
Bayesian Optimization of Graph Neural
Networks with Hypergraph Inputs in

tt + bb Events at the CMS Experiment

Bachelor Thesis

Clemens Wolter

At the Department of Physics
Institute of Experimental Particle Physics

Reviewer: Prof. Dr. Ulrich Husemann
Second reviewer: Dr. Michael Waßmer
Advisor: Emanuel Pfeffer

Karlsruhe, 16. February 2022

ETP-Bachelor-KA/2022-01

KIT – The Research University in the Helmholtz Association www.kit.edu

This thesis has been accepted by the first reviewer of the bachelor thesis.

PLACE, DATE

. .
(Prof. Dr. Ulrich Husemann)

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

PLACE, DATE

. .
(Clemens Wolter)

Contents

1 Introduction 1

2 Theoretical foundations 3
2.1 The Standard Model . 3
2.2 LHC and CMS . 4
2.3 tt + bb process . 6
2.4 Data Basis . 6

3 Graph Neural Networks 9
3.1 Neural Networks . 9
3.2 Graphs . 12
3.3 Graph Neural Networks . 16
3.4 Hypergraphs . 17
3.5 Hypergraph Neural Networks . 20
3.6 Network Merging . 22

4 Bayesian Optimization 25
4.1 Motivation . 25
4.2 Loss Function Model . 28
4.3 Acquisition Function . 28
4.4 Implementation . 29

5 Results 35
5.1 Advanced GGSNN Studies . 35
5.2 Hypergraph Study . 36
5.3 Merging Study . 39

6 Summary and Outlook 43

Bibliography 45

Appendix 49
A Proofs and Algorithms . 49

vii

1 Introduction

Understanding the intricate fabrics of our reality has always been the underlying goal,
of not just physics, but all science. With the introduction of the Standard Model (SM),
particle physics has come closer than ever before to achieving this goal. This theory allows
to describe many elementary particles and three of the four known fundamental forces of
the universe. The nature of physics is to always test such bold claims against experimental
evidence, which has been done numerous times, with the most famous event being the
prediction and discovery of the Higgs boson at CERN Large Hadron Collider [1] [2]. Testing
our hypothesis remains of utmost importance as many phenomena still remain unexplained
and the Standard Model still does not account for gravity, therefore we always look for
ways to improve data analysis.

With computing power becoming cheaper each year, more costly methods of data analysis
become viable. A semi recent development in data science is the adaption of machine
learning methods. These algorithms can and have been used to solve complex tasks.
Therefore, applying them in physics is just the logical next step. The applications of more
computing power do not just stop there, because with enough computing power it becomes
feasible to not only optimize the parameters of machine learning methods but also retrain
these machines and optimize hyperparameters.

This thesis focuses on studying machine learning methods to analyze simulation data of
tt + bb events, where the two heaviest quarks, top and bottom are produced in a proton-
proton collision. These tt + bb events are of importance as firstly they make up a huge
irreducible background in measurements of ttH production with H→ bb̄ decays. Secondly,
the tt + bb process itself is particularly interesting from a theoretical and experimental
perspective, because two QCD processes occur at different energy scales [3].

Previously Deep Deep Neural Networks (DNNs) [3] and Graph Neural Networks (GNNs)
[4] have already been used to identify additional b jets in the tt + bb process. The core
quantity for performance measurements in these events is the 2/2 classifications rate, which
measures the percentage of events where both additional b jets are classified correctly.
Apart from finding ways to improve the 2/2 classification rate, the study aims at building
upon the previous work and improving the machine learning methods and algorithms used
within the mentioned studies.

1

2 Theoretical foundations

2.1 The Standard Model

The Standard Model of elementary particle physics describes all known elementary particles
and includes the unified theory of the electroweak interaction and quantum chromodynamics.
The only interaction not described with the Standard Model is gravity. Figure 2.1 illustrates
many aspects of the Standard Model. Much of the first section is based on [5].

The elementary particles with a spin of 1
2 are called fermions. Fermions make up the

fundamental building blocks of all matter. They are split into two groups, the quarks and
the leptons. These groups comprise six particles each that are split into three generations.
The first generation contains the lightest and therefore most stable particles. The other
generations contain heavier particles that are much less stable. For every fermion an
antiparticle exists. This is a particle with the same mass but opposite charge.

The first generation of quarks consits of the up and down quarks, the second includes
the charm and strange quarks and the third and final generation contains the top and
bottom quark. Every quark is electrically charged with multiples of 1

3𝑒 and also carries a
color charge. The QCD confinement implies that quarks cannot exist on their own, as only
hadrons with neutral color charge are allowed. In a process called hadronisation, quarks
and gluons form a colorless hadron. If a hadron collides with a high energy particle the
quark can be separated from the gluon. In order to obey QCD confinement the particles
create other colored objects around them, these however also have obey QCD confinement,
creating even more colored objects etc. The created particles all tend to travel into the
same direction and thus form a narrow bundle called jet. Including the antiparticles a total
number of 12 quarks are known.

The charged leptons include, ordered by generation, the electron, the muon and the tauon.
These three have a negative electric charge and rise in mass with their generation. Every
aforementioned lepton also has a neutrino with no electric charge and a mass for which
only the upper limit is known. Again including antiparticles yields a total number of 12
leptons.

Elementary particles for which the spin is an integer are bosons and convey all known
interactions except for gravity.

3

4 2 Theoretical foundations

Standard Model of Elementary Particles
three generations of matter

(fermions)

I II III

interactions / force carriers
(bosons)

mass

charge

spin

Q
U

A
R

K
S

u
≃2.2 MeV/c²

⅔

½

up

d
≃4.7 MeV/c²

−⅓

½

down

c
≃1.28 GeV/c²

⅔

½

charm

s
≃96 MeV/c²

−⅓

½

strange

t
≃173.1 GeV/c²

⅔

½

top

b
≃4.18 GeV/c²

−⅓

½

bottom

L
E

P
T

O
N

S

e
≃0.511 MeV/c²

−1

½

electron

νe
<1.0 eV/c²

0

½

electron
neutrino

μ
≃105.66 MeV/c²

−1

½

muon

νμ
<0.17 MeV/c²

0

½

muon
neutrino

τ
≃1.7768 GeV/c²

−1

½

tau

ντ
<18.2 MeV/c²

0

½

tau
neutrino G

A
U

G
E

 B
O

S
O

N
S

V
E

C
T

O
R

 B
O

S
O

N
S

g
0

0

1

gluon

γ
0

0

1

photon

Z
≃91.19 GeV/c²

0

1

Z boson

W
≃80.39 GeV/c²

±1

1

W boson

S
C

A
L

A
R

 B
O

S
O

N
S

H
≃124.97 GeV/c²

0

0

higgs

Figure 2.1: The Standard Model of elementary particle physics. The diagram shows all
elementary particles. The fermions are on the left. The possible interactions
for each fermion are illustrated through a connection in the background with
the exchange boson on the right. The image is taken from [6].

2.2 LHC and CMS

The Large Hadron Collider (LHC) with a circumference of 27 km is the most powerful
particle accelerator in the world. As illustrated in Figure 2.2 the LHC is the last accelerator
in a chain of particle accelerators at CERN.

The Compact Muon Solenoid (CMS) experiment is a multi purpose detector located at the
LHC and therefore needs to incorporate many different detection mechanisms as illustrated
in Figure 2.3.

As the study is targeted to later on be used with real data, only data that is accessible
from the CMS experiment can be used. The first quantities, the direction of the charged
particles as well as the transverse momentum 𝑝𝑡 are measured by the innermost layer, the
silicon tracker. The second quantity, the energy 𝐸, is measured within the next two layers
of the CMS detector. The first one, the electromagnetic calorimeter, is used to measure
the energy of electrons, positrons and photons. The second one, the hadron calorimeter, is
used to measure the energy of hadrons. Other quantites are also measured by combining
the information of multiple layers, e.g. the mass of the particle 𝑀 . Additionally, the jet
charge 𝑞J can also be calculated.

The coordinate system of the CMS detector has its origin in the center of the detector,
the collision point of the particles. The 𝑥-axis points radially into the center of the
LHC and the 𝑦-axis is perpendicular to it and points upward. The 𝑥-𝑦-plane is also
referred to as the transverse plane. The 𝑧-axis is perpendicular to the transverse plane and
points counterclockwise along the beam direction. Cylindrical coordinates are used for the
description of the particles, as CMS itself is built in a cylindrical shape. Hereby, 𝜑 denots

4

2.2 LHC and CMS 5

Figure 2.2: A representation of the different accelerators used in CERN. The LHC, which
is the final accelerator in a chain of accelerators, is represented as the largest
ring. The CMS, as well as other LHC experiments are shown as yellow dots.
The picture is taken form [7].

Figure 2.3: A transverse slice of the CMS experiment, taken from [8]. Particle collisions
occur on the left side of the image. The particles then travel in the transverse
different through the different detection layers

5

6 2 Theoretical foundations

the azimuthal angle in the transverse plane and is measured from the 𝑥-axis. The polar
angle 𝜃 is measured from the 𝑧-axis. The distance 𝑟 is measured from the collision point.

Another important quantity is the pseudo rapidity 𝜂, as calculated in Equation 2.1. Small
values of 𝜂 describe a direction of flight perpendicular to the 𝑧-axis, whereas large values
describe a flight in the direction of the 𝑧-axis

𝜂 = − log tan
(︂
𝜃

2

)︂
. (2.1)

The spatial distance in the 𝜂,𝜑-plane of two particles 𝑖 and 𝑗 is denoted by Δ𝑅

Δ𝑅𝑖,𝑗 =
√︁

(𝜂𝑖 − 𝜂𝑗)2 + (𝜑𝑖 − 𝜑𝑗)2. (2.2)

None of the detectors in the CMS experiment can measure neutrinos directly. However,
the transverse momentum of the particles before the collision is sufficiently small to be
disregarded, thus 𝑝𝑇 and 𝐸𝑇 are assumed to be 0 before the collision. As both quantities
are conserved they are 0 after the collision as well. Consequently, any difference to 0 in the
total transverse momentum and energy means that some of the momenta and energies are
not measured. Therefore, the missing transverse energy (MET) is recorded.

The b-tag value of any recorded jet is a calculated quantity using the DeepJet algorithm
[9]. The value describes the pseudo probability of any jet to be a b jet.

The invariant mass combination of any two highly relativistic particles (𝐸 ≫𝑀) 𝑖 and 𝑗
can be calculated using the formula in Equation 2.3

𝑀𝑖,𝑗 = 2𝑝T,𝑖𝑝T,𝑗 (cosh (𝜂𝑖 − 𝜂𝑗)− cos (𝜑𝑖 − 𝜑𝑗)) . (2.3)

2.3 tt + bb process
The core of the study, the tt + bb process, is part of a proton-proton collision. Two of the
gluons then decay into a top quark and a top antiquark. Subsequently, the top quarks
react into a W-boson which can then decay either leptonically into an electron and electron
neutrino or hadronically into a quark and an antiquark. Additionally, this decay can
radiate a gluon that then decays into a bottom quark and a bottom antiquark. These two
“additional b quarks” are the focus of the study, as the goal is to identify the associated
“additional b jets”. The description only summarizes the leading order of the tt + bb
process, as corrections of higher order also allow for decay into multiple particles. This is
summarized within the leading order Feynman diagram of the tt + bb process in Figure 2.4.

2.4 Data Basis
As mentioned before, this study focuses on working with simulated data of tt + bb events.
The simulation of the data is split into three different levels as illustrated in Figure 2.5.
The first level is the particle level where individual particles are simulated. The second
level, the generator level simulates the actual proton-proton collisions and contains every
quantity about the individual particles. The last level, the reconstruction level models
what data would actually be measured within the detector and therefore includes unique
detector effects. Thus, the information as to which measured jet is an additional b jet is
lost in this level of the simulation.

6

2.4 Data Basis 7

g

g

t

b

b

t

b
q

q'

b

+

W

-

W

+e,

ve µv,

µ+

g

Figure 2.4: An example of a leading order Feynman diagram of the tt + bb process, taken
from [3].

Figure 2.5: An illustration of the simulation levels of a jet. The middle shows the generator
level, the reconstruction level is shown on the right side of the figure. Exemplary
physics objects are listed at the bottom. Taken from [3]

However, the goal of the study is to classify additional b jets from reconstruction level
data. To measure the performance of the classifier the ground truth about the jets must
be accessed. Therefore, [3] suggests a matching algorithm to reassign the jet labels from
generator level to the reconstruction level. The basic idea behind the matching algorithm
is that the Δ𝑅 value between the same jet at generator level and reconstruction level tends
to be close to 0.

From the whole simulation data only events with two additional b jets at generator level
are used. The full set of simulation data comprises 30 007 tt + bb events. Of those, for
28 425 events both additional b jets can be reassigned at reconstruction level.

7

3 Graph Neural Networks

3.1 Neural Networks

Artificial Neural Networks (NNs) have existed since the 20th century and have been formally
defined many times. Thus, the article [10] is referred to for a formal definition.

3.1.1 Feedforward Calculation

Typically, Neural Networks are viewed as in Figure 3.1, with the main components: input
layer, hidden layer and output layer. For this application of NNs it is sufficient to view the
input as a vector of real numbers x ∈ R𝑙0 with the length 𝑙0 ∈ N . Specifically, in the case
of tt + bb inputs this vector contains the information about each jet, i.e. all the kinematic
information.

The hidden layer contains 𝐿 ∈ N hidden states. The k-th hidden state h𝑘, is similar to
the input vector, a vector of real numbers of the length 𝑙𝑘: h𝑘 ∈ R𝑙𝑘 . The values of h𝑘 are
calculated within the feedforward calculation. They depend on four things:

• The previous hidden state: h𝑘−1.

• The weight matrix of the state: 𝜃𝑘 ∈ R𝑙𝑘−1×𝑙𝑘 . This matrix is multiplied with the
previous hidden state h𝑘−1, and therefore determines how much each feature of h𝑘−1

is factored into the new hidden state h𝑘. By choosing specific values for the weights
different functions can be modeled. Tuning the weights to accomplish a task, is the
underlying goal of optimizing a network. Algorithms for the weight tuning are called
learning algorithms, accordingly the weights are called learnable parameters.

• The bias of the hidden layer: 𝑏𝑘 ∈ R. After the multiplication with the weight matrix
a bias, which is the same for the entire layer, can be added to the intermediate result.
The additional bias is also needed to model specific functions and thus is also called
a learnable parameter.

• The differentiable, nonlinear activation function: 𝜎𝑘(). The last step of the calculation
is to apply 𝜎𝑘() to the result. This nonlinear function is necessary, otherwise the
calculation of all hidden layers collapses into a single layer. This is proven in section
A.1.

9

10 3 Graph Neural Networks

𝑥1

𝑥2

𝑥3

𝑥4

ℎ1
1

ℎ1
2

ℎ1
3

ℎ1
4

ℎ1
5

𝑦1 Output

Hidden
layer

Input
layer

Output
layer

𝜃1 𝜃2

Figure 3.1: Sketch of a Neural Network with 𝐿 = 1 hidden layer and a single node in the
output layer. The input vector x = h0 has 𝑙0 = 4 features. The number of
features in the hidden state h1 is 𝑙1 = 5, thus the weight matrix 𝜃1 must be
an element of R4×5. The entries of the weight matrices are represented by the
small arrows linking the nodes. For example the weight 𝜃1

1,1 connects the node
𝑥1 to the node ℎ1

1. The feature vector of the output layer ŷ = hL+1 = h2, has
a length of 𝑙2 = 1. This explains the dimension of the second weight matrix
𝜃2 ∈ R5×1.

Lastly, the output layer is similar to any hidden state but contains the output state:
ŷ ∈ R𝑙𝐿+1 , which is a vector of the length 𝑙𝐿+1 ∈ N.

Assuming that x = h0 and ŷ = h𝐿+1 makes it possible to express the whole feedforward
calculation in Equation 3.1, which shows how to calculate the 𝑖-th component of the feature
vector of the hidden state h𝑘𝑖 , by summing over the activations

ℎ𝑘𝑖 =
𝑙𝑘−1∑︁
𝑗=1

𝜎𝑘
(︁
ℎ𝑘−1
𝑗 · 𝜃𝑘𝑖,𝑗 + 𝑏𝑘

)︁
. (3.1)

3.1.2 Loss Function

The loss function is a measure of performance for a Neural Network under a given task. So
the main goal of optimizing the network is to optimize the loss function. In the most basic
case the loss function depends on the output of the Neural Network ŷ and the ground
truth y. One of the most common examples of a loss function is the Mean Squared Error
(MSE) which is shown in Equation 3.2.

𝐿(y, ŷ) = 1
𝑚
‖ŷ− y‖22 m: number of samples (3.2)

As the main goal of the study is to identify additional b jets in tt+bb events, it is reasonable
to use a loss function suitable for a binary classification task. This implies that the Neural
Network can only classify additional b jets and nothing else. The most common function
in this case is binary cross entropy as defined in Equation 3.3. This loss function assumes

10

3.1 Neural Networks 11

ŷ to be a pseudo probability, meaning ŷ ∈ (0, 1). In the case of tt + bb, this is the pseudo
probability of a particle being an additional b jet

𝐿(y, ŷ) = − (y log (ŷ) + (1− y) log (1− ŷ)) . (3.3)

In binary cross entropy true positives are weighted the same as true negatives within the
loss function. However, if most of the samples have the same label, the network can already
achieve a low loss by classifying every node with the same label. This is specifically the case
in tt + bb, as most particles are not additional b jets. Therefore, the labels of additional
b jets must be weighted heavier in the loss function than other labels. The weight can
however, also not be too high because then, every node can be classified as an additional b
jet while achieving a relatively low loss. Therefore this weight has to optimized, but as the
weight directly scales the loss function, it cannot be optimized like standard parameters.
This weight is a hyperparameter that is further referred to as the “class weight scalar”.
The optimization is discussed within chapter 4.

3.1.3 Backpropagation

By just using random weights and biases for every layer in the initial state, the feedforward
calculation from Equation 3.1 can be applied and the network will produce an output ŷ.
Consequently, this output is random and for a classification task the labels are just as
good as randomly assigned labels. Following this, the loss can be calculated by using the
outputs. The loss function is differentiable towards the parameters 𝜃k and 𝑏𝑘, as the loss
function itself is just a composition of differentiable functions. Therefore, the gradient
descent method can be applied: the gradient always yields the direction of steepest ascend,
as proven in section A.2. Accordingly, the negative gradient always yields the direction of
steepest descent. For the sake of simplification, all learnable parameters are part of the
vector 𝜓. This theoretical vector can be constructed by taking all entries from the matrices
𝜃k and the scalars 𝑏𝑘 and listing them as entries of the vector 𝜓. The greatest improvement
to the loss function can then be achieved by adjusting the parameters 𝜓 infinitesimally
in the negative direction of the gradient. In real world applications this infinitesimal step
is replaced by a small step whose size is determined by the learning rate 𝛾 ∈ (0, 1), as
formalized in Equation 3.4

𝜓′ = 𝜓 − 𝛾 grad𝜓 (𝐿(ŷ(𝜓))) . (3.4)

Using this knowledge, an iterative algorithm can be formulated for parameters to converge
into a local optimum of the loss function:

• Evaluate the network output according to Equation 3.1 with the current parameters 𝜓
and calculate the loss.

• Adjust the parameters according to Equation 3.4.

3.1.4 Data sets

With the backpropagation algorithm the network can be trained to locally minimize the
total loss on training data. This does, however, not guarantee that the network performance
generalizes to unseen data. To measure the performance on unseen data, the original data
set is split into two smaller sets: Firstly, the training set whose data is used for the training
of the network and secondly, the test set which is only used to measure the performance
on unseen data.

11

12 3 Graph Neural Networks

One possible issue that prevents the network from generalizing is overfitting. Hereby, the
network approximates the test data very closely, i.e. it also learns the underlying noise,
which is entirely different in the test data and therefore results in a bad test loss. Networks
with a huge number of trainable parameters are susceptible to overfitting, as in contrast to
small networks these larger networks have the capacity to store the information needed
for overfitting. However, historically Deep Neural Networks, as in networks with many
layers and learnable parameters, have performed better and the trend continues to shift
towards even deeper networks with e.g. ResNet that contains 1000 layers [11]. To resolve
overfitting while still using Deep Neural Networks the loss function can be modified. As
shown in Equation 3.5 the L2-norm of the weight matrices 𝜃𝑘 is added to the loss function,
which penalizes large weights

𝐿(y, ŷ, 𝜃) = 𝐿original(y, ŷ) + 𝛼
∑︁

{𝑖,𝑗,𝑘}

(︁
𝜃𝑘𝑖,𝑗

)︁2
. (3.5)

The penalty to the loss function also introduces the weight decay rate 𝛼. This is an example
of a hyperparameter, as the value of 𝛼 is constant during training and cannot be optimized
with backpropagation. In order to find the best possible value of 𝛼 the performance of
the fully trained networks has to be compared. However, the best value of 𝛼 might not
generalize to unseen data. Thus, the data set has to be split again. The final three data
sets are:

• The training set, which is used to optimize network parameters.

• The validation set, whose purpose is to optimize hyperparamters.

• The test set, on which the final network performance is evaluated.

The value of 𝛼 has direct impact on the loss function and can therefore not be optimized
according to the modified loss function. Consequently, a different measure has to be used
for 𝛼. After training, the original loss function without 𝛼 can be used again, as weights
are not being optimized anymore. The strategy used for hyperparameter optimization is
further discussed in chapter 4.

3.1.5 Representation of tt + bb events in a Neural Network Input

Every tt + bb event consists of multiple particles, where each of them contains multiple
features, e.g. the kinematic quantities of the particle. To allow this to be represented in
a Neural Network, each particle 𝑖 has to have its own feature vector 𝜈𝑖 as illustrated in
Figure 3.2. These can be passed separately to the Neural Network, to allow for additional
b jet classification.

However, passing jets individually into a Neural Network, only allows calculations on these
single jets. Therefore implementing kinematic quantities like the invariant mass of multiple
jets into a Neural Network, as in [3], requires complex algorithms. But there is strong
physics motivation to use these combined features, thus using an elegant representation of
these quantities is encouraged.

3.2 Graphs
Having defined Neural Networks and the background calculations in section 3.1, it becomes
clear that a simple vector structure of the input does not easily allow to represent relations
between different inputs. Therefore, an expanded representation of the input is suggested:
Graphs.

12

3.2 Graphs 13

1

2

3 4

5

6

𝜈1 =

⎛⎜⎝𝐸1
T
. . .
𝜑1

⎞⎟⎠

𝜈2 =

⎛⎜⎝𝐸2
T
. . .
𝜑2

⎞⎟⎠

𝜈3 =

⎛⎜⎝𝐸3
T
. . .
𝜑3

⎞⎟⎠ 𝜈4 =

⎛⎜⎝𝐸4
T
. . .
𝜑4

⎞⎟⎠

𝜈5 =

⎛⎜⎝𝐸5
T
. . .
𝜑5

⎞⎟⎠

𝜈6 =

⎛⎜⎝𝐸6
T
. . .
𝜑6

⎞⎟⎠

Figure 3.2: Sketch of the data representation of a single tt + bb event for a Neural Network.
Each particle 𝑖 has its own feature vector 𝜈𝑖. The feature vectors are passed
singularly into the Neural Network. Therefore, when passing the data of a
particle into the Neural Network, it cannot factor in information of other
particles.

3.2.1 Formal Definition

This study uses parts of the definitions from [12]:

• A Graph is an object consisting of two sets called its vertex set and its edge set. The
vertex set is a finite nonempty set. The edge set may be empty but otherwise its
elements are two-element subsets of the vertex set.

• The elements of the vertex set of a Graph are called vertices or nodes and the elements
of the edge set are called edges. The number of vertices is denoted by “v” and the
number of edges by “e”.

• If {𝑋,𝑌 } is an edge of a Graph, {𝑋,𝑌 } joins or connects the vertices 𝑋 and 𝑌 . 𝑋
and 𝑌 are adjacent to one another. The edge {𝑋,𝑌 } is incident to each of 𝑋 and 𝑌 ,
and each of 𝑋 and 𝑌 is incident to {𝑋,𝑌 }. Two edges incident to the same vertex
are called adjacent edges. A vertex incident to no edges at all is isolated.

• Two Graphs are equal if they have equal vertex sets and equal edge sets.

For the purpose of using Graphs with Neural Networks additional definitions are useful:

• Each edge also has an edge weight 𝜔 ∈ (0, 1) associated with it, which determines
the “strength” of the connection.

• Each vertex is assigned a feature vector 𝜈i, which, in this Thesis, contains the
aforementioned features of the jet 𝑖.

Another useful simplification for computer science applications is, instead of allowing
anything to represent a vertex, just enumerate vertices starting from 1. This makes it
possible to construct the adjacency Matrix 𝐴 ∈ {0, 1}𝑣×𝑣, where every entry 𝑎𝑖,𝑗 contains a
1 when the vertices 𝑖 and 𝑗 are connected and 0 otherwise.

3.2.2 Examples of Graphs

As the formal definition of a Graph doesn’t really provide intuition as to what a Graph is,
several examples are provided.

13

14 3 Graph Neural Networks

1

2

3

4

4

2

1

3

Figure 3.3: An example of two representations of the same Graph

1

23

4

56

Figure 3.4: A representation of a Graph

The Graph𝐺1 in Figure 3.3 has the vertex set {1, 2, 3, 4} and the edge set {{1, 2}, {1, 3}, {4, 2}}.
The associated adjacency matrix is shown in Equation 3.6:

AG1 =

⎛⎜⎜⎜⎝
0 1 1 0
1 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎠ . (3.6)

As illustrated in Figure 3.3, representations of Graphs can look very different, but still be
mathematically equivalent.

The Graph𝐺2 in Figure 3.4 has the vertex set {1, 2, 3, 4, 5, 6} and the edge set {{1, 2}, {1, 3}, {2, 3}, {4, 5}}.
Figure 3.4 depicts that the vertices 1,2 and 3 are adjacent as well as the vertices 4 and 5.
The overlapping of the edge {4, 5} with the edges {1, 2} and {2, 3} has no meaning, as this
could just be drawn differently. Lastly, vertex 6 is isolated. The adjacency matrix of 𝐺2 is
shown in Equation 3.7:

AG2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3.7)

3.2.3 Graph Input Data

To represent any tt + bb event as a Graph, each particle 𝑖 can be assigned to a vertex
of a Graph. The feature vectors 𝜈𝑖 of each vertex 𝑖 are determined by the data of the
particle, which is similar to the input data in section 3.1. However, different to the previous
design there are also edges which connect pairs of vertices. To construct the edges, different
approaches can be taken.

14

3.2 Graphs 15

1

2

3 4

5

6
𝜈1

𝜈2

𝜈3 𝜈4

𝜈5

𝜈6

Figure 3.5: Implementation of a Graph without edge weights. Each node 𝑖 still has its
feature vector 𝜈𝑖.

1

2

3 4

5

6
𝜈1

𝜈2

𝜈3 𝜈4

𝜈5

𝜈6

Figure 3.6: Implementation of a Graph with edge weights, as in the Δ𝑅 design, where the
edge weights are scaled according to the Δ𝑅 value of the connected nodes. The
edge weights are represented as the line thickness of the connections.

A simple approach to building the connections in the Graph is to just construct every
possible edge and setting all associated edge weights to 1. These connections stress that all
jets are dependent on each other and no redundant information is passed into the Neural
Network. This approach is depicted in Figure 3.5.

The weights of the edges can also be scaled according to a function depending on the
features of the connected vertices as illustrated in Figure 3.6. For example, the Δ𝑅 value,
as introduced in section 2.2, of each pair of jets be can used to scale the connection weight.
This is physically motivated as additional b jets, which are closer together in the 𝜂,𝜑-plane,
i.e. they have a low Δ𝑅 value, tend to stem from the same mother-particle. It should be
noted, however, that if the values of 𝜂 and 𝜑 of each jet are still passed to the network from
within the feature vector, this implementation adds redundant information to the network
inputs, as the GNN could also calculate this information itself. But the internal calculation
of Δ𝑅 is highly unlikely, as it involves multiple calculation steps which by themselves do
not benefit the optimization of the loss function. That means gradient descent does not
explore this direction and the possible redundancy can be ignored.

The Δ𝑅 design was successfully implemented in [4]. The function used to scale the weights
is linear, meaning the highest Δ𝑅 value from the data set is mapped to 1 and the lowest to
0, all values in between are scaled linearly. This will further be referred to as “linear Δ𝑅
design”. It is not intuitive, as the vertices of the jets, which are the furthest apart from
each other, are connected with the strongest edge weight. Therefore, the “multiplicative
inverse Δ𝑅 design” is implemented. In this design the values of 1/Δ𝑅 are mapped linearly
between 0 and 1.

Apart from changing the scaling function of the Δ𝑅 design, it is also possible to leave
specific edges out of the edge set, which is represented in Figure 3.7. The specific edges to

15

16 3 Graph Neural Networks

1

2

3 4

5

6
𝜈1

𝜈2

𝜈3 𝜈4

𝜈5

𝜈6

Figure 3.7: Implementation of a Graph with edge weights and only selected edges. This is
resemblant of the lower Δ𝑅 threshold design with edge weights.

leave out are based on the Δ𝑅 value. According to a Δ𝑅 threshold, connections with a
higher Δ𝑅 value will be left out, which will later be referred to as the “higher Δ𝑅 threshold
design”. As it can be useful to leave out Δ𝑅 values below the Δ𝑅 threshold, this is coined
the “lower Δ𝑅 threshold design”.

3.3 Graph Neural Networks
Having defined the inputs for a Graph structure in section 3.2, the Neural Networks
to operate on such a structure are yet to be defined. Many different approaches for
Graph Neural Networks exist. Most of these stem from Message Passing Neural Networks
(MPNNs), therefore this layer is introduced first.

3.3.1 Message Passing Neural Network
The feedforward calculation of MPNNs is generally divided into three parts. The first
two steps can be repeated, every iteration is called a time step t. The first part is the
aggregation of the message in Equation 3.8. In this step, for each vertex 𝑖 a message is
calculated by summing the message function M𝑡 of this time step 𝑡 over every node 𝒩 (𝑖)
that is adjacent to 𝑖. The message function M𝑡 can be any differentiable function and can
depend on the features of the nodes 𝑖 and 𝑗 at the current time step 𝑡, as well as the weight
𝜔𝑖,𝑗 of the edge connecting the nodes 𝑖 and 𝑗

m𝑡+1
𝑖 =

∑︁
𝑗∈𝒩 (𝑖)

M𝑡

(︁
𝜈𝑡𝑖 , 𝜈

𝑡
𝑗 , 𝜔𝑗,𝑖

)︁
. (3.8)

The second part of the MPNN calculation in Equation 3.9 is called the update function
U𝑡 of the time step 𝑡, which again can be any differentiable function. The only inputs U𝑡

depends on are the previous feature vector 𝜈𝑡𝑖 and the message m𝑡+1
𝑖 for the node 𝑖. This

information is then used to update the features of the node 𝑖

𝜈𝑡+1
𝑖 = U𝑡

(︁
𝜈𝑡𝑖 ,m𝑡+1

𝑖

)︁
. (3.9)

The first two steps can be done an arbitrary number of times, afterwards the third step
can be applied. The calculation in Equation 3.10 is called the readout step, the function ℛ
takes in the feature vectors of all nodes in the Graph 𝒢 and lists all features in a single
vector g. This vector g can then be used as an input for a Neural Network to perform e.g.
a Graph level classification, see Equation 3.11

g = ℛ
(︁
{𝜈final
𝑖 | 𝑖 ∈ 𝒢}

)︁
(3.10)

ŷ = NN(g). (3.11)

16

3.4 Hypergraphs 17

An important difference to the usual application of the MPNN algorithm in the application
of assigning additional b jets in tt + bb events, is that the readout step from Equation 3.10
does not apply in this case. In the readout step the Graph structure is normally lost and
therefore no node classification is possible after this step. However, the calculation can
also be done just by skipping Equation 3.10 and using the same Neural Network for every
node to get a single value that represents the pseudo probability for the node to describe
an additional b jet.

3.3.2 Graph Convolutional Neural Network

The following layer from [13] uses the MPNN algorithm combined into a single line in
Equation 3.12. For this application the 𝑣 feature vectors 𝜈𝑖, which each contain 𝑓 features,
are combined into the matrix X ∈ R𝑣×𝑓 . The matrix Â ∈ R𝑣×𝑣 is an adjusted variant
of the adjacency matrix. As shown in Equation 3.13, only an identity matrix is added.
From the definition of the adjacency matrix in section 3.2.1 follows that adding an identity
matrix represents adding self loops to the Graph. The diagonal matrix D̂ ∈ R𝑣×𝑣 is the
vertex degree of the adjusted adjacency matrix, the entry �̂�𝑖,𝑖 stores how many nodes are
incident to the vertex 𝑖. The learnable parameters in this case are the matrices Θ𝑡, and no
readout step takes place. It should be noted that the exponent in Equation 3.12 is to be
understood elementwise

X𝑡+1 = 𝜎
(︁
D̂− 1

2 ÂD̂− 1
2 X𝑡Θ𝑡

)︁
(3.12)

Â = A + I (3.13)
�̂�𝑖,𝑖 =

∑︁
𝑗

𝐴𝑖,𝑗 ∀𝑖, 𝑗 : 𝑖 ̸= 𝑗 −→ �̂�𝑖,𝑗 = 0. (3.14)

3.3.3 Gated Graph Sequence Neural Networks

The best contender for classifying additional b jets with a GNN from the study [4] are
Gated Graph Sequence Neural Networks (GGSNNs). As the study already contains an
explanation of this layer, it will not be explained any further.

3.4 Hypergraphs
Using Graphs as an input type for a Neural Network makes it possible to input kinematic
features that can only be calculated by combining the information of pairs of nodes. While
the network is capable of calculating features that require combining the information of
even more nodes, it is still very unlikely that the network constructs complicated physical
quantities, as the network only converges into a local optimum of the loss function. Some
of these quantities have, however, shown great performance in jet classification tasks
[3]. Therefore strong motivation exists to allow the input of more complicated quantities
involving multiple nodes. As Hypergraphs can have connections that link any number of
vertices, they are a solution to this problem.

3.4.1 Formal Definition

Hypergraphs are a generalization of Graphs, thus the definition from section 3.2.1 can be
used with small adjustments:

• A Hypergraph is an object consisting of two sets called its vertex set 𝑉 and its
hyperedge set 𝐸. The vertex set is a finite nonempty set. The hyperedge set is a
subset of the power set of the vertex set: 𝐸 ⊆ 𝒫(𝑉). The power set 𝒫 of any set A

17

18 3 Graph Neural Networks

contains the set of all subsets of A which includes the empty set and A. As the vertex
set is unchanged from Graphs to Hypergraphs and the edge set of Graphs are also a
subset of the power set of the vertices, every Graph is also a Hypergraph.

• The elements of the vertex set of a Graph are called vertices or nodes and the elements
of the hyperedge set are called hyperedges. The number of vertices is denoted by “v”
and the number of hyperedges by “e”.

• If {𝑋1, 𝑋2, . . . , 𝑋𝑁} is a hyperedge of a Hypergraph, {𝑋1, 𝑋2, . . . , 𝑋𝑁} joins or
connects all the vertices within the hyperedge, they are adjacent to each another. The
edge {𝑋1, 𝑋2, . . . , 𝑋𝑁} is incident to each of vertex from the set. A vertex incident
to no hyperedges at all is isolated.

• Two Hypergraphs are equal if they have equal vertex sets and equal hyperedge sets.

For the usage of Hypergraphs within machine learning applications, additional definitions
and simplifications that stray from standard notion of Hypergraphs also make sense. Parts
of these are taken from [14]:

• Vertices are simplified so they are only allowed to be represented by natural numbers
starting from 1 without leaving gaps. The same simplification is applied to hyperedges.

• The Hypergraph can be represented by the incidence matrix H ∈ {0, 1}𝑣×𝑒. ℎ𝑖,𝑗 is 1
if the vertex 𝑖 is part of the hyperedge 𝑗 and 0 otherwise.

• Each hyperedge also has an hyperedge weight 𝜔 ∈ R associated with it, which deter-
mines the “strength” of the connection. For the sake of simplification of calculations
these hyperedge weights are stored within the diagonal matrix W ∈ (0, 1)𝑒×𝑒.

• The vertex degree D ∈ R𝑣×𝑣 is a diagonal matrix that stores the cumulative edge
weight impacting the node 𝑖: 𝐷𝑖,𝑖 = ∑︀𝑒

𝑗=1𝑊𝑗,𝑗𝐻𝑖,𝑗 .

• The edge degree B ∈ N𝑒×𝑒 is a diagonal matrix that stores the number of nodes the
hyperedge 𝑗 is connected to: 𝐵𝑗,𝑗 = ∑︀𝑣

𝑖=1𝐻𝑖,𝑗 .

• Each vertex 𝑖 is assigned a feature vector 𝜈𝑖, which contains the aforementioned 𝑓
features of the jet 𝑖. All 𝑣 feature vectors 𝜈𝑖 are further represented in the matrix
X ∈ R𝑣×𝑓 .

3.4.2 Examples of Hypergraphs

The Hypergraph ℋ1, in Figure 3.8, has the vertex set {1, 2, 3, 4, 5, 6}, the hyperedge set
{{1, 2, 3}, {1, 2, 4}, {3, 4, 5}} and the hyperedge weights W = diag (0.2, 0.8, 0.4). Using this
information, the incidence matrix, the vertex degree and the edge degree can be calculated.

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
1 1 0
1 0 1
0 1 1
0 0 1
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
D =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1.0
1.0

0.6
1.2

0.4
0.0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
B =

⎛⎜⎝3
3

3

⎞⎟⎠ (3.15)

3.4.3 Hypergraph Input Data

The underlying motivation to implement the Hypergraph structure can be explained when
looking at the Feynman diagram of the leading order of a tt+bb event in section 2.3. Three
particles each are generated by two top quarks. Due to conservation of energy the invariant

18

3.4 Hypergraphs 19

1

2

3 4

5

6
𝜈1

𝜈2

𝜈3 𝜈4

𝜈5

𝜈6

Figure 3.8: Example of a Hypergraph with 6 vertices and 3 hyperedges. The hyperedge
with the dashed line connectes the vertices 1,2 and 4. The vertices 3,4 and 5
are connected by the hyperedge represented by the dotted line. The solid line
represents the hyperedge connecting the nodes 1, 2 and 3.

mass of the respective three particles is still the same as the invariant mass of the top quark.
In principle, from calculating the invariant masses of pairs of three particles, the Neural
Network could rule out six particles, as these stem from a top quark and can therefore not
be additional b jets. Reality however, is not that easy, as the number of combinations of
three jets grows by

(︀𝑛
3
)︀
∈ 𝒪

(︀
𝑛3)︀

, where 𝑛 is the total number of particles. For this reason,
it is possible for multiple combinations of three particles to have an invariant mass close to
the top mass considering its natural width as well as the reconstruction uncertainty. Hence,
this cannot be used as the only information to classify additional b jets. However, this still
adds information to the network that may help to improve the classification rate.

The Hypergraph information is not redundant, even though the network has the information
to construct the invariant masses, there is no probable way for the network to learn the
construction of invariant masses. This stems from the fact that the invariant mass
construction has many intermediate steps that do not improve the loss function. Therefore,
gradient descent does not explore this direction.

The actual calculation of the invariant mass with Hypergraphs is analogous to the imple-
mentation of the Δ𝑅 design:

1. The invariant mass of all combinations of three particles is calculated for every event.

2. From every calculated invariant mass the top mass of 173 GeV/c2 [5] is subtracted
and the absolute value of this difference is taken.

3. An hyperedge is created between any combination of three jets for which the absolute
invariant mass difference is lower than a specified threshold, the “lower Δ𝑚 threshold”.

4. The hyperedge weights are calculated from the absolute invariant mass difference
according to a scaling function that output numbers between 0 and 1.

It is possible to use a “higher Δ𝑚 threshold” in step 3, where only hyperedeges are created
with an absolute invariant mass difference higher than the threshold.

Information can be used redundantly in this implementation, because hyperedges are
chosen according to the Δ𝑚 value, and subsequently, the scaling of the hyperedge weights

19

20 3 Graph Neural Networks

1

2 3

𝜈1

𝜈2 𝜈3

Figure 3.9: An example of a Hypergraph with a single hyperedge connecting the nodes 1
and 2. Node 3 is isolated. Each node 𝑖 contains a feature vector 𝜈𝑖.

is determined by the Δ𝑚 value as well. Both options are presented as the evaluation and
optimization are discussed in chapter 4 and all possibilities are explored.

3.5 Hypergraph Neural Networks

While the inputs for the Hypergraph structure are defined, the Neural Networks that will
be used to operate on such a structure are yet to be specified. In the case of Hypergraphs
the pytorch geometric implementation also only has one layer that can accept Hypergraph
inputs [14].

3.5.1 Hypergraph Convolution

The “Hypergraph Conv” class from [14] uses the Message Passing Neural Network algorithm
compressed into the single Equation 3.16

X𝑡+1 = 𝜎
(︁
D− 1

2 HWB−1H⊺D− 1
2 X𝑡Θ

)︁
. (3.16)

The matrix X0 contains the 𝑣 nodes, each with 𝑓0 features of the Hypergraph mentioned
in section 3.4.1. The matrices X𝑡 ∈ R𝑣×𝑓𝑡 for 𝑡 > 0 store the updated state, with 𝑣 nodes
and each 𝑓𝑡 features, for each time step 𝑡.

For an intuitive understanding of the Hypergraph convolution the calculation is applied to
the Hypergraph in Figure 3.9, with the parameters in Equation 3.17

X0 =

⎛⎜⎝0.1 1.3 0.5 3
0.9 1 0 0.2
0.3 −2 1 0.9

⎞⎟⎠ H =

⎛⎜⎝1
1
0

⎞⎟⎠ W =
(︁
0.9

)︁
. (3.17)

The update calculation starts with the evaluation of the matrix A* = D− 1
2 HWB−1H⊺D− 1

2 ∈
R𝑣×𝑣, which is constant for the hypergraph and has the dimension of an adjacency matrix.
The application to the example in Equation 3.18 shows immediate problems with isolated
nodes, as each of these leads to an empty row and column in the matrix D, which makes
D not invertible. In these cases only the submatrix that is invertible is actually inverted
and the rest stays the same. The pseudo adjacency matrix A* in Equation 3.19 shows
important features of the “Hypergraph Conv” calculation, the first rows of the matrix are
equal to one another, as the nodes 1 and 2 are part of the same hyperedge(s). The third
row of A* only contains zeros because the third node is not connected to any hyperedge

20

3.5 Hypergraph Neural Networks 21

B = B−1 =
(︁
1
)︁

D =

⎛⎜⎝0.9 0 0
0 0.9 0
0 0 0

⎞⎟⎠ −→ D− 1
2 ≈

⎛⎜⎝0.9− 1
2 0 0

0 0.9− 1
2 0

0 0 0

⎞⎟⎠ (3.18)

A* = D− 1
2 HWB−1H⊺D− 1

2 =

⎛⎜⎝1 1 0
1 1 0
0 0 0

⎞⎟⎠ . (3.19)

The next step in the calculation is to multiply the matrix A* with X0 in Equation 3.20.
This step further improves the interpretability of A* as an adjacency matrix. This becomes
evident when focusing on the multiplication of the first row of A* with the first column of
X0, the result is a weighted sum of the first node features and thus defines how to calculate
the first feature of the first node from the first feature of all nodes

A*X0 =

⎛⎜⎝1 2.3 0.5 3.2
1 2.3 0.5 3.2
0 0 0 0

⎞⎟⎠ . (3.20)

The second to last step of the calcuation is to multiply with the weight matrix Θ ∈ R𝑓𝑡×𝑓𝑡+1 .
The number of features in the next step has to be defined before the calculation, in the
example it is 𝑓1 = 2. The entries of Θ are the actual learnable part, in the example they
are arbitrarily chosen. A detailed look into the multiplication with Θ reveals that only
features of the same nodes are recombined in this step of the calculation. Therefore the
weight matrix can only indirectly, from the previous calculation, factor in the information
of the Hypergraph

Θ =

⎛⎜⎜⎜⎝
0.1 0.4
0.5 0.3
0.3 1
1 0.5

⎞⎟⎟⎟⎠ A*X0Θ =

⎛⎜⎝4.6 3.19
4.6 3.19
0 0

⎞⎟⎠ . (3.21)

The final step is to apply an activation function. The authors of [14] use the leaky ReLu
activation function. Applying leaky ReLu in the result of Equation 3.21, does not change
anything because only positive numbers are involved. Therefore this matrix is already the
final result of the example.

The result of Equation 3.21 shows two important effects of the calculation. The first effect
is oversmoothing. The first two nodes are connected to exactly the same hyperedges and
therefore receive exactly the same information, thus the result for both nodes is the same.
The second effect of the calculation is that the information of the third node is disregarded
entirely because the node has no connections. This feature can have a positive impact on
the additional b jet classification rate, because in combination with the Δm design for the
hypergraph, the network can ideally know which node describes the additional b jet, as this
node is less likely to be a part of hyperedges, due to the construction of the hypergraph in
section 3.4.3.

3.5.2 Adaptation Algorithm

Looking back at the Graph Convolutional Neural Network in section 3.3.2, the update step
of the Message Passing Neural Network looks very similar to the Hypergraph Convolutional

21

22 3 Graph Neural Networks

Neural Network. This becomes clear from the structure of the contents of the activation
function in Equation 3.16: Some non-learnable matrices that handle the Graph structure
and weights, then the matrix X which contains all nodes and features and finally the
learnable matrix Θ.

The similarities between the discussed Graph- and Hypergraph layer raise the question
whether any layer that uses Graphs as inputs can be modified in the same way to allow
for Hypergraph inputs. Therefore, a general transformation that maps any Hypergraph
to a Graph is needed. Without any specifications there are many ways to construct such
a transformation. As the Hypergraph structure is specifically introduced to be able to
represent more information, the goal of such a transformation, for this study, is to keep all
properties of the Hypergraph. In section A.3, an algorithm is suggested to achieve this
goal.

Using the transformation algorithm the Δ𝑚 design can be implemented in the previously
best performing layer the Gated Graph Sequence Neural Network (GGSNN). The new design
will further be referred to as Gated Hypergraph Sequence Neural Network (GHGSNN), to
distinguish it from the previous one.

3.6 Network Merging
As the results from [4] already showed improvements to the classification rate in [3], it is not
straightforward to make further improvements. Because the most promising quantity Δ𝑅
is already used and the Δ𝑚 design is not expected to perform better than the previously
used layer, the question emerges as to how the different networks can be merged.

3.6.1 Addition Design

The first approach, the “addition design” in Figure 3.10, first evaluates the outputs of all
networks that shall be merged. Thus, every network generates a single feature for every
node that represents the pseudo probability for the node to represent an additional b
jet. The results of every network for a node are then combined into a single new feature
vector. Every node is then passed singularly into a Neural Network to generate the final
output, which is a single value that represents the additional b likeness. As the information
of different networks is combined with a learnable layer, the importance of the different
networks can be learned.

3.6.2 Combination Design

The second approach, the “combination design” in Figure 3.11, first evaluates the “helper
networks”, which is in this case the GHGSNN, and generates a single output for each node.
These outputs are appended to the original feature vectors. Then all information is passed
into the GGSNN that generates the final output. The main benefit in this design is that,
at the time of final evaluation, the network still has access to all feature information and
therefore is capable of deciding which network outputs are more important under the given
circumstances.

22

3.6 Network Merging 23

Input data Network with
GHGSNN layer

Network with
GGSNN layer

Other networks

Weighted
addition Out

Figure 3.10: Sketch of the addition design for the merging of different networks. The input
data contains all node features, the Graph data and the Hypergraph data.
This data is evaluated singularly in the different networks which each generate
a single output for every node that represents the additional b likeness. The
node information is then recombined to a single feature vector for each node.
In the sketch, before the weighted addition, every node has 3 features. Every
node is then singularly passed into the learnable addition layer, which adds
the node features each multiplied with a weight. After rescaling to (0, 1) this
represents the final pseudo probability for the node to be an additional b jet.

Input data

network with
GHGSNN layer

feature append

𝜈(𝑖) =
(︁
𝑝

(𝑖)
t , 𝜂(𝑖), ...

)︁
𝜈(𝑖) =

(︁
ℎ

(𝑖)
res, 𝑝

(𝑖)
t , 𝜂(𝑖), ...

)︁

network with
GGSNN layer

Outsingle output
for each node

Figure 3.11: Sketch of the combination design for the merging of different networks. The
input data contains all node features, the Graph data and the Hypergraph
data. Firstly, all “helper” networks are evaluated, in this case this is only the
GHGSNN. All “helper” networks generate a single output ℎ(𝑖)

res for each node
𝑖, which represents the additional b likeness. These new features are then
appended to the original node features. Finally, the nodes with additional
features are passed into the previously best performing layer, the GGSNN.
This generates the final output.

23

4 Bayesian Optimization

Previous studies have already analysed different architectures of Neural Networks for the
additional b jet classification in tt + bb, namely Deep Neural Networks [3] and Graph
Neural Networks [4]. This study continues to use GNNs. Formerly, hyperparameters have
been optimized either manually or by applying a grid search. Bayesian optimization, on
the other hand, can have a number of advantages, as illustrated in Figure 4.1 from [15].

4.1 Motivation
Unlike model parameters, hyperparameters are set before training by the programmer and
cannot be optimized by backpropagation like the standard parameters. Additionally, some
hyperparameters might only be well defined for specific values of other parameters. For
example a hyperparameter can be whether or not to include a fully connected layer at the
end of the network. Then the number of nodes in this layer is a hyperparameter that is
only required when the fully connected layer is used. To account for such possibilities the
hyperparameter space 𝜉 is considered to be Graph-structured.

For this consideration, training and validation is simplified into a single function that takes
in hyperparameters and outputs the validation loss. The optimization can be formalized as
finding the argument x* from the parameter space 𝜉 that minimizes the objective function,
which is in this case the validation loss 𝐿(x), as shown in Equation 4.1

x* = arg min
x ∈ 𝜉

𝐿(x). (4.1)

A simple optimization method is to create a grid of hyperparameter combinations and
select the one with the lowest error on the validation set. This is called “grid search” and
has the disadvantage of testing unnecessary points, such as a point where all surrounding
points evaluate to a high validation error. Additionally, training and validating the network
is very costly. Consequently, a smart data point selection is needed.

Sequential Model-based Global Optimization (SMBO) algorithms have been used in many
applications where evaluation of the loss function is expensive [16]. As the true objective
function is costly, a surrogate 𝑆, which is much cheaper to evaluate than the objective
function, is constructed to approximate the fitness of the parameter space. The surrogate 𝑆

25

26 4 Bayesian Optimization

Figure 4.1: Example of advantages of Bayesian optimization over random search on two
different image classification datasets, taken from [15]. Validation error is
plotted against the number of trials. The Bayesian optimization using the
Tree-structured Parzen Estimator (TPE), which is explained in section 4.2,
reaches a much lower validation error much faster.

can either be a model 𝑀𝑡 of the objective function or any transformation of 𝑀𝑡. The
transformation of 𝑀𝑡 is called acquisition function and defines “the usefulness” of a point
for the underlying optimization task. The surrogate can then be numerically optimized
to suggest the next test point x*. The proposed point is then evaluated in the objective
function. All new information is appended to 𝒫 , the history of observations and associated
parameters. The surrogate can subsequently be recalculated with the history 𝒫. All
steps are iteratively repeated until the maximum number of evaluations is reached. The
pseudo-code for this is shown in algorithm 1. As this process is graphically intuitive, a
depiction is provided in Figure 4.2.

Algorithm 1: The pseudo-code of a generic Sequential Model-based Global Opti-
mization. The algorithm is taken from [16] but slightly adjusted.
Function SMBO(𝐿, 𝑀0, 𝑇 , 𝑆):
𝒫 ←− ∅
for 𝑡←− 1 to 𝑇 do

x* ←− arg minx 𝑆 (x,𝑀𝑡−1)
Evaluate 𝐿 (𝑥*) \\this step is expensive
𝒫 ←− 𝒫 ∪ (x*, 𝐿 (𝑥′))
Fit a new surrogate model 𝑀𝑡 to 𝒫

end
return 𝒫

Sequential Model-based Global Optimization accelerates hyperparameter optimization in
comparison to the aforementioned methods. But the curse of dimensionality still applies,
i.e. adding parameters to the search space exponentially increases the number of possible
parameter combinations in the search space. Even though the optimizer can theoretically
“recognize” if parameters are uncorrelated and optimize the associated parameters indepen-
dently, optimizing many parameters simultaneously still worsens performance. Therefore,
any parameters for which no causal link is to be expected, should not be optimized si-
multaneously but rather iteratively, which drastically reduces the impact of the curse of
dimensionality.

26

4.1 Motivation 27

Evaluate the chosen test point
objective function
test points

Calculate the prediction for the objective function
prediction with uncertainty

new test point

Recalculate the expected improvement to find the next test point
expected improvement

Figure 4.2: An example of the iterative update algorithm for hyperparameter optimization.
Scalings and axes are left out for the introduction. The first step is to evaluate
the objective function for the current test point, as shown in the upper plot. This
new information can then be used to calculate the prediction with uncertainties
of the objective function for the whole parameter space, which is depicted in
the middle plot. From the updated prediction, the expected improvement of
the loss can also be recalculated. Finally, the argument which maximizes the
expected improvement can be located and used as the new test point.

27

28 4 Bayesian Optimization

4.2 Loss Function Model
To implement Sequential Model-based Global Optimization, an algorithm to model the
loss function based on the history of parameters and observations is needed. The authors
of [16] suggest using a Gaussian Process (GP) approach or a Tree-structured Parzen
Estimator (TPE), with the side note that TPE is built for “hyperparameter optimization
tasks that mean high dimensions and small fitness evaluation budgets”. The difference in
the results of GP and TPE is that a GP models the probability of a loss function value
under the assumption of 𝑥 having a specific value: 𝑝(𝐿 | 𝑥). The TPE, however, models
two probabilities. Firstly, the probability of a value 𝑥 under the assumption of a specific
loss function value: 𝑝(𝑥 | 𝐿). Secondly, the probability for any value of the loss function
𝑝(𝐿). As this study aims to optimize many hyperparameters, TPE will be used to model
the loss function.

4.3 Acquisition Function
4.3.1 Upper Confidence Bound

Having defined a model for the loss function makes it already possible to implement
Sequential Model-based Global Optimization, by just adding the expected value of the
loss 𝜇𝐿(x) to the associated standard deviation 𝜎𝐿(x) multiplied with a coefficient 𝛽 for
any given parameter. This is the so called upper confidence bound acquisition function 𝑢(x)
and is shown in Equation 4.2

𝑢 (x) = 𝜇𝐿(x) + 𝛽 · 𝜎𝐿(x). (4.2)

As the argument of the maximum of the acquisition function is proposed as the next point
of evaluation of the objective function, the value of 𝛽 in Equation 4.2 balances “exploration
vs. exploitation”:

• A low value of 𝛽 means that the maximum of 𝑢(x) is very likely to be the maximum
of 𝜇𝐿(x), therefore a low 𝛽 favours exploitation of a promising region over exploration
of a new one.

• A high value of 𝛽 on the other hand, weighs the standard deviation more than the
mean and thus favours exploration over exploitation.

However, the upper confidence bound acquisition function introduces another parame-
ter during hyperparameter optimization. Therefore, another acquisition function that
intrinsically balances exploration vs. exploitation is most commonly used, the expected
improvement.

4.3.2 Expected Improvement

The improvement 𝐼(x) in Equation 4.3 quantifies how useful evaluating each point of the
parameters space is. The difference between the best observed loss so far 𝐿* and the loss of
every point of the parameters space 𝐿(x) is taken. Thus any point of the parameter space
with a loss lower than the current best observed loss, yields a positive valued improvement.
Points with worse losses, i.e. a negative difference, are replaced with zeros by the max()
function, as depicted in Figure 4.3

I(x) = max (𝐿* − 𝐿(x), 0) . (4.3)

28

4.4 Implementation 29

x-axis

any test point on L(x)

best observed point: L*

improvement

objective function: L(x)
improvement: i(x) = max(L* L(x), 0)

Figure 4.3: Illustrative example of the improvement function. The improvement of a single
test point is visualized between the two dashed lines. The example also shows
that the improvement function is zero anywhere where the loss is higher than
the best observed loss.

However, the improvement is only a theoretical quantity because the objective function is
not known. Nevertheless, the expected improvement (EI) in Equation 4.6, which is the
expected value of the improvement, can be used as an acquisition function without the
introduction of another parameter

EI(x) = E (I(x)) (4.4)
= E (max (𝐿* − 𝐿(x), 0)) (4.5)

=
∫︁ ∞

−∞
max(𝐿* − 𝐿, 0) 𝑝 (𝐿 | x) d𝐿. (4.6)

Justified by the central limit theorem, the Gaussian Process and the Tree-structured Parzen
Estimator both model the loss function with a Gaussian distribution. This allows several
simplifications to Equation 4.6, which yields Equation 4.7. The function 𝜑 is the Gaussian
probability density function (PDF) with 0 mean and variance 1 and Φ the corresponding
cumulative density function (CDF)

EI(x) = 𝜎𝐿(x) (𝑎 · Φ(𝑎) + 𝜑(𝑎)) 𝑎 = 𝐿* − 𝜇𝐿(x)
𝜎𝐿(x) . (4.7)

4.4 Implementation
4.4.1 General approach and Challenges

The original idea to implement automated hyperparameter optimization arose from the
consideration that hyperparameter optimization can be used to optimize many more
variables than usual. Therefore many different hyperparameters are explored. For example,
the number of fully connected layers in a Neural Network can be used as a hyperparameter.

29

30 4 Bayesian Optimization

The approach of considering every possible hyperparameter and trying to optimize them
has big challenges associated with it. Firstly, the optimizer only finds a local optimum and
not a global one. Therefore, if a parameter has a logical reason to have a specific value,
this choice is in most cases better than the optimized result. Additionally, optimizing
multiple parameters at the same time can lead to problems as dependencies of specific
parameters to the loss function can be suppressed by the change of a different parameter.
In combination with the aforementioned curse of dimensionality, the optimizer cannot find
a satisfying optimum within a reasonable number of trials when optimizing all possible
hyperparameters at once.

This problem can be avoided by only optimizing small groups of hyperparameters at once
and fixing the other hyperparameters. The small groups mostly contain parameters whose
impact on the loss function also depends on the other parameters and therefore these
parameters need to be optimized simultaneously.

4.4.2 Optimization Results

The first of the following hyperparameters are mostly independent of the optimized Neural
Network and are thus explained without any model in mind.

Batch Size

The batch size is a natural number and controls how many graphs are processed within
backpropagation in a single iteration. The batch sizes are initially drawn from a loguniform
distribution between 50 and 5000. The plot in Figure 4.4 shows all 50 evaluated batch
sizes and the corresponding 2/2 percentages as well as the number of epochs needed to
reach peak performance. A strong negative correlation between the batch size and the 2/2
percentage is shown. However, for batch sizes between 50 and 500 the correlation vanishes.
Other than that a slight correlation between the batch size and the number of epochs until
peak performance is reached is indicated. As no correlation for the lower batch sizes has
been found, the original batch size of 200 from [4] is used.

Jet Charge

This hyperparameter decides on whether or not to include the jet charge from section 2.4
within each node. The impact of the jet charge is very small. Therefore, most of the
measured performance data is noise. However, more often than not the loss was lower
when leaving the jet charge out.

Missing Transverse Energy

The missing transverse energy, also from section 2.4, is a node within the graph. Neutrinos
cannot be directly measured within the CMS detector, and leading order tt + bb events
contain a neutrino in the final state. Therefore, MET is proportional to the transversal
energy of the neutrino. The hyperparameter in this case is whether or not to include MET
within the network. Generally a slight positive correlation between the usage of MET and
a higher 2/2 classification rate was observed as shown in Table 4.1. Especially within the
Hypergraph designs MET had a positive impact on the loss function. Thus, MET was
always included.

Normalization method of the features

The features of all nodes can either normalized linearly or with Gaussian normalization.
No difference in performance was detected for either option.

30

4.4 Implementation 31

0 1000 2000 3000 4000 5000
batch size

0.400

0.425

0.450

0.475

0.500

0.525

2/
2

pe
rc

en
ta

ge

data_points, corr: -0.967

0 1000 2000 3000 4000 5000
batch size

10

20

30

40

ep
oc

hs
 to

 b
es

t

data_points, corr: 0.369

102 103

batch size (log scaled)

0.400

0.425

0.450

0.475

0.500

0.525

2/
2

pe
rc

en
ta

ge

data_points, corr: -0.967

10

20

30

40

ep
oc

hs
 to

 b
es

t

Analysis of the impact of different batch sizes

Figure 4.4: Result of the batch size analysis. The different evaluated batch sizes are
chosen with TPE. The upper left plot shows the 2/2 percentage over different
batch sizes. A strong negative correlation between the batch size and the
2/2 percentage is indicated. The upper right plot compares the number of
epochs until peak performance is reached to the batch sizes. A weak correlation
between the two parameters is also shown. The lower plot shows the 2/2
percentage over the log scaled batch size. The color of the points is based on
the number of epochs until peak performance is reached. With the log scaled
axis a plateau between batch sizes of 50 to about 500 is revealed.

Network include MET mean 2/2 percentage

GGSNN True 52.25
False 51.35

GHGSNN True 42.89
False 35.72

Table 4.1: Mean performance of the GGSNN and GGSNN for the two MET options. Shown
is the network, whether or not MET is included and the mean 2/2 percentage.

31

32 4 Bayesian Optimization

Class Weight Scalar

The class weight scalar, as introduced in section 3.1.2, describes how much the nodes of
additional b jets have to be weighted within the loss function. Initially the class weight
scalar is used, because the number of nodes representing additional b jets is much lower
than the number of other nodes. Thus, a relatively good loss can already be achieved by
classifying all nodes as non-additional b jets. By upscaling the additional b jets weights in
the loss to the same weight as all other nodes, this issue is no longer existent. This is the
approach that has already been implemented within [4].

Many different values of the class weight scalar are possible and have different implications
on the loss function. Additionally, only optimizing the loss function leads to scenarios where
the loss far outperforms other networks, but the 2/2 classification rate is worse. Therefore,
the class weight scalar is optimized with Bayesian optimization. The main optimization
task is to find the class weight scalar that yields the best final 2/2 classification rate of a
GGSNN. The secondary optimization goal is to find a class weight scalar that takes the
smallest number of epochs to reach peak performance. The plots in Figure 4.5 show all 90
evaluated class weight scalars and the corresponding 2/2 percentages as well as the epochs
needed to reach peak performance. The main result of the analysis is that the additional b
jets do not have to be weighted, as the best class weight scalar is very close to one. This
result is surprising and reasons are speculative. However, one possible root cause might be
that the nodes which do not describe an additional b jet are scaled down further, leading
to less confusion. The analysis also shows that, even without a large class weight for the
additional b jets, the GNN does not classify all nodes as non-additional b jets. As the
backpropagation algorithm optimizes according to the loss function and the main goal of
the study is to achieve a high 2/2 percentage, the class weight scalar was fixed to the best
value of 0.984 for every following training.

ΔR Design

The first decision of the Δ𝑅 design defined in section 3.2.3, is whether to use the higher
or lower threshold design. Then the threshold also has to be chosen from any number
between the lowest Δ𝑅 of any event 0.0011 and the highest according Δ𝑅 of 5.6257. The
optimizer converged to always keeping most Graph connections, i.e. all connections with a
Δ𝑅 value higher than 0.0011 or all connections with a Δ𝑅 value lower than 5.6257. The
second optimization of the Δ𝑅 values is the normalization. The options in this case are
either a linear normalization of ΔR values or a linear normalization of the values of 1/Δ𝑅.
Neither of the two designs nor the normalizations had an impact on the performance.

ΔM Design

The Δ𝑚 design defined in section 3.4.3 can be implemented with either the higher or
lower threshold. The lower threshold design is meant to only build connections between
nodes that stem from a top quark. The threshold in this case is drawn from a uniform
distribution between 2 GeV and 70 GeV. The higher threshold design draws the threshold
from a loguniform distribution between 30 GeV and 500 GeV. The optimal choice in this
case is to use the higher threshold design with a threshold of 56 GeV.

Data Input

The original node features contain the seven values in Equation 4.8. In multiple runs of
optimization no difference in performance was detected when not using 𝜑, 𝐸 and 𝑞J from

32

4.4 Implementation 33

0 5 10 15 20
class weight scalar

0.49

0.50

0.51

0.52

0.53

2/
2

pe
rc

en
ta

ge

data_points, corr: -0.449

0 5 10 15 20
class weight scalar

15

20

25

30

ep
oc

hs
 to

 b
es

t
data_points, corr: 0.177

0 5 10 15 20
class weight scalar

0.49

0.50

0.51

0.52

0.53

2/
2

pe
rc

en
ta

ge

best point: (0.984,0.533) data_points, corr: -0.449

15

20

25

30

ep
oc

hs
 to

 b
es

t

Analysis of the impact of scaling the class weight of additional b jets

Figure 4.5: Result of the class weight analysis. As the class weight has a direct impact on
the loss function, the loss cannot be used to compare network performance.
Instead the 2/2 percentage is used as a performance measure for this analysis.
All data points are generated using the multi-GGSNN design from [4], the
plots show the result of 90 optimization iterations. The plot on the upper left
compares the 2/2 percentage to the class weight scalar. A significant negative
correlation is found towards very high class weights. The plot on the upper
right compares the number of training epochs until the best 2/2 percentage is
reached to the class weight scalar. The slight positive correlation shows that
optimizations with a high class weight scalar tend to take longer until peak
performance is reached. The lower plot combines both plots, this illustrates
that there is very little correlation between the 2/2 percentage and the number
of epochs until peak performance is reached.

33

34 4 Bayesian Optimization

section 2.4 within the node. As the network has to learn to scale down this essentially
redundant information, the values are not included in the nodes for the final evaluation

𝜈𝑖 = (𝑝𝑇,𝑖, 𝜑𝑖, 𝜂𝑖,𝑀𝑖, 𝐸𝑖,btag𝑖, 𝑞J,𝑖). (4.8)

34

5 Results

The study explored many different strategies of improving the 2/2 classification rate of
additional b jets. Firstly, Bayesian optimization was implemented to optimize the GGSNN
and every following network. Secondly, Hypergraphs and the networks to operate on them
were introduced. Lastly, different methods of merging networks were proposed and tested.

5.1 Advanced GGSNN Studies

The previously best results of [4] on additional b jet classification were fully reproduced.
For further improvements many design adjustments were considered as hyperparameters
and optimized with Bayesian optimization. The parameters include, but are not limited to,
the following list:

• The number of evaluations within the GGSNN.

• The number of GGSNN layers.

• The number and position of fully connected layers, as well as the number of nodes
used within the fully connected layers and the option to use a bias.

• The activation function between different layers.

• The class weight scalar.

After over 200 optimization trials no significant performance increase was achieved. Different
hyperparameter optimization strategies were tested such as using a Gaussian Process Re-
gressor instead of the Tree-structured Parzen Estimator. Most changes of hyperparameters
actually lead to a decrease in performance.

This lead to the conclusion that the hyperparameters of the GGSNN were already optimal.
Therefore, no improvements to the GGSNN can be made by optimizing the tested hyper-
parameters. However, almost everything can be considered to be a hyperparameter. Thus,
improvements could be made when using a new, previously unconsidered hyperparameter.

As no new ideas for hyperparameters were left, another approach was considered which is
presented in the next section.

35

36 5 Results

0 5 10 15 20
epochs

0.115

0.120

0.125

0.130

0.135

0.140
2/

2
pe

rc
en

ta
ge

0 5 10 15 20
epochs

1.50

1.55

1.60

1.65

1.70

lo
ss

Validation data of Hypergraph Convolution

Figure 5.1: Performance of the best Hypergraph convolution layer on validation data during
training. The left plot shows the evolution of the 2/2 performance over the
epochs. The right plot shows the loss against the epochs. Peak performance is
already reached in epoch 3 and training lacks stability.

5.2 Hypergraph Study
The essential idea of the hypergraph study was to implement the promising invariant mass
of three particles using the Δ𝑚 design from section 3.4.3. As the invariant mass could
initially not be represented in Graphs, Hypergraphs were used. However, the only available
layer for Hypergraphs in pytorch at that point was the Hypergraph Convolution.

5.2.1 Hypergraph Convolution

The first analysed Hypergraph layer is the Hypergraph Convolution from [14] which is
explained in section 3.5.1. The validation data of the best performing network is shown
in Figure 5.1. The network already reaches peak 2/2 performance in epoch 3 and the
2/2 performance generally does not improve in a stable manner. However, the training is
still stable, which can be seen from the loss evolution. The difference in stability for the
quantities stems from the chosen loss function and therefore also from the class weight
scalar. The 2/2 performance training stability could possibly be improved by choosing a
different loss function.

Hypergraph convolution networks with many different hyperparameter combinations were
evaluated. The main considerations of the hyperparameters are:

• The Δ𝑚 normalization, which just has options of using a linear normalization or
none at all.

• The Δ𝑚 design, section 3.4.3 presented the “lower” and “higher” option for the
design.

• The threshold of the Δ𝑚 design.

The network did not show any significant performance differences in the validation set for
the used hyperparameters, as shown in Table 5.1. Because the expected processing of the
two Δ𝑚 designs is structurally different, the performance for both designs is expected to
be different. However, the results are not significantly affected by this difference. This is
an indication that the internal processing of the network is different from the expected
behaviour. The expected processing is that the network heavily relies on the information
of the hyperedges, because the number and weights of adjacent hyperedges of a node, make
it, depending on the design, more or less likely for the node to stem from a top quark.
As the internal calculation increases the feature values of each node in proportion to the

36

5.2 Hypergraph Study 37

Hyperparameter Validation data
Δ𝑚 normalization Δ𝑚 design Δ𝑚 threshold 1/2 percentage 2/2 percentage

Linear lower 30.0 GeV 63.24% 14.18%
Linear higher 56.0 GeV 62.94% 13.81%
None lower 19.0 GeV 62.01% 13.06%

Table 5.1: Performance of the Hypergraph convolution layer with different hyperparameters.

0/2 percentage 1/2 percentage 2/2 percentage TNR TPR Test Loss
25.77% 61.25% 12.99% 83.67% 43.61% 1.66

Table 5.2: Performance of the best hypergraph convolution network on test data. Shown
are 0/2, 1/2, 2/2 percentage, the true negative rate, the true positive rate and
the loss.

number and weights of adjacent hyperedges, the network could decide the labels on the
magnitude of the feature values. The different Δ𝑚 designs are, in this case, expected to
perform differently because the most important information is inherently different.

The performance of the best Hypergraph Convolution network on the test set is shown
in Table 5.2. Across the board the performance is much lower compared to any of the
previously used Δ𝑅 designs. In only 13 % of the events both additional b jets were found
which is much worse than the 2/2 classification rate of the GGSNN of 52.5 % but still better
than a random classification which would roughly yield a 2/2 classification percentage of
4.76 %.

One reason for the bad performance is the very low number of parameters within the
network, the network just does not have the capacity to store the information needed for
better performance.

5.2.2 Gated Hypergraph Sequence Neural Network

The moderate results of the Hypergraph Convolution led to the development of the
GHGSNN as described in section 3.5.2. The GHGSNN uses the same concept as the
previously very performant GGSNN, while also being capable of handling hypergraph
inputs like invariant mass combinations. However, the initial performance of the network
was barely any better than from the Hypergraph Convolution.

After finding the right scales and threshold values the GHGSNN performance improved
by a lot, which is shown in Table 5.3. The right scales, in this case, include the scaling
function of the hyperedge weights as mentioned in section 3.4.3, for which the rising part
of sine wave was used. Another important scaling factor is the class weight scalar. For this
the optimized value was chosen from section 4.4.2. The Δ𝑚 threshold value, as defined
in section 3.4.3, determines which and how many hyperedges are constructed within the
dataset. The optimal value differs for the chosen Δ𝑚 design. For the higher design the
optimal value resulting from the Bayesian optimization is 56 GeV. This means that every
hyperedge between three nodes is constructed where the combined invariant mass has at
least a 56 GeV difference to the top mass. This results in a mean number of hyperedges
per event of 54.4. For the lower Δ𝑚 design the optimal threshold was determined to be
44 GeV with a mean number of hyperedges per event of 24.2.

Especially the choice of the Δ𝑚 design had a significant impact on the performance as the
higher Δ𝑚 design has much better results than the lower variant. Part of the reason is

37

38 5 Results

Hyperparameter Validation data
class weight scalar Δ𝑚 design Δ𝑚 threshold 1/2 percentage 2/2 percentage

1.0 higher 56.0 48.95% 43.68%
4.4 higher 48.0 63.04% 35.76%
4.4 lower 44.0 63.82% 19.86%

Table 5.3: Performance of the Gated Hypergraph Sequence Neural Network with different
hyperparameters. The optimal Δ𝑚 normalization was always linear for the
GHGSNN.

0 5 10 15 20 25
epochs

0.275

0.300

0.325

0.350

0.375

0.400

0.425

2/
2

pe
rc

en
ta

ge

0 5 10 15 20 25
epochs

0.85

0.90

0.95

1.00

1.05

lo
ss

Validation data of the GHGSNN

Figure 5.2: Performance validation data during training of the best Gated Hypergraph
Sequence Neural Network. The 2/2 percentage (left) rises continuously and the
loss (right) mostly decreases, the training is stable.

that the inner structure of the Δ𝑚 design dictates that all feature values of unconnected
nodes become zero after a single iteration. In the lower design the hope is that the network
recognizes what these zeros mean because in this case it is unlikely for the particle to stem
from a top quark. Therefore, this particles is a good candidate for an additional b jet. This
however, assumes that the network transforms the zeros from the layer, to a high value in
the final output. The higher design generates the low values for particles that are likely to
be a top quark and high values for the other nodes. Thus, the higher design involves one
calculation step less which simplifies the learning process.

The training of the GHGSNN is very stable, as illustrated in Figure 5.2. The peak 2/2
performance is reached at the final epoch and the loss decreases mostly.

The final test results of the GHGSNN in Table 5.4 show the great performance increase in
comparison to the previous Hypergraph network. The 2/2 classification rate is very close
to the best performance of the DNN used previously in [3]. One reason for the increase
in performance is the significant increase in the number of parameters the model can use.
Additionally, this model benefited greatly from the adjustment of the class weight scalar
from section 4.4.2.

0/2 percentage 1/2 percentage 2/2 percentage TNR TPR Test Loss
8.25% 45.95% 45.80% 90.94% 68.77% 0.82

Table 5.4: Performance of the best Gated Hypergraph Sequence Neural Network on test
data. Shown are 0/2, 1/2, 2/2 percentage, the true negative rate, the true
positive rate and the loss.

38

5.3 Merging Study 39

0/2 percentage 1/2 percentage 2/2 percentage TNR TPR Test Loss
8.26% 37.37% 54.35% 92.2% 73.1% 0.72

Table 5.5: Performance of the best network using the combination design on test data.
Shown are 0/2, 1/2, 2/2 percentage, the true negative rate, the true positive
rate and the loss.

5.3 Merging Study

5.3.1 Combination Design

The initial combination design, introduced in section 3.6.2, actually performed worse than
the pretrained GGSNN alone. The exact reason for this is speculative, as the interpretation
of weights within the layer is unfeasible. The pretrained GGSNN was trained on 6 input
features per node. Due to the internal mechanisms of the network it is possible to pass
a higher or lower number of features to the network. Therefore, no adjustments have
to be made when appending the result of the GHGSNN to the nodes. This previously
empty feature still has to be learned from the GGSNN. However, changing parameters from
the current local optimum to the proposed local optimum is not possible, as it requires
parameter changes that temporarily worsen the training loss.

The solution used to solve this challenge is to pretrain the GGSNN on 7 features per node.
The 7th feature in this case is a smudged version of the actual label. The smudged labels
are constructed by randomly subtracting values between 0 and 1 from the true labels,
which are represented by ones, and randomly adding values between 0 and 1 to the false
labels, which are represented by zeros. The true positive and true negative rate of the
smudged labels can be adjusting by choosing specific PDFs for the random samplings. By
using this training method the network already uses the 7th feature and the interpretation
when actually using the GHGSNN output as the 7th feature does not change. Another,
possibly simpler, solution is to append all Hypergraph classifications to the data set and
use an untrained GGSNN for the training. However, from a programming perspective it is
much simpler to evaluate the Hypergraph during runtime. This also has the additional
benefit of allowing for further training of the GGSNN.

Looking at the evolution of validation data in Figure 5.3 reveals that there are major sources
of instability during training. One source definitely is the large number of parameters, as
the model uses two Sequence Neural Networks which each contain many parameters.

The test results of the combination design in Table 5.5 show great improvements compared
to the previous networks with a 2/2 classification rate of 54.35 % on the test set. Compared
to the final 2/2 classification rate from [4] of 53.49 % this is a performance increase of
0.86 %.

5.3.2 Addition Design

The final addition design, as defined in section 3.6.1, used the GGSNN and the GHGSNN as
the merged networks. The training of the network started with a very high 2/2 classification
rate, as both networks were already pretrained on the same training data. The training of
the full design has major instabilities as the loss only rises after epoch 10 until the early
stopping algorithm stops the training in epoch 34. As in the combination design a probable
reason for the instability is the huge number of learnable parameters and a slight mismatch
between the loss function and the actual optimization goal, the 2/2 classification rate.

39

40 5 Results

0 5 10 15
epochs

0.515

0.520

0.525

0.530
2/

2
pe

rc
en

ta
ge

0 5 10 15
epochs

0.72

0.74

0.76

0.78

0.80

0.82

lo
ss

Validation data of a Network using the combination design

Figure 5.3: Performance of the best network using the combination design on validation
data during training. The peak performance of is already reached in epoch 9
and the training has major instabilities.

0/2 percentage 1/2 percentage 2/2 percentage TNR TPR Test Loss
6.24% 35.69% 58.07% 93.03% 75.91% 0.68

Table 5.6: Performance of the best network using the addition design. Shown are 0/2, 1/2,
2/2 percentage, the true negative rate, the true positive rate and the loss.

The test result of the best performing addition design in Table 5.6 is considered to be an
outlier, as the 2/2 classification rate on the validation set is only 54.16%. Other than that
the results show a great improvement compared to any other tested network.

40

5.3 Merging Study 41

0 10 20 30
epochs

0.515

0.520

0.525

0.530

0.535

0.540

2/
2

pe
rc

en
ta

ge

0 10 20 30
epochs

0.74

0.75

0.76

0.77

0.78

0.79

0.80

lo
ss

Validation data of a Network using the addition design

Figure 5.4: Performance validation data during training of the best network using the
addition design. The 2/2 classification rate (left) rises as expected except for
the large drop at epoch number 10. The training of the loss function (right) is
very unstable, as the loss actually only becomes larger after about epoch 10.
As the loss only rises, the early stopper stops the training at epoch 34.

41

6 Summary and Outlook

The primary objective of the study has always been the tt + bb process with the underlying
goal of making a contribution to further the understanding of the Higgs Boson and QCD in
proton-proton collisions at the LHC. The challenge of comprehending the tt+bb process lies
within the identification of additional b jets which are not a result of top decays. Previous
studies on this subject have already been done. The most recent study [4] implemented a
GNN design and found the best performing layer, the GGSNN.

The key work of the study was the practical implementation of the improvement measures for
additional b jet classification. Beginning with the implementation of Bayesian optimization
that set the foundation for later improvements. The initial goal of implementing Bayesian
optimization was to optimize the GGSNN performance. This led to expanding the idea of
hyperparameters and creating new ones. However this did not have a direct impact on the
performance of the GGSNN. As a consequence, a deeper look into the base data was taken.

With the goal of optimizing the GGSNN, the Graph data structure was adjusted. To
reduce the effect of oversmoothing, Graph edges were disconnected based in the Δ𝑅. This
also did not lead to an improvement of the 2/2 classification rate, the rate with which both
additional b jets are correctly assigned.

Instead of further trying to optimize the GGSNN, a new idea was necessary: the previously
very performant invariant mass difference to the top quark had no way of being implemented
within a Graph structure. Thus, a new data structure was proposed: the hypergraph. The
hypergraph by itself did not lead to the intended improvement of the 2/2 classification.
Actually, it performed much worse than expected. The first idea was to extend the
functionality of the previously best performing GGSNN to allow for hypergraph inputs.
However, this did not only lead to the construction of the GHGSNN layer but revealed
that any Graph layer can be used to evaluate Hypergraph input data by applying the
transformation developed in this thesis. The GHGSNN in combination with the Bayesian
optimization led to a much better 2/2 classification rate, which has previously not been
achieved without directly using Δ𝑅 values.

Nonetheless, even the best performing GHGSNN could not outperform the GGSNN and
the GGSNN itself could not be improved. Taking a new perspective allowed to see both
designs as part of a new design combining any number of models. The introduction of
the combination and addition design allowed to finally increase the previously best 2/2

43

44 6 Summary and Outlook

classification rate by 0.86 %. This is a big improvement considering the many previous
studies that already went into exploration of this topic.

The next possible steps for further improvements include the correction of the loss function.
Because even with an adapted class weight scalar, the loss function in this study is not as
strongly correlated to the 2/2 classification rate as it should be. As the network performance
is only optimized with regard to the loss function, improvements to the loss function directly
benefit the training and the stability of the training. Other than that the performance can
be improved by finding more different methods of classification and merging them with the
previously obtained networks.

44

Bibliography

[1] CMS Collaboration. “Observation of a new boson at a mass of 125 GeV with
the CMS experiment at the LHC”. In: Physics Letters B 716.1 (2012), pp. 30–
61. doi: https://doi.org/10.1016/j.physletb.2012.08.021. url: https:
//www.sciencedirect.com/science/article/pii/S0370269312008581.

[2] ATLAS Collaboration. “Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC”. In: Physics Letters B 716.1
(2012), pp. 1–29. issn: 0370-2693. doi: https://doi.org/10.1016/j.physletb.
2012.08.020. url: https://www.sciencedirect.com/science/article/pii/
S037026931200857X.

[3] E. Pfeffer. “Studies on tt+bb production at the CMS experiment”. ETP-KA/2021-01.
MA thesis. Karlsruhe Institute of Technology (KIT), 2021.

[4] T. Halenke. “Studien zu Graph Neural Networks in tt + bb- Prozessen am CMS-
Experiment”. BA thesis. ETP-BACHELOR-KA/2021-13. Karlsruhe Institute of
Technology (KIT), 2021.

[5] B. Povh. Teilchen und Kerne : Eine Einführung in die physikalischen Konzepte.
Ed. by K. Rith et al. Berlin, Heidelberg, 2014. url: http://swbplus.bsz-bw.de/
bsz39819646xcov.jpghttps://doi.org/10.1007/978-3-642-37822-5.

[6] Representation of the Standard Model of particle physics. https://en.wikipedia.
org/wiki/Standard_Model. Accessed: 2022-13-02.

[7] Image of the CERN complex. https://cds.cern.ch/record/2684277/files/CCC-
v2019-final-white.png?subformat=icon-1440. Accessed: 2022-13-02.

[8] Transverse slice of the CMS experiment. https://cds.cern.ch/record/2205172l.
Accessed: 2022-13-02.

[9] “Performance of the DeepJet b tagging algorithm using 41.9/fb of data from proton-
proton collisions at 13TeV with Phase 1 CMS detector”. In: (Nov. 2018). url:
https://cds.cern.ch/record/2646773.

[10] E. Fiesler. “Neural Network Classification and Formalization”. In: Computer Standards
Interfaces 16 (1994), pp. 231–239.

[11] K. He et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.03385
[cs.CV].

[12] R. J. Trudeau. Introduction to graph theory. Dover ed. Dover books on advanced
mathematics. New York, NY: Dover Publ., 1993, pp. 19–21. isbn: 0486678709.

[13] T. N. Kipf and M. Welling. Semi-Supervised Classification with Graph Convolutional
Networks. 2017. arXiv: 1609.02907 [cs.LG].

[14] S. Bai, F. Zhang, and P. H. S. Torr. Hypergraph Convolution and Hypergraph Attention.
2020. arXiv: 1901.08150 [cs.LG].

45

https://doi.org/https://doi.org/10.1016/j.physletb.2012.08.021
https://www.sciencedirect.com/science/article/pii/S0370269312008581
https://www.sciencedirect.com/science/article/pii/S0370269312008581
https://doi.org/https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/https://doi.org/10.1016/j.physletb.2012.08.020
https://www.sciencedirect.com/science/article/pii/S037026931200857X
https://www.sciencedirect.com/science/article/pii/S037026931200857X
http://swbplus.bsz-bw.de/bsz39819646xcov.jpghttps://doi.org/10.1007/978-3-642-37822-5
http://swbplus.bsz-bw.de/bsz39819646xcov.jpghttps://doi.org/10.1007/978-3-642-37822-5
https://en.wikipedia.org/wiki/Standard_Model
https://en.wikipedia.org/wiki/Standard_Model
https://cds.cern.ch/record/2684277/files/CCC-v2019-final-white.png?subformat=icon-1440
https://cds.cern.ch/record/2684277/files/CCC-v2019-final-white.png?subformat=icon-1440
https://cds.cern.ch/record/2205172l
https://cds.cern.ch/record/2646773
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1901.08150

46 Bibliography

[15] J. Bergstra, D. Yamins, and D. Cox. “Making a Science of Model Search: Hyper-
parameter Optimization in Hundreds of Dimensions for Vision Architectures”. In:
Proceedings of the 30th International Conference on Machine Learning. Ed. by S.
Dasgupta and D. McAllester. Vol. 28. Proceedings of Machine Learning Research 1.
Atlanta, Georgia, USA: PMLR, 2013, pp. 115–123.

[16] J. Bergstra et al. “Algorithms for Hyper-Parameter Optimization”. In: Advances in
Neural Information Processing Systems. Ed. by J. Shawe-Taylor et al. Vol. 24. Curran
Associates, Inc., 2011. url: https://proceedings.neurips.cc/paper/2011/file/
86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

46

https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

Acronyms

CDF cumulative density function. 29

CMS Compact Muon Solenoid. 4, 6

DNN Deep Neural Network. 1, 12, 25, 38

EI expected improvement. 28, 29

GGSNN Gated Graph Sequence Neural Network. 17, 22, 23, 31–33, 35, 37, 39, 43

GHGSNN Gated Hypergraph Sequence Neural Network. 22, 23, 31, 37–39, 43

GNN Graph Neural Network. 1, 15–17, 25, 32, 43

GP Gaussian Process. 28, 29, 35

LHC Large Hadron Collider. 4, 43

MET missing transverse energy. 6

MPNN Message Passing Neural Network. 16, 17, 20, 21

MSE Mean Squared Error. 10

NN Neural Network. 9, 10, 12, 13, 15–17, 19–22, 25, 29, 30, 39, 49

PDF probability density function. 29, 39

SM Standard Model. 1, 3, 4

SMBO Sequential Model-based Global Optimization. 25, 26, 28

TNR True negative rate. 37–40

TPE Tree-structured Parzen Estimator. 26, 28, 29, 31, 35

TPR True positive rate. 37–40

47

Appendix

A Proofs and Algorithms

A.1 Reason for the need of an activation function

Proof. Assume a Neural Network with a single hidden layer, the activation function 𝜎 and
no bias:

x ∈ R𝑙
0
, h ∈ R𝑙

1
, y ∈ R𝑙

2
, 𝜃1 ∈ R𝑙

0×𝑙1 , 𝜃2 ∈ R𝑙
1×𝑙2 (6.1)

Thus the feedforward calculation becomes,

h = 𝜎
(︁
x · 𝜃1

)︁
and y = 𝜎

(︁
h · 𝜃2

)︁
(6.2)

hence,

y = 𝜎
(︁
x · 𝜃1

)︁
· 𝜃2 (6.3)

If the activation function is linear, the output y simplifies to

y = x · 𝜃1 · 𝜃2 = x · 𝜃* (6.4)

which is the same as a linear model i.e. a network without hidden layers.

A.2 The gradient is the direction of steepest ascent

Proof. Let u be a unit vector and 𝑓(x) a multivariate, differentiable function. The
directional derivative is:

grad(𝑓(x)) · u = |grad(𝑓(x))| |u| cos (𝜃) (6.5)
= |grad(𝑓(x))| cos (𝜃) (6.6)

This expression is maximized if cos (𝜃) = 1, meaning that u has to point in the same
direction as grad(𝑓(x)) for the steepest ascend, thus grad(𝑓(x)) is the direction of steepest
ascend.

49

50 6 Appendix

A.3 Graph layers can be used to evaluate Hypergraphs

Assertion: A weighted adjacency matrix A can be constructed from the incidence matrix
H and the weights W of a hypergraph.

An algorithm is suggested for the conversion of Graphs to Hypergraphs. There is not
just one way to implement such a conversion. This specific conversion tries to mimic the
functionality of the Hypergraph as close as possible. Let ℋ be a Hypergraph with the
vertex set 𝑉 = {1, 2, 3, 4, 5, 6}, hyperedge set E = {{1, 2, 3}, {1, 2, 4}, {3, 4, 5}} and the
hyperedge weights W = diag (0.2, 0.8, 0.4), as represented in Figure 3.8.

1. The hyperedges connect every vertex within themselves, therefore, when converting
this to a Graph, every connection of pairs of the nodes from the hyperedges must be
made. These connections have the same weights as the hyperedge they stem from.
When applying this step, the first hyperedge of the Hypergraph {1, 2, 3}, turns into
{{1, 2}, {1, 3}, {2, 3}} with the edge weights (0.2, 0.2, 0.2).

2. As the hyperedges do not have directions, the inverse connections must also be made.
They have the same edge weights as the original hyperedge.
The edges {{1, 2}, {1, 3}, {2, 3}} are inverted to {{2, 1}, {3, 1}, {3, 2}} and retain the
same edge weights (0.2, 0.2, 0.2).

3. Every hyperedge also connects the vertices with themselves, therefore self loops for
the respective vertices have to be added.
The first hyperedge contains the vertices 1, 2 and 3. Therefore the self loops
[{1, 1}, {2, 2}, {3, 3}] are constructed with the edge weights (0.2, 0.2, 0.2).

4. The results of step (1) to (3) are appended into an ordered edge vector c and a vector
with the corresponding weights wc.

5. The vector c can contain duplicate entries. The weights of duplicate entries are
summed to still retain all weights. Then duplicate entries are removed in c until all
only one of the duplicate entries is left. As order matters, it is crucial that when
removing the 𝑖-th component in c, the 𝑖-th component of c𝑤 is also removed. The
resulting vectors are called e and e𝑤.
Part of c for the Hypergraph ℋ is ({1, 2}, {1, 3}, {2, 3}, {1, 2}) with the edge weights
(0.2, 0.2, 0.2, 0.8), applying the transformation yields ({1, 2}, {1, 3}, {2, 3}) with the
edge weights (1, 0.2, 0.2).

6. The adjacency matrix A is initialized as a matrix of zeros of the dimension 𝑣 × 𝑣.
Now, the 𝑖-th entry of e contains the row and column of the matrix A where the
value is set to the 𝑖-th entry of e𝑤.
Assuming e = ({1, 2}, {2, 3}, {2, 1}, {3, 2}, {1, 1}, {2, 2}, {3, 3}), 𝑣 = 4 and e𝑤 =
(0.4, 0.7, 0.4, 0.7, 0.4, 1.3, 0.7) yields the weighted adjacency matrix A, which is exactly
the same as the multiplication of HWH⊺:

A =

⎛⎜⎜⎜⎝
0.4 0.4 0 0
0.4 1.3 0.7 0
0 0.7 0.7 0
0 0 0 0

⎞⎟⎟⎟⎠ . (6.7)

50

	Contents
	1 Introduction
	2 Theoretical foundations
	2.1 The Standard Model
	2.2 LHC and CMS
	2.3 tt+bb process
	2.4 Data Basis

	3 Graph Neural Networks
	3.1 Neural Networks
	3.2 Graphs
	3.3 Graph Neural Networks
	3.4 Hypergraphs
	3.5 Hypergraph Neural Networks
	3.6 Network Merging

	4 Bayesian Optimization
	4.1 Motivation
	4.2 Loss Function Model
	4.3 Acquisition Function
	4.4 Implementation

	5 Results
	5.1 Advanced GGSNN Studies
	5.2 Hypergraph Study
	5.3 Merging Study

	6 Summary and Outlook
	Bibliography
	Appendix
	A Proofs and Algorithms

