
ETP-KA/2022-14

A Fast AI-Based Track Reconstruction on
FPGA for the PANDA Experiment

Greta Heine

Master Thesis

at the Department of Physics
Institute for Data Processing and Electronics (IPE)

and
Institute of Experimental Particle Physics (ETP)

Advisor: Prof. Dr. Torben Ferber
Co-Advisor: Dr. Michele Caselle

15th March 2022 – 15th September 2022

Karlsruher Institut für Technologie
Fakultät für Physik
D-76128 Karlsruhe

ETP-KA/2022-14

Eine Schnelle AI-Basierte
Track-Rekonstruktion auf FPGA für das

PANDA-Experiment

Greta Heine

Masterthesis

an der Fakultät für Physik
Institut für Prozessdatenverarbeitung und Elektronik (IPE)

und
Institut für Experimentelle Teilchenphysik (ETP)

Referent: Prof. Dr. Torben Ferber
Korreferent: Dr. Michele Caselle

15. März 2022 – 15. September 2022

Karlsruher Institut für Technologie
Fakultät für Physik
D-76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, 15th September 2022

. .

(Greta Heine)

Abstract

Efficient reconstruction of charged particle trajectories is a crucial yet very difficult step

in the analysis pipeline of high energy physics (HEP) experiments. Recent work has

shown that graph neural networks (GNNs) are well suited for the pattern recognition

task of track finding, where tracking detector hits can be naturally represented as nodes

and particle track segments as edges. The interaction network (IN) GNN architecture

provides computationally efficient edge classification of the high-dimensional and sparse

tracker data, which is especially crucial for implementation in constrained computing

environments such as field programmable gate arrays (FPGAs). This work describes the

overall workflow for implementing and systematically analyzing an IN-based classification

of track segments on FPGAs for the anti-Proton Annihilation at DArmstadt (PANDA)

forward tracking system (FTS). This workflow includes data preprocessing, graph build-

ing, GNN-based edge classification and a series of FPGA implementation design studies

concerning latency, resource utilization, and classification quality using the high level

synthesis for machine learning (hls4ml) compiler. The presented final implementation of

the GNN-based track segment classifier on a Xilinx Zynq
®
UltraScale+™MPSoC FPGA

provides an overall inference latency of about 0.99 µs using about 34 % of available digital

signal processors (DSPs) and 85 % of available lookup tables (LUTs). This work enables

the acceleration of charged particle tracking on heterogeneous computational resources

toward real-time track reconstruction for the PANDA experiment. The discussed methods

and studies could be easily adapted and used in other HEP experiments for accelerated

charged particle tracking.

i

Zusammenfassung

Die effiziente Rekonstruktion von Trajektorien geladener Teilchen ist ein entscheidender,

aber sehr schwieriger Schritt in der Analyse-Pipeline von Hochenergiephysik Experi-

menten (HEP). Studien der vergangenen Jahre haben gezeigt, dass sich graphbasierte

neuronale Netze (GNNs) gut für die Mustererkennungsaufgabe der Spurensuche eignen,

bei welcher die Treffer in den Spurendetektoren als Knoten und die Segmente der Teilchen-

spuren als Kanten dargestellt werden können. Die IN-Architektur bietet eine effiziente

Kantenklassifizierung der hochdimensionalen Tracker-Daten bei geringer Trefferdich-

te, was insbesondere für die Implementierung in eingeschränkten Rechenumgebungen

wie bei FPGAs entscheidend ist. Diese Arbeit beschreibt den gesamten Arbeitsablauf

für die Implementierung und systematische Analyse einer IN-basierten Klassifizierung

von Spur-Segmenten auf FPGAs für PANDA Vorwärtsspurdetektor Daten. Dieser Ar-

beitsablauf umfasst die Datenvorverarbeitung, die Graphenerstellung, die GNN-basierte

Kantenklassifizierung und eine Reihe von Design Studien zur FPGA-Implementierung

im Hinblick auf Latenz und Durchsatz, Ressourcennutzung, sowie Klassifizierungsqua-

lität unter Verwendung des hls4ml-Compilers. Die vorgestellte finale Implementierung

des GNN-basierten Spur-Segment Klassifizierungs-Algorithmus auf einem Xilinx Zynq
®

UltraScale+™MPSoC FPGA bietet eine Gesamtinferenzlatenz von etwa 0.99 µs unter Ver-

wendung von etwa 34 % der verfügbaren DSPs und 85 % der verfügbaren LUTs. Diese

Arbeit ermöglicht die Beschleunigung der Spur-Rekonstruktion geladener Teilchen auf

heterogenen Rechenressourcen hin zu einer Echtzeit-Spur-Rekonstruktion für das PANDA-

Experiment. Die diskutierten Methoden und Studien könnten leicht angepasst und für

andere HEP-Experimente zur beschleunigten Rekonstruktion geladener Teilchen adaptiert

werden.

iii

Disclaimer

The GNN-based tracking and FPGA implementation studies presented in this thesis were

proposed to me by my supervisor Dr. Michele Caselle (KIT, IPE), inspired by the work of

Dr. Waleed Esmail (GSI). The setup of the PandaRoot framework and FTS data generation

was done with the help of Dr. Tobias Stockmanns (Forschungszentrum Jülich). The event

display plots Fig. 6.3, Fig. 6.7, Fig. 7.5, and Fig. 7.6 are inspired and based on the plots of Dr.

Waleed Esmail. The preprocessing of the data and the graph building algorithm presented

in Section 6.2 are based on the code of DeZoort et al. [1] and Dr. Waleed Esmail, adapted

to the PANDA FTS data. The IN architecture used in this work, described in Section 7.1

and shown in Fig. 7.1, was introduced by DeZoort et al. [1]. The tracklet finding algorithm

is based on code by Dr. Waleed Esmail. The hls4ml compiler extension for the GNN

conversion was provided by Elabd et al. [2]. All of the analyses reported in this thesis are

performed by me, all results are formulated by me, and all figures are created by me unless

otherwise noted.

v

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1

2. Related Work 5

3. Basic principles of Hadron Physics 7
3.1. Elementary Particles . 7

3.2. Fundamental Interactions . 8

3.3. Hadron Physics . 9

4. PANDA Experiment 13
4.1. PANDA Physics Program . 13

4.1.1. Hadron Spectroscopy . 14

4.1.2. Hyperon Physics . 14

4.1.3. Proton Structure . 15

4.1.4. Hadrons in Nuclei . 15

4.2. FAIR Research Facility . 15

4.3. The PANDA Detector . 18

4.3.1. Forward Tracking System (FTS) 19

4.4. PandaRoot . 20

4.5. Track Reconstruction . 21

4.5.1. Track Finding . 22

4.5.2. Track Fitting . 22

4.5.3. State-of-the-Art Tracking . 23

4.5.4. Tracking with PandaRoot . 23

5. Basics of Graph Neural Networks 25
5.1. Neural Networks . 25

5.2. Overfitting and Underfitting . 27

5.3. PyTorch Implementation . 28

5.4. Graph Neural Networks . 30

5.5. Performance Metrics . 31

6. PANDA FTS Training Data 35
6.1. Data Simulation via PandaRoot . 35

vii

Contents

6.2. Data Preprocessing . 37

6.2.1. Handling of ROOT Data Input . 37

6.2.2. Data Exploration and Filtering 38

6.3. Graph Building . 41

6.4. Preprocessing and Graph Building Summary 45

7. Graph Neural Network Based Track Finding 47
7.1. Interaction Network Architecture . 47

7.2. GNN Edge Classification . 49

7.3. Graph segmentation . 52

7.4. Tracklet Finding . 55

7.5. GNN-based Track Finding Summary . 56

8. FPGA Technology 59
8.1. Prospects of FPGA technology . 59

8.2. Structure and Design . 60

8.3. Xilinx Vivado and Vivado HLS . 62

8.4. Highlevel Synthesis for Machine Learning (hls4ml) 63

8.5. Design Optimization . 64

8.5.1. Quantization . 65

8.5.2. Compression . 66

8.5.3. Pipelining . 67

8.5.4. HLS Design Directives . 68

9. FPGA Implementation 71
9.1. Working Environment . 71

9.2. Benchmark Network, Graphs and Design 71

9.3. Design Parameter Studies . 73

9.3.1. Quantization . 73

9.3.2. Compression . 74

9.3.3. Pipelining . 75

9.3.4. Graph Dimensions . 75

9.4. Classification Performance . 77

9.5. Design Optimization . 78

10. Conclusion and Outlook 83

A. Appendix 85
A.1. Segmented Graph Displays . 85

A.2. GNN Classification Performances for Segmented Graphs 86

A.3. hls4ml Compilation Times . 87

A.4. Design Graph Dimension Studies . 88

Bibliography 97

viii

1. Introduction

Physics forms the basis for a large part of our current standard of living. Science helps to

ensure technological advancement, prosperity, and environmental protection. Everything

is based on physics and fundamental research, from radio, television, and the Internet, over

GPS, lasers, and smartphones, to Mars probes and climate models. Therefore, fundamental

mechanisms and processes must be studied and understood to enable innovations, progress,

and the increase of the overall knowledge of humankind.

The last 150 years have seen immense breakthroughs in understanding the particle

nature of the world: from the discovery of the electron in 1897 through the formulation

of the Standard Model to the discovery of the Higgs particle in 2012. However, many

particles and mechanisms that shape our world, such as dark matter, neutrino mass, or

matter-antimatter asymmetry, to name but a few, are still largely unknown. Physicists are

therefore striving to gain new insights into the various fields of particle physics, using

numerous technical methods and conceptual approaches.

One key method of exploring the structure of matter and finding out "what holds the world

together at its core" is the construction of large particle accelerators in which particles

collide at high energies, commonly subsumed under the term HEP. Particles and their

decay products are created at the collision points and measured by surrounding high-

resolution detectors. The correct and accurate reconstruction of the kinematics of charged

particles produced in collision events is a crucial element for precision measurements,

detection of novel particles, and observation of new physical phenomena in detectors. The

reconstruction of trajectories of charged particles, also called tracks, is based on so-called

hits that particles cause in the detector units as they pass through the detector providing

position measurements along the particle trajectories. Accurate track reconstruction is one

of the first and, therefore, essential steps in the analysis pipeline and the basis for many

other reconstruction tasks, such as vertex reconstruction [3, 4], particle reconstruction [5],

and jet flavor tagging [6, 7].

To study the open questions in particle physics and to enable the creation of new and heav-

ier particles, ever more powerful experiments with ever higher collision energies, event

rates, and detector granularitiesp are being built. This is leading to a dramatic increase in

the amount of data generated in the form of detector hits, requiring ever more complex

and rapid data acquisition systems (DAQs). However, state-of-the-art track reconstruction

algorithms [4, 8] based on the combinatorial Kalman filter scale computationally worse

than quadratically in the number of detector hits [9–13]. The corresponding necessary

computational time required on central processing units (CPUs) for track reconstruction

is expected to increase even faster with an increasing number of hits than the evolution of

computational resources [14, 15]. Therefore, with ever-increasing resolutions and data

volumes, alternative pattern recognition algorithms with better computational scaling,

lower latency, and high data throughput must be developed to fully exploit the potential

1

1. Introduction

of future HEP experiments.

In recent years, analytical methods using machine learning (ML) techniques have attracted

great interest in the HEP community, leading to a wide range of applications [16], such as

the observation of jet substructures [17], the search for exotic particles [18] or hadronic

B-tagging [19]. Also, for tracking, various ML architectures have been tested and applied,

such as image-based convolutional neural networks (CNNs) and recurrent neural net-

works (RNNs) [20]. However, a major problem with these types of methods is the high

dimensionality and sparsity of the underlying data structure. Solutions to this problem

can be provided by methods based on geometric deep learning (GDL). GDL is a growing

subfield of ML that attempts to generalize deep learning (DL) models to non-Euclidean

domains such as graphs, sets, and manifolds [21]. A central method within GDL are

GNNs [22], which operate on graphical representations of data: Sets of elements and

their pairwise relationships. Particle tracking data can naturally be represented as graphs

in terms of nodes (hits) and edges connecting pairs of hits (track segments). Therefore,

the GNN must correctly classify edges belonging to track segments by considering the

relationships between pairs of hits. Recent efforts following the tracking machine learning

challenge (TrackML) in 2018 [23] have shown that GNNs are well suited for the task of

particle tracking [1, 24].

In addition, particle tracking can be accelerated with highly parallel heterogeneous

computing resources such as graphics processing units (GPUs) and FPGAs, providing a

significant speedup of O(100) over CPU-based execution [25]. FPGAs can be employed

as low-power, low-cost co-processors in conjunction with CPUs to significantly speed

up computation at similar performance [13]. The implementation of GNN-based track

finding on FPGAs allows for use in real-time applications, e.g., at the trigger level [2, 26]

with strict low-microsecond latency requirements. In this latency range, CPU or GPU

solutions are not practical to meet the timing requirements.

The PANDA experiment is a novel collider experiment addressing fundamental questions

of hadron and nuclear physics in interactions of antiprotons with protons and heavier

nuclei currently under construction at the Gesellschaft für Schwerionenforschung (GSI)
facility in Darmstadt [27]. The universal PANDA detector will be a state-of-the-art fixed-

target detector at the Facility for Antiproton and Ion Research (FAIR) facility, providing

new insights into hadron spectroscopy, hyperon physics, proton structure, and hadrons in

nuclei. Each PANDA subdetector system runs autonomously in a self-triggering mode

[28]. Therefore, the first-level tracking and reconstruction algorithms must operate fast

and consume few resources to process all incoming data. The PANDA DAQ system aims

to reduce the initial raw data rate of 10 GB/s by at least 2 orders. For example, for the

FTS, a total of up to 370 kHits/s is expected, resulting in a total bandwidth of 2.914 GB/s.

Therefore, first-level event filtering algorithms implemented on FPGAs are required to

provide high tracking efficiency with low latency.

The main goal of this work is to address two key challenges: The first challenge is

applying a novel GNN-based track finding algorithm to PANDA FTS data, inspired by the

work of Esmail [29]. The second challenge concerns hardware acceleration of the tracking

algorithm through the implementation on FPGAs.

The overall structure of this thesis is composed of ten chapters, including this introductory

2

chapter. It begins with a review of relevant related work in Chapter 2, emphasizing the

importance of DL-based track reconstruction and the implementation of DL-based algo-

rithms on FPGA technology. In Chapter 3, the theoretical foundations of hadron physics

are described, including elementary particles and fundamental interactions based on the

standard model of particle physics (SM), as well as the fundamentals of hadron physics

that are important for understanding the physics program of the PANDA experiment

described in Chapter 4. Chapter 4 also describes the PANDA detector in the context of

the FAIR research facility, focusing on the FTS detector and the PandaRoot framework.

In addition, the fundamentals of charged particle tracking, including track finding and

track fitting, and state-of-the-art tracking methods are described, also in the context of

the PANDA experiment. Chapter 5 gives a brief introduction to ML, in particular to GNNs,

and describes the performance metrics used in this work.

Chapter 6 then addresses the generation of the training data via the PANDA-specific

PandaRoot framework, which includes several steps of data preprocessing and graph

construction. The implementation of a GNN-based tracking algorithm is described and

discussed in Chapter 7, which is applied to two a full graph building and a segmented

graph building approach, and includes track segment finding and tracklet finding.

Chapter 8 gives an overview of FPGAs in general, the Vivado HLS and hls4ml compiler,

and the principles of design optimizations using these compilers. Chapter 9 focuses on

design parameter studies to enable the implementation of the discussed GNN algorithm

on FPGAs with optimal design. Finally, Chapter 10 summarizes the results of this work

and provides an outlook for further research.

3

2. Related Work

In recent years, analytical methods based on ML techniques, and in particular GNNs,

have attracted considerable interest in HEP and led to a variety of applications [22, 30],

including the observation of jet substructures [17], the search for exotic particles [18], and

the reconstruction of particle flows [31, 32].

In 2018, the tracking ML competition TrackML [23] on the Kaggle platform, which chal-

lenged computer scientists to find novel algorithms and approaches to the tracking problem,

drew much attention to applying ML-based solutions to tracking problems. Several archi-

tectures have been tested, such as image-based CNNs and RNNs [20], and collaborations

like the Exa.TrkX project [24] have emerged from this challenge. In particular, architec-

tures based on GNNs have been intensively studied recently, such as the IN architecture

proposed by [1]. This architecture allows for a significant reduction in graph sizes com-

pared to other previously studied architectures, which is critical for implementation in

accelerated hardware. For the PANDA experiment, recent studies have been conducted on

ML and GNN applications on tracking data from the PANDARoot analysis framework [29,

33].

Also, hardware acceleration of GNN-based tracking algorithms is an active area of re-

search where hls4ml has been used to study GNN applications on FPGAs to determine

resource utilization, latency, and performance behavior for different hyperparameter

configurations [2, 34–36].

5

Figure 3.1.: Overview of the elementary SM particles which include quarks, leptons, gauge

bosons, and the scalar Higgs boson. Source: [38].

3. Basic principles of Hadron Physics

This chapter briefly introduces the fundamentals of hadrons which are systems composed

of elementary particles. Therefore, this section begins with a brief overview of elementary

particles in Section 3.1 and the fundamental forces in Section 3.2 on which particle physics

is based. Lastely, the basics of hadron physics are described in Section 3.3, in particular,

focusing on the topics that are important for understanding the physics of the anti-Proton
Annihilation at DArmstadt (PANDA) experiment.

3.1. Elementary Particles

Elementary particles and fundamental forces, as well as the corresponding structure of

all known matter, are currently described by the standard model of particle physics (SM).

The SM is a very successful theory, which has been experimentally confirmed in various

ways in the last decades [37]. Fig. 3.1 shows a schematic overview of the SM.

The SM comprises three groups of elementary particles: quarks, leptons, and gauge

bosons. Atomic nuclei consist of protons and neutrons, which are not elementary particles

7

3. Basic principles of Hadron Physics

Figure 3.2.: Overview of the fundamental forces: gravitational, electromagnetic, strong

and weak force described by the charge they couple to, the current describing

theory, the mediator particle, the relative strength associated with the coupling

constant and the range of the associated potential [39].

themselves but are composed of smaller constituents, namely the quarks and gluons.
According to our present knowledge, quarks do not possess any further substructure and

are, therefore, elementary particles, just like the negatively charged particles in the atomic

shell, the electrons, which belong to the group of leptons. In the case of quarks and leptons,

there are six different particles each, distinguished primarily by their mass and electric

charge. The elementary spin 𝑠 = ±1/2 particles (quarks and leptons), called fermions,

are divided into three generations of different masses and are otherwise distinguished by

charge and spin. In the case of quarks, the six different particles with increasing mass

are up-, down-, charm-, strange-, top-, and bottom-quark. Up, charm, and top quark

are electromagnetically charged with 𝑞 = +2

3
𝑒 and down, strange and bottom quark

with 𝑞 = −1

3
𝑒 , respectively, where 𝑒 is the elementary charge. In addition, for each particle

there is a corresponding antiparticle with a similar mass but with an opposite electric

charge. The second group comprises leptons like the electron, the muon, and the tau,

which are particles similar to the electron except for the mass, as well as the corresponding

neutrinos. The third group covers the particles that mediate the fundamental interactions

between particles, the gauge bosons (vector bosons) and the last group contains the (scalar)

Higgs boson, experimentally discovered in 2012, which was the last missing particle

predicted by the SM.

3.2. Fundamental Interactions

Currently, four fundamental interactions are known: the electromagnetic, the weak, the

strong, and the gravitational force. The latter is currently described by general relativity

(GR) theory but not included in the SM and has not yet been described in a singular

theory among the other three forces which are described by the SM. Fig. 3.2 displays

a short overview of the fundamental forces and their basic characteristics. In general,

fundamental interactions are transmitted by exchanging mediator particles, called gauge

bosons, which couple to the corresponding charges of the elementary particles. For

example, the electromagnetic interaction between electromagnetically charged elementary

particles is mediated by the photon described by the quantum electrodynamics (QED)

8

3.3. Hadron Physics

d

u
u

proton (p): uud

d

d
u

neutron (n): udd

d

u
u

anti-proton (p): uud

d
d

u

anti-neutron (n): udd

Figure 3.3.: Baryons: Protons and neutrons, as well as their corresponding antiparticles:

antiprotons, and antineutrons, are composed of quarks. For example, the

proton comprises two up quarks (𝑢) and one down quark (𝑑).

d

u

pion (π⁺): ud

d

u

pion (π⁻): du

u

u

pion (π⁰): (uu - dd)

d

d

Figure 3.4.: Mesons: There are a neutral pion 𝜋0
, and two charged pions 𝜋+

and 𝜋−
, which

are composed of a particle-antiparticle pair each. All three pions are unstable

and decay via weak or electromagnetic force.

theory. The electromagnetic force is, among other effects, responsible for the molecules’

cohesion and the electron shell binding to the atomic nucleus. Particle decays such as

radioactive 𝛽 decays are driven by the weak interaction mediated by intermediate heavy𝑊

and 𝑍 bosons, which couple to the weak charges of particles. The weak force is described

within the so-called electroweak theory, which unifies the electromagnetic and weak force.

The third fundamental interaction is the strong interaction, which couples to the color

charge of particles and is mediated by the exchange of gluons. The strong interaction is

theoretically described by the quantum field theory quantum chromo dynamics (QCD).

It is the strongest of all four forces on the nuclear scale and is therefore responsible

for the internal and external cohesion of the nuclear building blocks of an atom, even

though the positively charged protons within a nucleus electromagnetically repel each

other. Particles with color charge cannot exist in isolation but only occur in bound states

such as mesons or baryons. In attempts to separate quarks at high energies, new quark-

antiquark pairs are spontaneously created. This imprisonment of quarks and gluons

is called confinement. A challenge of modern high energy physics (HEP) is to increase

understanding of confinement in the theory of the strong force.

3.3. Hadron Physics

Hadron physics is concerned with the study and precise measurement of all systems

composed of quarks, called hadrons, and based on this, the study of the associated fun-

damental particles and forces. There are two types of hadrons: baryons and mesons.

The characteristic properties of baryons are given by three quarks, such as protons and

9

3. Basic principles of Hadron Physics

neutrons, as shown in Fig. 3.3. For example, on the one hand, a proton consists of two

up quarks and one down quark, which gives a total charge of +𝑒 . On the other hand, an

antiproton consists of the corresponding antiparticles: two antidown quarks and one

antiup quark, giving a total charge of −𝑒 .
Mesons, such as pions, consist of a quark-antiquark pair as indicated in Fig. 3.4. Pions are

built from different configurations between up and down quarks and oppositely charged

counterparts. For example, the neutral pion 𝜋0
is a quantum mechanical superposition

state of the two quarkonia 𝑢𝑢 and 𝑑 ¯𝑑 . Other important forms of mesons include quarkonia
that are bound states of a quark and its antiquark. A further example is the quarkonium 𝑐𝑐 ,

also called charmonium. Charm quarks have a relatively large mass compared to up and

down quarks, leading to a smaller distance between quark and antiquark and lower kinetic

energy, such that the spectrum can be described by non-relativistic potential models such

as EFT [40] and LQCD [41]. Although all 8 charmonium states below the open charm

threshold are known, their parameters and decays have yet to be accurately measured.

Beyond that, almost nothing is known above the threshold.

Another important group of mesons in this context are the 𝐷-mesons which are mesons

composed of a charm quark as the heaviest particle. For example, 𝐷0
is composed of a

charm and an antiup quark, and 𝐷+
𝑠 is a combination of a charm and an antistrange quark.

The composite baryons and mesons are held together by strong interaction. Compared to

mesons, the internal structure of baryons is more complex since they contain not only

the two or three quarks mentioned above, the so-called valence quarks that define the

quantum numbers of the corresponding hadrons, but also additional virtual particles.

These virtual particles appear as excitations of the QCD vacuum in the strong interaction

force field. The excitations include gluons and virtual quark-antiquark pairs (sea-quarks)

that are created for a short time and annihilate again (vacuum fluctuation). This interaction

leads to the observed rest mass of hadrons built from light quarks, such as up and down

quarks, being significantly larger than the sum of the rest masses of the valence quarks.

For example, the three valence quarks of the proton together have a rest mass on the order

of 10 MeV/𝑐2
, however, the entire proton has a rest mass of 938 MeV/𝑐2

. In contrast, the

rest masses of the heavy quarks (charm, top, and bottom) are so high that they are not

significantly affected by the sea quarks. Considering this significant contribution to the

overall properties of hadrons, they are composed of constituent quarks, quasi-elementary

particles combining valence quarks with their respective fraction of virtual particles.

An important form of baryons for the PANDA experiment are hyperons, which include

baryons with at least one strange quark and up or down quarks as valence quarks. Hyper-

ons are characterized by their negative number of strange quarks, called strangeness 𝑆 .

Examples are Λ (𝑢𝑑𝑠), Σ (𝑥𝑥𝑠), Ξ (𝑥𝑠𝑠), and Ω (𝑠𝑠𝑠) hyperons, where 𝑥 can be 𝑢 or 𝑑 . Nuclei

containing hyperons are called hypernuclei. Equivalently, there are particles consisting of

several charm quarks, defined by the flavor quantum number charmness 𝐶 .

In addition to baryons and mesons, there are so-called exotic particles, which have been

predicted by theoretical models and some of which have already been experimentally

detected. Exotic particles include, for example, particles with gluonic excitations, i.e.,

hadrons with gluons as principal components contributing to the total quantum numbers.

Since gluons carry color charges themselves, an additional self-interaction of these inter-

mediate particles is possible, allowing the existence of particles consisting purely of gluons,

10

3.3. Hadron Physics

so-called glueballs. Possible gluonic excitations include not only glueballs, but also exotic

forms such as hybrids between hadrons and excited gluons, in which both components

contribute to the quantum numbers (quark-antiquark pairs with an additional gluonic

excitation). Due to the additional degrees of freedom provided by gluons as principal

components, states with combinations of quantum numbers different from ordinary

hadrons are enabled. Therefore, gluonic excitations are relatively easy to identify experi-

mentally. However, the existence of glueballs has not yet been unambiguously confirmed

experimentally, but in recent years promising searches have been undertaken, such as

the search for 𝐽 𝑃𝐶 = 0
−−

glueballs in Υ(1𝑆) and Υ(2𝑆) decays at the Belle experiment [42,

43], where 𝐽 𝑃𝐶 describes the quantum numbers total angular momentum 𝐽 , parity 𝑃 , and

charge-conjucation 𝐶 .

Furthermore, QCD allows the existence of more complex structures called exotic hadrons.

Besides glueballs and hybrids, these include tetraquarks and pentaquarks, which are built

of four or five quarks. Great progress has been made in recent years, for example, with

the unexpected discovery of the excited 𝑋 , 𝑌 , and 𝑍 states [42], the nature of which must

now be studied in detail.

Although the SM has shown huge success in predicting the existence of 𝑊 and 𝑍

bosons, gluons, top and charm quarks, and many of their properties before they were

even observed, there are still many open questions of particle physics, such as baryon

asymmetry, dark matter, neutrino mass, or the hierarchy problem. In the following chapter,

the PANDA experiment will be described, which will focus on investigations related to the

weak and strong forces at medium energy, such as investigating the structure of the QCD

vacuum, confinement, the origin of hadron masses, and exotic states of hadronic matter.

11

Hadron

spectroscopy

pp̄ →
ϕ ω

η
J/ΨD

Ds

glueballs

exotic states

XYZ

Hyperon
physics

pp̄ →
pairproduction
|S | = 1,2,3
|C | = 1

ΛΛ̄

Proton
structure

pp̄ →
e+e−

μ+μ−

e+e−π0

Hadrons in
nuclei

p̄N →
Ξ−208Pb

Figure 4.1.: Overview of the PANDA physics program. The research is based on four pillars:

hadron and hyperon physics, proton structure, and interaction of hadrons in

nuclei. Source: [45]

4. PANDA Experiment

The anti-Proton Annihilation at DArmstadt (PANDA) experiment is one of the key experi-

ments currently under construction at the Facility for Antiproton and Ion Research (FAIR)

in Darmstadt, Germany [27, 44]. It is a fixed-target experiment using proton-antiproton

annihilation to investigate many open questions in hadron physics in the charm and multi-

strange hadron sectors, complementing existing facilities. The main aspects of the PANDA

physics program include fundamental questions about weak and strong forces, exotic

matter states, and hadron structure. In the following sections, the PANDA experiment with

its extensive physics program, the FAIR facility in which it is located, the detector itself,

and its software framework, PandaRoot will be presented. Lastly, a short introduction to

the principles of particle track reconstruction, also in the context of PANDA, is given.

4.1. PANDA Physics Program

The PANDA experiment is expected to provide new insights in the field of quantum

chromo dynamics (QCD). It will be operated complementary to existing facilities by using

antiprotons as hadronic probes instead of primarily used electromagnetic probes or proton

beams. Antiproton probes offer high production rates compared to electromagnetic probes

and are unique in directly populating a large spectrum of spin parity states [46]. This

enables high-resolution line-shape measurements and access to very high spin states,

allowing detection and measurement of previously unobserved exotic particles predicted

in the framework of strong interaction theory, such as glueballs and hybrids. The goal

13

4. PANDA Experiment

of PANDA is to explore the dynamics of the weak and strong interactions by studying

various composite quark systems and their production and decay mechanisms. Therefore,

the PANDA physics program relies on four research pillars: hadron spectroscopy, hyperon

physics, nucleon structure, and hadrons in nuclei depicted in Fig. 4.1 [27, 44]. In the

following, the four pillars will be described in more detail.

4.1.1. Hadron Spectroscopy

The first pillar of the physics program focuses on precision hadron spectroscopy of light to

charm quarks and gluons, the search for exotic particles, and the measurement of hadron

properties.

One aspect of hadron physics is the search for glueballs and hybrids. Planned studies

include the investigation of the glueball spectrum such as the glueball ground state can-

didate 𝑓0(1500) or states with the quantum numbers 𝐽 𝑃𝐶 = 2
++

and 0
−+
, the search for

exotic forms of hybrids and meson-like or molecular states at expected luminosities of the

benchmark channels at 2 · 10
32/(cm

2
s).

Another prospect of hadron spectroscopy at PANDA is charmonium spectroscopy. PANDA

is expected to be able to measure the properties of the newly discovered 𝑋𝑌𝑍 spectrum

and to find the predicted 𝐷- and 𝐹 -wave states by precision scans below and above the

open charm threshold. Searches in the high spin region up to a total angular momentum

of 𝐽 = 6 and at larger masses up to 5.5 GeV/𝑐 are planned to complement existing findings

and cover new decay channels.

Another important topic in hadron spectroscopy is the spectroscopy of 𝐷 mesons, includ-

ing the study of new open charm mesons recently discovered at the BaBar, Cleo, and Belle

experiments [47, 48]. These open charm mesons deviate from the predictions of the quark

model, unlike the previously known 𝐷 states, and are therefore attracting considerable

interest. One way to study these states is to look at the decay width of the 𝐷𝑠 states, which

allows distinguishing between different theoretical models. PANDA is expected to collect

thousands of 𝑐𝑐 states per day which allows mass measurements with accuracies up to the

order of 100 keV and widths to 10 % or better. The entire energy range below and above

the open charm threshold at 3.73 GeV will be explored.

4.1.2. Hyperon Physics

The second pillar is dedicated to studying hyperon physics via the formation of mesons

and baryons with open strangeness |𝑆 | or open charmness |𝐶 |. Pair formation of baryons

and mesons with |𝑆 | = 1, 2, 3 or |𝐶 | = 1 near their production threshold is expected to

have large effective cross sections of two or even three orders of magnitude larger than

those of photons. States that do not couple to photons or kaons will be studied at PANDA

especially investigating the |𝑆 | = 3 sector, to which few experiments in the world have

access.

The study of hyperons provides a direct test of the validity of few-body models and

access to spin observables such as polarization and spin correlations through weakly

decaying hyperons. Moreover, the fundamental question of matter-antimatter asymmetry

can be addressed by a model-independent test of 𝐶𝑃 violation in baryon decays via a

14

4.2. FAIR Research Facility

multidimensional analysis of the particle-antiparticle symmetric final state of hyperon

decays. High-precision effective cross sections around 64 µb for the production of ΛΛ̄
pairs are already expected at phase-one luminosity and 2 µb for 𝑝𝑝 → ΞΞ̄.

4.1.3. Proton Structure

The third physical pillar of PANDA involves experiments on proton structure with di-

leptonic electromagnetic final states 𝑝𝑝 → 𝑙+𝑙−. One goal are time-like electric and

magnetic form factor studies of |𝐺𝐸 | and |𝐺𝑀 |, respectively, in an expected 𝑞2
range from

threshold to 22 GeV
2/𝑐2

and above to provide new insights into the understanding of

the proton radius and to test the universality of leptons. Significant improvements on

the results of previous experiments and complementary results to space-like studies on

lepton scattering experiments are expected in terms of energy range and accuracy. In

particular, it is planned to measure |𝐺𝐸 | and |𝐺𝑀 | separately, which has not been possible

so far due to limited statistics. In addition, PANDA will be able to probe the off-shell

region 4𝑚2

𝑒 < 𝑞
2 < 4𝑚2

𝑝 through a final state including an additional pion.

4.1.4. Hadrons in Nuclei

The fourth and final pillar of PANDA physics is devoted to the properties of hadrons in

nuclear medium. This study aims to understand better the origin of hadron masses in the

context of QCD at finite nuclear densities. Mass shifts of hadrons in a nuclear environment

reflect the real part of a nuclear potential and are mainly expected for hadrons at rest

or with small momentum relative to the nuclear medium. In PANDA, hadrons produced

in antiproton-nucleon collisions are expected at much lower momenta than in proton-

induced reactions, giving access to promising momentum ranges in terms of significant

medium effects. For example, the antihyperon nuclear potential will be investigated by

producing hyperon pairs near the production threshold. The measurement of fundamental

in-medium properties of charmed hadrons, such as mass and width in the nuclear medium,

is also planned to provide new insights into the formation of hadrons. In addition, color

transparency, which describes the phenomenon that the strong interaction in the nuclear

medium becomes very small for some observables, will be studied by the response of

antiprotons to a nuclear target. Other topics include the implantation of hyperon pairs in

nuclei, the unique search for X-ray transitions of heavy hyperatoms such as Ξ−208
Pb, and

later high-resolution 𝛾 spectroscopy of double-hypernuclei.

4.2. FAIR Research Facility

The Facility for Antiproton and Ion Research (FAIR) research facility is currently under

construction at the Gesellschaft für Schwerionenforschung (GSI) site in Darmstadt, Ger-

many. A recent construction site picture is shown in Fig. 4.2. FAIR will have extensive

facilities for the production, storage, and acceleration of antiprotons and will house various

experiments [50]. These include the PANDA experiment and CBM, APPA, and NuSTAR,

with projects in atomic, plasma, and astrophysics. The new accelerator center, one of the

15

4. PANDA Experiment

Figure 4.2.: Photograph of the FAIRconstruction site taken in 2021. Source: [49].

largest international research projects in the world, builds upon the experience and infras-

tructure of the existing GSI facility. The existing GSI accelerators UNILAC and SIS18 will

serve as the first accelerator stage injectors for the new accelerator ring SIS100. FAIR will

deliver unprecedented intensity and quality particle beams. In FAIR, protons, antiprotons,

unstable nuclei, and ions of all natural elements of the periodic table can be produced and

accelerated with high beam intensities. The centerpiece of FAIR is a ring accelerator SIS100

with a circumference of 1100 meters. A complex system of storage rings and experimental

stations is connected to it, including the PANDA experiment. Fig. 4.3 shows the layout of

the FAIR facility with the existing facilities (blue: GSI accelerator), the future components

(red: FAIR accelerator) and the location of the various new experiments such as PANDA,

which is located at high-energy storage ring (HESR).

The antiproton beam for the PANDA experiment is prepared as follows: Protons are accel-

erated in different stages (proton-LINAC, SIS18, and SIS100) to a final energy of 29 GeV/𝑐
and then collided with an antiproton target, generating antiprotons at a production rate

of 2 · 10
7/s. The produced antiprotons are then collected and precooled in the collector

ring (CR) and then injected into HESR at a rate of 10
8
antiprotons per 10 s until a total

number of 10
10

antiprotons is reached in the accelerator. The final momentum of the

antiproton beam ranges from 1.5 GeV/𝑐 to 15 GeV/𝑐 . Fig. 4.4 shows the layout of HESR
with the injection point from the CR, complex magnetic systems, and stochastic cooling

systems. HESR is a storage ring with a circumference of 575 m and a magnetic bending

force of 50 T m, that inherits the PANDA, KOALA, and SPARC experiments. The PANDA

detector will be located in one of the straight sections of HESR.

16

4.2. FAIR Research Facility

Figure 4.3.: Layout of the FAIR facility with the existing facilities (blue: GSI accelerators),

the future components (red: novel FAIR systems) and the location of the various

new experiments. Source: [51].

Figure 4.4.: Layout of HESR. Source: [52].

17

4. PANDA Experiment

Figure 4.5.: PANDA detector overview with target and forward spectrometer composed

of various detector systems. The antiproton beam enters from the left.

Source: [53].

4.3. The PANDA Detector

The extensive physics program planned for the PANDA experiment requires a versatile

detector with full solid angle coverage and capabilities for charged particle tracking, particle

identification, calorimetry, and muon detection [28, 54]. As a fixed-target experiment, the

PANDA antiproton beam collides with the quasi-resting target at the interaction point

with a momentum range of 1.5 GeV/𝑐 to 15 GeV/𝑐 and a collision rate of up to 20 million

particles per second at a target luminosity of 2 · 10
32/(cm

2
s). Due to the conservation of

momentum and energy, the particles generated at the interaction point are accelerated

in the forward direction. The detector is therefore divided into two sections as shown

in Fig. 4.5: the target spectrometer and the forward spectrometer. The target spectrometer

covers the central region around the interaction point, providing nearly 4𝜋 coverage within

a superconducting solenoid magnet with a magnetic field of up to 2 T with homogeneity

of ±2%. The forward detector is constructed with a dipole magnet in the beam direction,

providing a bending power of 2 T m for the detection and measurement of particles that

are boosted in the beam direction at low polar angles. The forward detector measures

forward-boosted particles at low polar angles 𝜃 of up to 5° in the vertical direction and

10° in the horizontal direction with respec tto the beam direction. Both spectrometers

consist of several detector systems that enable precise particle track reconstruction, vertex

determination, momentum and energy measurement, and particle identification. In total,

the PANDA detector covers about 12 m along the beamline with a total height of about

6 m.

The PANDA detector operates on a so-called trigger-less readout. This means that without

18

4.3. The PANDA Detector

z

y

x

(a) (b)

Figure 4.6.: (a) Schematic view of the PANDA forward tracking system (FTS) composed of

6 tracking systems FT1 to FT6, where FT3 and FT4 are located within a dipole

magnet. Source: [55]. (b) Schematic view of a straw tube and particle tracking.

The red circle indicates the isochrone radius. Source [55].

any hardware trigger each subdetector system runs autonomously in a self-triggering

mode which is realized with self-triggered intelligent front-end electronics and online

data processing algorithms. Up to 10 GB/s of raw data are expected to stream into the

data acquisition system (DAQ) [28] that need to be reduced by at least two orders before

storage on disk. The first level of event filtering is performed on field programmable gate

arrays (FPGAs) attached to a graphics processing unit (GPU) server farm as a second level.

4.3.1. Forward Tracking System (FTS)

The forward tracking system (FTS) is particularly relevant for this thesis. It is used to

determine the trajectories and particle momenta of charged particles that are boosted in the

forward direction of the spectrometer. The FTS consists of three pairs of planar tracking

detector stations arranged in planes perpendicular to the beam axis, depicted in Fig. 4.6(a).

The overall coordinate system is oriented with 𝑧 axis along the beam axis, 𝑥 parallel to

the ground, and 𝑦 pointing upwards. The first pair (FT1, FT2) is located in front of the

dipole magnet, the last pair (FT5, FT6) is located behind the dipole magnet, and a third

pair (FT3, FT4) is located inside the magnet aperture. Each of the FTS tracking stations

consists of four double layers: the first and last double layers are oriented vertically (in

the 𝑥𝑦-plane), while the second and third double layers, called skewed layers, are oriented

with angles of 5° and −5° to the 𝑥𝑦-plane, respectively. The skewed layers provide three-

dimensional information in the 𝑦 direction in addition to the 𝑥 and 𝑧 information obtained

via the non-skewed layers. This overall arrangement of layers allows the independent

reconstruction of tracks in each pair of tracking detector stations, even in the case of

multiple tracks per event.

The FTS is a straw tube tracking system that comprises tubes of 10 mm in diameter,

19

4. PANDA Experiment

Figure 4.7.: Schematic view of the PandaRoot data flow. From event generation via differ-

ent event generators (EvtGen, Dual Parton Model, Pythia, Ultra Relativistic

Quantum Molecular Dynamics), transport through the detector via Geant,

digitization in the different detector components (MVD, TPC/STT, GEM, TOF,

DIRC, Muon, EMC) over charged particle tracking to particle identification

and analysis.

providing a spatial resolution of 1/
√

1210 mm. Straw tubes are multi-wire proportional

chambers that operate in the proportional region containing a high-voltage anode wire

surrounded by gas. In total, the FTS consists of 13065 tubes filled with a 90:10 argon-carbon

dioxide mixture that has been found to be a gas proportion providing good properties,

including reducing aging effects. Charged particles passing through the tubes ionize the

gas atoms, creating electron-ion pairs. In the high electric field near the anode wires,

the electrons are accelerated toward the anode wires, ionizing the gas atoms and again

creating new electrons. This leads to an amplification of the current as a function of

the applied voltage and the gas pressure, the so-called charge avalanche. The current

is proportional to the initial charge and allows the determination of the particle energy

loss and, in combination with the measured particle momentum, identification of the

particle type. The drift time of the electrons to the anode wire can also be measured, which

gives information about the distance of the charged particle track to the anode wire, the

so-called isochron radius shown in Fig. 4.6(b). Integrating the isochrone radius, a full

spatial resolution of 150 µm perpendicular to the tube axis can be achieved.

A total of up to 370 khits/s is expected, which results in a total bandwidth of 2.914 GB/s

combining all six tracking stations.

4.4. PandaRoot

Since FAIR and the PANDA detector are still under construction, only simulation data

for physical processes at PANDA are available so far. Simulation is performed using the

20

4.5. Track Reconstruction

PandaRoot framework [56, 57], which is part of the more general FairRoot framework.

PandaRoot is based on ROOT [58] and Geant [59] to simulate detector performances

and evaluate different detector designs based on virtual Monte Carlo simulations [60].

PandaRoot is capable of simulating expected physical interactions and detector response,

as well as full event reconstruction, selection, and analysis.

The structure of the PandaRoot framework is shown in Fig. 4.7: In the first stage, events

are generated via different event generators (EvtGen, DPM, UrQMD, Pythia) for signal

and background processes. The simulated particles are transported through the geometric

volumes of the detector using Geant3/4, taking into account the magnetic field, particle

decay, energy loss, scattering, and bremsstrahlung. The detector geometry can be de-

scribed in ASCII format or as ROOT objects. CAD drawings of the detector components

can be loaded and converted to ROOT geometry format. The next step is the detector

response simulation as particles pass through the sensitive volumes, determining posi-

tion, momentum, time, and energy loss. The detector response simulation is digitized to

include detector effects such as segmentation, electronics emulation, noise, thresholds,

and timing so that the data corresponds to a more realistic detector response to passing

particles. Events can be displayed using an event display based on the event visualization

environment (EVE) in ROOT. Finally, the detector response is used for hit reconstruction,

cluster finding, local and global tracking, and particle identification for complete event

reconstruction. In the final step, the reconstructed events can be used for various analysis

tasks, including geometric and kinematic fits and angular distributions, to extract physics

from the reconstructed 4-momentum events. The PandaRoot software is almost complete

and is currently used for various physics analyses. However, improvements are still being

made, such as including additional timing information for event building.

4.5. Track Reconstruction

In this section, charged particle tracking and the methods used for this important part of

the data analysis chain in high energy physics (HEP) experiments are briefly described,

based on the information in [61]. In HEP, track reconstruction, or short tracking, is the task
of accurately reconstructing the basic kinematic parameters of charged particles such as

position, direction, and momentum. Tracking detectors are placed around the interaction

points of collider experiments to enable high-precision position measurements. Particles

ionize the active materials of the detector, enabling position measurements along the

particle trajectories. Tracking detectors are typically constructed of as little material as

possible to minimize energy losses of passing particles. Furthermore, tracking detectors or

parts of the detectors are typically located in a calibrated magnetic field that allows the

determination of the particle momenta via the particle track curvatures in the magnetic

fields.

In general, tracking is divided into two distinct steps: track finding and track fitting. Track
finding is the task of pattern recognition to identify detector hits that are assumed to

come from the same particle track. The goal of track fitting is to fit curves to the detector

measurements of the track candidates found by the track finding from which particle

momenta and charges can be determined.

21

4. PANDA Experiment

Track reconstruction can be performed online and offline, where online means real-time

analysis, usually based on simplified methods implemented via discrete electronic compo-

nents, while offline analysis is performed after storing the data on disk. The main goal of

offline reconstruction is maximum precision, while speed is the defining factor for online

reconstruction.

Various tracking detector devices have been developed over the past decades based on

different technologies. These include cloud chambers, nuclear emulsion plates, bubble

chambers, spark chambers, multi-wire proportional chambers, drift chambers, and time

projection chambers. In addition, there are also tracking detectors based on semiconductor

technology, which enable high-precision and fast readout. Modern detectors often combine

silicon and gaseous tracking detectors in three tracking systems: a high-precision detector

near the primary interaction point, a central or inner tracker, and the muon tracking

system in the outermost detector layers [62].

4.5.1. Track Finding

The aim of track finding is the correct assignment of detector hits to clusters representing

tracks stemming from the same particle. The clusters are divided into a subset of interesting

track candidates and a subset containing uninteresting measurements such as noise or

low-energy curling particles.

Since tracking is performed in an early stage of the data analysis chain, track candidates

discarded at this stage may not be recovered at a later stage. Therefore, track finding

should be conservative and keep track candidates in doubt instead of discarding them. In

general, tracking is a complex and time-consuming process. Computational speed is an

critical aspect of track finding, especially for triggering applications. Therefore, simplified

models must often be used.

Track finding can be divided into global and local methods. Global methods consider all

detector measurements simultaneously. Examples are conformal mapping, the Hough

transform, and the Legendre transform, while local methods such as track road and track-

following methods process measurements sequentially.

4.5.2. Track Fitting

The goal of track fitting is to improve the track parameters generated by the previous track

finding stage. While in track finding, usually simplified track models are used, track fitting

aims to be as realistic as possible, taking into account all electromagnetic fields and realistic

material distribution of the detector. The basic requirements for track fitting are that it

should be numerically stable and robust to track finding errors. The final reconstructed

tracks can then be used to verify the assignment of hits to a complete track candidate.

Some hits may be misclassified and do not belong to a particular track, or sometimes a

complete track may be a random collection of unrelated hits, so-called ghost tracks.

22

4.5. Track Reconstruction

4.5.3. State-of-the-Art Tracking

Today, combinatorial algorithms based on the Kalman filter are widely used for particle

tracking, combining track finding and track fitting simultaneously [9, 10]. The Kalman

filter is a mathematical method for iteratively estimating parameters that describe system

states based on noisy measurements. Algorithms based on the Kalman filter are robust

to difficult operating conditions in tracking systems involving, for example, multiple

scattering of particles in detectors. However, one problem with combinatorial Kalman

filter algorithms is that they scale worse than linearly with an increasing number of hits,

which will also increase the computational time required for tracking. In the future, the

number of hits per event is expected to increase due to higher detector occupancies and

luminosities. For example, the luminosity increase corresponding to the LHC upgrade

to the HL-LHC [63] is expected to increase by order of magnitude, directly affecting the

number of hits. The increase in computation time for track reconstruction is expected to

be faster than the evolution of computational resources [15]. Therefore, current research is

focused on developing new tracking algorithms, especially based on machine learning (ML)

techniques. In addition, there is significant interest in accelerating tracking algorithms

through parallelization on specialized hardware to enable online tracking at the trigger

level, also using ML methods.

4.5.4. Tracking with PandaRoot

For the PANDA experiment, several reconstruction algorithms for tracking and particle

identification are currently being developed and optimized to meet the performance re-

quirements of the experiment. In the central tracker, the track is first fitted by a conformal

map transformation based on a helix assumption. Then, the track is used as input to the

Kalman filter based track-fitting toolkit Genfit [64] that is an experiment-independent

toolkit combining fitting algorithms, track representations, and measurement geometries

into a modular framework. Finally, the track is used in conjugation with the PID detectors

(e.g., Cerenkov detectors, EM calorimeters, or muon chambers) to determine a global

particle identification probability using Bayesian approaches or multivariate methods [57].

In this work, track finding is performed using FTS position and time measurements

created by the interaction of charged particles with the FTS units. Recent work has

demonstrated that ML algorithms, particularly graph neural networks (GNNs), are well

suited for the pattern recognition task of track finding [1, 20, 23, 24, 29]. In the following

chapter, the basics of ML and GNNs are described.

23

5. Basics of Graph Neural Networks

This chapter lays out machine learning fundamentals, specifically graph neural networks,

as they are a key aspect of this thesis. Machine learning is based on artificial neural

networks (NNs), i.e., computer algorithms inspired by biological neural networks. NNs are

trained on task-specific data samples to recognize and learn certain features of the given

data. A trained network can be used to perform data processing tasks such as regression

and classification or even more complex tasks such as speech recognition. In a nutshell:

NNs are stochastic minimization algorithms applied to a multidimensional input space to

improve performance on a given task.

This chapter describes the general principles of artificial neural networks, the principles

of over- and underfitting, and the implementation of machine learning with Pytorch. It

also introduces graph neural networks (GNNs), a special class of NNs that operate on

non-Euclidean data, and describes the performance metrics used in this work. The focus

of this chapter is to provide a brief overview of the necessary information for this thesis.

More detailed information on the theoretical aspects and applications of NNs can be found

in [65, 66] and [67].

5.1. Neural Networks

In principle, NN consists of several mathematical building blocks, called modules, as

shown in Fig. 5.1. The network itself consists of several layers that are interconnected.

The first of these layers is called the input layer, and the last layer is called the output layer,

representing the data input and output, respectively. There may be several hidden layers
between the input and output layers that are not connected to the outside of the network.

If the network contains more than one hidden layer, it is called a deep neural network.

Each network layer is associated with trainable parameters, weights, and biases. Input
data 𝑥 of arbitrary dimensions containing features of the training patterns are passed

through the network layers, which perform multiple data transformations on the data 𝑥 to

obtain an output 𝑦 as a prediction of the network for a particular task.

The layers of NNs contain several nodes or so-called neurons. The perceptron is a variant

of artificial neurons and is one of the main building blocks of modern NNs. In principle, it

is represented by a mathematical function of the following form as depicted in Fig. 5.2:

𝑦𝑖 = 𝑓

(
𝑁∑︁
𝑗=0

𝑤𝑖 𝑗𝑥 𝑗 + 𝑏𝑖

)
𝑖 ∈ {1, . . . , 𝑛neurons}, 𝑗 ∈ {1, . . . , 𝑁 } . (5.1)

The output of each perceptron 𝑦𝑖 is computed by a weighted sum of the 𝑁 inputs 𝑥 𝑗 plus

a bias 𝑏𝑖 enclosed by a nonlinear activation function 𝑓 . Common activation functions

25

5. Basics of Graph Neural Networks

Loss functionoptimizer

input

output truth

Layer 1
(data transformation)

Parameters
(weights & biases)

Parameters
(weights & biases)

Parameters
(weights & biases)

Loss score

Parameter
update

Layer 2
(data transformation)

Layer n
(data transformation)

Figure 5.1.: Schematic NN model architecture (grey), training steps (green) and input/out-

put data (blue).

+

Figure 5.2.: Graphic representation of a perceptron as defined in Eq. (5.1). The weighted

sum of the inputs plus a bias term is calculated and given to an activation

function that calculates the output.

26

5.2. Overfitting and Underfitting

include a simple step function, the sigmoid function

𝑓 (𝑥) = 1

1 + exp(−𝑥) =
exp(𝑥)

exp(𝑥) + 1

, (5.2)

the softmax function

𝑓 (x)𝑖 =
𝑒𝑥𝑖∑𝐾
𝑗=1
𝑒𝑥 𝑗

for 𝑖 = 1, . . . , 𝐾 and x = (𝑥1, . . . , 𝑥𝐾) ∈ R𝐾 (5.3)

with the number of classes 𝐾 , and the rectified linear unit (ReLU) function

𝑓 (𝑥) = max(0, 𝑥) . (5.4)

Multiple perceptrons (or artificial neurons) arranged in series form a multilayer perceptron

(MLP), a multilayer feed-forward network. The layer is said to be fully connected if all

neurons in one layer are connected to all other neurons in the adjacent layers. The final

output layer is usually wrapped by a sigmoid or softmax function, which both ensure

that all output values are in the range (0,1) and will sum to 1, thus constituting a valid

probability distribution. The prediction is compared to a true target 𝑦 associated with the

input data 𝑥 via a loss function 𝐿. Depending on the given problem, there are several types

of loss functions. For example, in the case of classification problems, it is common to use

the categorical cross entropy [68]. In this work, the two-dimensional special case of the

categorical cross-entropy, the binary cross entropy,

𝐿(𝑦,𝑦) = − 1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖) · log(1 − 𝑦𝑖)) (5.5)

is applied. The discrepancy between the predicted (𝑦) and the true (𝑦) vector is quantified

by the output of the loss function, called the loss score, which must be minimized during

the training process, to obtain the best match between 𝑦 and 𝑦. The minimization is

achieved by an optimization algorithm that operates on the loss score to minimize it in

the next iteration. The loss score is propagated back from the output layer to the input

layer and updates the network parameters depending on their influence on the loss score.

This process is called backpropagation. The number of training iterations taken to improve

the network predictions is called epochs, one of many hyperparameters that must be fixed

before training and determine the network structure and training properties.

5.2. Overfitting and Underfitting

The goal of machine learning is to find models that best describe the features of the given

data. Therefore, the networks must be trained on training data as close to the real data

as possible. However, it is problematic when a network trains too long on training data;

thus, it only memorizes the training data and fails to generalize. Such a trained network

performs poorly on unseen data, the test dataset. This phenomenon is called overfitting,
and techniques that counteract overfitting are called regularization methods. On the other

27

5. Basics of Graph Neural Networks

Figure 5.3.: Overfitting and underfitting of NN training in the context of model complexity

and loss score.

hand, if a model is not fully trained, it has not learned all the features of the input data,

resulting in poor predictions on new data, which is called underfitting.
A validation dataset is introduced in addition to the training and test datasets to monitor

overfitting and underfitting. If the training error is significantly lower than the validation

error, this indicates overfitting the network on the training data. Underfitting can be

identified by a simultaneous decrease in the training and validation error compared to the

previous epoch.

Both overfitting and underfitting depend strongly on the model complexity and the size of

the data set, shown in Fig. 5.3. An optimal training condition between underfitting and

overfitting is achieved with a minimal validation error.

There are several methods to avoid overfitting, such as introducing dropout layers or batch

normalization [69, 70]. In PyTorch, both methods are enabled by default during training

but disabled during the validation, evaluation, and prediction phases. As a result, PyTorch

models may perform even better on validation and test data than on training data.

5.3. PyTorch Implementation

A basic machine learning (ML) workflow involves loading data, defining a model archi-

tecture, optimizing model parameters through training, and saving the trained model

for further evaluation. In PyTorch, data for training and validation are loaded via

DataLoaders [71], which wrap iterables over the dataset by processing the data in batches;

in the following example with a batch size of 64. The batch size specifies the number of

samples propagated simultaneously through the network, which affects training time,

accuracy, and memory usage. PyTorch DataLoaders support automatic batch processing,

adjusting the order of data loading, and loading data in one or more processes.

Define DataLoaders

train_dataloader = DataLoader(training_data, batch_size=64)

val_dataloader = DataLoader(val_data, batch_size=64)

28

5.3. PyTorch Implementation

The network architecture is specified by amodel definition and a forward pass that specifies

how data is passed through the network. In this example, the NeuralNetwork class inherits

from a nn.Module to create a simple sequential feed-forward network with a hidden layer

with input dimension 100, hidden dimension 512, and output dimension 10. Data is passed

through the network specified by the forward pass, which flattens the input data before

passing the data through the model.

Define model

class NeuralNetwork(nn.Module):

def __init__(self):

super(NeuralNetwork, self).__init__()

self.flatten = nn.Flatten()

self.simple_model = nn.Sequential(

nn.Linear(100, 512),

nn.ReLU(),

nn.Linear(512, 512),

nn.ReLU(),

nn.Linear(512, 10)

)

def forward(self, x):

x = self.flatten(x)

return self.simple_model(x)

model = NeuralNetwork()

The model parameters are optimized based on a loss function and an optimizer, which are

in this case the binary cross entropy (BCE) and the adam optimizer with a learning rate

of 0.01 [72]:

Define training configuration

loss = nn.BCELoss()

optimizer = optim.Adam(model.parameters(), lr=0.01)

In a training loop, the model is put in train mode enabling Dropout layers and batch

normalization. The model computes predictions based on the input data. A loss score

between prediction and target vector is calculated, and the optimizer updates the model

parameters by backpropagation.

#Define training loop

def train(train_dataloader, model, loss, optimizer):

model.train()

for batch, (X, y) in enumerate(dataloader):

Compute prediction error

pred = model(X)

loss = loss(pred, y)

29

5. Basics of Graph Neural Networks

Backpropagation

optimizer.zero_grad()

loss.backward()

optimizer.step()

The validation loop is similar to the training loop with the difference that the model is put

in evaluation mode, disabling Dropout layers, batch normalization, and backpropagation.

Define validation loop

def validation(validation_dataloader, model, loss):

model.eval()

with torch.no_grad():

for batch, (X, y) in enumerate(dataloader):

pred = model(X)

validation_loss = loss(pred, y)

Finally, the model is trained over several epochs, updating the model parameters with

each epoch to obtain better predictions.

Training

epochs = 20

for epoch in range(epochs):

train(train_dataloader, model, loss, optimizer)

test(validation_dataloader, model, loss)

5.4. Graph Neural Networks

An emerging subfield of deep learning (DL) is geometric deep learning (GDL), which

generalizes deep neural models to non-Euclidean domains such as graphs, sets, and mani-

folds [21]. In particular, the field of GNNs as a central method of GDL has grown very

rapidly in recent years, with applications in a variety of important open problems in parti-

cle physics [22]. Recent efforts have shown impressive performance of GNNs compared to

classical DL methods, in particular in the field of charged particle tracking [1, 23, 24, 29].

Formally, a graph 𝐺 = (𝑋, 𝐸, 𝐼) can be represented by a set of objects (O) called vertices or

nodes

𝑋 = [x𝑖] ∈ R𝑁nodes×𝐷nodes
(5.6)

and another set of elements representing the relations (R) between two objects called edges

𝐸 = [e𝑘] ∈ R𝑁edges×𝐷edges
(5.7)

connected by an adjacency hit index pair list

𝐼 = [𝐼𝑟,𝑘 , 𝐼𝑠,𝑘] ∈ N2×𝑁edges
(5.8)

30

5.5. Performance Metrics

connecting receiving node 𝑟 and sending node 𝑠 by an edge 𝑘 . The hit index pair list only

consists of pairs of hit indices, and therefore its size only depends on the number of edges.

Alternatively, the adjacencies can be encoded by two matrices of the form {0, 1}𝑁nodes×𝑁edges
,

where one matrix encodes the incoming edges and the other matrix the outgoing edges,

respectively. Ones indicate the incoming and outgoing edges, while all other matrix entries

are zero. Hence, the matrices are filled sparsely with ones, which is highly inefficient in

size, especially concerning implementation on heterogeneous hardware. Although the

formulation based on a hit index pair list 𝐼 via PyTorch Geometric (PyG) [73] is in theory

equivalent to a matrix formulation defined via PyTorch [74], encoding the edge adjacency

in 𝐼 is much smaller and significantly reduces the resource consumption compared to

the matrix formulation. Therefore, this implementation is significantly faster and more

flexible than the matrix implementation [1].

A basic interaction network (IN) as proposed by [75] is defined as

𝐼𝑁 (𝐺) = 𝜙𝐴 (𝑚2(𝜙𝑂 (𝑎(𝐺,𝜙𝑅 (𝑚1(𝐺)))))) (5.9)

with marshaling functions𝑚1,2 rearranging the nodes and edges into interaction terms, a

relational model 𝜙𝑅 , aggregation function 𝑎, object model 𝜙𝑂 , and final output model 𝜙𝐴.

In general, an IN updates node and edge features iteratively by aggregating information

derived from the node’s neighborhood, also called messages.

5.5. Performance Metrics

Performance metrics are a crucial part of machine learning tasks to indicate the perfor-

mance of an algorithm. In this thesis, only binary classification tasks are applied; therefore,

the metrics discussed here refer exclusively to that case.

One important classification metric is the BCE loss between the target tensor 𝑦 and the

network output probabilities 𝑦. The loss measuring the mismatch between target and

network predictions with mean reduction and optional manual rescaling weight 𝑤𝑛 is

described as

𝑙 (𝑦,𝑦) = mean(𝐿) = mean

(
{𝑙1, . . . , 𝑙𝑁 }⊤

)
(5.10)

with 𝑙𝑛 = −𝑤𝑛 [𝑦𝑛 · log𝑦𝑛 + (1 − 𝑦𝑛) · log(1 − 𝑦𝑛)]

where the log functions are clamped to a minimum value of -100 to ensure finite loss

values. Here, a low loss score indicates good classification performance.

Another essential metric is classification accuracy that describes the fraction of correct

predictions, formally described as

accuracy =
1

𝑁

𝑁∑︁
𝑖

1(𝑦𝑛 = 𝑦𝑛) (5.11)

where a high accuracy score indicates an overall good training performance. In addition

to loss and accuracy, another important metric for binary classification is the confusion

matrix, also called truth matrix, as shown in Fig. 5.4. The confusion matrix is used to

compare true class values with classifier prediction values based on four cases:

31

5. Basics of Graph Neural Networks

Specificity

TN+FP
TN

Figure 5.4.: Examplaric confusionmatrix display with true negative (TN), true positive (TP),

false negative (FN), and false positive (FP) based on different configurations

of actual class and predicted label. In addition, different performance metrics

such as purity, efficiency, specificity, negative predictive value, and accuracy

are shown.

• true positive (TP): actual and predicted class indicate true

• false negative (FN): the actual class is true, but the classifier indicates false

• false positive (FP): the actual class is false, but the classifier indicates true

• true negative (TN): both actual and classifier indicate false

In a classification task the first and the last case frequencies TP and TN need to be max-

imised while minimising FN and FP.

The various relative frequencies of the confusion matrix are often used to determine addi-

tional metrics for the evaluation of the classifier. Purity and efficiency are two important

metrics commonly used in high energy physics (HEP).

Purity, also called positive predictive value (PPV) or precision, indicates the proportion of

correctly classified positive/true objects in the totality of results classified as positive. It is

defined as

purity =
TP

TP+FP

. (5.12)

Efficiency is the probability that a positive/true object is correctly classified as positive

(signal (S)). In literature, efficiency is often termed true positive rate, sensitivity, recall, or

hit rate. It is defined as the true positive rate (TPR)

efficiency = TPR =
TP

P

=
TP

TP+FN

(5.13)

with positive count P = TP + FN.

Other two important measures are the true negative rate (TNR) (also termed specificity or

32

5.5. Performance Metrics

Figure 5.5.: Receiver operating characteristics (ROC) curve and area under the curve (AUC)

score based on true positive rate (TPR) and false positive rate (FPR).

selectivity) and false negative rate (FNR) (also termed miss rate) defined as

TNR =
TN

N

=
TN

TN + FP

= 1 − FPR (5.14)

FNR =
FN

P

=
FN

TP + FN

= 1 − efficiency (5.15)

with false positive rate (FPR).

The last metrics covered in this section are the receiver operating characteristics (ROC)

curve and the corresponding area under the curve (AUC) value displayed in Fig. 5.5. The

ROC curve is based on the TPR and FPR. A perfect ROC curve initially rises vertically to

a TPR of 1 at FPR=1 and remains at the level of TPR=1 by increasing FPR. The AUC is

the area under the ROC curve and is ideally equal to 1.0. A ROC curve near the diagonal

indicates that there is no significant learning process compared to a random process. The

corresponding AUC is 0.5. A realistic, well-functioning network achieves AUC values close

to 1. An AUC value below 0.5 indicates a misinterpretation of the data and indicates that

the NN has not learned the real underlying features of the given data. The key difference

and advantage of the ROC and AUC score compared to, for example, purity or efficiency

is that no threshold parameter is required to distinguish between correct and incorrect

prediction (usually in a range between 0 and 1) and the metric provides a performance

measure for the entire threshold parameter space. In contrast, purity, efficiency, TNR or

FNR can only be calculated for a specific parameter value.

Evaluating algorithms using complementary metrics is recommended since each metric

focuses on different aspects of data and model predictions. In the following chapters,

these performance metrics will be used to evaluate and optimize the data filtering and

GNN-based edge classification.

33

6. PANDA FTS Training Data

The aim of track finding, as explained in Section 4.5, is the correct identification of particle

tracks traversing the detector by connecting detector hits via track segments and finally

connecting the track segments to form full particle tracks. In Chapter 7, a graph neural

network (GNN) based track finding algorithm is discussed. The preparatory work required

for the GNN implementation is described in this chapter. It describes and discusses the

methods used to generate, filter, and preprocess the anti-ProtonAnnihilation atDArmstadt

(PANDA) forward tracking system (FTS) data in Section 6.1 and 6.2. In Section 6.3, the hit

graphs are created and evaluated as preliminary work for the GNN-based track finding

in Chapter 7. Finally, Section 6.4 gives a summary of the applied data preprocessing and

graph building filters and thresholds.

6.1. Data Simulation via PandaRoot

As described in Section 4.4, there is no real PANDA detector data yet, and simulations of

the experiment are generated using the PandaRoot framework. For this study, a total of

30 000 events, each with three muons and antimuons, were generated using the PandaRoot

simulation and digitization packages. Muons were selected as primary particles because

muons generate few secondary particles as minimum ionizing particles (MIPs), providing

clean and simple tracks for this study. In addition, antimuons were selected because

they bend in the opposite direction of the oppositely charged muons in the magnetic

field of the forward detector, providing crossing tracks. The 30 000 events with three

muons and antimuons were generated with the Monte Carlo (MC) particle gun box event

generator of PandaRoot in the forward direction of the detector in a full azimuthal angular

range 𝜑 = [0.2𝜋] and a small polar angle 𝜃 = [0.5°, 10°], at a momentum in the range

of 1 GeV/𝑐 to 10 GeV/𝑐 with uniform distribution within the ranges, respectively. A

corresponding PandaRoot event display can be seen in Fig. 6.1. In Fig. 6.1(a), the event is

shown with a full detector display to give an impression of the detector setup described in

Section 4.3. A small image of the full detector is included for comparison. A large version

of this image is displayed in Fig. 4.5 at a higher resolution. In Fig. 6.1(b), the same event as

in Fig. 6.1(a) is displayed at the same size but without the detector, components to fully

visualize the tracks of the traversing particles. The simulated interaction point between

antiproton and target is on the left side, covered by the micro vertex detector (MVD). After

the collision, the generated muons and antimuons are boosted in the forward direction of

the detector (right) and pass through the forward detector of PANDA, which is shown

by gray and blue lines, respectively. It can be seen that only a few secondary particles,

such as photons (red) or electrons (yellow), are produced. The interaction of the particles

with the detector components is represented by different colored squares corresponding to

35

6. PANDA FTS Training Data

(a) with detector display

(b) without detector display

Figure 6.1.: PANDA event display with three muons and three anti-muons in the forward

direction with (a) and without (b) detector display. The full detector overview

can be seen in Fig. 4.5.

36

6.2. Data Preprocessing

the different detector components. Each square represents a measurement point and the

corresponding data that can be extracted. For example, the magenta squares correspond

to hits in the drift chambers of the FTS. Parts of the FTS are inside a dipole magnetic field

(white frame) to allow reconstruction of the track momentum based on the curvature of

the particle track in the magnetic field.

6.2. Data Preprocessing

The following sections describe data import, exploration, and filtering on the way to graph

encoding of the dataset.

6.2.1. Handling of ROOT Data Input

The input data is generated in the ROOT data structure [58], which is the main framework

for data analysis in particle physics written in C++ [76]. To access the data with Python [77],

which is commonly used for machine learning tasks, uproot [78] is used. Uproot is a library

designed to read ROOT files quickly and efficiently. It does not depend on C++ ROOT itself,

but only requires NumPy, the most popular Python package for array handling [79].

The ROOT file trees contain information about the simulated particles and the digitized

detector response. Only relevant features of the data are extracted and collected in a Pandas

data frame [80], as the graphs are constructed with as little information as possible to keep

the graph sizes small. These features include post-digitization information such as hit

coordinates of anode wire positions, isochron radii, detector module IDs, and information

on whether or not the detector plane is skewed (tilted by ±5°). In addition, the MC truth

coordinates, 3-moments, and track IDs are also stored in the data frame. The dataset

is based on a right-handed Cartesian coordinate system, with the 𝑧 axis aligned along

the beam axis and the 𝑥 and 𝑦 axes defining the transverse plane: the 𝑥 axis is oriented

horizontally, and the 𝑦 axis points upward.

The digitized features only contain information about the 𝑥 and 𝑧 coordinates but not

about the 𝑦 coordinates since straw tube detectors can only provide two-dimensional

information about their wire positions. Skewed layers solve this problem by adding a

degree of freedom to the data, which can then be used to calculate the missing dimension.

For simplicity, only detector hits in the vertical layers are used in this work. In future

projects, the information from the skewed layers can be used to reconstruct 3D track

candidates as described by Esmail [29]. The MC truth information is the underlying event

generation information and is only available in the simulation but not in real experiments.

The MC-truth track ID information is used as the truth label on which the neural network

trains. The MC-truth coordinates, especially in 𝑦 direction, and the moments can be used

to study the performance of a full track finding and reconstruction at a later stage and are

therefore kept for future studies.

37

6. PANDA FTS Training Data

5 10 15 20 25
Nparticles

101

102

103

104

105

En
tri

es
 /

(2
.8

0) PANDA 2022 (Simulation)
Nevents = 30000

(a)

500 1000 1500 2000
Nhits

100

101

102

103

104

105

En
tri

es
 /

(2
25

.2
0) PANDA 2022 (Simulation)

Nevents = 30000

(b)

Figure 6.2.: Distribution of the number of particles (left) and the number of detector hits

per event (right).

6.2.2. Data Exploration and Filtering

The next step is to analyze and preprocess the generated data before the graph building

as input for training. Figure 6.2 shows the number of particles and hit distributions of

the unprocessed data with 𝑁events = 30 000 events. The raw PandaRoot data contain an

average of 5.8 particles and tracks interacting with the detector per event giving an average

total number of 221 hits per event in the FTS. More particles are producedO than just the

three primary muons and antimuons, as they produce secondary particles by interacting

with the detector parts. There is also a fraction of events with fewer than six particles or

tracks, which is smaller than the number of primary particles produced. In some events,

fewer particles than six particles can be measured since not all generated particles must be

detected in the FTS, and only particles interacting with the detector units are considered.

A corresponding event display of the unprocessed data in the 𝑥𝑧-plane is shown in Fig. 6.3.

The particle hits are represented by points surrounded by circles representing the isochron

radii by the circle size scaled by a factor of 200 for better visibility. In the 𝑥 direction, there

are 48 detector layers, 8 for each detector chamber. The layers are arranged in closely

spaced double layers so that two closely spaced layers appear as one layer in the event

display. The arbitrary event ID 3 was chosen because in this event, in addition to the

primary particles, a secondary particle with low momentum, an electron (magenta), is

detected, leaving a looping track in the detector called a curler.
In the event shown, all six primary particles (MC particles 0 to 5) traverse the entire FTS

detector, leaving hits in all six chambers. The MC particle IDs here do not correspond to

the commonly used particle data group (PDG) particle codes but represent a sequential

numbering scheme of the particles involved. The curler, which is probably an electron, has

the assigned MC particle ID 566. This ID does not appear to be consecutive concerning

the other particles. One possible explanation is that many secondary particles do not

interact with the detector units and therefore are not part of the dataset. Thus, at least 560

undetected secondary particles are involved in this example event.

38

6.2. Data Preprocessing

300 350 400 450 500 550 600 650
z (cm)

50

0

50

100

150

200

250

x
(c

m
)

PANDA 2022 (Simulation)
event ID = 3

MC particle 0
MC particle 1
MC particle 2
MC particle 3
MC particle 4
MC particle 5
MC particle 566

Figure 6.3.: Event display in 𝑥𝑧-plane with six primary particles (MC particle 1-5), i.e.,

muons and antimuons and one secondary particle MC particle 566 (curler).

0.6 0.4 0.2 0.0 0.2
pz (GeV/c)

100

101

102

103

104

105

En
tri

es
 /

(0
.0

5
Ge

V/
c) PANDA 2022 (Simulation)

Nevents = 30000
curler

(a)

0.04 0.02 0.00 0.02 0.04

pmin
z (GeV/c)

0.92

0.94

0.96

0.98

1.00

1.02

pu
rit
y
&
effi

ci
en
cy PANDA 2022 (Simulation)

Ntest=1000

purity
efficiency
pmin
z = 0.001 GeV/c
pur = 0.988
eff = 0.983

(b)

Figure 6.4.: Application of minimum 𝑝𝑧 threshold on the dataset. (a) Average forward

momentum 𝑝𝑧 per particle distribution of curling tracks at low momenta. (b)

Purity and efficiency estimates after application of minimum 𝑝𝑧 threshold. At

the intersection point between purity and efficiency 𝑝min

𝑧 = 0.001 GeV/𝑐 the
purity reaches 0.988 and efficiency 0.983.

The raw data must be preprocessed to obtain a clean data sample for further steps. There-

fore, a set of selection criteria is applied to the data set. The following filters can be

considered as idealized hit filtering, modulating the number of hits per graph to make the

data more feasible for the following application on GNN-based track segment classification.

In the future, these filters will need to be reduced or removed to provide more realistic hit

filtering for real-world applications.

Since only the vertical 2D layer information is used at this point, the first step is to remove

39

6. PANDA FTS Training Data

all hits from skewed layers from the dataset and revert the remaining non-consecutive

layer IDs to consecutive layer IDs.

In the next step, curlers must also be removed from the dataset since curler tracks are

difficult to classify by the neural network, and, in principle, only hits belonging to primary

particles with higher momentum are of interest for track reconstruction. A natural dis-

criminating variable to remove curlers from the dataset is the momentum in the forward

direction 𝑝𝑧 , which is extracted from the MC-truth information. In Fig. 6.4(a), the distri-

bution of the average particle momentum 𝑝𝑧 in the forward direction of curling tracks

is presented on a logarithmic scale. Here, particles that leave at least one hit in a lower

layer than the previous hit layer ID are called curlers. In this case, curlers make up only

a small fraction of 7 % of the entire data set. It can be seen that the secondary particles

are generated with a low momentum below 1 GeV/𝑐 or even with a negative momentum,

while the primary particles have been generated in PandaRootwith a uniformly distributed

momentum in the range of 1 GeV/𝑐 to 10 GeV/𝑐 .
Curler removal can now be achieved by applying a threshold to 𝑝𝑧 that rejects particle

tracks with an average momentum 𝑝𝑧 below a minimum threshold 𝑝min

𝑧 . Both purity and

efficiency are determined with respect to the threshold for a test sample of 𝑁test = 1 000

displayed in Fig. 6.4(b). Here, purity and efficiency are defined as

purity =
𝑁no-curler>threshold

𝑁all tracks>threshold

, (6.1)

efficiency =
𝑁no-curler>threshold

𝑁no-curler

(6.2)

with the total number of non-curling tracks 𝑁no-curler, the fraction of non-curling tracks

greater than the threshold value 𝑁no-curler>threshold, and the total number of tracks passing

the threshold 𝑁all tracks>threshold. It is easy to see that there is a trade-off between removing

curlers andmaintaining non-curling tracks: Increasing the threshold significantly improves

purity and decreases efficiency, and vice versa. A natural discrimination choice between

the two is the intersection of purity and efficiency, which in this case corresponds to

applying a threshold of 𝑝𝑧 = 0.001 GeV/𝑐 . At this threshold, total purity of 0.988 and

efficiency of 0.983 are achieved. This corresponds to the removal of 85.4 % of curlers (true

negative rate (TNR)) at a loss of only 1.7 % of non-curlers (false negative rate (FNR)). In

addition to the threshold 𝑝min

𝑧 , a same-layer filter is applied to remove duplicate hits of a

particle that leave multiple hits in the same layer.

One important thing to note is that the MC generation yields particle hits in a fixed order

along the MC particle tracks. For example, the first 24 hits of the dataset belong to particle

0, the next 24 to particle 1, etc., depending on the number of hits each particle generates in

the simulated detector. If this effect is not considered, this order will be maintained during

graph building, which causes the network to learn this order instead of the actual graph

features, resulting in significant overfitting. This problem can be avoided by assigning

new random values to the hit IDs. Previous work did not account for this fact [29].

40

6.3. Graph Building

Figure 6.5.: Simple graph illustration with nodes connected by true, false, and forbidden

edges. A true edge corresponds to a true particle track segment, whereas a false

edge does not. A forbidden edge does not fulfill all geometric filter conditions:

same-layer filter, only adjacent layer edges, or only connecting two nodes at a

smaller slope than a slope threshold allows for, in this case, 𝑠max = 2.

6.3. Graph Building

After the initial data filtering, the hits of the dataset can be connected into hit graphs
by a graph building algorithm based on geometric constraints to obtain a representation

that provides the most likely representations of the true track segments. In the following,

hits are referred to as nodes and connections between pairs of nodes as edges. The edge
construction algorithm creates edges between all possible pairs of nodes through edge

attributes 𝑒𝑘 = [Δ𝑥𝑘 ,Δ𝑧𝑘] and a hit index matrix 𝐼 = [𝐼𝑟,𝑘 , 𝐼𝑠,𝑘] that links a pair of nodes
consisting of a receiver 𝑟 and a sender 𝑠 node with corresponding edge attributes, see

Chapter 5 for more details. In this work, node attributes𝑋 = [𝑥, 𝑧] and edge attributes 𝑒𝑘 =
[Δ𝑥𝑘 ,Δ𝑧𝑘] contain only 𝑥 and 𝑧 features. For the studied problem in this work, training

even based on these two PANDA FTS features leads to similar results as training with

more features such as the polar angle 𝜃 = arctan
𝑥
𝑧
, the isochron radius, and the radius 𝑟 =√

𝑥2 + 𝑧2
. A simple schematic representation of the graph structure is shown in Fig. 6.5.

The nodes are connected by edges, where real edges correspond to real track segments

while false edges do not. Several geometric constraints reduce the number of allowed

edges. The filter conditions include the same-layer filter, connecting only adjacent layer

edges or only connecting two nodes at a smaller slope than a slope threshold allows for,

in this case, 𝑠max = 2. The graph building conditions are explained in more detail in the

following.

A fully connected graph contains a total of 𝑛edges =
1

2
𝑛nodes(𝑛nodes − 1), which would result

in a size of over 24000 edges for 220 nodes. This size is far too large for the implementation

on field programmable gate array (FPGA). Furthermore, this large size can also lead to

extremely inefficient GNN training due to a large imbalance between real and fake edges.

In principle, there is a fundamental trade-off between minimizing the number of edges

41

6. PANDA FTS Training Data

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
smax

50

100

150

200

250

300N
ed

ge
s

PANDA 2022 (Simulation)
Nevents = 1000, pmin

z = 0.001 GeV/c

full graph

(a)

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
smax

0.4

0.6

0.8

1.0

1.2

pu
rit

y
&

ef
fic

ie
nc

y

PANDA 2022 (Simulation)
Nevents = 1000, pmin

z = 0.001 GeV/c

full graph

purity
efficiency
smax = 1.002
pur = 0.630
eff = 0.988

(b)

Figure 6.6.: (a) Edges per event for different slope thresholds 𝑠max
. (b) Analysis of edge

purity and efficiency over an upper slope threshold 𝑠max
at the graph building

level. For example, at a threshold value of 𝑠max = 1.002 edge purity reaches a

value of 0.630 and efficiency a value of 0.988, respectively.

and keeping as many real edges as possible.

Only nodes of adjacent layers are connected by edges, and connections between identical

layers are omitted to keep the number of edges manageable. In addition to restricting

the graph structure to only connecting adjacent layer nodes, other geometric constraints

must be applied. A possible choice is the dimensionless variable slope 𝑠 = Δ𝑥
Δ𝑧 in the

non-equidistant node lattice, which describes the steepness of edges concerning the

beam direction. Applying a threshold to the slope that excludes edges above an upper

threshold 𝑠max
affects the number of graph edges.

In Fig. 6.6(a), the average number of edges at different slope thresholds 𝑠max
is plotted

for 𝑁test = 1 000 test sample events generated at a minimum threshold 𝑝min

𝑧 = 0.001 GeV/𝑐 .
The number of edges varies greatly for different events as the number of connectable

nodes also varies greatly. Hence, the large error bars indicate the broad distributions. As

the threshold value increases, the number of edges also increases. For example, for a slope

threshold of 𝑠max = 0.6, the average number of edges per event is 140, while for a threshold

of 𝑠max = 2.0 it is 197. It is also interesting to note the region around 𝑠max = 0.6, where the

number of edges increases dramatically. In this work, the underlying PandaRoot data is

generated uniformly concerning the polar angle 𝜃 . At 𝑠max = 0.6, connections are created

between hits originating from different particle tracks, while below that, mostly only

hits from the same particle are connected. Therefore, enabling connections between hits

originating from different particles highly increases the number of possible connections.

The slope threshold 𝑠max
is a promising parameter to reduce the number of edges and

will be further analyzed in the following. In Fig. 6.6(b) graph construction efficiency and

purity are calculated for applying slope thresholds between 0.1 and 4 using 𝑁events = 1 000

42

6.3. Graph Building

300 350 400 450 500 550 600 650
z (cm)

50

0

50

100

150

200
x

(c
m

)
PANDA 2022 (Simulation)
event ID = 3, pmin

z = 0.001 GeV/c, smax = 1.0

full graph
MC particle 0
MC particle 1
MC particle 2
MC particle 3
MC particle 4
MC particle 5

0.0

0.2

0.4

0.6

0.8

1.0

slo
pe

Figure 6.7.: Example of a hit graph as GNN input. Colored points represent detector

hits (nodes) of corresponding particles distinguished by the different particle

IDs, and the lines represent all generated edges after filtering. The edge color

represents the associated slope feature up to 𝑠max = 1.002. A true track connects

hits associated with the same particle.

random graph samples from the dataset. Here, purity and efficiency are defined as

purity =
𝑁true edges<threshold

𝑁edges<threshold

, (6.3)

efficiency =
𝑁true edges<threshold

𝑁true edges

. (6.4)

with the total number of true edges 𝑁true edges, the fraction of true edges smaller than

the threshold value 𝑁true edges<threshold and the total number of edges passing the thresh-

old 𝑁edges<threshold. Again, there is a trade-off between purity and efficiency: as purity

increases, efficiency decreases, and vice versa. An interesting area in the graph is the

large step at 𝑠max = 0.6. At this point, the efficiency reaches its maximum value, i.e., no

more true edges are added to the graphs, but the purity increases as more false edges are

included at higher thresholds. For training, it is useful to consider also the connections

between different particles and not only the edges between the same particles. Therefore,

rather than a threshold of 0.6, a threshold of 𝑠max > 0.6 is chosen. For example, with a

threshold of 𝑠max = 1.002, edge purity reaches a value of 0.630 and efficiency reaches a

value of 0.988, which corresponds to removing 98.8 % of false edges (TNR) while rejecting

only 1.2 % of true edges (FNR). The threshold 𝑠max = 1.002 provides a good balance between

the proportions of true and false edges since the interaction network (IN) architecture

benefits from less-pure graphs, which corresponds to higher edge connectivity.

The final graphs consist of a 2-dimensional node attribute matrix 𝑋 = (𝑥𝑖, 𝑧𝑖) ∈ R𝑁nodes×2
,

a 2-dimensional edge attribute matrix 𝐸 = (Δ𝑥𝑘,𝑖 𝑗 ,Δ𝑧𝑘,𝑖 𝑗) ∈ R𝑁edges×2
, an adjacency node

index pair list 𝐼 = [𝐼𝑖,𝑘 , 𝐼 𝑗,𝑘] ∈ N2×𝑁edges
and a target vector 𝑦 ∈ {0, 1}𝑁edges

that contains true

43

6. PANDA FTS Training Data

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
node attributes

101

102

103

104

105

106

En
tri

es
 /

(0
.6

3) PANDA 2022 (Simulation)
Nevents = 1000, pmin

z = 0.001 GeV/c

full graph
z
x

(a) loss

6 4 2 0 2 4 6
edge attributes

102

103

104

105

106

En
tri

es
 /

(0
.4

6) PANDA 2022 (Simulation)
Nevents = 1000, pmin

z = 0.001 GeV/c, smax = 1.0

full graph

dz
dx

(b) accuracy

Figure 6.8.: Dimensionless distribution of rescaled node (a) and edge attribute (b) dimen-

sions with a logarithmic scale. All features are in the same order of magnitude.

or false edges with a proportion of 59.6 % belonging to true edges and 40.6 % belonging to

false edges. An example graphical representation of a complete graph is shown in Fig. 6.7

for the same event ID as in Fig. 6.3. Edges connecting the different particles according to

the filter conditions described above are shown. It can also be seen that the curling particle

originally present in the dataset has been removed from the graph. The slope value of

each edge, ranging from 0.0 to 1.0, is colored using the color map magma: Black represents

a minimum slope of 0.0, yellow represents a maximum slope of 1.0, and purple to orange

represents all values in between. It can be seen that edges connecting nodes of the same

particles usually have a small slope, while connections between different particles are built

with a larger slope.

A final adjustment to the node and edge features must be made to prepare the graph

data for training. The node and edge features are of different value ranges compared to

each other. Machine learning classification algorithms do not work properly without data

normalization. Therefore, the features are normalized using the factors 20 for 𝑥 and 100

for 𝑧 to rescale the data to the same order of magnitude. This is a rough data normalization

method but sufficient in the context of machine learning (ML). The rescaled node and edge

attributes that meet the discussed criteria are plotted in Fig. 6.8 with a logarithmic scale.

The 𝑥 node features are symmetrically distributed between -10 and 10, and the 𝑧 features

are distributed between 2.7 and 7.1. The point (0,0) corresponds to the interaction point of

the proton-antiproton collision on the beam axis covered by other detector units. The gap

at 6.0 corresponds to the gap between chambers FT4 inside the dipole field and FT5 after

the dipole field. The boundary attributes for both Δ𝑥 and Δ𝑧 are symmetrically distributed

about the origin and cover a range from -7 to 7.

44

6.4. Preprocessing and Graph Building Summary

Table 6.1.: Summary of preprocessing and graph building filters, thresholds, and graph

encoding.

Filter/ Preprocessing

Skewed Layer Removal

Same-Layer Filter

Hit Reordering

Thresholds Threshold Value

𝑝min

𝑧 0.001 GeV/𝑐
𝑠max

1.002

Graph Encoding Tensors

Node Attributes 𝑋 = (𝑥𝑖, 𝑧𝑖) ∈ R𝑁nodes×2

Edge Attributes 𝐸 = (Δ𝑥𝑘,𝑖 𝑗 ,Δ𝑧𝑘,𝑖 𝑗) ∈ R𝑁edges×2

Adjacency Matrix 𝐼 = [𝐼𝑖,𝑘 , 𝐼 𝑗,𝑘] ∈ N2×𝑁edges

Target Vector 𝑦 ∈ {0, 1}𝑁edges

6.4. Preprocessing and Graph Building Summary

This chapter described and discussed the methods for generating, filtering, and prepro-

cessing the PANDA FTS data and the generation of the hit graphs. A summary of the

preprocessing steps and filters applied and the structure of the graph features are given

in Table 6.1. In Chapter 7, the graphs generated and evaluated in this chapter are used for

a GNN-based track segment classification.

45

7. Graph Neural Network Based Track
Finding

This chapter describes and discusses a graph neural network (GNN)-based track finding

algorithm using the graphs constructed from anti-Proton Annihilation at DArmstadt

(PANDA) forward tracking system (FTS) data described in Chapter 6. This chapter is struc-

tured as follows. Section 7.1 describes the GNN network architecture that is implemented

in Section 7.2 for the track segment classification together with its performance evaluation.

Section 7.3 focuses on the segmentation of the graph into multiple sub-graphs, which

provides several advantages. Then, the GNN outputs for both the full graph and segmented

graph approaches are used for a tracklet finding analysis in Section 7.4. Finally, Section 7.5

summarizes the GNN-based track segment and tracklet finding results on PANDA FTS

data.

7.1. Interaction Network Architecture

The interaction network (IN) used in this work as proposed by [2] will be described in more

detail in the following. It takes the form of three basic blocks: an edge block, computing

edge feature updates, a node block updating the node features, and a final output edge

block. A graphic representation of the complete corresponding forward pass is depicted in

Fig. 7.1.

The first edge (relational) block𝜙𝑅,1 computes edge feature updates 𝑒𝑟𝑠 , also called messages

𝑒𝑟𝑠 = 𝜙𝑅,1(𝑚1(𝐺)) = 𝜙𝑅,1(𝑥𝑟 , 𝑥𝑠, 𝑒𝑟𝑠) (7.1)

based on a message function 𝑚1 concatenating the graph inputs where 𝑥𝑟 and 𝑥𝑠 are

the input features of a receiver and sender node, respectively, e.g., coordinates of the

corresponding hit and 𝑒𝑟𝑠 is the set of input edge features containing relational quantities

between receiver and sender node, e.g., distances between two hits. This edge block is

based on a relational model consisting of a simple sequential neural network (NN) model

with two hidden layers, each with rectified linear unit (ReLU) activation function.

The generated messages are subsequently aggregated to map relational edge information

to node-level outputs. There are multiple options for aggregation operations, including

summation, element-wise mean, maximum, and minimum, which must be invariant to

permutations of inputs to be generally applicable to unordered graph data. Here, the most

simple case, a summation over all corresponding connected nodes, N(𝑠) of node 𝑠 was
chosen:

𝑒𝑟 =
∑︁

𝑠∈N (𝑟)
𝑒𝑟𝑠 . (7.2)

47

7. Graph Neural Network Based Track Finding

Figure 7.1.: The complete IN forward pass with edge blocks 𝑅1,2, edge-aggregation Σ, and
node block 𝑂 . The graph node features 𝑥 and edge features 𝑒 are passed

through the IN blocks 𝑅1, 𝑂 and 𝑅2 with intermediate edge-aggregation by

sum to compute one-dimensional edge weight predictions.

These two operations, edge block and aggregation, are known as the message-passing step.

The output of the message-passing step 𝑒𝑟 as well as the corresponding node features 𝑥𝑟
are used by a node block in order to compute an update for each object (node), taking into

account previous node features and one iteration of message passing among neighboring

nodes

𝑥𝑟 = 𝜙𝑂 (𝑥𝑟 , 𝑒𝑟) . (7.3)

The edge block based on an object model is a sequential model with one hidden layer and

a ReLU activation function. In principle, the steps described by Eq. (7.1) to Eq. (7.3) can be

applied repeatedly in sequence.

The output block is a second edge block 𝑅2 similar to the first edge block, which is applied

on the re-embedded graph with updated node and edge features concatenated by a marshall

function𝑚2

˜̃𝑒𝑟𝑠 = 𝜙𝑅,2(𝑚2(𝐺′)) = 𝜙𝑅,2(𝑥𝑟 , 𝑥𝑠, 𝑒𝑟𝑠) (7.4)

computing a final one-dimensional edge weight output using a sigmoid as the final activa-

tion function such that the resulting edge weights ˜̃𝑒𝑟𝑠 can be interpreted as probabilities

that a specific edge is a track segment. The corresponding training target is the vec-

tor 𝑦 ∈ {0, 1}𝑛edges where 1 equals an edge corresponding to a true particle track segment

and 0 otherwise.

48

7.2. GNN Edge Classification

7.2. GNN Edge Classification

After discussing data preprocessing and graph construction, this section addresses the

application of a GNN to the generated graph data that classifies track segments based

on their associated detector hits. The network architecture used is an IN, as described in

Section 7.1.

In the following studies, models are trained on full graphs created with 𝑝min

𝑧 = 0.001 GeV/𝑐
and 𝑠max = 1.0. As discussed by [1], the classification accuracy deteriorates when 𝑝min

𝑇

is smaller than 1 GeV/𝑐 , which corresponds to 𝑝min

𝑧 in this work. However, also low 𝑝𝑧
tracks are included to cover a maximum of all true particle tracks. Hence, the associated

lower classification accuracy must be taken into account. From the total graph dataset of

approximately 30 000 events, 1000 random samples corresponding to a total number of

about 200 000 edges are drawn and randomly divided into 80 % training, 10 % validation, and

10 % test datasets. Thus, a total of 𝑁train = 900 events within GNN training and 𝑁test = 100

events are used to analyze network performance on test data.

For stochastic optimization, the Adam optimizer is used, a commonly used first-order

gradient-based optimizer based on adaptive estimates of lower-order moments [72]. The

model is trained for 40 epochs with a batch size of 1 since each event contains an average

of 160 trainable edges. In addition, an early stopping condition is applied to stop training

if the validation loss does not decrease over 10 epochs. The GNN is trained to reduce

the binary cross entropy (BCE) loss between the truth targets 𝑦𝑘 = 0, 1 and the edge

weights𝑤𝑘 ∈ (0, 1). The hyperparameters learning rate 𝑙𝑟 , learning rate decay𝛾 and period

of learning rate decay (step size) are optimized using the next generation hyperparameter

optimization framework optuna [81]. The optimal configuration identified is 𝑙𝑟 = 6.55 ·
10

−4
, 𝛾 = 0.86, and step size = 3.

The average epoch loss and average epoch accuracy, as defined in Section 5.5, are monitored

during training and plotted in Fig. 7.2. The loss and accuracy curves show that the model

trains smoothly on the dataset without overfitting and reaches early convergence after 37

epochs. The best average batch loss is 0.1516, and the best accuracy is 0.9348. After

training, the model with the lowest loss is saved and used for further steps.

In Fig. 7.3, two additional performance graphs are shown that evaluate the trained GNN

on the test dataset of 𝑁test = 100 samples. Fig. 7.3(a) shows the results of the GNN training:

the stacked distribution of edge weight prediction distinguishing between true and false

edges with a logarithmic scale. In a perfect classification, all true edges would be at 1,

and all false edges would be at 0. As expected, the number of false edges decreases at

higher output values while the number of true edges increases. A logarithmic scale was

chosen because the range between 0 and 1 would otherwise be difficult to distinguish

from 0 by eye. In Fig. 7.3(b), the receiver operating characteristics (ROC) curve is drawn

based on the true positive rate (TPR) and false positive rate (FPR) of the classification. An

ideal ROC curve falls in the upper left corner of the graph with TPR=1 and FPR=0 and a

corresponding ideal area under the curve (AUC) of 1. Here the value is 0.9692.

Furthermore, edge classification purity and efficiency estimates based on different edge

weight thresholds 𝛿 are displayed in Fig. 7.4(a). Here, edge classification purity and

49

7. Graph Neural Network Based Track Finding

0 5 10 15 20 25 30 35 40
epochs

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50lo
ss PANDA 2022 (Simulation)

Ntrain = 900, pmin
z = 0.001 GeV/c, smax = 1.0

full graph

Training Loss
Validation Loss
best = 0.1516
Early Stopping

(a) loss

0 5 10 15 20 25 30 35 40
epochs

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

ac
cu

ra
cy PANDA 2022 (Simulation)

Ntrain = 900, pmin
z = 0.001 GeV/c, smax = 1.0

full graph

Training Accuracy
Validation Accuracy
best = 0.9348
Early Stopping

(b) accuracy

Figure 7.2.: Average loss (BCE) and classification accuracy as a function of training epochs

calculated on a training and validation dataset.

0.2 0.4 0.6 0.8
GNN output

101

102

103

104

105

En
tri

es
 /

(0
.0

3) PANDA 2022 (Simulation)
Ntrain = 900, pmin

z = 0.001 GeV/c, smax = 1.0
Ntest = 100

full graph

MC false edge
MC true edge

(a) GNN output

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ue

 P
os

iti
ve

 R
at

e

PANDA 2022 (Simulation)
Ntrain = 900, pmin

z = 0.001 GeV/c, smax = 1.0
Ntest = 100

full graph

AUC = 0.9692

(b) ROC curve

Figure 7.3.: (a) GNN edge weight output for true and false edges. (b) ROC curve evaluated

on the test dataset with AUC value 0.9692.

50

7.2. GNN Edge Classification

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

1.2

pu
rit

y
&

ef
fic

ie
nc

y
PANDA 2022 (Simulation)
Ntrain = 900, pmin

z = 0.001 GeV/c, smax = 1.0
Ntest = 100

full graph

purity
efficiency
 = 0.653

pur = 0.930
eff = 0.932

(a) purity and efficiency

False True
Predicted label with = 0.653

Fa
lse

Tr
ue

M
C

Tr
ue

 la
be

l

0.36 0.042

0.04 0.56

full graph

0.1

0.2

0.3

0.4

0.5

(b) confusion matrix

Figure 7.4.: (a) Purity and efficiency estimates measuring the edge classification per-

formance of a GNN trained on 𝑁train = 900 full graph events and tested

on 𝑁test = 100 events for different classification threshold values 𝛿 . The graphs

are built with the thresholds 𝑝min

𝑧 = 0.001 GeV/𝑐 and 𝑠max = 1.0. (b) Corre-

sponding confusion matrix to (a) displaying true positive (TP), true negative

(TN), false positive (FP), and false negative (FN) values based on a classification

threshold 𝛿 = 0.653. The total misclassification is 0.082.

efficiency are defined as

purity =
𝑁true edges>𝛿

𝑁edges>𝛿

, (7.5)

efficiency =
𝑁true edges>𝛿

𝑁true edges

. (7.6)

with the total number of true edge segments 𝑁true edges, the fraction of true edges greater

than the threshold value 𝑁true edges>𝛿 and the total number of edges passing the thresh-

old 𝑁edges>𝛿 . Purity and efficiency show relatively high values above 0.8, almost over

the entire threshold range. They intersect at an edge weight threshold of 𝛿 = 0.653,

corresponding to purity of 0.930 and efficiency of 0.932, respectively. The intersection

at which purity equals efficiency seems to be a suitable selection criterion to distinguish

false from true edges. Applying this threshold yields the metric estimates, which are

presented as a confusion matrix in Fig. 7.4(b). Here, 36 % of all edges are correctly labeled

as false track segments and 56 % as true track segments. Only 4 % of the false edges are

misclassified as track segments, and 4.2 % misclassified vice versa.

Finally, Fig. 7.5 shows a complete example output graph corresponding to the input graph

shown in Fig. 6.3 and Fig. 6.7. True tracks are represented by edges between hits associated

with the same Monte Carlo (MC) particles. The color of the edges using the viridis color

map shows the GNN output between 0 (false track segment), represented by yellow, and 1

(true track segment), represented by dark blue. Most false edges between hits from different

particles are correctly classified with values close to 0.0 (yellow), while the connections

51

7. Graph Neural Network Based Track Finding

300 350 400 450 500 550 600 650

z (cm)

50

0

50

100

150

200

250

x
(c
m
)

PANDA 2022 (Simulation)
event ID = 3, pmin

z =0.001 GeV/c, smax=1.0

MC particle 0
MC particle 1
MC particle 2
MC particle 3
MC particle 4
MC particle 5

0.0

0.2

0.4

0.6

0.8

1.0

G
N
N
ou
tp
ut

Figure 7.5.: GNN training output graph corresponding to the input graph shown in Fig. 6.7.

Colored points represent detector hits (nodes) of corresponding particles dis-

tinguished by the different particle IDs. The connecting lines represent the

estimated output edge weights in viridis colormap, where yellow represents

low track segment probability and dark blue high probability, respectively. The

graph segmentation discussed in Section 7.3 is indicated by gray dashed lines.

between hits originating from the same particle track are mostly classified with values

close to 1.0 (dark blue). Only the long connections between the last hits of FT4 and the first

hits of FT5 are classified with low confidence, indicated by green connections. Overall,

edge classification seems to be successful in distinguishing between true and false track

segments. The next step will repeat the graph building and edge classification steps for a

segmented version of the full event graph.

7.3. Graph segmentation

The main goal of this thesis is to implement the GNN-based classification of track segments

on field programmable gate arrays (FPGAs). Despite the promising performance of the

GNN-based classification of track segments discussed in the last section, the implemen-

tation on FPGAs discussed in Chapter 9 must take into account that the computational

resources on FPGAs are limited. The graph size considered in the previous section does

not satisfy the resource constraints for a throughput-optimized FPGA implementation. To

limit the graph size to a manageable level for resource-constrained environments such as

FPGAs, the full event graphs discussed in Section 6.2 and Section 7.2 are segmented as

discussed in [2], and all previously described steps are repeated for the segmented graphs.

For the segmentation of the complete graph, it is convenient to divide the graph into three

parts: The first part includes the eight detector layers corresponding to FT1 and FT2 in

front of the dipole field, and the second part includes the nodes and edges inside the dipole

field (FT3 and FT4) including the long edges between FT2 and FT3. The third part includes

52

7.3. Graph segmentation

300 310 320 330 340
z (cm)

40

20

0

20

40

60

80
x

(c
m

)
PANDA 2022 (Simulation)
event ID = 3, pmin

z = 0.001 GeV/c, smax = 2.0

graph segment 1 of 3
MC particle 0
MC particle 1
MC particle 2
MC particle 3
MC particle 4
MC particle 5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

slo
pe

Figure 7.6.: Hit graph display of the first third of the segmented graph. Colored points

represent detector hits (nodes) of corresponding particles distinguished by the

different particle IDs, and the connecting lines represent all generated edges

after filtering. A true track connects hits associated with the same particle.

The edge slope is displayed by color from 0 (black) to 2. (yellow). The graph is

constructed as described in Section 6.2 and Section 7.2 with 𝑝min

𝑧 = 0.001 GeV/𝑐
and 𝑠max = 2.0.

the nodes and edges corresponding to FT5 and FT6 behind the dipole field, including the

long edges between FT4 and FT5.

Segmenting the graph into these three parts is useful for several reasons; it efficiently

reduces the size of the graph based on the number of nodes and edges, directly reducing the

occupancy of FPGA and allowing faster compilation of hls4ml, which will be important

in the next chapter. In addition, this segmentation is a natural choice since the detector

units are also segmented into these three units. This segmentation allows for different

treatment of the regions inside and outside the magnetic field since the particle tracks, es-

pecially the slopes, behave differently depending on the magnetic field. Another important

aspect is that the classification accuracy of the long edges between the three segments,

particularly between FT4 and FT5, is reduced compared to the classification within the

detector chambers. Therefore, treating the long links separately can improve classification

performance. Furthermore, the method is similar to the tracklet construction approach

described by [33], where three tracklets corresponding to the three regions described here

are constructed in the first step and connected to complete track candidates in a second

step by a second machine learning (ML) application. Therefore, [33]’s methods for full

track discovery could also be applied here to find full tracks.

The first segment of the segmented graph is shown in Fig. 7.6. The figures for the other two

graph segments can be found in the appendix. Unlike before, the double layer hits men-

tioned in Section 6.2 can be easily distinguished by eye. For simplicity, all three segments

are generated with the same graph building configuration. Alternatively, individual graph

53

7. Graph Neural Network Based Track Finding

0 500 1000 1500 2000 2500 3000
Ntrain

0.96

0.97

0.98

0.99

1.00
AU

C
PANDA 2022 (Simulation)
Ntest = 50, pmin

z = 0.001 GeV/c, smax = 2.0

graph segment 1 of 3

Nhidden

3
4
5
6

7
8
16
32

Figure 7.7.: Display of area under the curve (AUC) scores for different sets of number of

training events 𝑁train and number of hidden nodes 𝑁hidden per hidden GNN

layer performed on 𝑁test=50 test events based on the first third of segmented

graphs built with 𝑝min

𝑧 = 0.001 GeV/𝑐 and 𝑠max = 2.0.

building constraints could be applied to each segment. A maximum slope of 𝑠max = 2.0 is

used for graph building for all three parts, as opposed to the previous full graph building,

to meet the purity and efficiency requirements of all three segments. This slope threshold

allows for a fairly balanced ratio of true and false edges in the dataset, e.g., in the first

segment, the proportion of true edges to all edges is 45.8 %.

The three segments are trained separately with a hyperparameter search using optuna.

The hyperparameter search is performed for the learning rate 𝑙𝑟 , the learning rate decay 𝛾 ,

and the period of the learning rate decay (step size). The number of training events chosen

for hyperparameter search ranges from 100 to 3000. As described in Chapter 5, large data

sets are needed for deep learning (DL) applications to avoid overfitting. However, each

event, and thus each hit graph, contains a subset of several hundred edges. Therefore, even

a small number of events can provide a sufficiently large sample. The training performance

is monitored for different numbers of hidden nodes 𝑁hidden between 3 and 32 for the

different IN blocks. In Fig. 7.7, the AUC values are plotted for the different training sample

sizes 𝑁train. In Fig. A.2, the classification performances for the other two segments can

be found. AUC was chosen as the measure of classification performance on the test data

(50 events in this case) because it encodes classification performance in a single number

and allows efficient comparison between the different configurations. A value of 1.0 corre-

sponds to perfect classification, while a value of 0.5 or below corresponds to an untrained

network. The data points corresponding to different 𝑁hidden values are connected by lines

to guide the eye and do not represent data fits. The data points correspond to the best

configurations found by hyperparameter search for each set of 𝑁train and 𝑁hidden. Each

set is trained with 20 different hyperparameter configurations, and each configuration is

54

7.4. Tracklet Finding

tested three times to find the best-performing models. The AUC scores are computed using

the average of 100 trials with a test sample of 𝑁test = 50 random events corresponding

to the order of 1 · 10
4
edges. No error bars are plotted to increase the readability of the

plot. However, to gain complete control over the statistics of this problem, a full bootstrap

analysis [82] must be performed.

Despite the lack of statistics, two basic trends can be identified: A higher 𝑁hidden corre-

sponds to a higher AUC value, and a higher 𝑁train in the range between 100 and 1000 also

corresponds to better results. Overall, most performance results are between 0.97 and 0.99,

and the highest AUC value of AUC1/3 = 0.989 for the first third of the graph segments

is achieved at 𝑁events = 1000 and 𝑁hidden = 32. The best AUC results for segments two

and three are AUC2/3 = 0.989 and AUC3/3 = 0.984, respectively. As expected, the clas-

sification performance for the segmented graphs is better than the full graph training

result AUCfull = 0.969.

7.4. Tracklet Finding

In the next step, the classified track segments will be used to build tracklets. Tracklets are

defined here as a connection of consecutive track segments to form track candidates for

each of the defined segments (FT1+FT2, FT3+FT4, FT5+FT6) independently. Therefore, the

maximum tracklet length is 8 hits for the first segment and 9 hits for the second and third

segments, inlcuding the long interconnections. The tracklets are computed in the form

of lists, which include all connected track segments using the network analysis Python

package NetworkX [83].

The performance of tracklet finding is determined by a set of metrics, including the tracklet

purity, the MC coverage, the rate of fully found tracklets, and the ghost rate proposed

by [29]. These metrics will be defined in the following. The tracklet purity measures the

fraction of hits in the reconstructed tracklet stemming from the majority particle, where

the majority particle is defined as the MC particle that induces the majority of hits in the

reconstructed tracklet. The tracklet purity is defined as

tracklet purity =
1

𝑁tracklets

∑︁
𝑁tracklets

𝑁majority particle

𝑁tracklet hits

(7.7)

with the number of hits by the majority particle 𝑁majority particle, the total number of

hits in the reconstructed tracklet 𝑁tracklet hits, and the total number of reconstructible

tracklets 𝑁tracklets. A high tracklet purity indicates that most of the hits in the tracklet are

induced by the same particle.

The MC coverage is closely related to the tracklet purity. It describes the fraction

of 𝑁majority particle, and the number of hits of the corresponding MC tracklets 𝑁MC averaged

over all reconstructible tracklets

MC coverage =
1

𝑁tracklets

∑︁
𝑁tracklets

𝑁majority particle

𝑁MC

. (7.8)

The ideal coverage is 100 %, where all hits generated by a MC particle are reconstructed in

the same tracklet.

55

7. Graph Neural Network Based Track Finding

A tracklet is considered reconstructible if it comprises a minimum of three hits. Fully

reconstructed tracklets are defined as tracklets with tracklet purity = 100 % and MC

coverage 100 %. The rate of fully found tracklets is therefore defined as

fully found rate =
𝑁full

𝑁tracklets

, (7.9)

where 𝑁full is the number of fully reconstructed tracklets.

Tracklets with purity< 80 % are considered ghost or fake tracks. The ghost rate is defined
as

ghost rate =
𝑁ghost

𝑁tracklets

(7.10)

with the number of ghost tracks 𝑁ghost. Fig. 7.8 displays the described tracklet find-

ing metrics computed on the classification results of the full graph and the segmented

graph approaches for each of the three-segment regions. The computation is performed

on 𝑁test=1000 test events for different thresholds 𝛿 , where only edges with classification

scores higher than 𝛿 are included in the tracklet building. Some basic trends can be identi-

fied in the case of all three segments, and both classification approaches: The MC coverage

starts at a value of nearly 1.0 at small 𝛿 and decreases with increasing 𝛿 . The opposite

is true for the tracklet purity, which increases with 𝛿 . The rate of fully reconstructed

tracklets is highest for medium values of 𝛿 and drops for both extremes of low and high 𝛿 .

The ghost rate decreases with increasing 𝛿 . There are only small differences between

the performance of the tracklet finding for segments 1 and 2, but a significant difference

between those two and segment 3. The varying performance may be explained by the

long connections between FT4 and FT5, which are included in segment 3, which are much

longer and, therefore, more difficult to classify than all other track segments described

before. The results for all metrics at a threshold of 𝛿 = 0.55 are summarized in Table 7.1.

As expected, the overall tracklet finding performance of the segmented approach is slightly

better than the performance of the full graph approach. The full graph approach performs

slightly better than the segmented version only in the case of the MC coverage. For both

approaches, the overall purity and MC coverage averaged over all three segments is higher

than 80 %, and the fully found rate is about 60 %. The found tracklets can now be used as

input to full track finding methods such as the RNN-based approach by [33].

7.5. GNN-based Track Finding Summary

Overall, the last two chapters described and discussed a complete workflow of the GNN

application for classifying track segments based on PANDA FTS simulation data: from

data simulation using PandaRoot, through data preprocessing and graph building, to edge

classification using a IN based full graph and segmented graph implementation. The

final track segment classification results of AUCfull = 0.969 for the full graph approach

and AUC1/3 = 0.989 for the first and second segments of the segmented graph approach

are excellent and used for a final tracklet finding analysis. The tracklet finding based on

the two approaches provides results with both overall purity and MC coverage higher

56

7.5. GNN-based Track Finding Summary

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1.0

1.2

1.4

cla
ss

ifi
ca

tio
n

m
et

ric
s

PANDA 2022 (Simulation)
Ntest = 1000, pmin

z = 0.001 GeV/c
smax = 2.0

segment 1 of 3
purity
coverage
fully
ghost
full
seg

(a)

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1.0

1.2

1.4

cla
ss

ifi
ca

tio
n

m
et

ric
s

PANDA 2022 (Simulation)
Ntest = 1000, pmin

z = 0.001 GeV/c
smax = 2.0

segment 2 of 3
purity
coverage
fully
ghost
full
seg

(b)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

cla
ss

ifi
ca

tio
n

m
et

ric
s

PANDA 2022 (Simulation)
Ntest = 1000, pmin

z = 0.001 GeV/c
smax = 2.0

segment 3 of 3
purity
coverage
fully
ghost
full
seg

(c)

Figure 7.8.: Tracklet finding performance metrics including tracklet purity, MC coverage,

fully found rate, and ghost rate applied on both classifier approaches: full and

segmented graph classifiers. The metrics are computed for segment 1 including

FT1 and FT2 hits (a), segment 2 including the FT1 last layer, FT2, and FT3 hits

(b), and segment 3 including the FT4 last layer, FT5, and FT6 hits (c).

57

7. Graph Neural Network Based Track Finding

Table 7.1.: Tracklet finding performance metrics including tracklet purity, MC coverage,

fully found rate, and ghost rate applied on different approaches and graph

segments.

Approach Segment Purity MC Coverage Fully Found Rate Ghost Rate

Full 1 0.881 0.881 0.729 0.256

Segmented 1 0.914 0.890 0.777 0.185

Full 2 0.860 0.898 0.673 0.280

Segmented 2 0.894 0.856 0.706 0.222

Full 3 0.721 0.800 0.394 0.543

Segmented 3 0.758 0.788 0.414 0.483

Full Mean 0.821 0.860 0.599 0.360

Segmented Mean 0.855 0.845 0.632 0.230

than 80 % and a fully found rate of about 60 %. These tracklets build the basement for

further steps in the tracking working flow. For example, an interesting next step would

be to extend this work by forming full tracks from the predicted tracklets and again

comparing the full track finding results of the full graph approach with the results of the

segmented graph approach. Also, additional optimizations need to be applied to enable

the implementation of FPGA, which will be discussed in the following chapters.

58

8. FPGA Technology

Field programmable gate arrays (FPGAs)s are programmable digital integrated circuits.

Unlike traditional computer or microcontroller programming, FPGAs can be programmed

at the physical circuit structure level. Programming FPGAs is done in hardware description

languages (HDLs) such as VHDL or Verilog, which specify how a given function block

should behave. The actual physical elements are decided in the implementation, with

additional general blocks inferred during synthesis. The configuration of the internal

elements enables the implementation of various circuits and functions with FPGAs, from

simple synchronous counters to highly complex circuits such as microprocessors or fast

readout of high energy physics (HEP) detectors [84].

Machine learning (ML) applications can be implemented on accelerated hardware such

as FPGAs using the high level synthesis for machine learning (hls4ml) package. Hls4ml

enables the automated process of synthesizing FPGAs from trained neural network (NN)

models written in PyTorch, Keras, TensorFlow, or ONNX leveraging Vivado HLS and its com-

pilation functions. Hls4ml provides various evaluation, optimization, and customization

tools to assist the user in developing application-specific optimal designs.

A major challenge in creating an optimal FPGA implementation is the tradeoff between

resource utilization of the FPGA on the one hand and latency and throughput requirements

on the other hand.

This section provides a brief introduction to FPGAs, including the key advantages of FPGA

technology and FPGA structure and design. It also introduces the Vivado HLS development

environment and the hls4ml framework for automatically translating neural network code

from high level languages such as PyTorch or Tensorflow [85] into machine languages.

Finally, several design optimization methods and their implementation in Vivado HLS are

discussed.

8.1. Prospects of FPGA technology

Modern HEP experiments deal with ever-increasing detector granularities and data vol-

umes. The main challenges of today’s data acquisition systems (DAQs) are, therefore, high

data throughput with low latency, increasing complexity of data processing in real-time

applications, and at the same time, high design flexibility.

FPGAs can provide solutions for all these requirements. FPGA technology supports

high data throughput and low latency data processing while providing high flexibility in

dynamic development processes. The main advantage of FPGAs over general-purpose

application processors such as central processing units (CPUs) and graphics processing

units (GPUs) is its high parallelization capability combined with pipelining: independent

operations can run fully in parallel, enabling trillions of operations per second with

59

8. FPGA Technology

relatively low power consumption compared to traditional CPU and GPU architectures [35,

86].

In addition, FPGAs provide high flexibility through the ability to reprogram FPGAs at the

physical circuit level. The flexibility enables more efficient data throughput for specific

applications than conventional processors. Higher data throughputs can only be achieved

with application-specific integrated circuits (ASICs) custom manufactured for specific

tasks. The main disadvantages of ASICs are the high investment costs and, in any case,

the long development times, while FPGAs allows a very low cost and flexible prototype

design at development costs that are much lower compared to ASICs. However, FPGAs

are expensive on a large scale while ASICs are far cheaper in mass production. In addition,

a major advantage of FPGAs over ASICs is its reconfigurability after manufacturing.

Reconfigurability is a key advantage in ML applications in DAQs, as the neural network

architecture and its parameters can be dynamically updated using FPGAs. The advantages

of FPGAs over ASICs and GPUs are shown in Fig. 8.1.

Since FPGAs allow very fast signal processing and flexible circuit modification, they are

used in almost all areas of digital technology and are especially common in the DAQ of

HEP experiments.

Figure 8.1.: Advantages of field programmable gate array (FPGA) over application-specific

integrated circuit (ASIC) and graphics processing unit (GPU).

8.2. Structure and Design

A basic FPGA architecture consists of a set of configurable logic blocks (CLBs), input/

output (I/O) blocks, and switching blocks (SBs), as seen in Fig. 8.2. A simple CLB consists

of a programmable lookup table (LUT), a flip-flop (FF), and a multiplexer (MUX). A lookup

table (LUT) replaces the computation of functions with a simpler array indexing, where

the desired function output is obtained by reading the memory address of the defining

truth table in the static random-access memory (SRAM) cells of the LUT corresponding

to the given inputs. The LUT depends on the number of available inputs, e.g., for four

60

8.2. Structure and Design

binary inputs, a 4-bit LUT is used to implement any 4-digit binary function. The output of

the LUT is then passed to the flip-flop (FF), which is usually a D flip-flop (DFF). A DFF

is used to store the incoming signal until it is forwarded synchronously with the next

positive clock (clk) edge. The multiplexer (MUX) allows the FF to be included or bypassed,

providing very fast local signal forwarding and increasing the degrees of freedom.

The CLBs are interconnected by a network of numerous bus structures to which the I/O

blocks can be used to connect inputs and outputs for communicationwith the outside world.

The interconnections are determined by programmable SBs in the grid’s intersections,

allowing signal distribution over the entire chip. Since implementing multiplications

on FPGAs is very resource expensive, in addition to normal CLBs, most modern FPGAs

are also equipped with digital signal processors (DSPs). DSPs are specialized processors

optimized for real-time execution providing the ideal balance between high-performance

and efficient implementation. DSPs allow real-time multiplication of two given numbers

and are therefore required for many signal processing tasks that rely on multiplication,

such as digital filters or fast Fourier transform (FFT). Along with FFs, LUTs and DSPs,

one of four commonly identified FPGA components are block random access memorys

(BRAMs), which are used to store large amounts of data onboard.

Today, the term FPGA is often used interchangeably with systems referred to as system-

on-a-chip (SoC). Such complete systems integrate multiple embedded computer systems

into a single device, including CPUs, bus systems, RAM, ROM, and more.

Figure 8.2.: Simplified illustration of an FPGA consisting of In- and Output Blocks, Switch-

ing Blocks and CLBs consisting of a lookup table (LUT), a flip-flop (FF), and a

multiplexer (MUX).

61

8. FPGA Technology

8.3. Xilinx Vivado and Vivado HLS

The Vivado Design Suite is a integrated design environment (IDE) for the design, inte-

gration, and implementation of systems using Xilinx devices [87]. It is designed to improve

the productivity of synthesis and analysis of HDL designs, including SoC development and

high-level synthesis (HLS). The Vivado HLS compiler [88] enables conversion of code writ-

ten in high-level languages such as C, C++, and SystemC to HDLs such as Verilog and very

high speed integrated circuit hardware description language (VHDL) for register-transfer

level (RTL) implementation. HLS is an alternative to processor-specific programming

languages such as HDLs like VHDL or Verilog for FPGA or compute unified device archi-

tecture (CUDA) for GPU. Even though the performance of HLS-based approaches is less

optimal compared to RTL-based designs, the simulation time is much lower, debugging is

easier, design analysis provides various options, and the overall development process is

generally less complicated [89].

Vivado’s basic HLS design workflow, as shown in Fig. 8.3, is divided into the following

Figure 8.3.: Schematic overview of the Vivado HLS design workflow including C simulation

and synthesis to VHDL or Verilog based on constraints/directives, RTL Simu-

lation and packaged intellectual property (IP) export enabling the integration

in other Xilinx hardware design tools.

.

steps: First, the C functions can be validated by a test bench to verify the required function-

ality. This step is called C validation or C simulation. In the next step, the C/C++ algorithm

is compiled, which is called C synthesis. The synthesis outputs synthesized RTL files for

Verilog or VHDL and a synthesis summary report on latencies and resource utilization. At

this design stage, various additional analysis and optimization options can be applied to

the HLS project. These include various viewers and the addition design directives. Again,

the model’s functionality can be validated on a C test bench to ensure that the RTL is

62

8.4. Highlevel Synthesis for Machine Learning (hls4ml)

functionally identical to the C source code. This step is called C/RTL Co-Simulation or

RTL verification. The final step is to package the RTL design and export it into a form

other tools in the Xilinx design flow can use. A common choice is an export as a Vivado

IP block.

Benefits of HLS include improved system performance for software developers, enabling

the use of FPGA, and increased productivity for hardware developers by working at a

higher level of abstraction. The higher level of abstraction resulting from the high-level

C/C++ language and automatic translation in HDLs shortens validation phases, simplifies

design space exploration through optimization directives, and overall reduces the time

required to develop an optimal design implementation.

Vivado HLS offers several design analysis and optimization tools, such as performance

estimate reports on latency and resource usage. However, the Vivado HLS performance

estimates may vary from synthesis in Vivado after IP block export, especially regarding

DSP and LUT usage. Vivado aims to optimize latency by using more DSP blocks instead of

LUTs [35]. Hence, it can be expected that LUT utilization decreases while DSP utilization

increases for implementation in Vivado. In general, the estimates based on Vivado HLS

synthesis are found to be conservative compared to RTL implementation by Duarte et al.

[34] which might be explained by additional optimizations by RTL synthesis.

8.4. Highlevel Synthesis for Machine Learning (hls4ml)

Hls4ml is a machine learning implementation package based on HLS that provides fast and

efficient translation of ML models based on high-level languages such as Python and C/C++

to HDLs [34]. A schematic overview of a typical hls4ml design flow is shown in Fig. 8.4.

At first, a usual neural network design workflow, shown with PyG, including training

and compression steps, is required to generate a final trained model file. This model is

then converted into an internal representation by hls4ml, the HLSModel. The HLSModel

is then exported into an HLS project via an internal project writer by utilizing Vivado

HLS. The compilation is based on several configuration parameters like precision, resource

reuse factor, pipelining strategies, and optimizers for merging and cloning arrays. The

exported project can be elaborated by Vivado HLS to perform synthesis and simulation

steps such as C validation, C synthesis, and C/RTL verification. Finally, the HLS project

can be exported as an IP block to integrate it into a larger hardware design in Vivado.

Again, various synthesis and optimization steps, including implementation, placing, and

routing, can be applied to implement the project on FPGA. In general, the time needed for

model design by automated model translation by hls4ml is much shorter than designing

model architectures directly for FPGA implementation that enables fast prototyping [34].

In hls4ml each layer or activation function is implemented as an independent configurable

module predefined as C/C++ templates in the NNET library in hls4ml. During hls4ml

conversion, these separate modules are arranged and connected in the correct order to

reconstruct a full ML model by a top-level C/C++ function. In this work, a new hls4ml PyG

converter, provided by Elabd et al. [2], is employed, which enables automatic translation

of PyG models and, in particular, translation of the interaction network (IN) architecture

discussed in this work. This improved version adds NNETmodules for graph neural network

63

8. FPGA Technology

Figure 8.4.: Schematic overview of workflow fromML represented by a PyTorch Geometric

(PyG) Model to an FPGA implementation using hls4ml. The yellow boxes (left)

describe the training steps with a ML framework such as PyG generating a

model file that gets converted with hls4ml to an HLSModel defined by config-

uration and optimizer settings. An hls4ml internal backend writer exports

the model into an HLS project. This project can be used to perform several

synthesis and simulation steps and can be exported as an IP block for a Vivado

project block design to integrate the HLS project into a larger hardware design,

e.g., on Xilinx FPGA

.

(GNN) implementation including the edge block, node block and edge-aggregation block.

hls4ml provides several configurable parameters to enable simple design customization

and exploration regarding performance, latency, and resource usage.

One key feature of hls4ml is the bit-accurate emulation of the HLSModel representation in a

Python environment. The bit-accurate emulation provides an alternative to the Vivado HLS

C simulation on a C testbench. The emulation is directly performed on NUMPY array data in

Python, which enables running inference directly on the original NN test data facilitating

and accelerating the design workflow by simplifying debugging and hyperparameter

optimization at an early stage.

8.5. Design Optimization

FPGA designs most likely need optimization to meet performance, latency, and resource

utilization requirements. The resource utilization, called area, is defined as the allocation

of the different FPGA CLBs, namely: BRAM, DSPs, LUTs, and FFs. Latency is defined as

the total time taken by a single iteration of the algorithm, usually expressed in units of

clock cycles.

64

8.5. Design Optimization

This section will discuss the different optimization methods for NN implementations on

FPGAs using hls4ml especially focusing on the IN architecture that is used in this work.

The hls4ml tool provides several configurable parameters to adjust and explore latency

and resource utilization to find a task-specific optimal design in an automated design

iteration.

Efficient optimization of resource utilization can be achieved through various techniques

such as quantization, compression, and parallelization including pipelining. Compression

or pruning aims to reduce the number of neurons without sacrificing performance since

parts of the network neurons may be redundant. In the context of HLS, the number of

hidden nodes is equated to the number of neurons. Furthermore, quantization aims to

reduce the floating-point encoding precision of the model parameters to a minimal bit

encoding that still provides good performance. Finally, parallelization can also be adjusted

by configuring the degree of parallelization as part of the tradeoff between latency and

resource consumption.

8.5.1. Quantization

The FPGA resource utilization depends on various model parameters. One of them is the

number of bits required to represent the NN model to the level of accuracy required by

the current application. The number of bits can be reduced by quantization. Unlike native

C/C++ datatypes quantized in 8-bit bounds (8, 16, 32, 64 bits), which can lead to inadequate

hardware implementation, HLS is based on arbitrary precision (AP) datatypes. The AP

datatypes support arbitrary data lengths, i.e., enabling the usage of variables with smaller

bit widths. As a result of smaller bit-widths, the logic allocates fewer FPGA resources and

can be executed at higher clock frequencies with the same accuracy [86].

The fixed-point data format is denoted by ap_fixed<W,I> where𝑊 is the total number of

bits or word length and 𝐼 is the number of bits used to represent the signed integer bits

above the binary point. The difference between𝑊 and 𝐼 is the number of decimal place

bits 𝐵 after the decimal point. In addition, a quantization and an overflow mode can be

specified, which will not be discussed here.

The standard precision of HLS calculations is based on the 32-bit floating point type.

Quantization can be used to reduce precision without sacrificing performance. In hls4ml,

the bit precision of inputs, network parameters, and network outputs can be set to exact

bit sizes by AP data types before synthesis. The new converter added by Elabd et al. [2]

additionally allows different precisions for the hit index adjacency matrices on the one

hand and all other network parameters on the other hand, since the adjacency matrices

can be encoded in integers. In contrast, all other network parameters require fixed-point

data types.

The main limiting resource in many applications on FPGAs is the number of DSPs,

mainly used for multiplications. For example, the DSPs blocks available on the part

xczu11eg-ffvc1760-2-e combine an 18-bit by 27-bit signed multiplier with a 48-bit adder

and 27-bit pre-adder [90]. This means that, e.g., a 27-bit by 18-bit signed multiplication

can be accomplished by a single DSP whereas a 27-bit by 19-bit signed multiplication may

require two DSPs. However, Vivado might reuse the same DSP in the next clock cycle or

use some external FPGA logic to mimic the missing bits. In the case of bit widths of 10

65

8. FPGA Technology

and below Vivado HLS implements multiplications using LUTs instead of DSPs.

The bit widths of the variables used directly affect resource usage. For example, if a variable

that only requires 18 bits is specified as a variable with 32 bits, this leads to the use of

larger and slower operators such as DSPs. This drastically increases not only the area but

also the number of operations that can be performed per clock cycle, and thus also, the

throughput and latency. Therefore, finding suitable precision values for the data types is

important to avoid oversized elements that waste valuable hardware resources.

8.5.2. Compression

An additional way of network size optimization is reducing the number of model parame-

ters, called network compression or pruning. The number of model parameters is defined

by the weights and biases of the underlying multilayer perceptrons (MLPs). Both strongly

depend on the number of node and edge features, 𝐷node and 𝐷edge respectively, but also on

the number of hidden nodes 𝑁hidden defining the hidden layer dimensions of the edge and

node block MLPs. In the case of MLPs with two hidden layers as used in this work, the

number of parameters for a node or edge block 𝑁𝑏 as the sum of weights 𝑁𝑤 and biases 𝑁𝑏
is given by

𝑁𝑏 = 𝑁𝑤 + 𝑁𝑏 = (𝐷in + 𝐷hidden + 𝐷out) · 𝐷hidden + (2𝐷hidden + 𝐷out) (8.1)

where a MLP block 𝑏 (𝐷in, 𝐷out, 𝑁hidden) is defined by its input 𝐷in, output 𝐷out and hidden

dimension 𝑁hidden. For an IN described in Section 7.1 with a relational model (R) edge

block

𝑅1(2 · 𝐷node + 𝐷edge, 𝐷edge, 𝑁hidden) , (8.2)

an object model (O) node block

𝑂 (𝐷node + 𝐷edge, 𝐷node, 𝑁hidden) , (8.3)

and a second relational model (R) output block

𝑅2(2 · 𝐷node + 𝐷edge, 1, 𝑁hidden) (8.4)

the total number of parameters equals

𝑁IN = 𝑁𝑤 + 𝑁𝑏
𝑁𝑤 = 𝐷hidden · (6𝐷node + 4𝐷edge + 3𝐷hidden + 1), 𝑁𝑏 = 6𝐷hidden + 𝐷edge + 𝐷node + 1 .

(8.5)

For example, with 2 node and edge features each and 6 hidden nodes for each hidden

layer, the total number of model parameters is 𝑁IN = 275, while with 𝐷node = 4, 𝐷edge = 4,

and 𝑁hidden = 32 the total number of parameters equals 𝑁IN = 4585. In the following,

the number of hidden nodes will be referred to as the number of hidden neurons. Each

model weight corresponds to a multiplication, implemented on FPGAs by a DSP unit.

Equation (8.5) demonstrates that the number of weights strongly depends on the number

66

8.5. Design Optimization

of hidden neurons. Hence, the number of hidden neurons directly affects the number of

utilized DSPs.

There are several methods to compress networks including parameter pruning, low-rank

factorization, transferred/ compact convolutional filters, 𝐿1 regularization, or knowledge

distillation as described by Duarte et al. [34]. For simplicity, in this work, the resource usage

and, later on, classification performance will be only analyzed concerning the number of

hidden neurons. However, it would be interesting to analyze the performance of the other

more sophisticated compression techniques in future studies.

8.5.3. Pipelining

(a) (b)

Figure 8.5.: Process Pipelining. (a) Working principles of pipelining based on three tasks

A, B, and C. A comparison of a sequential execution without pipelining and

parallelization with pipelining. (b) A more complex example of pipelining

includes task parallelism and pipelining within a run, pipelining of runs, and

pipelining within a task.

One key advantage of FPGA applications is throughput acceleration by parallelization,

where throughput is the number of operations performed per unit of time. The most

important process parallelization concept on FPGA is pipelining [86]. In Fig. 8.5(a), the

basic concept of pipelining is displayed using an example workflow based on three tasks

A, B, and C, where each task takes 20 ns to finish. The pipelined process is displayed in

comparison to a sequential execution with a total completion time of 180 ns for three

iterations of all three tasks, called runs. The time taken to finish the first run is called

iteration latency; in this example, 60 ns. The next run starts 20 ns after the first run and

additionally only takes 20 ns after the end of the first run to finish. This delay is known as

the initiation interval (II) of the pipeline. The total time for all three runs to finish is the

total latency of the pipeline, which can be described by

total latency = iteration latency + II · (number of functions − 1) . (8.6)

Here, the total latency equals 180 ns. The total latency can be improved by minimizing

II. Pipelining is a classical architectural optimization that repetitively executes tasks by

67

8. FPGA Technology

reusing the same resources. It can be applied to multiple levels of abstraction, such as

operators, loops, and functions. An efficient process design regarding throughput and

usage of computational resources combines pipelining on multiple levels.

A more complex example is shown in Fig. 8.5(b) to explain pipelining and its potential,

simultaneously combining task parallelism, pipelining within a run, pipelining of runs,

and pipelining within a task. In this example, B and C are independent and can be executed

in parallel, called task parallelism within a run. This is the only form of parallelization

that can be run on a multithreaded CPU using shared memory. Task D depends on B and

C, where the final outputs of B and C are synchronized only after all data is produced. The

data synchronization is implemented by a parallel-in-parallel-out shift registers (PIPO)

buffer, displayed by black dots. Pipelining of runs is added by executing, e.g., the second

invocation of A in parallel to the first invocations of B and C, where A reuses the same

computation resources as for the previous run as in the previous example. Furthermore,

tasks B and C are executed pipelined concerning A, called pipelining within a run. The

pipelining is enabled by synchronization between A, B, and C in an element-wise manner

with first-in-first-out shift registers (FIFO) instead of PIPOs. A FIFO buffer enables the

consumer task (here D) to start accessing the data inside the buffer as soon as the producer

tasks (here B and C) fill in the data into the buffer. The FIFO buffers are represented by

lines without circles. Lastly, pipelining within a task is added by pipelining task A, where

the second invocation overlaps with the first invocation of A.

In hls4ml, block-level pipelining at the IN node, edge, aggregation, and output block levels

is tunable by reuse factor (RF), which controls the II of each of these blocks, i.e., configures

the number of times a multiplier is reused in the computation [34]. By design, II should be

equal to RF. However, due to Vivado internal HLS optimizations, it may be smaller. For

example, with a RF of one, the computation is performed fully in parallel, and with a RF

of 𝑅, the computation is performed with a factor of 1/𝑅 of multipliers. In other words, the

latency is proportional to the RF. The total latency of the GNN implementation on FPGAs

using the IN architecture is composed of the combined latencies of the two IN edge blocks,

the node block, the edge aggregation, and the final activation function, all of which can be

pipelined. The latency of a single network-layer computation, 𝐿𝑚 , is approximately

𝐿𝑚 = 𝐿mult + (𝑅 − 1) · 𝐼 𝐼mult + 𝐿activ , (8.7)

with multiplier latency 𝐿mult, multiplier II 𝐼 𝐼mult, and activation function latency 𝐿activ.

8.5.4. HLS Design Directives

Vivado HLS offers various optimization directives, called pragmas, which enable specifica-

tion of high-level design choices. In the following, the most important pragmas for this

work are described.

By default, small functions are inlined using the INLINE directive. Inlining removes

the function hierarchy, which enables logic optimization across function boundaries,

improving the latency.

Arrays are generally implemented as BRAM, with a maximum of two available data

ports. This limited array access can limit the overall throughput. Therefore, a common

68

8.5. Design Optimization

practice is to increase the bandwidth by splitting the array into multiple smaller arrays

using the ARRAY_PARTITION directive. There are three types of array partitioning:

block partitioning (splitting into equally sized blocks of consecutive elements), cyclic

partitioning (splitting into equally sized blocks interleaving the elements), and complete

partitioning (splitting into the individual elements). For block and cyclic partitioning, a

factor option enables the specification of the number of new arrays.

The ARRAY_RESHAPE pragma combines ARRAY_PARTITION with vertical ARRAY_MAP

to reduce the number of BRAMs while keeping the parallel data access. Vertical array

mapping concatenates multiple small arrays creating a single large array which reduces

the number of BRAMs to the cost of higher bit-widths.

In Vivado HLS, for-loops can be (partially) unrolled using the UNROLL pragma to increase

throughput at the cost of increased area. In the fully unrolled loop version, each loop

iteration is executed as a separate copy of the loop-body to fully perform the complete

loop operation in parallel in a single clock cycle. This implementation requires that the

used arrays are partitioned to gain access.

Function and loop pipelining using the PIPELINE pragma reduces the II and increases the

throughput. All loops in the hierarchy below the specified pipeline region are automati-

cally unrolled; sub-functions must be pipelined manually. The II of pipelining is set to 1

by default but can be set as optional option, e.g. in hls4ml choosing the RF.

Another important optimization is the task level parallelism via the DATAFLOW pragma,

which allows the overlap of sequential task executions (e.g., for functions or loops),

improving design throughput and latency. The dataflow parallelism requires additional

FIFO or BRAM registers, so the throughput is only limited by input and output access.

In the following chapter, the discussed methods and techniques will be used to apply and

optimize a GNN-based track segment classifier on FPGA technology.

69

9. FPGA Implementation

Chapter 7 has shown promising performance of a graph neural network (GNN)-based

track segment classification on anti-Proton Annihilation at DArmstadt (PANDA) forward

tracking system (FTS) data. This chapter will focus on field programmable gate array

(FPGA) implementation of this classifier using the transpiler high level synthesis for

machine learning (hls4ml) and methods discussed in Chapter 8, while taking into account

limited resources on FPGA. This chapter begins by describing the working environment in

Section 9.1 and the benchmark configurations in Section 9.2. Then, scans on the different

optimization parameters described in Section 8.5 are performed investigating their effect

on latency and resource usage in Section 9.3 and on the classification performance in

Section 9.4. Lastely, these parameter scans are used to identify an optimal design solution

in Section 9.5.

9.1. Working Environment

This chapter describes a GNN implementation on FPGA using the transpiler hls4ml tar-

geting a Xilinx Zynq
®
UltraScale+™MPSoC FPGA (part number xczu11eg-ffvc1760-2-e).

This device integrates programmable logic, two multi-core Arm
®
Cortex processing sys-

tems (quad-core A53 and dual-core R5F), 256 kB on-chip memory, multiport external

memory interfaces, and a variety of interfaces for peripheral connection in a single de-

vice [90]. The total of 653 100 system logic cells include 597 120 flip-flops (FFs), 298 560

lookup tables (LUTs), 21.1 MB of block random access memory (BRAM) and 2 928 digital

signal processor (DSP) slices. The maximal clock frequency of DSPs and BRAMs on Ultra-

scale+ devices is 738 MHz that corresponds to a clock period of1.35 ns.

The network implementation is applied through a hls4ml version provided by Elabd et al.

[2] that allows GNN conversions. The hls4ml transpiler is based on the Vivado HLS ver-

sion 2020.1 since hls4ml does not support newer versions of Vivado HLS or Vitis HLS.

Compilations are performed on an AMD Ryzen 9 5950X 16-core processor with 32 central

processing units (CPUs) and 125 GB system memory. The system memory has in principle

no influence on the compilation time but is crucial for whether the compilation is success-

ful or not. The resulting latencies and areas for the precision scan are based on high-level

synthesis (HLS) performance estimates of the Vivado HLS C Synthesis of the described

benchmark network.

9.2. Benchmark Network, Graphs and Design

The effects of various hls4ml configuration parameters on HLS performance results

are quantified using the FPGA latency and resource utilization, also called areas, of the

71

9. FPGA Implementation

trained GNN models described in Section 7.3. The interaction network (IN) architecture

described in Section 7.1 consists of edge, node, aggregation, and final output blocks. The

HLS implementation of the corresponding PyTorch Geometric (PyG) models are com-

piled for the xczu11eg-ffvc1760-2-e part using a benchmark model with the following

configurations: number of nodes 𝑁nodes = 28, number of edges 𝑁edges = 56, and reuse

factor (RF) = 8, which are upper bounds on graph sizes that can be synthesized by Elabd

et al. [2]. Furthermore, an edge index precision of ap_uint<16> and a precision for all

other parameters of ap_fixed<16.8> are chosen. Moreover, according to the network

architecture and dimensions described in Chapter 7, the node dimension 𝐷node= 2, the

edge dimension 𝐷edge= 2, the number of hidden neurons 𝑁neurons= 6, and the sigmoid

activation function (see Section 7.1) are chosen. Simple activation functions such as the

rectified linear unit (ReLU) function can be implemented in programmable logic, but

more complex activation functions, e.g., based on exponential functions such as sigmoid,

softmax, or hyperbolic tangent, must be computed in advance for the range of input values

and stored in BRAMs for quick access.

The segmented graphs discussed in Section 7.3 are employed as test data for the imple-

mentation of FPGA. These graphs contain on average 32.8 ± 8.6 nodes and 53.4 ± 23.3

edges. Since hardware resources cannot accept variable-size input data, the graphs must

be resized to a uniform size. The method used by Elabd et al. [2], which is also used in

this work, is to truncate the data using the 95 % rule. In this method, a maximum graph

size is set where 95 % of all graphs are smaller than this maximum size. The largest 5 %

are truncated to the maximum graph size. All graphs smaller than the maximum graph

size are padded with zero nodes and edges. All zero nodes are located at the origin of the

coordinate system and zero edges are constructed by a series of loop connections of the

last node of a graph with itself. Here, the 95th percentile for the number of nodes 𝑁nodes

and edges 𝑁edges corresponds to a graph with 49 nodes and 98 edges.

The default design in this work is based on the throughput-optimized design of Elabd

et al. [2] operating on a 5 ns clock period where pipelining is performed at the level of the

IN edge block, the node block, and the edge aggregation block. The level of pipelining

over the initiation interval (II) can be configured by the hls4ml RF parameter, where II

is the time needed until new data can be accepted by a pipelined function. In the case

of a non-pipelined function, the II equals the total latency. To realize the full potential

of pipelining, all loops are fully unrolled and all arrays are fully partitioned. The above

design directives are automatically implemented at the Vivado HLS level via the PIPELINE,

UNROLL, and ARRAY_PARTITION pragmas.

Given the described working environment and benchmark model, the following sec-

tions examine the implementation of the discussed network architecture for various

hls4ml parameters monitoring latency and area estimates. Then, the classification perfor-

mance of different network configurations in hls4ml is investigated with respect to the

truncated and zero-filled graph data.

72

9.3. Design Parameter Studies

10 15 20 25 30
precision (total bits)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

la
te

nc
y

(
s) PANDA 2022 (Simulation)

Nnodes = 28, Nedges = 56, Dnode = 2
Dedge = 2, Nneurons = 6, bits = 8, RF = 8

xczu11eg-ffvc1760-2-e

latency
II

(a)

10 15 20 25 30
precision (total bits)

0

20

40

60

80

100

120

140

160

ar
ea

 (%
)

PANDA 2022 (Simulation)
Nnodes = 28, Nedges = 56, Dnode = 2
Dedge = 2, Nneurons = 6, bits = 8, RF = 8

xczu11eg-ffvc1760-2-e
BRAM
DSP
FF
LUT

(b)

Figure 9.1.: hls4ml latency and hardware usage estimates depending on the arbitrary

fixed-point precision where the number of total bits corresponds to the word

length 𝑊 in ap_fixed<W,I>, and 𝐼 is half of the word length. The used

benchmark network configuration is: 𝑁nodes=28, 𝑁edges=56, 𝐷node=2, 𝐷edge=2,

RF=8, 𝑁neurons=6. (a) Latency estimates in µs. (b) Hardware area utilization in

percent of available board resources, namely: BRAM blocks, DSPs, FFs, and

LUTs. Area usage corresponding to 100 % is indicated by a thin grey line.

9.3. Design Parameter Studies

This section describes the implementation of the design optimization methods described

in Section 8.5 applied to the GNN-based edge classification model described in Section 7.3.

The effects of various hls4ml configuration parameters on resource utilization and latency

on FPGA are discussed.

9.3.1. Quantization

In Section 8.5 is discussed how the fixed-point precision that is characterized by its total

width and integer bits has a significant impact on the area. To reduce the bit widths of

the variables, the neural network (NN) model parameters (weights and biases) of each

layer are encoded in arbitrary fixed-point format. Fig. 9.1 shows the latency and areas

as a function of total precision bit width for the described benchmark network as results

of the hls4ml synthesis performance estimates. For simplicity, precision is represented

in terms of the total bit width𝑊 of the fixed-point data type, where both the number of

integers 𝐼 = 𝑊 /2 and decimal bits are equal to half the total bit width. For example, a

precision of 16 total bits corresponds to ap_fixed<16,8> with 8 integers and 8 decimal

bits. An integer bit width of 𝐼 =𝑊 /2 is chosen since this relationship has been found to

be most performing over the entire range of values.

For readability, the data points are connected by lines. Each point is computed only once

because compilation time increases dramatically as model complexity increases. Therefore,

statistical variations are to be expected. Compilation times for different configurations

73

9. FPGA Implementation

can be found in the appendix Appendix A.3. In this case, the total latency to output the

results, given in Fig. 9.2(a), does not seem to depend strongly on accuracy and, apart from

statistical fluctuations, increases relatively weak from a value of 0.399 µs at𝑊 = 8 bits to

0.461 µs at𝑊 = 32 bits. Therefore, the throughput is slowed down at higher precisions

needing more clock cycles to finish the operations. The II after which the next set of inputs

is accepted appears to be completely independent of the precision at a relatively constant

value of 0.041 µs. The II is significantly lower than the overall latency, indicating that

pipelining is applied, and initialized by the RF. The aspect of pipelining by RF is discussed

in more detail in Section 9.3.3.

More interesting metrics for the effect of precision on performance estimates are the areas.

In Fig. 9.1(b), the resource usage of BRAM blocks, DSPs, FFs, and LUTs is shown as a

percentage of available resources on xczu11eg-ffvc1760-2-e. While the effect of precision

on the use of BRAM appears to be small, as expected, increasing the overall precision bit

width increases the areas, especially for FFs and DSPs. The number of LUTs increases

roughly in proportion to the precision. As expected, the number of DSPs equals zero below

10 bits and increases slightly after𝑊 =10 bits with a larger step after𝑊 =28 bits from 1386

to 2808 units used. As explained earlier, for precision sizes greater than 27 signed bits,

corresponding to a total of 28 bits, two DSPs are needed to compute a single multiplication

in the same clock cycle, rather than one DSP unit below that value. Near the accuracy limit

of DSPs, an additional slight increase in FFs is observed. However, even at the highest

accuracy, the number of DSPs does not exceed the available resources, and the number of

LUTs does not exceed the available LUTs until 30 bits. The impact on the use of BRAM is

vanishingly small since BRAM blocks are only used to store the precomputed activation

function values.

Finally, it should be mentioned that there are additional, more sophisticated methods

for further quantization of the network, such as quantization-aware training. It may be

interesting to explore additional quantization techniques.

9.3.2. Compression

In Fig. 9.2, the latencies and areas are shown for a number of neurons 𝑁neurons between 3

and 16. The estimates are obtained using the same configuration as for the network

quantization, except that a fixed precision of ap_fixed<16,8> is given by the total number

of bits = 16. There appears to be no effect of 𝑁neurons on the latency values. This indicates

that the computations for the individual neurons are performed completely in parallel.

This also affects the consumption of DSP and LUT, which seems to increase approximately

proportionally with 𝑁neurons. The increase in LUTs, however, may in fact also correspond

to a higher degree polynomial with a weak slope. For the given configuration, the number

of LUTs already exceeds the available resources at 𝑁neurons=11, and the number of BRAM

blocks exceeds the resources at 𝑁neurons=13. The impact on the usage of BRAM and FF is

vanishingly small.

74

9.3. Design Parameter Studies

4 6 8 10 12 14 16
Nneurons

0.1

0.2

0.3

0.4

0.5

0.6

0.7

la
te

nc
y

(
s) PANDA 2022 (Simulation)

Nnodes = 28, Nedges = 56, Dnode = 2
Dedge = 2, bits = 16, RF = 8

xczu11eg-ffvc1760-2-e

latency
II

(a)

4 6 8 10 12 14 16
Nneurons

25

50

75

100

125

150

175

200

ar
ea

 (%
)

PANDA 2022 (Simulation)
Nnodes = 28, Nedges = 56, Dnode = 2
Dedge = 2, bits = 16, RF = 8

xczu11eg-ffvc1760-2-e
BRAM
DSP
FF
LUT

(b)

Figure 9.2.: hls4ml latency and hardware usage estimates on the part

xczu11eg-ffvc1760-2-e depending on the number of neurons 𝑁neurons.

With benchmark network configuration: 𝑁nodes=28, 𝑁edges=56, 𝐷node=2,

𝐷edge=2, RF=8, and arbitrary precision fixed-point with word length of 16 bits

(8 places above and 8 places below the decimal point). (a) Latency estimates

in µs. (b) Hardware area utilization in percent of available board resources,

namely: BRAM blocks, DSPs, FFs, and LUTs. Area usage corresponding to

100 % is indicated by a thin grey line.

9.3.3. Pipelining

Fig. 9.3 shows how the design scales as a function of the RF ranging from 1 to 19. By design,

the II should equal the RF in clock cycles except for internal Vivado HLS optimizations.

In general, increasing the RF reduces the area at the cost of increasing latency and II.

The total latency and II increase proportionally with the RF by a small rate of increase,

as seen in Fig. 9.3(a). At higher RF, the computation is less parallelized, which directly

affects the latency. As expected, the II equals the RF in clock cycles of 5 ns. The degree of

parallelization can also be observed by the decrease in the usage of DSP, FF and LUT at

higher RF. In the case of the benchmark model used, at least a RF of 4 must be applied in

order to avoid exceeding the available resources. Particularly noteworthy is the significant

area reduction at a relatively small increase in latency with increasing RF, especially for

low RF values.

9.3.4. Graph Dimensions

Fig. 9.4 shows the latency and area estimates over the number of nodes 𝑁nodes from 5

to 50. The number of edges is set to 𝑁edges = 2𝑁nodes, which equals the edge-to-node ratio

of the graph data used. Separate investigations of 𝑁nodes and 𝑁edges independently from

each other can be found in the appendix. With increasing graph dimensions, the total

latency as well as the area usage increases proportionally. An interesting effect appears

at 𝑁nodes=40 and above. Below 𝑁nodes=40, the II is independent from 𝑁nodes at a constant

75

9. FPGA Implementation

2.5 5.0 7.5 10.0 12.5 15.0 17.5
reuse factor

0.0

0.2

0.4

0.6

0.8

la
te

nc
y

(
s) PANDA 2022 (Simulation)

Nnodes = 28, Nedges = 56, Dnode = 2
Dedge = 2, Nneurons = 6, bits = 16

xczu11eg-ffvc1760-2-e

latency
II

(a)

2.5 5.0 7.5 10.0 12.5 15.0 17.5
reuse factor

0

50

100

150

200

250

300

350

400

ar
ea

 (%
)

PANDA 2022 (Simulation)
Nnodes = 28, Nedges = 56, Dnode = 2
Dedge = 2, Nneurons = 6, bits = 16

xczu11eg-ffvc1760-2-e
BRAM
DSP
FF
LUT

(b)

Figure 9.3.: hls4ml latency and hardware usage estimates on the part

xczu11eg-ffvc1760-2-e depending on the reuse factor. With benchmark

network configuration: 𝑁nodes=28, 𝑁edges=56, 𝐷node=2, 𝐷edge=2, 𝑁neurons=6,

and arbitrary precision fixed-point with word length of 16 bits (8 places

above and 8 places below the decimal point). (a) Latency estimates in µs. (b)

Hardware area utilization in percent of available board resources, namely:

BRAM blocks, DSPs, FFs, and LUTs. Area usage corresponding to 100 % is

indicated by a thin grey line.

value of 8 clock cycles which is 40 ns. But at 𝑁nodes=40, the II jumps to the same values

as the total latency, e.g. at 𝑁nodes=40 this is 108 clock cycles or 0.54 µs. This effect is also

apparent in the area use. Here, the BRAM usage drops from 193 to 45 used blocks. Also, a

slight decrease in the LUT usage increase is to be seen. The log file states that Vivado HLS

is unable to satisfy the pipeline directive at 𝑁nodes=40 and higher due to a too complicated

edge aggregation control-flow. Therefore, the functions are executed sequentially.

It is also worth mentioning that the compilation time grows exponentially with increasing

graph size. Already with 𝑁nodes = 45 the compilation takes over 11 hours, see also the

compilation time estimates in the appendix chapter.

Another important aspect is that in the case of too large graphs, loop unrolling to process

the data in parallel can exceed the memory limit, causing Vivado to kill the process,

which is discussed by Fuad and Vallecorsa [35]. For synthesizing large graphs, different

approaches must be adopted. They propose a limitation of the unrolling by imposing a

unroll factor.

In this section, the hls4ml implementation was scanned for different parameters to

determine the impact of each of these parameters on the latencies and area usages. In

the next section, the physics performance of the hls4ml implementation with different

configurations is evaluated.

76

9.4. Classification Performance

10 20 30 40 50
Nnodes

0.2

0.4

0.6

0.8

la
te

nc
y

(
s) PANDA 2022 (Simulation)

Dnode = 2, Dedge = 2, Nneurons = 6
bits = 16, RF = 8, Nedges = 2Nnodes

xczu11eg-ffvc1760-2-e

latency
II

(a)

10 20 30 40 50
Nnodes

0

50

100

150

200

250

300

ar
ea

 (%
)

PANDA 2022 (Simulation)
Dnode = 2, Dedge = 2, Nneurons = 6
bits = 16, RF = 8, Nedges = 2Nnodes

xczu11eg-ffvc1760-2-e
BRAM
DSP
FF
LUT

(b)

Figure 9.4.: hls4ml latency and hardware usage estimates on the part

xczu11eg-ffvc1760-2-e depending on the number of graph nodes 𝑁nodes and

edges 𝑁edges where 𝑁edges = 2𝑁nodes. With benchmark network configuration:

𝐷node=2, 𝐷edge=2, 𝑁neurons=6, and arbitrary precision fixed-point with a word

length of 16 bits (8 places above and 8 places below the decimal point). (a)

Latency estimates in µs. (b) Hardware area utilization in percent of available

board resources, namely: BRAM blocks, DSPs, FFs, and LUTs. Area usage

corresponding to 100 % is indicated by a thin grey line.

9.4. Classification Performance

In this section, the classification performance of the hls4ml model for different config-

urations is investigated in comparison with the corresponding PyTorch models. The

classification performance of the converted trained network models is evaluated using

the AUC score represented in Fig. 9.5. Performance is measured by scanning the hls4ml

inferences for different numbers of neurons 𝑁neurons and precisions, where the scans are

repeated for different numbers of training events 𝑁train. The inference is determined by

applying the models to 𝑁test=100 events with graphs that satisfy the 95th percentile rule ex-

plained in Section 9.2. The 95th percentile rule corresponds to graphs with fixed graph sizes

of 𝑁nodes=49 and 𝑁edges=98. As before, performance estimation is investigated for a range

of the total number of fixed-point bits𝑊 according to ap_fixed<W,W/2> with 𝐼 = 𝑊 /2

integer bits (including signs). For better readability, the evaluated measurement points

are connected by lines. The maximum AUC values that can be obtained are those corre-

sponding to the trained PyTorch models. The scatter between data points is quite high,

which is probably due to the lack of statistics in the evaluations. However, the basic trend

is that as the accuracy increases, the maximum power can be reconstructed with a higher

agreement. It is obvious that the accuracy of 10 bits and below is too low to reconstruct

the classification performance of PyTorch models. In some cases, 12 bits is sufficient to

reproduce the performance, but to ensure adequate performance with negligible loss, the

accuracy of at least 16 bits or higher should be chosen. In general, no significant difference

between the performance scans for different sizes of 𝑁train can be observed.

77

9. FPGA Implementation

5 10 15 20 25 30
Nneurons

0.4

0.6

0.8

1.0

1.2AU
C

PANDA 2022 (Simulation)
Ntrain=100, Ntest=100
Nnodes=49, Nedges=98, Dnode=2, Dedge=2

xczu11eg-ffvc1760-2-e

torch
hls 8 bits
hls 10 bits
hls 12 bits

hls 14 bits
hls 16 bits
hls 20 bits
hls 32 bits

5 10 15 20 25 30
Nneurons

0.4

0.6

0.8

1.0

1.2AU
C

PANDA 2022 (Simulation)
Ntrain=400, Ntest=100
Nnodes=49, Nedges=98, Dnode=2, Dedge=2

xczu11eg-ffvc1760-2-e

torch
hls 8 bits
hls 10 bits
hls 12 bits

hls 14 bits
hls 16 bits
hls 20 bits
hls 32 bits

5 10 15 20 25 30
Nneurons

0.4

0.6

0.8

1.0

1.2AU
C

PANDA 2022 (Simulation)
Ntrain=1000, Ntest=100
Nnodes=49, Nedges=98, Dnode=2, Dedge=2

xczu11eg-ffvc1760-2-e

torch
hls 8 bits
hls 10 bits
hls 12 bits

hls 14 bits
hls 16 bits
hls 20 bits
hls 32 bits

5 10 15 20 25 30
Nneurons

0.4

0.6

0.8

1.0

1.2AU
C

PANDA 2022 (Simulation)
Ntrain=3000, Ntest=100
Nnodes=49, Nedges=98, Dnode=2, Dedge=2

xczu11eg-ffvc1760-2-e

torch
hls 8 bits
hls 10 bits
hls 12 bits

hls 14 bits
hls 16 bits
hls 20 bits
hls 32 bits

Figure 9.5.: HLS model classification performance estimations in the form of area under

the curve (AUC) scores as functions of the number of neurons 𝑁neurons for

different numbers of training samples 𝑁train. The AUC scores are computed for

different precisions from 8 bits to 32 bits in comparison to the original PyTorch

model performances.

The overall best AUC values are obtained for the networks trained on 1000 events. To

provide a more detailed look at the reconstruction of classification performance from

a different perspective, the ROC curves are shown with the corresponding AUC values

for 𝑁train=1000, different numbers of hidden neurons 𝑁neurons, and accuracies in Fig. 9.6.

With increasing 𝑁neurons, a slight increase in the PyTorch AUC values can be observed.

Otherwise, no significant difference in hls4ml reconstruction is seen for different 𝑁neurons.

Again, it can be clearly seen that both 8 and 10 bits are insufficient to reproduce the PyTorch

results and at least 16 bits should be used.

9.5. Design Optimization

In this section, the information obtained from the studies in Section 9.3 is combined to

find a design that satisfies the latency and area requirements, as well as the classification

requirements. The size of the graph is chosen according to the 95th percentile rule and

78

9.5. Design Optimization

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ue

 P
os

iti
ve

 R
at

e

PANDA 2022 (Simulation)
Ntrain=1000, Ntest=100, Nneurons=3
Nnodes=49, Nedges=98, Dnode=2, Dedge=2

xczu11eg-ffvc1760-2-e

torch AUC = 0.975
hls 8 bit AUC = 0.708
hls 10 bit AUC = 0.579
hls 12 bit AUC = 0.852
hls 14 bit AUC = 0.929
hls 16 bit AUC = 0.970
hls 20 bit AUC = 0.975
hls 32 bit AUC = 0.975

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ue

 P
os

iti
ve

 R
at

e

PANDA 2022 (Simulation)
Ntrain=1000, Ntest=100, Nneurons=6
Nnodes=49, Nedges=98, Dnode=2, Dedge=2

xczu11eg-ffvc1760-2-e

torch AUC = 0.980
hls 8 bit AUC = 0.695
hls 10 bit AUC = 0.757
hls 12 bit AUC = 0.977
hls 14 bit AUC = 0.978
hls 16 bit AUC = 0.979
hls 20 bit AUC = 0.980
hls 32 bit AUC = 0.980

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ue

 P
os

iti
ve

 R
at

e

PANDA 2022 (Simulation)
Ntrain=1000, Ntest=100, Nneurons=8
Nnodes=49, Nedges=98, Dnode=2, Dedge=2

xczu11eg-ffvc1760-2-e

torch AUC = 0.980
hls 8 bit AUC = 0.652
hls 10 bit AUC = 0.956
hls 12 bit AUC = 0.971
hls 14 bit AUC = 0.978
hls 16 bit AUC = 0.979
hls 20 bit AUC = 0.981
hls 32 bit AUC = 0.980

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ue

 P
os

iti
ve

 R
at

e

PANDA 2022 (Simulation)
Ntrain=1000, Ntest=100, Nneurons=16
Nnodes=49, Nedges=98, Dnode=2, Dedge=2

xczu11eg-ffvc1760-2-e

torch AUC = 0.983
hls 8 bit AUC = 0.608
hls 10 bit AUC = 0.898
hls 12 bit AUC = 0.980
hls 14 bit AUC = 0.982
hls 16 bit AUC = 0.983
hls 20 bit AUC = 0.983
hls 32 bit AUC = 0.983

Figure 9.6.: HLS model classification performance estimations in the form of receiver

operating characteristics (ROC) curves for different numbers hidden neu-

rons 𝑁neurons. The AUC scores are computed for different precisions from

8 bits to 32 bits in comparison to the original PyTorch model performances.

corresponds to 𝑁nodes=49 and 𝑁edges=98. Based on the results of Section 9.4, the number

of precision bits is set to 16 bits and the number of neurons 𝑁neurons is set to 6, which is

the configuration that provides full classification performance with minimal area. The

previous optimization studies were performed using the throughput-optimized design

described above. This design is well suited for a small number of nodes and edges, but

exceeds the device LUT capacity for the required graph sizes. Increasing RF has only a

small and far from required effect on LUT utilization. Therefore, other designs must be

investigated. The different design approaches are summarized in Table 9.1.

Solutions from 1 to 4 include applications of the throughput-optimized design for various

RFs from 1 to 32. The resulting latency and area estimates are shown in Table 9.2. It can

be seen that the area difference between an RF of 1 and 8 is significant, while the effect of

further increasing the RF is significantly smaller, especially in the case of LUT usage.

Most of the LUT usage is due to the edge aggregation block, which alone occupies 94 %

of all available LUT resources in the case of a throughput-optimized design at RF=32,

and even more for smaller RFs. Solutions from 5 to 7 aim to reduce the area of the edge

79

9. FPGA Implementation

Table 9.1.: Overview of design solutions based on different design directives.

Solution RF Description

1 1 throughput-optimized design

2 8 throughput-optimized design

3 16 throughput-optimized design

4 32 throughput-optimized design

5 16 edge-aggregation without array partitioning

6 16 edge-aggregation with array partitioning factor of 2

7 16 dataflow design & edge-aggregation without array partitioning

8 16 loop unrolling with factor parallelization factor (PF)=16

9 16 similar to solution 6 with 2 ns clock period

Table 9.2.: Latency and Area estimates for the different design solutions presented in

Table 9.1.

Solution Latency [cyc.] II [cyc.] DSP [%] LUT [%] FF [%] BRAM [%]

1 103 103 546 386 88 2

2 124 124 63 193 46 4

3 139 139 34 175 42 4

4 173 173 19 169 40 4

5 384 247 34 85 17 4

6 311 247 34 85 17 4

7 290 247 34 104 18 113

8 85 85 34 169 20 4

9 345 247 34 87 23 4

80

9.5. Design Optimization

aggregation block by removing the array partitioning. Solution 5 removes the array

partitioning completely, while solution 6 applies block partitioning with a factor of 2.

Solution 7 is based on a dataflow design instead of pipelining. The area reduction due to

removing the edge aggregation partitioning is promising in the reduction of LUT usage

from 175 % to 85 % while increasing the total latency from 139 to 384 cycles and the II

from 139 to 247 cycles. Applying array block partitioning by a factor of 2 to the edge

aggregation block reduces the latency to 311 cycles, while having negligible impact on

the area and II. Replacing the overall pipelining directive with the DATAFLOW pragma

to enable task-level pipelining (solution 7) dramatically increases BRAM usage to 113 %

and LUT usage to 104 %, while reducing the overall latency by only 21 cycles compared to

solution 6.

Considering the resource constraints, classification performance, and latency requirements,

solution 6 can be determined as optimal solution for the given problem compared to the

other solutions. Solution 9 repeats solution 6 at a lower clock period of 2 ns which has a

vanishingly small effect on the resource usage but reduces the total latency from 1.71 µs

991 ns, even though the number of clock cycles increases slightly. The design of solution 9

fits very well on the used device and provides classification performance up to an AUC

value of 0.979 with an overall latency of 991 ns. This latency is sufficient for online tracking

and it is a significant improvement over CPU-based processing, which has a latency of

about 646 ms using the described architecture.

81

10. Conclusion and Outlook

The goal of the work presented in this thesis is the development of a track finding algorithm

based on machine learning (ML) for the anti-Proton Annihilation at DArmstadt (PANDA)

forward tracker and implementation of this algorithm on field programmable gate array

(FPGA) technology. In this thesis, it has been shown that the physics-motivated interaction

network (IN) architecture, which is a special type of graph neural networks (GNNs), can be

successfully applied to the task of charged particle tracking on PANDA forward tracking

system (FTS) data. The performance of the IN was evaluated based on various data

preprocessing steps and graph construction conditions in the context of a track segment

classification pipeline. The used detector hit filtering preselection steps by, e.g., applying

a 𝑝𝑧 threshold, 𝑝
min

𝑧 reduce the number of detector hits and remove curling particles. The

used graph building algorithm creates nodes, which contain the hit coordinates, and edges

connecting pairs of nodes based on geometric constraints including only allowing the

connection of adjacent layer nodes and a slope threshold, 𝑠max
. The graphs were built with

two different approaches: a full graph and a segmented graph approach. The full graph

approach comprises hits of all FTS chambers, while the segmented versions subdivide the

full graphs into three regions, corresponding to the three tracking station pairs before,

within, and after the magnetic field. Evaluation studies have shown that graphs using only

the 𝑥 and 𝑧 coordinate informations for nodes and edges built with 𝑝min

𝑧 = 0.001 GeV/𝑐
and 𝑠max = 1.002 perform best in the trade-off between purity, efficiency and data size

for the full graph approach. In particular, for this configuration, a true edge efficiency of

98.9 % at a true edge purity of 63.0 % was achieved.

In this work, the IN architecture for edge classification is used since it has been shown

to provide good classification performance in constrained computing environments. In

particular, the encoding of the edge adjacency information is substantially smaller and

significantly reduces resource usage compared to other approaches, such as a matrix for-

mulation encoding in- and outgoing edges. Therefore, this implementation is significantly

faster and more flexible than the matrix implementation used in previous works, such

as the work by Esmail [29]. Here, the used architecture comprises only 275 parameters

for hidden network layers composed of six hidden nodes each. The GNN-based track

finding for PANDA FTS data was evaluated for the full graph and segmented approaches.

In both cases, high classification scores could be obtained up to AUC=0.989, while the

segmented versions performed slightly better than the full graph approach. Tracklet

building evaluations performed on these edge-weighted graphs demonstrated high tracklet

finding power by correctly identifying 100 % of hits associated with a tracklet in up to

77 % of all tracklets, where tracklets are segments of the full tracks divided into the three

regions.

Moreover, this thesis has discussed the application of the GNN-based track segment

classification in heterogeneous hardware with FPGAs using the deep neural network

83

10. Conclusion and Outlook

compiler high level synthesis for machine learning (hls4ml) based on Vivado hls. Generic

design optimization techniques such as network quantization, compression, and pipelining

are discussed. The effect of these optimization methods on the design latencies, resource

usages, and classification performance was scanned using the hls4ml configuration param-

eters. Applying the investigated optimization techniques it was possible to implement the

GNN-based track segment classifier in a Xilinx Zynq
®
UltraScale+™MPSoC FPGA using

roughly 34 % of the available digital signal processors (DSPs) and 85 % of the available

lookup tables (LUTs). The total latency of the inference is approximately 0.99 µs with a

clock frequency of 2 ns. Real-time event reconstruction and filtering require pipelined

inference with latencies on the scale of a few microseconds.

The work discussed in this thesis has several important limitations that need to be

considered. First, the graph building did not include hits of skewed detector layers. There-

fore, no 𝑦-information is included in the graphs. Furthermore, the geometric constraints

applied are simple and do not include, e.g., next-to-next layer edges or same-layer edges.

Background hits and more complex events must be included for a more realistic graph

building. Moreover, this thesis only includes track segment classification and simple

tracklet finding. Further work needs to investigate full track finding techniques based

on the presented results, such as the methods discussed by [1] including a union-find

algorithm [91] or DBSCAN [92].

Although this work has found a possible implementation of the discussed track segment

classifier on the given FPGA device, several further improvements can be applied regarding

resource usage and latency. Each of the design optimization techniques has been imple-

mented most simply. It would be interesting to analyze the performance of other more

sophisticated optimization techniques in future studies. For example, quantization-aware

training (QAT) can significantly reduce the number of required bits [2]. Additionally, the

high-level synthesis (HLS) performance estimates need to be validated by implementation

in Vivado and on real FPGAs.

For the implementation of the algorithm in the frame of a real-time trigger in real ex-

perimental settings, much work still needs to be done. In particular, accelerated graph

building on FPGAs is an important step in the track finding pipeline on heterogeneous

resources, to which ongoing efforts are dedicated. Finally, the whole algorithm must be

implemented in the PandaRoot framework as an official part of the track finding in the

PANDA experiment.

The presented track finding algorithm provides high tracking efficiency with low la-

tency for real-time event filtering for the PANDA experiment. Efficient data reduction in

PANDA data acquisition system (DAQ) helps to identify and store the most interesting

events for further precise processing to answer many open quantum chromo dynamics

(QCD) questions in the charm and multi-strange hadron sector. In addition, the techniques

presented contribute to the growing research field of ML-based real-time tracking on

FPGAs. The tracking methods used in this project can also be applied to other HEP

experiments, and this research can serve as a foundation for future studies in real-time

tracking.

84

A. Appendix

A.1. Segmented Graph Displays

340 360 380 400 420 440 460
z (cm)

60

40

20

0

20

40

60

80

100

x
(c

m
)

PANDA 2022 (Simulation)
event ID = 3, pmin

z = 0.001 GeV/c, smax = 2.0

graph segment 2 of 3
MC particle 0
MC particle 1
MC particle 2
MC particle 3
MC particle 4
MC particle 5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

slo
pe

(a)

475 500 525 550 575 600 625 650
z (cm)

50

0

50

100

150

200

x
(c

m
)

PANDA 2022 (Simulation)
event ID = 3, pmin

z = 0.001 GeV/c, smax = 2.0

graph segment 3 of 3
MC particle 0
MC particle 1
MC particle 2
MC particle 3
MC particle 4
MC particle 5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

slo
pe

(b)

Figure A.1.: Hit graph display of the second (a) and third (b) segmented graph thirds.

Colored points represent detector hits (nodes) of corresponding particles

distinguished by the different particle IDs and the connecting lines represent

all generated edges after filtering. The edge slope is displayed by color from 0

(black) to 2. (yellow). The graphs are constructed with 𝑝min

𝑧 = 0.001 GeV/𝑐
and 𝑠max = 2.0.

85

A. Appendix

A.2. GNN Classification Performances for Segmented Graphs

AU
C

200 400 600 800 1000
Ntrain

0.965

0.970

0.975

0.980

0.985

0.990

0.995 PANDA 2022 (Simulation)
Ntest=50, pmin

z =0.001 GeV/c, smax=2.0

graph segment 2 of 3

Nhidden

3
4
5
6

7
8
16
32

(a)

200 400 600 800 1000
Ntrain

0.960

0.965

0.970

0.975

0.980

0.985

0.990AU
C

PANDA 2022 (Simulation)
Ntest = 50, pmin

z = 0.001 GeV/c, smax = 2.0

graph segment 3 of 3

Nhidden

3
4
5
6

7
8
16
32

(b)

Figure A.2.: Display of area under the curve (AUC) scores for different sets of number of

training events 𝑁train and number of hidden nodes 𝑁hidden per hidden graph

neural network (GNN) layer performed on 𝑁test=50 test events based on the

second (a) and third (b) segmented graph thirds built with 𝑝min

𝑧 = 0.001 GeV/𝑐
and 𝑠max = 2.0.

86

A.3. hls4ml Compilation Times

A.3. hls4ml Compilation Times

4 6 8 10 12 14 16
Nneurons

1650

1700

1750

1800

1850

1900
co

m
pi

la
tio

n
tim

e
(s

)

PANDA 2022 (Simulation)
Nnodes = 28, Nedges = 56, Dnode = 2
Dedge = 2, bits = 16, RF = 8

xczu11eg-ffvc1760-2-e
data

(a)

2.5 5.0 7.5 10.0 12.5 15.0 17.5
reuse factor

1625

1650

1675

1700

1725

1750

1775

1800

co
m

pi
la

tio
n

tim
e

(s
)

PANDA 2022 (Simulation)
Nnodes = 28, Nedges = 56, Dnode = 2
Dedge = 2, Nneurons = 6, bits = 16

xczu11eg-ffvc1760-2-e
data

(b)

5 10 15 20 25 30 35 40 45
Nnodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

co
m

pi
la

tio
n

tim
e

(s
) ×104

PANDA 2022 (Simulation)
Nedges = 56, Dnode = 2, Dedge = 2
Nneurons = 6, bits = 16, RF = 8

xczu11eg-ffvc1760-2-e
data

(c)

5 10 15 20 25 30 35 40 45
Nedges

200

400

600

800

1000

1200

1400

co
m

pi
la

tio
n

tim
e

(s
)

PANDA 2022 (Simulation)
Nnodes = 28, Dnode = 2, Dedge = 2
Nneurons = 6, bits = 16, RF = 8

xczu11eg-ffvc1760-2-e
data

(d)

10 20 30 40 50
Nnodes

0.0

0.2

0.4

0.6

0.8

1.0

co
m

pi
la

tio
n

tim
e

(s
) ×105

PANDA 2022 (Simulation)
Dnode = 2, Dedge = 2, Nneurons = 6
bits = 16, RF = 8, Nedges = 2Nnodes

xczu11eg-ffvc1760-2-e
data

(e)

Figure A.3.: hls4ml compilation times performed on an AMD Ryzen 9 5950X 16-core

processor with 32 CPUs. Scans as functions of 𝑁neurons (a), the RF (b),𝑁nodes

(c), 𝑁edges (d), and 𝑁nodes at fixed ratio 𝑁edges=2𝑁nodes (e).

87

A. Appendix

A.4. Design Graph Dimension Studies

5 10 15 20 25 30 35 40 45
Nnodes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

la
te

nc
y

(
s) PANDA 2022 (Simulation)

Nedges = 56, Dnode = 2, Dedge = 2
Nneurons = 6, bits = 16, RF = 8

xczu11eg-ffvc1760-2-e

latency
II

(a)

5 10 15 20 25 30 35 40 45
Nnodes

25

50

75

100

125

150

175

ar
ea

 (%
)

PANDA 2022 (Simulation)
Nedges = 56, Dnode = 2, Dedge = 2
Nneurons = 6, bits = 16, RF = 8

xczu11eg-ffvc1760-2-e
BRAM
DSP
FF
LUT

(b)

5 10 15 20 25 30 35 40 45
Nedges

0.1

0.2

0.3

0.4

0.5

la
te

nc
y

(
s) PANDA 2022 (Simulation)

Nnodes = 28, Dnode = 2, Dedge = 2
Nneurons = 6, bits = 16, RF = 8

xczu11eg-ffvc1760-2-e

latency
II

(c)

5 10 15 20 25 30 35 40 45
Nedges

0

20

40

60

80

100

120

140

ar
ea

 (%
)

PANDA 2022 (Simulation)
Nnodes = 28, Dnode = 2, Dedge = 2
Nneurons = 6, bits = 16, RF = 8

xczu11eg-ffvc1760-2-e
BRAM
DSP
FF
LUT

(d)

Figure A.4.: high level synthesis for machine learning (hls4ml) latency and hardware usage

estimates on the part xczu11eg-ffvc1760-2-e with respect to the number

of graph nodes 𝑁nodes and number of graph edges 𝑁edges. The benchmark

network configuration is as described in Section 9.2. Latency estimates in µs

(a) and hardware area utilization in percent of available board resources (b)

as function of 𝑁nodes. Latency estimates (c) and area (d) as function of 𝑁edges.

The area usage corresponding to 100 % is indicated by a thin grey line.

88

List of Acronyms

hls4ml high level synthesis for machine learning. i, iii, v, 3, 5, 59, 63–65, 68, 71–73, 75–78,

84, 87, 88, 94

AP arbitrary precision. 65

ASIC application-specific integrated circuit. 60

AUC area under the curve. 33, 49, 50, 54, 55, 77–79, 81, 83, 86, 93, 94

BCE binary cross entropy. 29, 31, 49, 50

BRAM block random access memory. 61, 64, 68, 69, 71–77, 81

CLB configurable logic block. 60, 61, 64

clk clock. 61

CNN convolutional neural network. 2, 5

CPU central processing unit. 1, 2, 59, 60, 68, 71, 81

CR collector ring. 16

CUDA compute unified device architecture. 62

DAQ data acquisition system. 1, 2, 19, 59, 60, 84

DFF D flip-flop. 61

DL deep learning. 2, 3, 30, 54

DSP digital signal processor. i, iii, 61, 63–67, 71, 73–77, 84

FAIR Facility for Antiproton and Ion Research. 2, 3, 13, 15–17, 20, 93

FF flip-flop. 60, 61, 64, 71, 73–77

FFT fast Fourier transform. 61

FIFO first-in-first-out shift registers. 68, 69

FN false negative. 32, 51

89

List of terms

FNR false negative rate. 33, 40, 43

FP false positive. 32, 51

FPGA field programmable gate array. i, iii, v, 2, 3, 5, 19, 41, 52, 53, 58–69, 71–73, 83, 84, 93

FPR false positive rate. 33, 49

FTS forward tracking system. i, v, 2, 3, 19, 20, 23, 35, 37, 38, 41, 45, 47, 56, 71, 83, 93

GDL geometric deep learning. 2, 30

GNN graph neural network. i, iii, v, 2, 3, 5, 23, 25, 30, 33, 35, 39, 41, 43, 45, 47, 49–52, 54, 56,

63, 68, 69, 71–73, 83, 84, 86, 93

GPU graphics processing unit. 2, 19, 59, 60, 62

GR general relativity. 8

GSI Gesellschaft für Schwerionenforschung. 2, 15, 16

HDL hardware description language. 59, 62, 63

HEP high energy physics. i, iii, 1, 2, 5, 9, 21, 32, 59, 60, 84

HESR high-energy storage ring. 16, 17, 93

HLS high-level synthesis. 62–65, 68, 71, 72, 84

I/O input/output. 60, 61

IDE integrated design environment. 62

II initiation interval. 67–69, 72, 74–76, 81

IN interaction network. i, iii, v, 5, 31, 43, 47–49, 54, 56, 63, 65, 66, 68, 72, 83, 93

IP intellectual property. 62–64

LUT lookup table. i, iii, 60, 61, 63, 64, 66, 71, 73–77, 79, 81, 84

MC Monte Carlo. 35, 37, 38, 40, 51, 55–58

MIP minimum ionizing particle. 35

ML machine learning. 2, 3, 5, 23, 28, 44, 53, 59, 60, 63, 64, 83, 84

MLP multilayer perceptron. 27, 66

MUX multiplexer. 60, 61

90

List of terms

MVD micro vertex detector. 35

NN neural network. 25, 26, 28, 33, 47, 59, 64, 65, 73, 93

PANDA anti-Proton Annihilation at DArmstadt. i, iii, v, 2, 3, 5, 7, 10, 11, 13–16, 18–20, 23,

35, 41, 45, 47, 56, 71, 83, 84, 93

PDG particle data group. 38

PF parallelization factor. 80

PIPO parallel-in-parallel-out shift registers. 68

PPV positive predictive value. 32

PyG PyTorch Geometric. 31, 63, 64, 72

QCD quantum chromo dynamics. 9–11, 13, 15, 84

QED quantum electrodynamics. 8

ReLU rectified linear unit. 27, 47, 48, 72

RF reuse factor. 68, 69, 72–75, 79, 87

RNN recurrent neural network. 2, 5, 56

ROC receiver operating characteristics. 33, 49, 50, 78, 79, 93

RTL register-transfer level. 62, 63

S signal. 32

SB switching block. 60, 61

SM standard model of particle physics. 3, 7, 8, 11, 93

SoC system-on-a-chip. 61, 62

SRAM static random-access memory. 60

TN true negative. 32, 51

TNR true negative rate. 32, 33, 40, 43

TP true positive. 32, 51

TPR true positive rate. 32, 33, 49

TrackML tracking machine learning challenge. 2

VHDL very high speed integrated circuit hardware description language. 62

91

List of Figures

3.1. Overview of the standard model of particle physics (SM). 7

3.2. Overview of the fundamental forces. 8

3.3. Graphic representation of protons, neutrons, antiprotons, and antineutrons. 9

3.4. Graphic representation of pions. 9

4.1. Overview of the PANDA physics program. 13

4.2. Facility for Antiproton and Ion Research (FAIR) construction site. 16

4.3. Layout of the FAIR facility. 17

4.4. Layout of high-energy storage ring (HESR). 17

4.5. Anti-Proton Annihilation at DArmstadt (PANDA) detector overview. . . 18

4.6. Schematic view of the PANDA FTS detector and a straw tube. 19

4.7. Schematic view of the PandaRoot data flow. 20

5.1. Schematic neural network (NN) model architecture. 26

5.2. Graphic representation of a perceptron. 26

5.3. Overfitting and underfitting. 28

5.4. Examplaric confusion matrix display. 32

5.5. ROC curve and AUC score example. 33

6.1. PANDA event display. 36

6.2. Distribution of the number of particles and detector hits per event. . . . 38

6.3. Event display in 𝑥𝑧-plane with six primary particles. 39

6.4. Minimum 𝑝𝑧 threshold application on the dataset. 39

6.5. Simple graph illustration. 41

6.6. Edges per event and evaluation of an upper slope threshold. 42

6.7. Example of a hit graph as GNN input. 43

6.8. Dimensionless distribution of rescaled node and edge attribute dimensions. 44

7.1. Schematic overview of the interaction network (IN) architecture. 48

7.2. Average loss and classification accuracy. 50

7.3. GNN edge weight output for true and false edges and ROC curve. 50

7.4. Purity and efficiency of GNN output weights and confusion matrix. . . . 51

7.5. GNN training output graph. 52

7.6. Hit graph display of the first segmented graph third. 53

7.7. AUC scores with respect to number of training events and hidden nodes. 54

7.8. Tracklet finding performance metrics. 57

8.2. Simplified illustration of an field programmable gate array (FPGA). . . . 61

93

List of Figures

8.3. Vivado HLS design flow. 62

8.4. Schematic overview of hls4ml workflow. 64

8.5. Principles of process pipelining. 67

9.1. hls4ml latency and area estimates with respect to the precision 73

9.2. hls4ml latency and area estimates with respect to the number of neurons. 75

9.3. hls4ml latency and area estimates with respect to the reuse factor. 76

9.4. hls4ml latency and area estimates with respect to the graph dimensions. 77

9.5. HLS model classification quality estimations in the form of AUC scores. . 78

9.6. HLS model classification quality estimations in the form of ROC curves. 79

A.1. Hit graph displays of the second and third segmented graph thirds. . . . 85

A.2. AUC scores for different sets of number of training events and hidden nodes. 86

A.3. hls4ml compilation times for different scans. 87

A.4. hls4ml number of nodes and edges scans. 88

94

List of Tables

6.1. Summary of preprocessing and graph building. 45

7.1. Tracklet finding performance metrics. 58

9.1. Overview of design solutions based on different design directives. 80

9.2. Latency and Area estimates for the different design solutions. 80

95

Bibliography

[1] Gage DeZoort et al. “Charged Particle Tracking via Edge-Classifying Interaction

Networks”. In: Comput. Softw. Big Sci. 5.1 (2021), p. 26. doi: 10.1007/s41781-021-
00073-z. arXiv: 2103.16701 [hep-ex].

[2] Abdelrahman Elabd et al. “Graph Neural Networks for Charged Particle Tracking

on FPGAs”. In: Front. Big Data 5 (2022), p. 828666. doi: 10.3389/fdata.2022.828666.
arXiv: 2112 . 02048 [physics.ins-det]. url: https : / / doi . org / 10 . 3389 % 5C %

2Ffdata.2022.828666.

[3] ATLAS Collaboration. “Search for events with a pair of displaced vertices from long-

lived neutral particles decaying into hadronic jets in the ATLAS muon spectrometer

in pp collisions at

√
𝑠 = 13 TeV”. In: (2022). arXiv: 2203.00587 [hep-ex].

[4] CMS Collaboration. “Description and performance of track and primary-vertex

reconstruction with the CMS tracker”. In: Journal of Instrumentation 9.10 (Oct. 2014),
P10009–P10009. doi: 10.1088/1748-0221/9/10/p10009. url: https://doi.org/10.

1088%5C%2F1748-0221%5C%2F9%5C%2F10%5C%2Fp10009.

[5] CMS Collaboration. “Particle-flow reconstruction and global event description with

the CMS detector”. In: Journal of Instrumentation 12.10 (Oct. 2017), P10003–P10003.

doi: 10.1088/1748-0221/12/10/p10003. url: https://doi.org/10.1088%5C%

2F1748-0221%5C%2F12%5C%2F10%5C%2Fp10003.

[6] Andrew J. Larkoski, Ian Moult, and Benjamin Nachman. “Jet substructure at the

Large Hadron Collider: A review of recent advances in theory and machine learning”.

In: Physics Reports 841 (Jan. 2020), pp. 1–63. doi: 10.1016/j.physrep.2019.11.001.
url: https://doi.org/10.1016%5C%2Fj.physrep.2019.11.001.

[7] CMS Collaboration. “Identification of heavy-flavour jets with the CMS detector in pp

collisions at 13 TeV”. In: Journal of Instrumentation 13.05 (May 2018), P05011–P05011.

doi: 10.1088/1748-0221/13/05/p05011. url: https://doi.org/10.1088%5C%

2F1748-0221%5C%2F13%5C%2F05%5C%2Fp05011.

[8] ATLAS Collaboration. “Performance of the ATLAS track reconstruction algorithms

in dense environments in LHC Run 2”. In: The European Physical Journal C 77.10

(Oct. 2017). doi: 10.1140/epjc/s10052-017-5225-7. url: https://doi.org/10.

1140%5C%2Fepjc%5C%2Fs10052-017-5225-7.

[9] Pierre Billoir. “Progressive track recognition with a Kalman-like fitting procedure”.

In: Computer Physics Communications 57.1 (1989), pp. 390–394. issn: 0010-4655.

doi: https://doi.org/10.1016/0010- 4655(89)90249- X. url: https://www.

sciencedirect.com/science/article/pii/001046558990249X.

97

https://doi.org/10.1007/s41781-021-00073-z
https://doi.org/10.1007/s41781-021-00073-z
https://arxiv.org/abs/2103.16701
https://doi.org/10.3389/fdata.2022.828666
https://arxiv.org/abs/2112.02048
https://doi.org/10.3389%5C%2Ffdata.2022.828666
https://doi.org/10.3389%5C%2Ffdata.2022.828666
https://arxiv.org/abs/2203.00587
https://doi.org/10.1088/1748-0221/9/10/p10009
https://doi.org/10.1088%5C%2F1748-0221%5C%2F9%5C%2F10%5C%2Fp10009
https://doi.org/10.1088%5C%2F1748-0221%5C%2F9%5C%2F10%5C%2Fp10009
https://doi.org/10.1088/1748-0221/12/10/p10003
https://doi.org/10.1088%5C%2F1748-0221%5C%2F12%5C%2F10%5C%2Fp10003
https://doi.org/10.1088%5C%2F1748-0221%5C%2F12%5C%2F10%5C%2Fp10003
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016%5C%2Fj.physrep.2019.11.001
https://doi.org/10.1088/1748-0221/13/05/p05011
https://doi.org/10.1088%5C%2F1748-0221%5C%2F13%5C%2F05%5C%2Fp05011
https://doi.org/10.1088%5C%2F1748-0221%5C%2F13%5C%2F05%5C%2Fp05011
https://doi.org/10.1140/epjc/s10052-017-5225-7
https://doi.org/10.1140%5C%2Fepjc%5C%2Fs10052-017-5225-7
https://doi.org/10.1140%5C%2Fepjc%5C%2Fs10052-017-5225-7
https://doi.org/https://doi.org/10.1016/0010-4655(89)90249-X
https://www.sciencedirect.com/science/article/pii/001046558990249X
https://www.sciencedirect.com/science/article/pii/001046558990249X

Bibliography

[10] P. Billoir and S. Qian. “Simultaneous pattern recognition and track fitting by the

Kalman filtering method”. In: Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 294.1
(1990), pp. 219–228. issn: 0168-9002. doi: https : / / doi . org / 10 . 1016 / 0168 -

9002(90)91835-Y. url: https://www.sciencedirect.com/science/article/pii/

016890029091835Y.

[11] Rainer Mankel. “A concurrent track evolution algorithm for pattern recognition in

the HERA-B main tracking system”. In: Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
395.2 (1997), pp. 169–184. issn: 0168-9002. doi: https://doi.org/10.1016/S0168-

9002(97)00705-5. url: https://www.sciencedirect.com/science/article/pii/

S0168900297007055.

[12] R. Frühwirth. “Application of Kalman filtering to track and vertex fitting”. In: Nu-
clear Instruments and Methods in Physics Research Section A: Accelerators, Spectrom-
eters, Detectors and Associated Equipment 262.2 (1987), pp. 444–450. issn: 0168-

9002. doi: https : / / doi . org / 10 . 1016 / 0168 - 9002(87) 90887 - 4. url: https :

//www.sciencedirect.com/science/article/pii/0168900287908874.

[13] Javier Duarte et al. “FPGA-accelerated machine learning inference as a service

for particle physics computing”. In: Comput. Softw. Big Sci. 3.1 (2019), p. 13. doi:

10.1007/s41781-019-0027-2. arXiv: 1904.08986 [physics.data-an].

[14] R.H. Dennard et al. “Design of ion-implanted MOSFET’s with very small physical

dimensions”. In: IEEE Journal of Solid-State Circuits 9.5 (1974), pp. 256–268. doi:

10.1109/JSSC.1974.1050511.

[15] Hadi Esmaeilzadeh et al. “Dark Silicon and the End of Multicore Scaling”. In: Proceed-
ings of the 38th Annual International Symposium on Computer Architecture. ISCA ’11.

San Jose, California, USA: Association for Computing Machinery, 2011, pp. 365–376.

isbn: 9781450304726. doi: 10.1145/2000064.2000108. url: https://doi.org/10.

1145/2000064.2000108.

[16] Dan Guest, Kyle Cranmer, and Daniel Whiteson. “Deep Learning and its Application

to LHC Physics”. In: Ann. Rev. Nucl. Part. Sci. 68 (2018), pp. 161–181. doi: 10.1146/
annurev-nucl-101917-021019. arXiv: 1806.11484 [hep-ex].

[17] Andrew J. Larkoski, Ian Moult, and Benjamin Nachman. “Jet Substructure at the

Large Hadron Collider: A Review of Recent Advances in Theory and Machine

Learning”. In: Phys. Rept. 841 (2020), pp. 1–63. doi: 10.1016/j.physrep.2019.11.001.
arXiv: 1709.04464 [hep-ph].

[18] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. “Searching for Exotic Particles

in High-Energy Physics with Deep Learning”. In: Nature Commun. 5 (2014), p. 4308.
doi: 10.1038/ncomms5308. arXiv: 1402.4735 [hep-ph].

[19] T. Keck et al. “The Full Event Interpretation: An Exclusive Tagging Algorithm for the

Belle II Experiment”. In: Comput. Softw. Big Sci. 3.1 (2019), p. 6. doi: 10.1007/s41781-
019-0021-8. arXiv: 1807.08680 [hep-ex].

98

https://doi.org/https://doi.org/10.1016/0168-9002(90)91835-Y
https://doi.org/https://doi.org/10.1016/0168-9002(90)91835-Y
https://www.sciencedirect.com/science/article/pii/016890029091835Y
https://www.sciencedirect.com/science/article/pii/016890029091835Y
https://doi.org/https://doi.org/10.1016/S0168-9002(97)00705-5
https://doi.org/https://doi.org/10.1016/S0168-9002(97)00705-5
https://www.sciencedirect.com/science/article/pii/S0168900297007055
https://www.sciencedirect.com/science/article/pii/S0168900297007055
https://doi.org/https://doi.org/10.1016/0168-9002(87)90887-4
https://www.sciencedirect.com/science/article/pii/0168900287908874
https://www.sciencedirect.com/science/article/pii/0168900287908874
https://doi.org/10.1007/s41781-019-0027-2
https://arxiv.org/abs/1904.08986
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1146/annurev-nucl-101917-021019
https://arxiv.org/abs/1806.11484
https://doi.org/10.1016/j.physrep.2019.11.001
https://arxiv.org/abs/1709.04464
https://doi.org/10.1038/ncomms5308
https://arxiv.org/abs/1402.4735
https://doi.org/10.1007/s41781-019-0021-8
https://doi.org/10.1007/s41781-019-0021-8
https://arxiv.org/abs/1807.08680

[20] Steven Farrell et al. Novel deep learning methods for track reconstruction. 2018. doi:
10.48550/ARXIV.1810.06111. url: https://arxiv.org/abs/1810.06111.

[21] Michael M. Bronstein et al. “Geometric Deep Learning: Going beyond Euclidean

data”. In: IEEE Sig. Proc. Mag. 34.4 (2017), pp. 18–42. doi: 10.1109/MSP.2017.2693418.
arXiv: 1611.08097 [cs.CV].

[22] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. “Graph Neural Networks

in Particle Physics”. In: (July 2020). doi: 10.1088/2632-2153/abbf9a. arXiv: 2007.

13681 [hep-ex].

[23] Sabrina Amrouche et al. “The Tracking Machine Learning challenge : Accuracy

phase”. In: The NeurIPS ’18 Competition: From Machine Learning to Intelligent Con-
versations. Apr. 2019. doi: 10.1007/978-3-030-29135-8_9. arXiv: 1904.06778
[hep-ex].

[24] Xiangyang Ju et al. “Performance of a geometric deep learning pipeline for HL-

LHC particle tracking”. In: The European Physical Journal C 81.10 (Oct. 6, 2021),

p. 876. issn: 1434-6052. doi: 10.1140/epjc/s10052- 021- 09675- 8. url: https:

//doi.org/10.1140/epjc/s10052-021-09675-8 (visited on 08/21/2022).

[25] Song Han et al. EIE: Efficient Inference Engine on Compressed Deep Neural Network.
2016. doi: 10.48550/ARXIV.1602.01528. url: https://arxiv.org/abs/1602.01528.

[26] Aneesh Heintz et al. “Accelerated Charged Particle Tracking with Graph Neural Net-

works on FPGAs”. In: 34th Conference on Neural Information Processing Systems. Nov.
2020. doi: 10.48550/ARXIV.2012.01563. arXiv: 2012.01563 [physics.ins-det].

url: https://arxiv.org/abs/2012.01563.

[27] M. F. M. Lutz et al. “Physics Performance Report for PANDA: Strong Interaction

Studies with Antiprotons”. In: (Mar. 2009). arXiv: 0903.3905 [hep-ex].

[28] The PANDA Collaboration. “Technical Design Report for the: PANDA Data Acqui-

sition and Event Filtering”. In: (Aug. 2020). url: https://indico.scc.kit.edu/

category/124/attachments/4444/6702/tdr-daqt_v2.pdf.

[29] Waleed Ahmed Mohammed Esmail. “Deep learning for track finding and the re-

construction of excited hyperons in proton induced reactions”. PhD thesis. Ruhr-

Universität Bochum, Fakultät für Physik und Astronomie, Bochum, Germany, Ruhr

U., Bochum, 2022. doi: 10.13154/294-8563.

[30] Javier Duarte and Jean-Roch Vlimant. “Graph Neural Networks for Particle Tracking

and Reconstruction”. In: Artificial Intelligence for High Energy Physics. Chap. Chap-
ter 12, pp. 387–436. doi: 10 . 1142 / 9789811234033 _ 0012. eprint: https : / / www .

worldscientific.com/doi/pdf/10.1142/9789811234033_0012. url: https://www.

worldscientific.com/doi/abs/10.1142/9789811234033_0012.

[31] Jan Kieseler. “Object condensation: one-stage grid-free multi-object reconstruction

in physics detectors, graph, and image data”. In: The European Physical Journal
C 80.9 (2020), p. 886. doi: 10 . 1140 / epjc / s10052 - 020 - 08461 - 2. url: https :

//doi.org/10.1140/epjc/s10052-020-08461-2.

99

https://doi.org/10.48550/ARXIV.1810.06111
https://arxiv.org/abs/1810.06111
https://doi.org/10.1109/MSP.2017.2693418
https://arxiv.org/abs/1611.08097
https://doi.org/10.1088/2632-2153/abbf9a
https://arxiv.org/abs/2007.13681
https://arxiv.org/abs/2007.13681
https://doi.org/10.1007/978-3-030-29135-8_9
https://arxiv.org/abs/1904.06778
https://arxiv.org/abs/1904.06778
https://doi.org/10.1140/epjc/s10052-021-09675-8
https://doi.org/10.1140/epjc/s10052-021-09675-8
https://doi.org/10.1140/epjc/s10052-021-09675-8
https://doi.org/10.48550/ARXIV.1602.01528
https://arxiv.org/abs/1602.01528
https://doi.org/10.48550/ARXIV.2012.01563
https://arxiv.org/abs/2012.01563
https://arxiv.org/abs/2012.01563
https://arxiv.org/abs/0903.3905
https://indico.scc.kit.edu/category/124/attachments/4444/6702/tdr-daqt_v2.pdf
https://indico.scc.kit.edu/category/124/attachments/4444/6702/tdr-daqt_v2.pdf
https://doi.org/10.13154/294-8563
https://doi.org/10.1142/9789811234033_0012
https://www.worldscientific.com/doi/pdf/10.1142/9789811234033_0012
https://www.worldscientific.com/doi/pdf/10.1142/9789811234033_0012
https://www.worldscientific.com/doi/abs/10.1142/9789811234033_0012
https://www.worldscientific.com/doi/abs/10.1142/9789811234033_0012
https://doi.org/10.1140/epjc/s10052-020-08461-2
https://doi.org/10.1140/epjc/s10052-020-08461-2
https://doi.org/10.1140/epjc/s10052-020-08461-2

Bibliography

[32] Joosep Pata et al. “MLPF: efficient machine-learned particle-flow reconstruction

using graph neural networks”. In: The European Physical Journal C 81.5 (2021), p. 381.

doi: 10.1140/epjc/s10052-021-09158-w. url: https://doi.org/10.1140/epjc/

s10052-021-09158-w.

[33] W. Esmail, T. Stockmanns, and J. Ritman. Machine Learning for Track Finding at
PANDA. 2019. doi: 10.48550/ARXIV.1910.07191. url: https://arxiv.org/abs/
1910.07191.

[34] J. Duarte et al. Fast inference of deep neural networks in FPGAs for particle physics.
July 2018. doi: 10.1088/1748-0221/13/07/p07027. url: https://doi.org/10.

1088%5C%2F1748-0221%5C%2F13%5C%2F07%5C%2Fp07027.

[35] Kazi Ahmed Asif Fuad and Sofia Vallecorsa. “Graph Neural Network Inference on

FPGA”. In: (Apr. 2020). doi: 10.5281/zenodo.3764836.

[36] Stefan Abi-Karam et al. GenGNN: A Generic FPGA Framework for Graph Neural
Network Acceleration. 2022. doi: 10.48550/ARXIV.2201.08475. url: https://arxiv.
org/abs/2201.08475.

[37] Bogdan Povh et al. Particles and Nuclei. Jan. 2015. isbn: 978-3-662-46320-8. doi:
10.1007/978-3-662-46321-5.

[38] the free encyclopedia: MissMJ Wikipedia. Standard model of elementary particles.
[Online; accessed July 5, 2022]. 2021. url: https://en.wikipedia.org/wiki/File:

Standard_Model_of_Elementary_Particles.svg.

[39] Abdus Salam. “Gauge unification of fundamental forces”. In: Rev. Mod. Phys. 52 (3
July 1980), pp. 525–538. doi: 10.1103/RevModPhys.52.525. url: https://link.aps.

org/doi/10.1103/RevModPhys.52.525.

[40] C. P. Burgess. Introduction to Effective Field Theory -. Cambridge: Cambridge Univer-

sity Press, 2020. isbn: 978-0-521-19547-8.

[41] C. T. H. Davies et al. “High-Precision Lattice QCD Confronts Experiment”. In:

Physical Review Letters 92.2 (Jan. 2004). doi: 10.1103/physrevlett.92.022001. url:
https://doi.org/10.1103%5C%2Fphysrevlett.92.022001.

[42] Nora Brambilla et al. “The 𝑋𝑌𝑍 states: experimental and theoretical status and

perspectives”. In: Phys. Rept. 873 (2020), pp. 1–154. doi: 10.1016/j.physrep.2020.
05.001. arXiv: 1907.07583 [hep-ex].

[43] S. Jia et al. “Search for the 0
−−

Glueball in Υ(1𝑆) and Υ(2𝑆) decays”. In: Physical
Review D 95.1 (Jan. 2017). doi: 10.1103/physrevd.95.012001. url: https://doi.

org/10.1103%5C%2Fphysrevd.95.012001.

[44] G. Barucca et al. “PANDA Phase One”. In: The European Physical Journal A 57.6

(June 2021). doi: 10.1140/epja/s10050-021-00475-y. url: https://doi.org/10.

1140%5C%2Fepja%5C%2Fs10050-021-00475-y.

[45] PANDA Collaboration. Panda website. [Online; accessed August 12, 2022]. 2022. url:

https://panda.gsi.de/article/panda-physics.

100

https://doi.org/10.1140/epjc/s10052-021-09158-w
https://doi.org/10.1140/epjc/s10052-021-09158-w
https://doi.org/10.1140/epjc/s10052-021-09158-w
https://doi.org/10.48550/ARXIV.1910.07191
https://arxiv.org/abs/1910.07191
https://arxiv.org/abs/1910.07191
https://doi.org/10.1088/1748-0221/13/07/p07027
https://doi.org/10.1088%5C%2F1748-0221%5C%2F13%5C%2F07%5C%2Fp07027
https://doi.org/10.1088%5C%2F1748-0221%5C%2F13%5C%2F07%5C%2Fp07027
https://doi.org/10.5281/zenodo.3764836
https://doi.org/10.48550/ARXIV.2201.08475
https://arxiv.org/abs/2201.08475
https://arxiv.org/abs/2201.08475
https://doi.org/10.1007/978-3-662-46321-5
https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://doi.org/10.1103/RevModPhys.52.525
https://link.aps.org/doi/10.1103/RevModPhys.52.525
https://link.aps.org/doi/10.1103/RevModPhys.52.525
https://doi.org/10.1103/physrevlett.92.022001
https://doi.org/10.1103%5C%2Fphysrevlett.92.022001
https://doi.org/10.1016/j.physrep.2020.05.001
https://doi.org/10.1016/j.physrep.2020.05.001
https://arxiv.org/abs/1907.07583
https://doi.org/10.1103/physrevd.95.012001
https://doi.org/10.1103%5C%2Fphysrevd.95.012001
https://doi.org/10.1103%5C%2Fphysrevd.95.012001
https://doi.org/10.1140/epja/s10050-021-00475-y
https://doi.org/10.1140%5C%2Fepja%5C%2Fs10050-021-00475-y
https://doi.org/10.1140%5C%2Fepja%5C%2Fs10050-021-00475-y
https://panda.gsi.de/article/panda-physics

[46] Tord Johansson. “Antihyperon-Hyperon Production in Antiproton-Proton Colli-

sions”. In: AIP Conf. Proc. 796 (2005), pp. 95–101. doi: 10.1063/1.2130143. url:

https://cds.cern.ch/record/936215.

[47] Hua-Xing Chen et al. “A review of the open charm and open bottom mesons”. In:

(Sept. 2016).

[48] Valentina Zhukova. “Open charm studies at Belle”. In: EPJ Web of Conferences 212
(Jan. 2019), p. 09003. doi: 10.1051/epjconf/201921209003.

[49] M. Konradt/GSI/FAIR. Ring accelerator SIS100, June 2021. [Online; accessed July 1,

2022]. 2021. url: https://fair-center.eu/overview/construction/media.

[50] P. Spiller and G. Franchetti. “The FAIR accelerator project at GSI”. In: Nucl. Instrum.
Meth. A 561 (2006), pp. 305–309. doi: 10.1016/j.nima.2006.01.043.

[51] FAIR: The Accelerator facility. [Online; accessed July 1, 2022]. 2021. url: https:

//fair-center.eu/overview/accelerator.

[52] High Energy Storage Ring HESR. [Online; accessed July 1, 2022]. url: https://www.

ep1.rub.de/PandaBMBF/index.php/pandaphysik/forschunsprogramm.

[53] PANDA Detector overview. [Online; accessed July 1, 2022]. url: https://panda.gsi.

de/panda.

[54] A. Belias. “Overview of the PANDA Detector design at FAIR”. In: (Aug. 2020). url:

https://panda.gsi.de/system/files/user_uploads/a.belias/PA-PRO-2021-

002.pdf.

[55] W. Esmail, T. Stockmanns, and J. Ritman. Machine Learning for Track Finding at
PANDA. 2019. doi: 10.48550/ARXIV.1910.07191. url: https://arxiv.org/abs/
1910.07191.

[56] Tobias Stockmanns. “PandaRoot — the simulation and reconstruction framework

of PANDA”. In: ICTP-SAIFR/FAIR Workshop on Mass Generation in QCD, Sao

Paulo (Brazil), 25 Feb 2019 - 1 Mar 2019. Feb. 25, 2019. url: https://juser.fz-

juelich.de/record/873504.

[57] Stefano Spataro. “The PandaRoot framework for simulation, reconstruction and

analysis”. In: Journal of Physics: Conference Series 331.3 (Dec. 2011), p. 032031. doi:
10.1088/1742- 6596/331/3/032031. url: https://doi.org/10.1088/1742-

6596/331/3/032031.

[58] Rene Brun and Fons Rademakers. “ROOT - An Object Oriented Data Analysis

Framework”. In: AIHENP’96 Workshop, Lausane. Vol. 389. 1996, pp. 81–86.

[59] S. Agostinelli et al. “Geant4—a simulation toolkit”. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 506.3 (2003), pp. 250–303. issn: 0168-9002. doi: https://doi.
org/10.1016/S0168-9002(03)01368-8. url: https://www.sciencedirect.com/

science/article/pii/S0168900203013688.

[60] I. Hrivnacova et al. “The Virtual Monte Carlo”. In: eConf C0303241 (2003), THJT006.

arXiv: cs/0306005.

101

https://doi.org/10.1063/1.2130143
https://cds.cern.ch/record/936215
https://doi.org/10.1051/epjconf/201921209003
https://fair-center.eu/overview/construction/media
https://doi.org/10.1016/j.nima.2006.01.043
https://fair-center.eu/overview/accelerator
https://fair-center.eu/overview/accelerator
https://www.ep1.rub.de/PandaBMBF/index.php/pandaphysik/forschunsprogramm
https://www.ep1.rub.de/PandaBMBF/index.php/pandaphysik/forschunsprogramm
https://panda.gsi.de/panda
https://panda.gsi.de/panda
https://panda.gsi.de/system/files/user_uploads/a.belias/PA-PRO-2021-002.pdf
https://panda.gsi.de/system/files/user_uploads/a.belias/PA-PRO-2021-002.pdf
https://doi.org/10.48550/ARXIV.1910.07191
https://arxiv.org/abs/1910.07191
https://arxiv.org/abs/1910.07191
https://juser.fz-juelich.de/record/873504
https://juser.fz-juelich.de/record/873504
https://doi.org/10.1088/1742-6596/331/3/032031
https://doi.org/10.1088/1742-6596/331/3/032031
https://doi.org/10.1088/1742-6596/331/3/032031
https://doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
https://www.sciencedirect.com/science/article/pii/S0168900203013688
https://www.sciencedirect.com/science/article/pii/S0168900203013688
https://arxiv.org/abs/cs/0306005

Bibliography

[61] Are Strandlie and Rudolf Frühwirth. “Track and vertex reconstruction: From classical

to adaptive methods”. In: Rev. Mod. Phys. 82 (2 May 2010), pp. 1419–1458. doi:

10.1103/RevModPhys.82.1419. url: https://link.aps.org/doi/10.1103/

RevModPhys.82.1419.

[62] Rudolf Frühwirth and Are Strandlie. “Tracking Detectors”. In: Pattern Recognition,
Tracking and Vertex Reconstruction in Particle Detectors. Cham: Springer International

Publishing, 2021, pp. 3–21. isbn: 978-3-030-65771-0. doi: 10.1007/978-3-030-65771-

0_1. url: https://doi.org/10.1007/978-3-030-65771-0_1.

[63] “High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V.

0.1”. In: 4/2017 (2017). Ed. by G. Apollinari et al. doi: 10.23731/CYRM-2017-004.

[64] Johannes Rauch and Tobias Schlüter. “GENFIT — a Generic Track-Fitting Toolkit”. In:

Journal of Physics: Conference Series 608 (May 2015), p. 012042. doi: 10.1088/1742-

6596/608/1/012042. url: https://doi.org/10.1088%2F1742-6596%2F608%2F1%

2F012042.

[65] François Chollet.Deep Learningwith Python. Manning, Nov. 2017. isbn: 9781617294433.

[66] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive computation

and machine learning. MIT Press, 2016. isbn: 9780262035613. url: https://books.

google.co.in/books?id=Np9SDQAAQBAJ.

[67] Aston Zhang et al. Dive into Deep Learning. http://www.d2l.ai. 2019.

[68] Shie Mannor, Dori Peleg, and Reuven Rubinstein. “The Cross Entropy Method

for Classification”. In: Proceedings of the 22nd International Conference on Machine
Learning. ICML ’05. Bonn, Germany: Association for Computing Machinery, 2005,

pp. 561–568. isbn: 1595931805. doi: 10.1145/1102351.1102422. url: https://doi.

org/10.1145/1102351.1102422.

[69] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from

Overfitting”. In: 15.1 (Jan. 2014), pp. 1929–1958. issn: 1532-4435.

[70] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. 2015. doi: 10.48550/ARXIV.1502.
03167. url: https://arxiv.org/abs/1502.03167.

[71] PyTorch Contributors. Quickstart - PyTorch tutorials + Documentation. [Online;
accessed August 12, 2022]. 2022. url: https://pytorch.org/tutorials/beginner/

basics/quickstart_tutorial.html.

[72] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2014. doi: 10.48550/ARXIV.1412.6980. url: https://arxiv.org/abs/1412.6980.

[73] Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch
Geometric. 2019. doi: 10.48550/ARXIV.1903.02428. url: https://arxiv.org/abs/
1903.02428.

[74] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. 2019. doi: 10.48550/ARXIV.1912.01703. url: https://arxiv.org/abs/
1912.01703.

102

https://doi.org/10.1103/RevModPhys.82.1419
https://link.aps.org/doi/10.1103/RevModPhys.82.1419
https://link.aps.org/doi/10.1103/RevModPhys.82.1419
https://doi.org/10.1007/978-3-030-65771-0_1
https://doi.org/10.1007/978-3-030-65771-0_1
https://doi.org/10.1007/978-3-030-65771-0_1
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.1088/1742-6596/608/1/012042
https://doi.org/10.1088/1742-6596/608/1/012042
https://doi.org/10.1088%2F1742-6596%2F608%2F1%2F012042
https://doi.org/10.1088%2F1742-6596%2F608%2F1%2F012042
https://books.google.co.in/books?id=Np9SDQAAQBAJ
https://books.google.co.in/books?id=Np9SDQAAQBAJ
http://www.d2l.ai
https://doi.org/10.1145/1102351.1102422
https://doi.org/10.1145/1102351.1102422
https://doi.org/10.1145/1102351.1102422
https://doi.org/10.48550/ARXIV.1502.03167
https://doi.org/10.48550/ARXIV.1502.03167
https://arxiv.org/abs/1502.03167
https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.48550/ARXIV.1903.02428
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1903.02428
https://doi.org/10.48550/ARXIV.1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703

[75] Peter W. Battaglia et al. “Interaction Networks for Learning about Objects, Relations

and Physics”. In: (Dec. 2016). arXiv: 1612.00222 [cs.AI].

[76] ISO. ISO/IEC 14882:1998: Programming languages — C++. Available in electronic form

for online purchase at http://webstore.ansi.org/ and http://www.cssinfo.com/.

Sept. 1998, p. 732. url: http : / / webstore . ansi . org / ansidocstore / product .

asp?sku=ISO%5C%2FIEC+14882%5C%2D1998;%20http://webstore.ansi.org/

ansidocstore/product.asp?sku=ISO%5C%2FIEC+14882%5C%3A1998;%20http:

//www.iso.ch/cate/d25845.html;%20https://webstore.ansi.org/.

[77] Guido Van Rossum and Fred L Drake Jr. Python tutorial. Centrum voor Wiskunde

en Informatica Amsterdam, The Netherlands, 1995.

[78] Jim Pivarski et al. scikit-hep/uproot: 3.12.0. Version 3.12.0. July 2020. doi: 10.5281/

zenodo.3952728. url: https://doi.org/10.5281/zenodo.3952728.

[79] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825 (Sept.
2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https://doi.org/10.

1038/s41586-020-2649-2.

[80] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Proceed-
ings of the 9th Python in Science Conference. Ed. by Stéfan van der Walt and Jarrod

Millman. 2010, pp. 56–61. doi: 10.25080/Majora-92bf1922-00a.

[81] Takuya Akiba et al. Optuna: A Next-generation Hyperparameter Optimization Frame-
work. 2019. doi: 10.48550/ARXIV.1907.10902. url: https://arxiv.org/abs/1907.
10902.

[82] Michael R. Chernick et al. “Bootstrap Methods”. In: International Encyclopedia of Sta-
tistical Science. Ed. byMiodrag Lovric. Berlin, Heidelberg: Springer Berlin Heidelberg,

2011, pp. 169–174. isbn: 978-3-642-04898-2. doi: 10.1007/978-3-642-04898-2_150.

url: https://doi.org/10.1007/978-3-642-04898-2_150.

[83] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring Network Structure,

Dynamics, and Function using NetworkX”. In: Proceedings of the 7th Python in Science
Conference. Ed. by Gaël Varoquaux, Travis Vaught, and Jarrod Millman. Pasadena,

CA USA, 2008, pp. 11–15.

[84] J. Alme et al. “The ALICE TPC, a large 3-dimensional tracking device with fast read-

out for ultra-high multiplicity events”. In: Nucl. Instrum. Meth. A 622 (2010), pp. 316–

367. doi: 10.1016/j.nima.2010.04.042. arXiv: 1001.1950 [physics.ins-det].

[85] TensorFlow Developers. TensorFlow. Version v2.8.2. Specific TensorFlow versions

can be found in the "Versions" list on the right side of this page.
See the full

list of authors <a href="htt ps://github.com/tensorflow/tensorflow/graphs/contr

ibutors">on GitHub. May 2022. doi: 10.5281/zenodo.6574269. url: https:

//doi.org/10.5281/zenodo.6574269.

[86] Inc. Xilinx. Vitis High-Level Synthesis User Guide (UG1399). [Online; accessed August
24, 2022]. June 2022. url: https://docs.xilinx.com/r/en-US/ug1399-vitis-hls.

103

https://arxiv.org/abs/1612.00222
http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%5C%2FIEC+14882%5C%2D1998;%20http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%5C%2FIEC+14882%5C%3A1998;%20http://www.iso.ch/cate/d25845.html;%20https://webstore.ansi.org/
http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%5C%2FIEC+14882%5C%2D1998;%20http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%5C%2FIEC+14882%5C%3A1998;%20http://www.iso.ch/cate/d25845.html;%20https://webstore.ansi.org/
http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%5C%2FIEC+14882%5C%2D1998;%20http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%5C%2FIEC+14882%5C%3A1998;%20http://www.iso.ch/cate/d25845.html;%20https://webstore.ansi.org/
http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%5C%2FIEC+14882%5C%2D1998;%20http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%5C%2FIEC+14882%5C%3A1998;%20http://www.iso.ch/cate/d25845.html;%20https://webstore.ansi.org/
https://doi.org/10.5281/zenodo.3952728
https://doi.org/10.5281/zenodo.3952728
https://doi.org/10.5281/zenodo.3952728
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.48550/ARXIV.1907.10902
https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1907.10902
https://doi.org/10.1007/978-3-642-04898-2_150
https://doi.org/10.1007/978-3-642-04898-2_150
https://doi.org/10.1016/j.nima.2010.04.042
https://arxiv.org/abs/1001.1950
https://doi.org/10.5281/zenodo.6574269
https://doi.org/10.5281/zenodo.6574269
https://doi.org/10.5281/zenodo.6574269
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls

Bibliography

[87] Inc. Xilinx. Vivado Design Suite User Guide: Getting Started. [Online; accessed August
11, 2022]. 2021. url: https://www.xilinx.com/content/dam/xilinx/support/

documents/sw_manuals/xilinx2021_2/ug910-vivado-getting-started.pdf.

[88] Inc. Xilinx. Vivado Design Suite User Guide: High Level Synthesis. [Online; accessed
August 11, 2022]. 2021. url: https://www.xilinx.com/content/dam/xilinx/

support/documents/sw_manuals/xilinx2020_2/ug902- vivado- high- level-

synthesis.pdf#nameddest=xApplyingOptimizationDirectives.

[89] Mostafa W. Numan et al. “Towards Automatic High-Level Code Deployment on

Reconfigurable Platforms: A Survey of High-Level Synthesis Tools and Toolchains”.

In: IEEE Access 8 (2020), pp. 174692–174722. doi: 10.1109/ACCESS.2020.3024098.

[90] Inc. Xilinx. Zynq UltraScale+ MPSoC Data Sheet: Overview (DS891). [Online; accessed
August 24, 2022]. May 2021. url: https://www.mouser.com/datasheet/2/903/

ds891_zynq_ultrascale_plus_overview-1662253.pdf.

[91] Catherine Biscarat et al. “Towards a realistic track reconstruction algorithm based

on graph neural networks for the HL-LHC”. In: EPJ Web of Conferences 251 (2021).
Ed. by C. Biscarat et al., p. 03047. doi: 10.1051/epjconf/202125103047. url: https:

//doi.org/10.1051%5C%2Fepjconf%5C%2F202125103047.

[92] Martin Ester et al. “A Density-Based Algorithm for Discovering Clusters in Large

Spatial Databases with Noise”. In: Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining. KDD’96. Portland, Oregon: AAAI Press,
1996, pp. 226–231.

104

https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2021_2/ug910-vivado-getting-started.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2021_2/ug910-vivado-getting-started.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf#nameddest=xApplyingOptimizationDirectives
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf#nameddest=xApplyingOptimizationDirectives
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf#nameddest=xApplyingOptimizationDirectives
https://doi.org/10.1109/ACCESS.2020.3024098
https://www.mouser.com/datasheet/2/903/ds891_zynq_ultrascale_plus_overview-1662253.pdf
https://www.mouser.com/datasheet/2/903/ds891_zynq_ultrascale_plus_overview-1662253.pdf
https://doi.org/10.1051/epjconf/202125103047
https://doi.org/10.1051%5C%2Fepjconf%5C%2F202125103047
https://doi.org/10.1051%5C%2Fepjconf%5C%2F202125103047

	Abstract
	Zusammenfassung
	Introduction
	Related Work
	Basic principles of Hadron Physics
	Elementary Particles
	Fundamental Interactions
	Hadron Physics

	PANDA Experiment
	PANDA Physics Program
	Hadron Spectroscopy
	Hyperon Physics
	Proton Structure
	Hadrons in Nuclei

	FAIR Research Facility
	The PANDA Detector
	Forward Tracking System (FTS)

	PandaRoot
	Track Reconstruction
	Track Finding
	Track Fitting
	State-of-the-Art Tracking
	Tracking with PandaRoot

	Basics of Graph Neural Networks
	Neural Networks
	Overfitting and Underfitting
	PyTorch Implementation
	Graph Neural Networks
	Performance Metrics

	PANDA FTS Training Data
	Data Simulation via PandaRoot
	Data Preprocessing
	Handling of ROOT Data Input
	Data Exploration and Filtering

	Graph Building
	Preprocessing and Graph Building Summary

	Graph Neural Network Based Track Finding
	Interaction Network Architecture
	GNN Edge Classification
	Graph segmentation
	Tracklet Finding
	GNN-based Track Finding Summary

	FPGA Technology
	Prospects of FPGA technology
	Structure and Design
	Xilinx Vivado and Vivado HLS
	Highlevel Synthesis for Machine Learning (hls4ml)
	Design Optimization
	Quantization
	Compression
	Pipelining
	HLS Design Directives

	FPGA Implementation
	Working Environment
	Benchmark Network, Graphs and Design
	Design Parameter Studies
	Quantization
	Compression
	Pipelining
	Graph Dimensions

	Classification Performance
	Design Optimization

	Conclusion and Outlook
	Appendix
	Segmented Graph Displays
	GNN Classification Performances for Segmented Graphs
	hls4ml Compilation Times
	Design Graph Dimension Studies

	Bibliography

