fig. 5.1). In data set with a fraction of manipulated events higher than 70 %,
more additional b jets are identifiable via the LTB flag than via the AddB
flag so that the performance of GNNs trained with these data sets increases
again.

118

G Supplementary Information to Chapter 7 119

G Supplementary Information to Chapter 7

Table G.1: Architecture and feature sets of all models considered in Section 7.2.
Each neural network type (tGNN, sGNN, DNN) comes with twelve different
combinations of hidden nodes and hidden layers. Feature sets used in the
training of (all twelve configurations of) a neural network type are marked with
✔ in the table, otherwise with ✗. Consequently, there are in total 120 GNNs
and 96 DNNs for benchmarking in Section 7.2.

tGNN sGNN DNN

𝑛hidden

(13), (26), (39), (13, 13), (13, 26),
(13, 39), (26, 13), (26, 26), (26, 39),
(39, 13), (39, 26), (39, 39)

default ✗ ✗ ✔

default[𝑀inv] ✗ ✗ ✔

default[Δ𝑅] ✗ ✗ ✔

default[Δ𝑅−1] ✗ ✗ ✔

extended ✗ ✗ ✔

extended[zero] ✗ ✔ ✗

extended[one] ✗ ✔ ✗

extended[random] ✔ ✔ ✗

extended[𝑀inv] ✔ ✔ ✔

extended[Δ𝑅] ✔ ✔ ✔

extended[Δ𝑅−1] ✔ ✔ ✔

119

120 8 Appendix

0.650 0.700 0.750 0.800 0.850 0.900
Mean ROC-AUC

extended[Minv] (26, 26)

extended[Minv] (13, 26)

extended[Minv] (39, 39)

extended[Minv] (13, 39)

extended[Minv] (26, 39)

extended[Minv] (39, 26)

extended[Minv] (26, 13)

extended[Minv] (39, 13)

extended[Minv] (13, 13)

extended[∆R] (13, 39)

extended[∆R] (26, 26)

extended[∆R] (26, 39)

extended[∆R] (26, 13)

extended[∆R] (39, 39)

extended[∆R] (39, 26)

extended[∆R] (13, 26)

extended[∆R] (13, 13)

extended[∆R] (39, 13)

extended[∆R−1] (13, 13)

extended[∆R−1] (39, 13)

extended[random] (26, 26)

extended[∆R−1] (39, 39)

extended[∆R−1] (13, 26)

extended[∆R−1] (13, 39)

extended[random] (26, 13)

extended[random] (39, 26)

extended[random] (26, 39)

extended[∆R−1] (26, 39)

extended[∆R−1] (39, 26)

extended[∆R−1] (26, 13)

extended[∆R−1] (26, 26)

extended[random] (13, 26)

extended[random] (13, 39)

extended[random] (39, 13)

extended (39, 26)

extended[random] (13, 13)

extended (39, 39)

extended (39, 13)

extended (26, 13)

extended[random] (39, 39)

extended (26, 39)

extended (26, 26)

extended[one] (26, 39)

extended[one] (39, 26)

extended[one] (39, 39)

extended[one] (13, 39)

extended (13, 39)

extended (13, 26)

extended[one] (26, 26)

extended[one] (39, 13)

extended (13, 13)

extended[one] (13, 26)

extended[one] (26, 13)

extended[one] (13, 13)

F
ea

tu
re

se
t

(n
h

id
d

en
)

CMS Simulation Work in Progress

sGNN

tGNN

DNN

(a)

0.650 0.700 0.750 0.800 0.850
Mean ROC-AUC

default[Minv] (13, 39)

default[Minv] (13, 26)

default[Minv] (13, 13)

default[Minv] (26, 39)

default[Minv] (26, 26)

default[Minv] (26, 13)

default[∆R] (26, 13)

default[∆R] (39, 26)

default[∆R] (39, 39)

default[∆R] (39, 13)

default[∆R] (26, 26)

default[Minv] (39, 39)

default[∆R] (26, 39)

default[Minv] (39, 13)

default[∆R] (13, 26)

default[Minv] (39, 26)

default[∆R] (13, 13)

default[∆R] (13, 39)

default[∆R−1] (13, 26)

default[∆R−1] (13, 13)

default[∆R−1] (13, 39)

default[∆R−1] (26, 39)

default[∆R−1] (39, 39)

default[∆R−1] (26, 26)

extended (39, 26)

extended (39, 39)

default (26, 39)

default[∆R−1] (39, 26)

default[∆R−1] (26, 13)

default (26, 26)

default[∆R−1] (39, 13)

default (39, 26)

default (39, 13)

default (39, 39)

extended (39, 13)

default (26, 13)

extended (26, 13)

default (13, 39)

extended (26, 39)

extended (26, 26)

default (13, 13)

default (13, 26)

extended (13, 39)

extended (13, 26)

extended (13, 13)

extended[zero] (39, 39)

extended[zero] (26, 39)

extended[zero] (26, 26)

extended[zero] (39, 13)

extended[zero] (39, 26)

extended[zero] (13, 26)

extended[zero] (26, 13)

extended[zero] (13, 39)

extended[zero] (13, 13)

F
ea

tu
re

se
t

(n
h

id
d

en
)

CMS Simulation Work in Progress

sGNN

DNN

(b)
Figure G.1: Combined mean performance of GNN2HL and DNN2HL. For reason

of presentation the ranking is split in two. The mean performance of models
trained with extended[𝑥], 𝑥 ∈ {𝑀inv,Δ𝑅,Δ𝑅−1, random, one} are located
in (a) and the remaining models in (b). Data points with unfilled markers
indicate that at least one model is identified as an outlier (cf. outlier criteria
in Section 4.3) and therefore discarded. All data points possess an error
bar representing the performance spread (square root of the unbiased sample
variance), which is calculated on the basis of the ROC-AUC values of all
not discarded models (at most ten models, one for each of the ten realized
repetitions of a training). Data points of models sharing the same label on
the 𝑦-axis are shifted in a way that they are stacked in descending order of
the corresponding mean ROC-AUC value from top to bottom to enhance
the visibility of the error bars. The color grouping of the data points is
still recognizable for two-layer models, yet not as distinct as for one-layer
models, however, the performance of equivalent DNNs and sGNNs and tGNNs,
respectively, remains similar. 120

G Supplementary Information to Chapter 7 121

0.860 0.862 0.864 0.866 0.868 0.870 0.872 0.874
Mean ROC-AUC

extended[Minv] (13, 13, 6)

extended[Minv] (13, 26)

extended[Minv] (13, 26, 6)

extended[Minv] (13, 26, 13)

extended[Minv] (13, 26, 26)

extended[Minv] (26, 26, 6)

extended[Minv] (13, 13, 26)

extended[Minv] (13, 6, 6)

extended[Minv] (13, 6, 13)

extended[Minv] (26, 26, 13)

extended[Minv] (6, 13, 13)

extended[Minv] (26, 26, 26)

extended[Minv] (13, 13, 13)

extended[Minv] (6, 26, 13)

extended[Minv] (26, 13, 26)

extended[Minv] (13, 6, 26)

extended[Minv] (6, 13, 6)

extended[Minv] (6, 6, 26)

extended[Minv] (6, 6, 6)

extended[Minv] (26, 13, 13)

extended[Minv] (26, 13, 6)

extended[Minv] (26, 6, 6)

extended[Minv] (6, 26, 6)

extended[Minv] (26, 6, 13)

extended[Minv] (6, 26, 26)

extended[Minv] (6, 6, 13)

extended[Minv] (6, 13, 26)

extended[Minv] (26, 6, 26)

F
ea

tu
re

se
t

(n
h

id
d

en
)

CMS Simulation Work in Progress

Figure G.2: Mean performance ranking of DNN3HL, including DNN*
2HL. One

DNN3HL is ranked higher than DNN*
2HL but the corresponding performance

gain is negligible. Thus, in fact no further performance gain can be achieved
by tuning the number of DOF. On the contrary, the spread of these DNNs
appears to be several times larger than the spread of DNN*

2HL. Data points
with unfilled markers indicate that at least one model of ten repetitions of
the particular training has a performance fulfilling the outlier criteria defined
in Section 4.3 and the identified outlier(s) is/are therefore discarded. All
data points possess an error bar representing the performance spread (square
root of the unbiased sample variance), which is calculated on the basis of the
ROC-AUC values of all not discarded models (at most ten models, one for
each of the ten realized repetitions of a training).

121

122 8 Appendix

0 20 40 60
Epoch

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

L
os

s

CMS Simulation Work in Progress

DNN∗2HL

train

val

(a)

0 20 40 60 80
Epoch

0.45

0.50

0.55

0.60

L
os

s

CMS Simulation Work in Progress

DNN∗3HL

train

val

(b)

Figure G.3: Mean loss curves of DNN*
2HL and the highest ranked DNN in Fig. G.2

(DNN*
3HL). The loss on the train and validation set in dependence of the

epoch and averaged over ten repetitions is showcased for both models. The
error bars represent the spread (square root of the unbiased sample variance)
calculated on the basis of the train and validation loss obtained for each epoch
in the ten realized repetitions of the trainings.

122

G Supplementary Information to Chapter 7 123

0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900
Mean ROC-AUC

extended[Minv] (13, 26)

extended[Minv] (11, 3, 3, 7)

extended[Minv] (4, 8, 7, 3)

extended[Minv] (4, 8, 9)

extended[Minv] (11, 4, 6)

extended[Minv] (4, 4, 10, 5)

extended[Minv] (4, 8, 4, 9)

extended[Minv] (11, 2, 11, 2)

extended[Minv] (11, 4, 3, 4)

extended[Minv] (4, 12, 5)

extended[Minv] (11, 6)

extended[Minv] (4, 9, 5, 5)

extended[Minv] (4, 12)

extended[Minv] (11, 2, 3, 10)

extended[Minv] (4, 4, 8, 7)

extended[Minv] (4, 10, 4, 6)

extended[Minv] (11)

extended[Minv] (4, 12, 4, 3)

extended[Minv] (4)

extended[Minv] (4, 6, 4, 12)

extended[Minv] (4, 5, 11, 3)

extended[Minv] (4, 4, 6, 10)

extended[Minv] (4, 2, 12, 6)

extended[Minv] (4, 9, 3, 11)

extended[Minv] (4, 2, 7, 11)

extended[Minv] (4, 12, 2, 11)

extended[Minv] (4, 5, 7, 7)

F
ea

tu
re

se
t

(n
h

id
d

en
)

CMS Simulation Work in Progress

Figure G.4: Mean performance ranking of DNNs with a restricted number of
DOF, including DNN*

2HL. None of the DNNs with a restricted number of
DOF outperforms DNN*

2HL. Data points with unfilled markers indicate that at
least one model of ten repetitions of the particular training has a performance
fulfilling the outlier criteria defined in Section 4.3 and the identified outlier(s)
is/are therefore discarded. All data points possess an error bar representing
the performance spread (square root of the unbiased sample variance), which
is calculated on the basis of the ROC-AUC values of all not discarded models
(at most ten models, one for each of the ten realized repetitions of a training).

123

124 8 Appendix

0.872 0.874 0.876 0.878 0.880
Mean ROC-AUC

extended[Minv] (25, 40, 50)

extended[Minv] (35, 50, 15, 25)

extended[Minv] (35, 25, 40, 25)

extended[Minv] (10, 40, 40, 30)

extended[Minv] (50, 45, 10)

extended[Minv] (26, 26)

extended[Minv] (25, 10, 15, 40)

extended[Minv] (35, 20, 10)

extended[Minv] (25, 40)

extended[Minv] (45, 10, 30)

extended[Minv] (45, 50, 5, 45)

extended[Minv] (50, 50)

extended[Minv] (5, 15, 30, 25)

extended[Minv] (5, 10, 35, 25)

extended[Minv] (45, 5, 50, 45)

extended[Minv] (5, 35, 20, 20)

extended[Minv] (35, 5, 20, 30)

extended[Minv] (50)

extended[Minv] (5, 5, 50, 20)

F
ea

tu
re

se
t

(n
h

id
d

en
)

CMS Simulation Work in Progress

Figure G.5: Mean performance of GNNs with an expanded number of DOF,
including GNN*

2HL. Only five GNNs with an expanded number of DOF
outperform GNN*

2HL. Data points with unfilled markers indicate that at least
one model of ten repetitions of the particular training has a performance
fulfilling the outlier criteria defined in Section 4.3 and the identified outlier(s)
is/are therefore discarded. All data points possess an error bar representing
the performance spread (square root of the unbiased sample variance), which
is calculated on the basis of the ROC-AUC values of all not discarded models
(at most ten models, one for each of the ten realized repetitions of a training).

124

G Supplementary Information to Chapter 7 125

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of DNN∗1HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
D

N
N
∗ 2H

L

CMS Simulation Work in Progress

ρ = 0.983

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of DNN∗1HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
D

N
N
∗ 3H

L

CMS Simulation Work in Progress

ρ = 0.984

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of DNN∗1HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
re

st
rD

N
N
∗ eff

CMS Simulation Work in Progress

ρ = 0.992

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of DNN∗2HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
D

N
N
∗ 3H

L

CMS Simulation Work in Progress

ρ = 0.997

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of DNN∗2HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
re

st
rD

N
N
∗ eff

CMS Simulation Work in Progress

ρ = 0.993

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of DNN∗3HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
re

st
rD

N
N
∗ eff

CMS Simulation Work in Progress

ρ = 0.993

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of GNN∗1HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
D

N
N
∗ 1H

L

CMS Simulation Work in Progress

ρ = 0.972

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of GNN∗1HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
D

N
N
∗ 2H

L

CMS Simulation Work in Progress

ρ = 0.967

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of GNN∗1HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
D

N
N
∗ 3H

L

CMS Simulation Work in Progress

ρ = 0.969

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of GNN∗1HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
ex

p
G

N
N
∗

CMS Simulation Work in Progress

ρ = 0.980

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of GNN∗1HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
G

N
N
∗ 2H

L

CMS Simulation Work in Progress

ρ = 0.986

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of GNN∗1HL

0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n

p
re

d
ic

ti
on

sc
or

e
of

re
st

rD
N

N
∗ eff

CMS Simulation Work in Progress

ρ = 0.970

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of GNN∗2HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
D

N
N
∗ 1H

L

CMS Simulation Work in Progress

ρ = 0.962

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of GNN∗2HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
D

N
N
∗ 2H

L

CMS Simulation Work in Progress

ρ = 0.970

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of GNN∗2HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
D

N
N
∗ 3H

L

CMS Simulation Work in Progress

ρ = 0.971

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of GNN∗2HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
ex

p
G

N
N
∗

CMS Simulation Work in Progress

ρ = 0.994

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of GNN∗2HL

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
re

st
rD

N
N
∗ eff

CMS Simulation Work in Progress

ρ = 0.968

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of expGNN∗

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
D

N
N
∗ 1H

L

CMS Simulation Work in Progress

ρ = 0.960

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of expGNN∗

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
D

N
N
∗ 2H

L

CMS Simulation Work in Progress

ρ = 0.969

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of expGNN∗

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
D

N
N
∗ 3H

L

CMS Simulation Work in Progress

ρ = 0.971

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
Mean prediction score of expGNN∗

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
p

re
d

ic
ti

on
sc

or
e

of
re

st
rD

N
N
∗ eff

CMS Simulation Work in Progress

ρ = 0.966

100

101

102

103

Figure G.6: Comparison of the mean prediction scores of all best-performing
models (excluding restrDNN*) evaluated on the test set. The two-
dimensional histogram of models of the same NN type possess a correlation
coefficient 𝜌 closer to one and GNNs appear to be more secure in classifying
non-tt + bb samples as their mean prediction scores for such events are closer
to zero than DNNs. The dashed line shows the angle bisector.

125

126 8 Appendix

pT φ η M E b tag AddB HTB HTQ LTB ` MET Unk

pT

φ

η

M

E

b tag

AddB

HTB

HTQ

LTB

`

MET

Unk

0.056 0.007 0.014 0.051 0.03 0.029 1.076 0.745 0.867 0.878 0.74 0.646 0.915

0.007 0.0 0.001 0.002 0.001 0.002 0.061 0.037 0.043 0.044 0.037 0.031 0.045

0.014 0.001 0.001 0.004 0.002 0.002 0.111 0.064 0.073 0.074 0.062 0.053 0.076

0.051 0.002 0.004 0.008 0.008 0.008 0.33 0.211 0.246 0.247 0.205 0.178 0.253

0.03 0.001 0.002 0.008 0.002 0.004 0.171 0.108 0.123 0.126 0.106 0.092 0.131

0.029 0.002 0.002 0.008 0.004 0.002 0.181 0.112 0.129 0.131 0.108 0.094 0.134

1.076 0.061 0.111 0.33 0.171 0.181 10.856 9.529 10.781 11.331 9.295 8.003 11.191

0.745 0.037 0.064 0.211 0.108 0.112 9.529 4.144 9.856 9.416 7.34 6.639 9.175

0.867 0.043 0.073 0.246 0.123 0.129 10.781 9.856 5.689 10.734 8.3 7.532 10.421

0.878 0.044 0.074 0.247 0.126 0.131 11.331 9.416 10.734 5.574 8.753 7.865 10.914

0.74 0.037 0.062 0.205 0.106 0.108 9.295 7.34 8.3 8.753 3.662 6.538 9.108

0.646 0.031 0.053 0.178 0.092 0.094 8.003 6.639 7.532 7.865 6.538 2.823 7.776

0.915 0.045 0.076 0.253 0.131 0.134 11.191 9.175 10.421 10.914 9.108 7.776 5.657

CMS Simulation Work in Progress

2

4

6

8

10

(a)
pT φ η M E b tag AddB HTB HTQ LTB ` MET Unk

pT

φ

η

M

E

b tag

AddB

HTB

HTQ

LTB

`

MET

Unk

0.058 0.007 0.021 0.057 0.021 0.036 0.699 0.191 0.132 0.159 0.13 0.195 0.171

0.007 0.0 0.001 0.003 0.001 0.002 0.056 0.011 0.008 0.01 0.009 0.013 0.011

0.021 0.001 0.001 0.005 0.002 0.004 0.093 0.02 0.014 0.018 0.016 0.022 0.018

0.057 0.003 0.005 0.014 0.008 0.013 0.372 0.076 0.055 0.07 0.059 0.091 0.079

0.021 0.001 0.002 0.008 0.001 0.004 0.081 0.02 0.014 0.017 0.015 0.02 0.018

0.036 0.002 0.004 0.013 0.004 0.004 0.16 0.035 0.024 0.031 0.028 0.039 0.034

0.699 0.056 0.093 0.372 0.081 0.16 6.925 1.876 1.2 1.653 1.671 2.593 1.992

0.191 0.011 0.02 0.076 0.02 0.035 1.876 0.153 0.186 0.233 0.233 0.316 0.26

0.132 0.008 0.014 0.055 0.014 0.024 1.2 0.186 0.09 0.206 0.161 0.248 0.22

0.159 0.01 0.018 0.07 0.017 0.031 1.653 0.233 0.206 0.125 0.199 0.311 0.262

0.13 0.009 0.016 0.059 0.015 0.028 1.671 0.233 0.161 0.199 0.114 0.306 0.251

0.195 0.013 0.022 0.091 0.02 0.039 2.593 0.316 0.248 0.311 0.306 0.298 0.435

0.171 0.011 0.018 0.079 0.018 0.034 1.992 0.26 0.22 0.262 0.251 0.435 0.154

CMS Simulation Work in Progress

1

2

3

4

5

6

(b)

PT φ η M E b tag AddB HTB HTQ LTB ` MET Unk

PT

φ

η

M

E

b tag

AddB

HTB

HTQ

LTB

`

MET

Unk

0.039 0.006 0.019 0.051 0.019 0.027 0.168 0.089 0.111 0.114 0.08 0.098 0.139

0.006 0.0 0.002 0.004 0.001 0.003 0.017 0.008 0.01 0.01 0.008 0.009 0.012

0.019 0.002 0.002 0.007 0.003 0.004 0.028 0.015 0.018 0.018 0.014 0.015 0.021

0.051 0.004 0.007 0.018 0.011 0.016 0.11 0.053 0.063 0.066 0.049 0.057 0.079

0.019 0.001 0.003 0.011 0.002 0.006 0.042 0.022 0.027 0.027 0.02 0.024 0.033

0.027 0.003 0.004 0.016 0.006 0.005 0.061 0.031 0.037 0.038 0.028 0.032 0.045

0.168 0.017 0.028 0.11 0.042 0.061 0.337 0.305 0.335 0.347 0.274 0.312 0.419

0.089 0.008 0.015 0.053 0.022 0.031 0.305 0.07 0.155 0.156 0.122 0.139 0.187

0.111 0.01 0.018 0.063 0.027 0.037 0.335 0.155 0.057 0.115 0.087 0.1 0.135

0.114 0.01 0.018 0.066 0.027 0.038 0.347 0.156 0.115 0.07 0.102 0.115 0.158

0.08 0.008 0.014 0.049 0.02 0.028 0.274 0.122 0.087 0.102 0.052 0.117 0.156

0.098 0.009 0.015 0.057 0.024 0.032 0.312 0.139 0.1 0.115 0.117 0.084 0.223

0.139 0.012 0.021 0.079 0.033 0.045 0.419 0.187 0.135 0.158 0.156 0.223 0.114

CMS Simulation Work in Progress

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(c)

Figure G.7: Second-order Taylor coefficients of the best-performing GNNs. It
can be observed that GNN*

1HL (a) focuses on all correlations between category
flags and does not discover yet that it is sufficient to rely on correlations with
the AddB flag as both GNN*

2HL (b) and expGNN* (c) have learnt to do.

126

G Supplementary Information to Chapter 7 127

pT φ η M E b tag AddB HTB HTQ LTB ` MET Unk Minv

pT

φ

η

M

E

b tag

AddB

HTB

HTQ

LTB

`

MET

Unk

Minv

0.009 0.001 0.007 0.009 0.005 0.006 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.071

0.001 0.0 0.001 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.005

0.007 0.001 0.008 0.007 0.003 0.005 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.062

0.009 0.001 0.007 0.007 0.003 0.005 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.059

0.005 0.0 0.003 0.003 0.002 0.003 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.037

0.006 0.0 0.005 0.005 0.003 0.001 0.001 0.0 0.001 0.0 0.0 0.0 0.0 0.013

0.003 0.0 0.003 0.003 0.002 0.001 0.002 0.001 0.003 0.002 0.002 0.002 0.001 0.046

0.002 0.0 0.002 0.002 0.001 0.0 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.006

0.003 0.0 0.003 0.003 0.002 0.001 0.003 0.0 0.0 0.0 0.0 0.0 0.0 0.006

0.002 0.0 0.002 0.002 0.001 0.0 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.002

0.002 0.0 0.002 0.002 0.001 0.0 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.004

0.002 0.0 0.002 0.002 0.001 0.0 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.007

0.002 0.0 0.002 0.002 0.001 0.0 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.01

0.071 0.005 0.062 0.059 0.037 0.013 0.046 0.006 0.006 0.002 0.004 0.007 0.01 13.235

CMS Simulation Work in Progress

2

4

6

8

10

12

(a)
pT φ η M E b tag AddB HTB HTQ LTB ` MET Unk Minv

pT

φ

η

M

E

b tag

AddB

HTB

HTQ

LTB

`

MET

Unk

Minv

0.007 0.001 0.006 0.006 0.003 0.005 0.002 0.001 0.002 0.002 0.002 0.002 0.001 0.062

0.001 0.0 0.001 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.006

0.006 0.001 0.014 0.01 0.005 0.008 0.004 0.002 0.003 0.002 0.002 0.002 0.002 0.094

0.006 0.001 0.01 0.007 0.004 0.006 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.063

0.003 0.0 0.005 0.004 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.026

0.005 0.0 0.008 0.006 0.002 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.033

0.002 0.0 0.004 0.002 0.001 0.001 0.003 0.002 0.003 0.002 0.002 0.002 0.001 0.075

0.001 0.0 0.002 0.001 0.001 0.001 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.01

0.002 0.0 0.003 0.002 0.001 0.001 0.003 0.0 0.0 0.0 0.0 0.0 0.0 0.003

0.002 0.0 0.002 0.001 0.001 0.001 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.006

0.002 0.0 0.002 0.002 0.001 0.001 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.007

0.002 0.0 0.002 0.002 0.001 0.001 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.01

0.001 0.0 0.002 0.001 0.001 0.001 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.006

0.062 0.006 0.094 0.063 0.026 0.033 0.075 0.01 0.003 0.006 0.007 0.01 0.006 16.06

CMS Simulation Work in Progress

2

4

6

8

10

12

14

16

(b)

pT φ η M E b tag AddB HTB HTQ LTB ` MET Unk Minv

pT

φ

η

M

E

b tag

AddB

HTB

HTQ

LTB

`

MET

Unk

Minv

0.008 0.001 0.007 0.009 0.003 0.005 0.003 0.002 0.003 0.002 0.002 0.002 0.001 0.068

0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.004

0.007 0.0 0.01 0.008 0.004 0.006 0.004 0.002 0.004 0.002 0.003 0.002 0.002 0.091

0.009 0.0 0.008 0.008 0.003 0.005 0.003 0.002 0.003 0.002 0.002 0.002 0.001 0.062

0.003 0.0 0.004 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0 0.0 0.021

0.005 0.0 0.006 0.005 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.03

0.003 0.0 0.004 0.003 0.001 0.001 0.003 0.002 0.004 0.002 0.003 0.002 0.001 0.079

0.002 0.0 0.002 0.002 0.001 0.001 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.005

0.003 0.0 0.004 0.003 0.001 0.001 0.004 0.0 0.001 0.0 0.0 0.0 0.0 0.01

0.002 0.0 0.002 0.002 0.001 0.001 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.003

0.002 0.0 0.003 0.002 0.001 0.001 0.003 0.0 0.0 0.0 0.0 0.0 0.0 0.003

0.002 0.0 0.002 0.002 0.0 0.001 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.004

0.001 0.0 0.002 0.001 0.0 0.001 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.002

0.068 0.004 0.091 0.062 0.021 0.03 0.079 0.005 0.01 0.003 0.003 0.004 0.002 16.212

CMS Simulation Work in Progress

2

4

6

8

10

12

14

16

(c)
pT φ η M E b tag AddB HTB HTQ LTB ` MET Unk Minv

pT

φ

η

M

E

b tag

AddB

HTB

HTQ

LTB

`

MET

Unk

Minv

0.004 0.0 0.004 0.004 0.001 0.002 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.045

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.003

0.004 0.0 0.007 0.006 0.002 0.004 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.071

0.004 0.0 0.006 0.005 0.002 0.003 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.056

0.001 0.0 0.002 0.002 0.0 0.001 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.014

0.002 0.0 0.004 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.023

0.002 0.0 0.003 0.002 0.001 0.001 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.071

0.001 0.0 0.002 0.001 0.0 0.001 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.002

0.002 0.0 0.002 0.002 0.0 0.001 0.003 0.0 0.0 0.0 0.0 0.0 0.0 0.003

0.001 0.0 0.002 0.002 0.0 0.001 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.007

0.001 0.0 0.002 0.001 0.0 0.001 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.002

0.001 0.0 0.002 0.002 0.0 0.001 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.009

0.001 0.0 0.002 0.001 0.0 0.001 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.007

0.045 0.003 0.071 0.056 0.014 0.023 0.071 0.002 0.003 0.007 0.002 0.009 0.007 16.98

CMS Simulation Work in Progress

2

4

6

8

10

12

14

16

(d)

pT φ η M E b tag AddB HTB HTQ LTB ` MET Unk Minv

pT

φ

η

M

E

b tag

AddB

HTB

HTQ

LTB

`

MET

Unk

Minv

0.007 0.001 0.006 0.006 0.003 0.004 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.071

0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.002

0.006 0.0 0.006 0.006 0.002 0.004 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.068

0.006 0.0 0.006 0.004 0.002 0.003 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.051

0.003 0.0 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.026

0.004 0.0 0.004 0.003 0.001 0.001 0.001 0.0 0.001 0.001 0.0 0.0 0.0 0.019

0.002 0.0 0.002 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.054

0.002 0.0 0.002 0.001 0.001 0.0 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.008

0.002 0.0 0.002 0.002 0.001 0.001 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.005

0.002 0.0 0.002 0.001 0.001 0.001 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.011

0.002 0.0 0.002 0.001 0.001 0.0 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.009

0.002 0.0 0.002 0.001 0.001 0.0 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.004

0.002 0.0 0.002 0.001 0.001 0.0 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.004

0.071 0.002 0.068 0.051 0.026 0.019 0.054 0.008 0.005 0.011 0.009 0.004 0.004 16.514

CMS Simulation Work in Progress

2

4

6

8

10

12

14

16

(e)

Figure G.8: Second-order Taylor coefficients of the best-performing DNNs. Like
for first-order Taylor coefficients of DNNs, only the global features, calculated
without considering padded values, are taken into consideration. All DNNs ((a)
DNN*

1HL, (b) DNN*
2HL, (c) DNN*

3HL, (d) restrDNN*, (e) restrDNN*
eff) under

investigation basically do not focus on any other correlations between the
global features except 𝑀inv with itself.

127

	Contents
	1 Introduction
	2 High Energy Physics at the CMS Experiment at CERN
	2.1 Standard Model of Particle Physics
	2.2 Large Hadron Collider
	2.3 The CMS Detector
	2.4 Kinematic Quantities
	2.5 Physics Processes
	2.6 Jet Reconstruction and b Tagging

	3 Machine Learning Algorithms
	3.1 Deep Neural Networks
	3.2 Graph Neural Networks
	3.2.1 Graph Theory
	3.2.2 Graph Data and Tasks
	3.2.3 Message Passing Neural Networks
	3.2.4 Graph Network Formalism

	3.3 Explainable AI
	3.3.1 GNNExplainer
	3.3.2 Taylor Coefficient Analysis
	3.3.3 Comparison

	4 Multivariate Event Classification with GNNs
	4.1 Reproducibility and Data
	4.2 Architecture and Hyperparameters
	4.3 Binary and Multiclass Classification
	4.4 Further Optimization Approaches
	4.5 Applying Preclassified Category Flags to Input Features

	5 Modeling of the Dependency of a GNN-Based Event Classification on the Goodness of the Jet Assignment
	5.1 Modeling Strategies
	5.2 Validation

	6 In-Depth Analysis of GNNs by Applying Explainable AI Methods
	6.1 Identifying the Decision Basis of Models Trained with Different Information Levels
	6.1.1 Category Importance and Category Specific Feature Importance
	6.1.2 Feature Importance
	6.1.3 Conclusion

	6.2 Evolution of the Feature Importance in AddB-LTB Modeling

	7 Benchmark Study on Equivalent GNNs and DNNs
	7.1 Comparability Challenges and Solutions
	7.2 Comparison of Models with an Equivalent Architecture
	7.2.1 Model Performance and Training Stability
	7.2.2 Convergence Speed and Degrees of Freedom

	7.3 Comparison of Models with a Similar Number of Degrees of Freedom
	7.3.1 DNNs with a Tuned Number of Degrees of Freedom
	7.3.2 DNNs with a Restricted Number of Degrees of Freedom
	7.3.3 GNNs with an Expanded Number of Degrees of Freedom

	7.4 In-Depth Analysis of the Best-Performing Models

	8 Summary and Outlook
	Bibliography
	Appendix
	A Distribution of Observables
	B Decision Basis for Outlier Criterion (b)
	C Normalized Performance Rates of NLP-GGSNN
	D Properties of the Manipulated Data Sets
	E Derivation of Δr*max
	F Supplementary Information to Chapter 6
	G Supplementary Information to Chapter 7

