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Abstract

In light of the large quantity of data collected during the second operational run of the
Large Hadron Collider (LHC) at CERN, which has made it possible to perform mea-
surements at unprecedented energies with a high degree of statistical precision, the
necessity of understanding and constraining the systematic effects on such measure-
ments has become increasingly important. Precision measurements of jet observables
in proton-induced collisions have proven instrumental in constraining the parton dis-
tribution functions (PDFs) which describe the internal structure of protons, and which
remain one of the largest sources of uncertainty in many analyses performed at hadron
colliders.

This thesis presents the first triple-differential measurement of the dijet production cross
section performed in proton-proton collisions at a center-of-mass energy of 13 TeV, based
on a data sample of 35.9 fb−1 recorded by the CMS experiment at the Large Hadron Col-
lider at CERN. The cross section is measured using anti-𝑘T jets with radius parameters
of 𝑅 = 0.4 and 𝑅 = 0.8 as a function of the dijet rapidity separation 𝑦∗, the total boost of
the dijet system 𝑦b, and either the average transverse momentum ⟨𝑝T⟩1,2 or the invari-
ant mass 𝑚jj of the dijet system as the third variable. This choice of rapidity variables
exploits the topology of the dijet system to achieve an increased sensitivity to the proton
PDFs.

After accounting for detector-induced systematic effects in a three-dimensional unfold-
ing procedure, the measured spectra are compared to fixed-order theory predictions at
next-to-next-to-leading order accuracy in perturbative quantum chromodynamics, ob-
tained using several recent PDF sets. While the data are observed to be described by the
theory within the experimental and theoretical uncertainties across a large portion of
the phase space, potentially significant deviations are observed in areas where a height-
ened sensitivity to the PDFs is expected.
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1 Introduction

1 Introduction

The question of the fundamental nature of reality has been a source of fascination for
philosophers and scientists alike, who have long engaged in observation and deductive
reasoning in order to explain the principles behind physical phenomena. In particular,
the study of the subatomic world in high-energy particle collisions has proved successful
at probing these phenomena in unprecedented detail, establishing the Standard Model
of particle physics as one of the most accurate and thoroughly tested scientific theories.

This achievement would not have been possible without the wealth of experimental data
recorded by collider experiments during the last decades at ever-increasing energies.
At the Large Hadron Collider (LHC), the largest and most powerful particle accelerator
built to date, protons are brought to collision at center-of-mass energies in the TeV range.
In these collisions, the protons disintegrate, giving rise to hundreds of new particles,
which are then recorded with the help of particle detectors.

Between 2015 and 2018, over 150 inverse femtobarns of data from proton collisions at
a center-of-mass energy of 13 TeV were collected by the CMS experiment at the LHC.
The large amount of data, which corresponds to roughly five times that collected at 7
and 8 TeV during the earlier data taking periods, highlights the importance of gaining
a precise understanding of the experimental and theoretical uncertainties, which are
becoming the limiting factor in many analyses. At the same time, it provides an excellent
premise for the precision measurements required to further constrain the underlying
systematic uncertainties.

One of the largest sources of uncertainty at the LHC is due to the composite nature of
protons, which are bound systems of quarks and gluons held together by the strong
interaction. Despite the well-established description of the strong interaction given by
the theory of quantum chromodynamics (QCD), the proton structure, as described by
the parton distribution functions (PDFs), cannot be derived from first principles in the
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1 Introduction

framework of perturbative QCD, and must instead be determined from the comparison
of experimental data to predictions obtained from theoretical models.

Jet observables in hadron-induced processes are particularly well-suited for this pur-
pose, with the abundance of jets at hadron colliders making precise differential mea-
surements of the jet cross section possible across a wide kinematic range. This is further
supported by recent progress made in calculating theory predictions for these processes
at next-to-next-to-leading order (NNLO) in perturbative QCD [11–33].

The analysis presented in this thesis concerns a triple-differential measurement of the
dijet production cross section as a function of three variables: the dijet rapidity separa-
tion 𝑦∗, the total boost of the dijet system 𝑦b, and a third kinematic variable, chosen to be
either the average transverse momentum of the two jets ⟨𝑝T⟩1,2 or their invariant mass
𝑚jj.

This choice of rapidity variables is particularly advantageous for PDF determinations,
since it enables a better separation of the two main effects that contribute to the overall
cross section: while 𝑦∗ is representative of the scattering angle in the dijet rest frame,
and thus mainly determined by the scattering matrix element, 𝑦b is determined by the
fractions 𝑥 of the scattering parton momenta, and is thus sensitive to the PDFs.

The enhanced constraining power of such triple-differential measurements was explored
in pioneering studies [44, 55] using the CMS 8 TeV data. In a systematic comparison of jet
data sets from multiple experiments to NNLO theory predictions, a recent analysis [66]
revealed the measurement to have a significant contribution to the PDF determination.
This underscores the renewed interest in such measurements at higher energies and
with larger data sets, extending the accessible phase space and enhancing the statistical
precision.

In the following chapters, the theoretical and experimental aspects relevant for the mea-
surement are introduced. An overview of the theoretical background is given in chap-
ter 22, introducing the Standard Model of particle physics and the basic concepts of QCD.
This is complemented by a discussion of the theoretical tools used to model scattering
processes at hadron colliders, with a particular emphasis placed on jets.

Chapter 33 presents the experimental setup, providing a description of the Large Hadron
Collider and the CMS detector. In chapter 44, the experimental techniques employed at
CMS for the reconstruction and calibration of jets are described.

The main cross section measurement is presented in chapter 55, providing a detailed
description of the analyzed data samples, the selection of events and the reconstruction
of the triple-differential dijet spectrum. A three-dimensional unfolding procedure is
used to correct the measurement for detector effects, and the systematic uncertainties on
the measurement are studied. The unfolded cross sections are compared to simulations
and fixed-order perturbative QCD calculations at NNLO.

2



2 Theoretical foundations

2 Theoretical foundations

The endeavor to describe the fundamental nature of matter and provide an explanation
for physical phenomena in a unified theory has been the driving force behind many sci-
entific advances in the field of particle physics. Developed over the course of many years
in the latter part of the 20th century, the Standard Model of particle physics provides an
understanding of these phenomena in terms of elementary particles and the fundamen-
tal interactions between them: the strong, weak and electromagnetic interactions.

Of these, the strong interaction described by the theory of quantum chromodynamics
(QCD) is perhaps the most intriguing, describing hadrons such as the protons and neu-
trons in atomic nuclei as composite systems comprised of color-charged quarks and glu-
ons, which cannot be observed in isolation. When separated from their parent hadrons
in high-energy interactions, these particles fragment and recombine to a multitude of
hadrons, concentrated in bundled streams called jets, whose experimental observation
was instrumental in developing an understanding of the strong interaction.

In this chapter, the theoretical concepts developed as part of the Standard Model are in-
troduced, beginning with a brief overview of the particles and interactions in section 2.12.1.
Section 2.22.2 reviews the quantum field theory of quantum chromodynamics (QCD), starting
with the Lagrangian formulation and the perturbative framework of calculating predic-
tions for observables. The particular properties of QCD such as asymptotic freedom
and confinement are discussed, touching upon the topics of renormalization and the
running of the strong coupling. In addition, the parton model of hadrons is discussed,
introducing the formalism of collinear factorization for the calculation of observables
in hadron collisions, and the description of the proton structure in terms of parton dis-
tribution functions (PDFs). More detailed introductions on these topics can be found in
references [77–1010]. Finally, section 2.32.3 discusses jets as essential tools for the study of
QCD and introduces the aspects of Monte Carlo event generation relevant for the mod-
eling of jet observables.
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Figure 2.1 – Overview of the particles of the Standard Model.

2.1 The Standard Model

The Standard Model (SM) of particle physics is a unified theoretical model that describes
the elementary particles and their interactions based on the fundamental principles es-
tablished by quantum field theory (QFT). In this framework, particles emerge as local-
ized excitations of underlying quantum fields, which extend throughout all spacetime.
The properties of these particles and their interactions arise from the fundamental sym-
metries of these fields. With the notable exception of gravity, the SM provides a descrip-
tion of the remaining known fundamental forces: the electromagnetic, strong and weak
interactions.

Particles in the SM are divided into categories based on their quantum numbers, which
characterize their participation in the fundamental interactions. The fermions, which
have half-integer spin, are the fundamental constituents of matter and are further sub-
divided into the strongly-interacting quarks and the leptons, which do not participate in
the strong interaction. They are arranged into three generations or families, with particles
within each generation distinguished by their electric charge, and the masses of particles
generally increasing with each generation.

The particles with full-integer spins are called bosons and comprise the four mediator
particles associated with the fundamental interactions called the gauge bosons, and the
scalar Higgs boson. For every particle there is a corresponding antiparticle with identical
properties, but opposite electric charge, with some particles being their own antiparti-
cles. A representation of the Standard Model particles can be seen in figure 2.12.1.
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2 Theoretical foundations

As in classical field theory, the dynamic evolution of fields is described by equations of
motion derived via the Euler-Lagrange formalism from a postulated Lagrangian density.
For a relativistic, noninteracting quantum field theory, the fermionic fields with a spin of
1/2 are subject to the Dirac equation, while scalar (spin-0) fields obey the Klein-Gordon
equation. Interactions between the fields are introduced through the principle of local
gauge invariance. Requiring that the SM Lagrangian remain invariant under local gauge
transformations leads to the introduction of gauge fields, which couple to the others,
resulting in a full interacting theory.

The mathematical structure of the symmetries associated with the fundamental interac-
tions in the SM are described by the composite Lie group denoted SU(3) × SU(2) × U(1).
The SU(3) component describes the strong interaction, which affects particles that carry
color charge. The theory of these interactions is called quantum chromodynamics (QCD)
and is described in more detail the following section.

The remaining two components describe the unified electroweak interaction, which is
associated with an SU(2)×U(1) symmetry. However, directly imposing such a symmetry
would require the electroweak gauge bosons to be massless, which is contrary to the
observation of the large W and Z boson masses.

Instead, these bosons acquire mass dynamically through the Brout–Englert–Higgs mecha-
nism [1111, 1212] by coupling to an underlying scalar SU(2) field called the Higgs field. Due to
the nonzero vacuum expectation value of this field, the electroweak symmetry is sponta-
neously broken, resulting in three massive vector bosons, corresponding to three of the
four degrees of freedom of the Higgs field. The fourth vector boson, the photon, does
not gain a mass, resulting in the U(1)em symmetry associated with the electromagnetic
interaction. Instead, the remaining degree of freedom gives rise to a real scalar field,
which manifests itself as the physical Higgs boson, whose discovery at the LHC in 2012
[1313, 1414] provided experimental confirmation of the last remaining particle predicted by
the Standard Model.

2.2 Quantum chromodynamics (QCD)

The interaction of color-charged particles such as quarks and gluons by means of the
strong force is described by the theory of quantum chromodynamics (QCD). Mathemati-
cally, QCD is a gauge theory whose interaction structure is described by the nonabelian
Lie group SU(𝑁C), where 𝑁C = 3 refers to the number of color charges. Summing over
repeated indices, the QCD Lagrangian can be written as:

ℒ = ∑
𝑞

𝜓𝑞,𝑎 (i 𝛾𝜇𝜕𝜇𝛿𝑎𝑏 − 𝑔s𝛾𝜇𝑡𝐶
𝑎𝑏𝒜𝐶

𝜇 − 𝑚𝑞𝛿𝑎𝑏) 𝜓𝑞,𝑏 − 1
4𝐹𝐴

𝜇𝜈𝐹𝐴𝜇𝜈 (2.1)

In the above, the quark fields are represented by the spinors 𝜓𝑞,𝑎, with the sum running
over each of the six quark flavors 𝑞. The indices 𝑎 and 𝑏 run from 1 to 𝑁C and refer to

5



2 Theoretical foundations

the distinct color states occupied by quarks. The 𝛾𝜇 denote the Dirac matrices. Gluons
are represented by the vector fields 𝒜𝐶

𝜇 , where 𝐶 runs from 1 to 𝑁2
C − 1 = 8, and 𝑡𝐶

𝑎𝑏 are
the 8 generators of the SU(3) group. The quantity 𝑔s is the coupling constant, which is a
dimensionless parameter that determines the strength of QCD interactions, and 𝛿𝑎𝑏 is
the Kronecker symbol.

The gluon field strength tensor 𝐹𝐴
𝜇𝜈 is given by

𝐹𝐴
𝜇𝜈 = 𝜕𝜇𝒜𝐴

𝜈 − 𝜕𝜈𝒜𝐴
𝜇 − 𝑔s 𝑓 𝐴𝐵𝐶 𝒜𝐵

𝜇 𝒜𝐶
𝜈 , (2.2)

with 𝑓 𝐴𝐵𝐶 denoting the structure constants of the group, which determine the relation
between the group generators and their commutators:

[𝑡𝐴, 𝑡𝐵] = i 𝑓 𝐴𝐵𝐶 𝑡𝐶 (2.3)

Since SU(3) is a nonabelian group, the above commutators do not vanish and the associ-
ated structure constants are nonzero. This results in a net color charge for gluons, which
in turn leads to an interaction of the gluon field with itself. This distinguishes QCD from
other, abelian quantum field theories such as quantum electrodynamics (QED), where
the gauge field quanta – the photons – are electrically neutral.

The implications of color-charged field quanta for the behavior of strongly interacting
systems can be understood in terms of a polarization of the vacuum in the presence of
a color-charged particle. As in QED, where a bare electric charge is screened by the cre-
ation of virtual electron–positron pairs from the vacuum, virtual quark–antiquark pairs
lead to a screening of color charge. However, since gluons carry color charge them-
selves, the additional polarization contribution from gluons leads to an antiscreening
effect, thereby enhancing the effective charge.

The magnitude of this effect depends on the energy scale of the interaction. At high ener-
gies, which correspond to short distance scales, the screening of color charges predomi-
nates, meaning that quarks behave essentially as free particles. This is called asymptotic
freedom.

Conversely, as the energy scale decreases (or, equivalently, at high distances), antiscreen-
ing becomes the dominant contribution, leading to an increase in the effective charge.
This is related to a second notable property of QCD called color confinement, which pre-
vents particles that carry color charge from existing as individual free particles. Instead,
quarks and gluons are confined to color-neutral bound states called hadrons. When
bound quarks are separated from each other, the energy density of the mediating field
increases with distance so that it becomes energetically more favorable for additional
color-charged particles to be created from the vacuum. In the context of high-energy
scattering of hadrons, the fragmentation of quarks and gluons and subsequent recom-
bination to color-neutral objects produces showers of hadronic particles called jets.

6



2 Theoretical foundations

2.2.1 Observables in perturbative QCD

To make predictions of physical observables, it is necessary to solve the equations of
motion obtained from the Lagrangian. However, for the full interacting theory, these
cannot be solved analytically, requiring instead a perturbative approach. Observables
in perturbative QCD (pQCD) are expressed as a power series in the strong coupling
constant 𝛼s, which is defined in terms of the coupling 𝑔s in the Lagrangian:

𝛼s = 𝑔2
s

4𝜋 (2.4)

The pQCD prediction of an observable 𝑋, at a fixed order 𝑁 in 𝛼s, is given by the 𝑁-th
partial sum of the perturbative expansion,

𝑋(𝑁) =
𝑁

∑
𝑘=0

𝑐𝑘 𝛼𝑘
s , (2.5)

and is referred to as being at leading order (LO) if 𝑁 is the smallest integer for which
the perturbative coefficient 𝑐𝑁 is nonzero. Higher-order predictions are said to be at
next-to-leading order (NLO), next-to-next-to-leading order (NNLO), and so on.

Among the most common observables are scattering cross sections, defined in terms
of the initial and final states of the scattering process. In the quantum formulation of
scattering theory, these are modeled via the 𝑆-matrix, which codifies the transition am-
plitudes between these states. The transition probability between a given initial and
final state is given by the square of the corresponding 𝑆-matrix element. For a given ini-
tial state, and the overall cross section is obtained by Fermi’s golden rule by integrating
the transition probability over the space of available final states (commonly referred to
as the phase space).

When final states are described in terms of a characteristic variable (or set of variables)
𝑥, several types of cross section can be distinguished. They are said to be inclusive in 𝑥
if the phase space integration is carried out over all possible final states with respect to
𝑥. Conversely, if 𝑥 is restricted to particular values, the corresponding cross sections are
said to be exclusive in 𝑥. For differential cross sections with respect to 𝑥, the integration
over 𝑥 is not carried out, expressing instead the differential rate of change in the cross
section as a function of an infinitesimal change d𝑥.

An essential component of cross section predictions is the calculation of the 𝑆-matrix
elements. In the perturbative framework, the contributions to the 𝑆-matrix can be de-
rived from the interaction Lagrangian through a set of prescriptions known as Feynman
rules, which lead to a representation of these contributions as so-called Feynman diagrams.
These are constructed out of basic elements such as external legs, which correspond to
the initial and final state particles, propagators, which represent the exchange of virtual
particles, and vertices, which represent the particle interactions.

7
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Feynman diagrams embody a calculation prescription for the scattering amplitude of
perturbative contributions, essentially involving the integration over internal degrees
of freedom such as virtual particle momenta while enforcing momentum conservation
at the vertices, each of which contributes to the amplitude with a factor corresponding
to the Lagrangian coupling 𝑔. Due to the latter fact, the diagrams are organized natu-
rally by the order in perturbation theory, which is determined based on the number of
vertices.

2.2.2 Renormalization

Beyond leading order, loops may appear in the perturbative calculations, for instance
due to virtual particles being emitted and reabsorbed by propagators or external legs.
A particularity of loops are the unconstrained momenta, which need to be integrated
over the entire spectrum, resulting in so-called ultraviolet divergences. To obtain finite
predictions at higher orders in perturbation theory, the divergences must be removed
in a procedure known as renormalization.

The premise of renormalization lies in the conceptualization of the quantities in the La-
grangian, such as masses or couplings, as unobservable or bare quantities, which result
in the infinities discussed before when handled in the context of perturbation theory.
To avoid this, the Lagrangian is first rewritten in terms of observable or renormalized
quantities, additionally introducing so-called counterterms to recover the original bare
Lagrangian. These are defined in such a way as to reflect the divergent contributions at
all orders in perturbation theory, which can then be subtracted order by order to obtain
finite predictions.

An important part of this process consists in expressing divergent amplitudes as the
limits of finite expressions with respect to an additional parameter called the regulator,
allowing them to be manipulated algebraically in a consistent way. In the context of
UV divergences, one possible regulator is given by the introduction of a physical cutoff
scale Λ as the upper bound of the amplitude integration, recovering the divergence in
the limit Λ → ∞. A more widely-used approach called dimensional regularization instead
makes use of the fact that divergent amplitudes in four-dimensional spacetime generally
converge for higher dimensionalities 4 + 𝜀, allowing the divergence to be regulated by
taking the limit 𝜀 → 0.

The subtraction is then performed by removing the dependence of the predictions on
the explicit regulator according to a specific prescription or subtraction scheme. A variety
of such schemes exist, of which the most common in the context of QCD is the modified
minimal subtraction scheme, also referred to as the ”MS-bar” scheme (MS) [1515–1717].

8
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36 9. Quantum Chromodynamics

world average, we first combine six pre-averages, excluding the lattice result, using a χ2 averaging
method. This gives

αs(M2
Z) = 0.1176± 0.0011 , (without lattice) . (9.24)

This result is fully compatible with the lattice pre-average Eq. (9.23) and has a comparable error.
In order to be conservative, we combine these two numbers using an unweighted average and take
as an uncertainty the average between these two uncertainties. This gives our final world average
value

αs(M2
Z) = 0.1179± 0.0010 . (9.25)

αs(MZ
2) = 0.1179 ± 0.0010

α
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Q
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Figure 9.5: Summary of measurements of αs as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of αs is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

This world average value is in very good agreement with the last version of this Review, which
was αs(M2

Z) = 0.1181 ± 0.0011, with only a slightly lower central value and decreased overall

6th December, 2019 11:50am

Figure 2.2 – Running of the strong coupling 𝛼s, as determined in a fit to experimental
results across a wide range of energy scales. Taken from [1010]

Running coupling

A side effect of the renormalization procedure is the introduction of an additional energy
scale to the problem, called the renormalization scale 𝜇R. In dimensional regularization, it
arises from the need to redefine the coupling in a higher-dimensional theory to ensure it
remains dimensionless while preserving the overall mass dimension of the Lagrangian.

As a result, all renormalized quantities such as the particle masses or the coupling con-
stant, become dependent on the choice of the renormalization scale. However, since
this is an arbitrary parameter, physical observables cannot depend on its value. This
requirement imposes a restriction on the dependence of the coupling constant 𝛼s on the
energy scale of an interaction.

Introducing a formal dependence of an observable 𝑋 at an interaction scale 𝑄 on the
renormalization scale 𝜇R, this is expressed via the renormalization group equation (RGE):

𝜇2
R

d
d𝜇2

R
𝑋 ⎛⎜

⎝
𝑄2

𝜇2
R

, 𝛼s
⎞⎟
⎠

= 𝜇2
R

𝜕
𝜕𝜇2

R
𝑋 + 𝜇2

R
𝜕𝛼s
𝜕𝜇2

R

𝜕
𝜕𝛼s

𝑋 = 0 (2.6)
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The two terms above can be represented more compactly by expressing the renormal-
ization scale dependence of 𝑋 as a function of the logarithm 𝜏 with respect to the inter-
action scale 𝑄, and introducing the beta function 𝛽(𝛼s), which encodes the dependence
of 𝛼s itself on the renormalization scale:

𝜏 = log
𝑄2

𝜇2
R

, 𝛽(𝛼s) = 𝜇2
R

𝜕𝛼s
𝜕𝜇2

R
(2.7)

The RGE then becomes
𝜕

𝜕𝜏 𝑋 = 𝛽(𝛼s)
𝜕

𝜕𝛼s
𝑋 , (2.8)

indicating that the energy scale dependence of 𝑋 is defined entirely by the renormal-
ization scale dependence of 𝛼s encoded by the beta function. The equation is solved by
introducing a running coupling 𝛼s(𝑄), given by:

𝛽 (𝛼s(𝑄)) = 𝜕𝛼s(𝑄)
𝜕𝜏 (2.9)

As outlined above, QCD is asymptotically free at high energies, leading to an overall
negative beta function. The calculation of 𝛽(𝛼s) can be done in perturbation theory, by
expanding it as a perturbative series in 𝛼s with the beta-function coefficients 𝑏𝑖, starting
with the 1-loop contribution at 𝛼2

s :

𝛽(𝛼s) = − (𝑏0𝛼2
s + 𝑏1𝛼3

s + 𝑏2𝛼4
s + …) (2.10)

The value of the coefficients depends on the renormalization scheme. In the MS scheme,
the first two are given by [1010]:

𝑏0 = 11𝐶𝐴 − 4𝑛𝐹𝑇𝑅
12𝜋 (2.11)

𝑏1 =
17𝐶2

𝐴 − 𝑛𝐹𝑇𝑅 (10𝐶𝐴 + 6𝐶𝐹)
24𝜋2 (2.12)

In the above, 𝑛𝐹 represents the number of active light quark flavors. Additional factors
appear that are related to the SU(3) algebra, with 𝑇𝑅 = 1/2 referring to the normalization
of the 𝑡 matrices of SU(3), and 𝐶𝐹 and 𝐶𝐴 denoting color factors associated with the
emission of gluons from a quark or another gluon, respectively. They are given as a
function of the number of colors 𝑁C as:

𝐶𝐴 = 𝑁C = 3 , 𝐶𝐹 =
𝑁2

C − 1
2𝑁C

= 4/3 (2.13)
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2.2.3 Parton distribution functions (PDFs)

Historically, measurements of scattering processes at hadron colliders have been instru-
mental in achieving an understanding of the strong interaction. Measurements of differ-
ential cross sections in deep inelastic scattering (DIS) have revealed that hadrons such
as the proton are not fundamental particles, but are instead composed of point-like con-
stituents called partons. This is consistent with the modern understanding of hadrons
as bound states of QCD composed of quarks and gluons.

This introduces an additional difficulty when calculating theoretical predictions for ob-
servables at hadron colliders. Since the hadrons that appear in the initial state are com-
posite objects, the parton-level predictions obtained in the framework of perturbative
QCD must be complemented by an additional model of the hadron structure. However,
this structure cannot be modeled using perturbative methods, since at the low energy
scale of hadrons the coupling constant becomes large.

Instead, an approach called collinear factorization is used to recover the predictive power
of perturbative calculations for hadron scattering. It consists of separating the low-
energy interactions that characterize the hadron structure from the hard scattering pro-
cess by introducing an energy threshold called the factorization scale 𝜇F. This allows the
latter to be handled in perturbative QCD on the parton level, while the former is mod-
eled using nonperturbative methods.

This is achieved by describing the low-energy part in terms of the probability of con-
stituent partons to participate in the scattering. The probability is parametrized in terms
of the energy scale 𝑄2 of the interaction and the Lorentz-invariant Bjorken 𝑥 variable,
which indicates the fraction of the total hadron momentum carried by a constituent par-
ton. In deep inelastic scattering of electrons and protons, the energy scale 𝑄2 of the
interaction is given by the magnitude of the four-momentum 𝑞𝜇 exchanged between the
electron and the constituent parton: 𝑄2 = −𝑞𝜇𝑞𝜇. Denoting the proton four-momentum
as 𝑝𝜇, the Bjorken x variable is given by:

𝑥 = 𝑄2

2𝑝𝜇𝑞𝜇 (2.14)

The resulting probability densities as a function of 𝑥 are called parton distribution func-
tions (PDFs). They are not given by the perturbative theory and must instead be deter-
mined by other means such as the comparison of theory predictions to experimental
data. The constraining of PDFs from experimental data is an active area of research,
with several sets of PDFs being published by specialized groups employing different
data sets, theory calculations and methodologies [1818–2121].

Figure 2.32.3 shows an example of PDF parametrizations, as obtained by the NNPDF3.1
analysis [1818]. The contribution of each parton flavor is parametrized separately: The
distribution of the valence up and down quarks peak at high values of 𝑥, indicating that
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these quarks carry a large fraction of the total proton momentum, while other quark
flavors – the so-called sea quarks – are predominantly found at low 𝑥. However, the
dominant contribution at low 𝑥 is from gluons.
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Figure 2.3 – Parton distribution functions (PDFs) obtained by the NNPDF3.1 analysis
for the different parton flavors. Shown are the PDF parametrizations as a function of
the momentum fraction 𝑥 at two energy scales, 𝑄2 = 10 GeV2 (left) and 𝑄2 = 104 GeV2

(right), showing the dominant contribution from gluons and sea quarks at low 𝑥, and
from the valence up and down quarks at higher momentum fractions. Taken from [1818].

In proton-proton collisions, where the initial state is given by two hadrons, the cross
section for the production of a final state 𝑋 can be factorized at each order 𝑛 in perturba-
tion theory as a double convolution of the partonic cross section �̂�(𝑛)

𝑖𝑗→𝑋 and the proton
PDFs 𝑓𝑖 and 𝑓𝑗, where 𝑖 and 𝑗 denote the constituent parton flavors. The cross section
prediction at order 𝑁 in 𝛼s is thus given by:

𝜎(𝑁)
pp→𝑋 =

𝑁
∑
𝑛=0

𝛼𝑛
s (𝜇2

R) ∑
𝑖,𝑗

∫
1

0
d𝑥1 ∫

1

0
d𝑥2 𝑓𝑖 (𝑥1, 𝜇2

F) 𝑓𝑗 (𝑥2, 𝜇2
F) �̂�(𝑛)

𝑖𝑗→𝑋 (𝑥1𝑥2𝑠, 𝜇2
R, 𝜇2

F) (2.15)

DGLAP evolution equations

In contrast to the PDF dependence on 𝑥, dependence on the energy scale 𝑄2 is con-
strained by the choice of the factorization scale 𝜇F. This is similar to the dependence
of 𝛼s on the energy scale induced by the renormalization procedure discussed in sec-
tion 2.2.22.2.2: If perturbative calculations of hadron-level observables were possible ab initio,
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the result would necessarily be independent of the arbitrary factorization scale 𝜇F.

This gives rise to a set of relations for the dependence of PDFs on the energy scale, which
are analogous to the renormalization group equation for the energy dependence of 𝛼s.
These are called the DGLAP11 evolution equations [2222–2424]. and are derived for each
order in perturbation theory. At leading-order, the DGLAP evolution equations of the
PDF 𝑓𝑖(𝑥, 𝑄2) for a particular parton flavor 𝑖 are given by [1010]:

𝜇2
F

𝜕𝑖 𝑓(𝑥, 𝜇2
F)

𝜕𝜇2
F

= ∑
𝑗

𝛼s(𝜇2
F)

2𝜋 ∫
1

𝑥

d𝑧
𝑧 𝑃𝑖←𝑗(𝑧) 𝑓𝑗 (𝑥

𝑧 , 𝜇2
F) , (2.16)

In the above, 𝑃𝑖←𝑗(𝑧) are the Altarelli-Parisi splitting kernels, which indicate the proba-
bility for a parton of flavor 𝑗 to emit a parton of flavor 𝑖 carrying an energy fraction 𝑧 of
the original parton.

2.3 Jets

The observation of jets in high-energy hadron collisions was essential in developing the
modern understanding of hadrons as bound states composed of particles carrying color
charge. Jets are sprays of collimated particles that are produced as a result of color-
charged particles in the final state of the scattering process. Due to the confining nature
of QCD, these cannot exist as free particles and instead recombine to form an abun-
dant stream of hadronic particles: a jet. Consequently, the measurement of jet-related
observables provides an experimental handle on QCD final states, making jets an essen-
tial tool for studying the strong interaction in both the perturbative and nonperturbative
regimes.

An important prerequisite for this is the connection between the parton-level calcula-
tions performed at a fixed order in perturbation theory and the experimental observa-
tion of hadronic jets, accounting for effects such as the fragmentation of final-partons
through the emission of additional QCD radiation and the final recombination to ha-
drons at low energies. These aspects are modeled with the help of Monte Carlo event
generation techniques, which are discussed section 2.3.12.3.1.

A further important component for such studies is a rigorous definition of jets, which
can be applied both in the context of experimental observations and when performing
theoretical calculations of observable quantities. In particular, requirements must be
imposed on the jet definitions to ensure that the observables they describe can be mea-
sured in a clean and unambiguous way, and that the corresponding theoretical predic-
tions are not sensitive to effects such as divergent amplitudes that are often encountered
in perturbation theory. This is discussed in section 2.3.22.3.2.

1The equations are named for the authors Y. Dokshitzer, V. Gribov, L. Lipatov, G. Altarelli and G. Parisi.
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2.3.1 Monte Carlo event generation

Fixed-order calculations in perturbative QCD provide predictions for well-defined par-
tonic final states of hard scattering processes. Since the final-state partons are not di-
rectly observable, a connection to the observed hadronic jets must be established.

The tool of choice for this are Monte Carlo event generators, in which scattering events
are first simulated at the parton level by sampling the distributions obtained from fixed-
order calculations. The partonic final state is then evolved to the hadron level through
a series of both perturbative and nonperturbative techniques, which are outlined below.
More detailed introductions to this topic can be found in references [2525, 2626].

Parton shower

The color-charged partons that take part in the hard scattering process are accelerated to
high energies and consequently emit radiation in the form of gluons. These also carry
color charge, leading to further emissions and resulting in a cascade of color-charged
particles referred to as a parton shower. These high-multiplicity states cannot be de-
scribed directly by the fixed-order calculation, and are instead modeled using Monte
Carlo techniques.

The parton shower modeling consists in simulating a series of independent emissions
starting from partons involved in the hard process. These emissions are ordered in terms
of a shower evolution variable such as the parton virtuality, its transverse momentum
or the emission angle with respect to the parent parton. The probability of branching
at a particular value of the evolution variable is calculated based on the Altarelli-Parisi
splitting kernels discussed in section 2.2.32.2.3.

In essence, the parton shower approximates higher-order corrections in perturbation
theory by resumming the logarithmically divergent contributions from real emissions
of soft and collinear partons to all orders. When using the parton shower technique
in connection with fixed-order calculations, it is important to avoid any double count-
ing that may arise. Since the parton shower contains a component modeled with the
help of perturbative calculations, the fixed-order predictions used for the parton-level
event generation must be matched to the parton shower by subtracting the perturbative
component. Furthermore, since high parton multiplicities can be accounted for by both
fixed-order calculations at higher orders and parton showers, a prescription to separate
the two contributions is required to prevent double counting.

Hadronization

At sufficiently low energies, the quarks and gluons resulting from the fragmentation re-
combine to form color-neutral hadrons. This process cannot be modeled perturbatively
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on account of the low-energy regime, prompting the need for phenomenological mod-
els of hadron formation. Two such models are widely implemented in modern Monte
Carlo generators:

Lund string model [2727, 2828] In this model, the notion of color flux tubes between quarks
is exploited to explain hadronization. The flux tubes are modeled as overall col-
orless strings spanned between quark–antiquark pairs moving away from one an-
other, with gluons represented by kinks in these strings. As the energy density
between two partons increases linearly with the distance, it becomes increasingly
likely to produce new quark–antiquark pairs, which is modeled by breaking the
string using a probabilistic approach, preserving the overall color neutrality of
both resulting strings. This continues until the available energy is no longer suf-
ficient to produce new particles, at which point the existing ones are combined
to form hadrons. This hadronization model is implemented in the Pythia Monte
Carlo event generator [2929].

Cluster fragmentation model [3030, 3131] This approach consists in the identification of
color-singlet clusters which arise naturally due to a property of QCD called pre-
confinement [3232]. These clusters are independently decayed to hadrons according
to their mass. Low-mass clusters give rise to hadrons directly, while clusters with
intermediate masses are decayed assuming a two-body phase space. High-mass
clusters are optionally separated into two lighter ones beforehand. Variants of this
hadronization model are implemented in the Herwig [3333] and Sherpa [3434] Monte
Carlo event generators.

Underlying event

A final component for achieving an improved description of hadron scattering involves
the so-called underlying event (UE), which is the result of interactions outside of the main
hard process. These include mostly low-energy (soft) contributions, originating, for ex-
ample, from the so-called beam remnants, which consist of the state left behind after the
partons that participate in the hard scattering are ejected from the colliding hadrons.
Another possibility are hard scattering interactions between additional pairs of beam-
hadron partons, known as multiple parton interactions (MPI).

Monte Carlo generators model both the soft and hard components of the UE using a va-
riety of techniques, which are reviewed in detail in references [2626, 3535]. To achieve a good
description of experimental data, the parameters of these techniques are determined by
comparing to measurements of UE-sensitive observables, resulting in a so-called event
generator tune [3636].
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2.3.2 Clustering algorithms

Jets are composite objects that consist of stable particles propagating within an approxi-
mately cone-like region determined by the kinematics of the originating parton. To iden-
tify the particles belonging to jets in a systematic way, a variety of clustering algorithms
are employed that operate on the collection of particles based on their individual kine-
matic properties. These provide a prescription for jet identification that can be applied
on the level of partons or hadrons with kinematics sampled from theoretical distribu-
tions, as well as on stable particles reconstructed in a scattering experiment. At hadron
colliders, the variables most commonly used to describe the particle kinematics are the
transverse momentum 𝑝T, the rapidity 𝑦 of the longitudinal Lorentz boost with respect
to the laboratory frame, and the azimuthal angle 𝜙.

An important property of jet algorithms is their stability to contributions from addi-
tional particles. In particular, jet configurations are required to be stable with respect to
the collinear splitting of particles or the addition of soft particles, which must not result
in additional jets. This is known as collinear and infrared safety [3737, 3838], and is particularly
important for observables that are exclusive in jet multiplicity.

Jet algorithms can be classified into two broad categories. Cone-based algorithms aim to
identify stable particle configurations in circular regions of the (𝑦, 𝜙) plane with a fixed
radius 𝑅. In contrast, sequential recombination algorithms reconstruct jets by clustering
together particles based on a distance metric.

In the latter approach, the distance between two particles is defined in terms of the
particle transverse momenta and the Euclidean separation in (𝑦, 𝜙) space, with the rel-
ative contribution of each being determined by two parameters, 𝑝 and 𝑅. In addition, a
distance between each particle and the beam is introduced. The distance between two
particles 𝑖 and 𝑗 with transverse momenta 𝑘T,𝑖 and 𝑘T,𝑗 and a (𝑦, 𝜙) separation of Δ𝑅𝑖𝑗, as
well as the distance of particle 𝑖 to the beam is given by:

𝑑𝑖𝑗 = min (𝑘2𝑝
T,𝑖, 𝑘

2𝑝
T,𝑗)

Δ𝑅2
𝑖𝑗

𝑅2 , with Δ𝑅2
𝑖𝑗 = (𝑦𝑖 − 𝑦𝑗)2 + (𝜙𝑖 − 𝜙𝑗)2 (2.17)

𝑑𝑖B = 𝑘2𝑝
T,𝑖 (2.18)

Particles are then clustered sequentially by evaluating the smallest overall distance 𝑑𝑖𝑗 or
𝑑𝑖B. If the smallest overall distance is between two particles, these are clustered together
and their four-momenta are summed to yield a new composite particle, replacing the
original ones. Otherwise, if the smallest overall distance is between a particle and the
beam, the particle is identified as a jet and removed from the particle collection. This is
repeated until all particles have been clustered.

The radius parameter 𝑅 controls the geometric extent of the particles clustered into a jet
and represents the minimum (𝑦, 𝜙) distance between two jets. The kinematic parameter
𝑝 determines the contribution of the particle momentum to the distance metric and can
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be used to prioritize the clustering of low or high-momentum particles. The most com-
monly used choices for 𝑝 distinguish three types of sequential clustering algorithms:

𝒌T algorithm [3939, 4040] Setting 𝑝 = 1 leads to an equal contribution from the kinematic
and geometric variables to the distance. Soft particles result in the smallest dis-
tances and are clustered first, inverting the branching structure of QCD parton
showers used to model the perturbative evolution of partonic final states down to
the final hadronization scale at which jets are measured (see section 2.3.12.3.1) [4141].

Cambridge/Aachen algorithm [4242, 4343] A value of 𝑝 = 0 describes a clustering proce-
dure that only takes the spatial separation of particles into account. In particular,
angular relationships between particles are preserved, providing a connection to
angular-ordered parton showers, making this jet algorithm popular for jet sub-
structure studies [4444].

anti-𝒌T algorithm [4545] For 𝑝 = −1, the particle momenta contribute reciprocally to the
distance metric, leading to high-energy particles being clustered first. This is par-
ticularly advantageous in the context of high-luminosity hadron collisions, where
events contain a small number of hard particles reflecting the products of the hard
scattering interaction, superimposed over a background of soft emissions coming
from unrelated scattering activity (pileup) or the underlying event.
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3 The Large Hadron Collider and the CMS
experiment

Particle colliders have long been established as the experimental tool of choice for gain-
ing insights into the fundamental physical laws governing subatomic processes. The
experimental premise here involves the acceleration of particles to energies equivalent
to many thousands of times their rest energy and allowing them to collide in a controlled
environment. The original particles involved in the collision disintegrate, producing in-
stead an abundance of new particles, in line with the principle of matter–energy equiv-
alence. By identifying and measuring the properties of these particles with the help of
particle detectors, it becomes possible to make quantitative statements about the funda-
mental physical processes by which they were produced.

At the Large Hadron Collider (LHC), protons are accelerated to high center-of-mass en-
ergies and brought to collision inside particle detectors. One of the four main detectors
located at the LHC is the CMS detector (short for Compact Muon Solenoid). It is a general-
purpose detector designed to provide as much information as possible about the par-
ticles produced in a collision event across a wide range of kinematic configurations, as
well as an accurate and precise measurement of their properties.

This section gives a brief overview of the LHC accelerator, as well as a description of
the CMS detector, highlighting the purpose and functionality of its main subdetector
systems, and the technology used for triggering and data acquisition. The information
presented here summarizes the one provided in reference [4646], where a more in-depth
description can be found.
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Figure 3.1 – The CERN accelerator complex. Taken from [4747].

3.1 The Large Hadron Collider

Located at the European Organization for Nuclear Research (CERN) near Geneva in
Switzerland, the Large Hadron Collider (LHC) is a machine designed to accelerate pro-
tons (and to a lesser extent heavy ions) to high energies and bring them to collision. It
is the largest machine of its kind, both in terms of its size and the peak center-of-mass
energy of the colliding protons, which during the most recent operational run reached
a nominal value of 13 TeV.

The most prominent feature of the LHC is its main storage ring, which extends through-
out a circular tunnel with a circumference of 27 kilometers. Two proton beams are circu-
lated in opposite directions along the ring, being kept on the circular trajectory with the
help of superconducting magnets able to generate field strengths of the order of 7 tesla.

In 2015, the LHC started its second operational run, with the center-of-mass energy
in proton collisions being increased from 8 TeV to 13 TeV. Further optimizations were
made with the goal of increasing the instantaneous luminosity, reaching the design
value of 1034 cm−2 s−1 in 2016.

Protons at the LHC are accelerated to their end energies in several stages, which can be
seen in figure 3.13.1. The acceleration chain starts with a linear accelerator (LINAC 2), in
which protons obtained from the ionization of hydrogen gas are accelerated by a series
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of radio-frequency electromagnetic cavities. This is followed by a series of four circular
accelerators: the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS), the
Super Proton Synchrotron (SPS), and finally the main LHC storage ring. In each stage,
the energy of the protons is increased, reaching values of 50 MeV after the LINAC 2
stage, 1.4 GeV after the PSB, 26 GeV after the PS, and 450 GeV after the SPS.

During this process, protons are grouped into so-called bunches, each of which contains
an approximate 1011 protons. The bunches are injected into the main storage ring, where
they are accumulated to form the two proton beams until the number of stored bunches
reaches the ca. 3000 required to attain the intended luminosity.

Once this happens, the proton energy is increased further, reaching the target value of
6.5 TeV per proton per beam, and thus 13 TeV with respect to the center of mass of two
protons circulating in opposite directions. After reaching this energy, the beams are
adjusted, stabilized and finally intersected at so-called interaction points, located at the
centers of particle detectors where the collision products are recorded.

There are four main detectors installed along the LHC beam line. Two of these,
ATLAS [4848] and CMS [4646], are general-purpose detectors designed to collect data suited
for a broad range of analysis cases. This is complemented by two special-purpose de-
tectors: ALICE [4949], which focuses on ion collisions and studies of quark–gluon plasma,
and LHCb [5050], with the primary focus on b-quark physics and CP violation.

3.2 The CMS detector

The Compact Muon Solenoid (CMS) is a general-purpose particle detector located at
point 5 of the LHC tunnel, on the side of the ring directly opposite the main CERN
campus. Situated in a cavern about 100 meters underground, the detector occupies
a cylindrical volume of approximately 22 meters in length and 15 meters in diameter
centered around the nominal interaction point of the colliding protons. As the name
suggests, it has a highly compact design. With a total weight surpassing 12 000 tonnes,
it is approximately twice as heavy as the comparable ATLAS detector, while occupying
less than a third of the volume.

Within this volume, the various subsystems that make up the detector are arranged in a
succession of layers. Closest to the beam line is the inner tracking system, which consists of
a pixel and a silicon strip tracking detector. This is followed by two layers containing the
electromagnetic and hadronic calorimeter systems. Immediately outside the calorimeters
is the superconducting solenoid magnet, which generates a high magnetic field in its
interior, reaching magnetic flux densities of up to 3.8 tesla. The final layer consists of
an iron yoke, which accounts for the bulk of the detector weight and serves to return
the magnetic flux along the outer detector. Interspersed among the flux return plates
are detector modules destined for the detection of muons. In addition to the modules
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containing active detector material, a significant amount of space is taken up by cables,
readout electronics, cooling and the support structure.

Figure 3.23.2 shows a transverse cross-sectional view of the detector. In the following, a
more detailed discussion of each subsystem is given.

Coordinate system

By convention, the reference coordinate system at CMS is a Cartesian coordinate system
centered at the nominal interaction point, with the 𝑥-axis oriented toward the center of
the LHC ring, the 𝑦-axis pointing upward and the 𝑧-axis pointing in the circulation di-
rection of the counter-clockwise proton beam. While this choice of coordinates provides
a good reference, it is not particularly well-suited to the cylindrical detector geometry,
which is described using a set of derived variables.

The spatial configuration in the dimensions transverse to the beam line is described in
terms of a radial coordinate 𝑟 indicating the distance to the 𝑧-axis, and an azimuthal
angle 𝜙. In longitudinal cross sections along the 𝑧-axis, spatial directions are indicated
using the pseudorapidity 𝜂, which is related to the polar angle 𝜃 with respect to the posi-
tive 𝑧-axis by:

𝜂 = − ln tan (𝜃
2) (3.1)

Thus, the transverse plane passing through the origin point corresponds to 𝜂 = 0, while
the positive and negative longitudinal directions along the beam line correspond to
𝜂 = +∞ and 𝜂 = −∞.

The use of pseudorapidity instead of the polar angle is motivated by physical consider-
ations. At velocities close to the speed of light, for which the mass of a particle becomes
negligible compared to its total energy, this quantity represents a good approximation
of the rapidity of its longitudinal motion, defined as the parameter of its Lorentz boost
in the 𝑧 direction with respect to the laboratory frame. This makes differences in ra-
pidity invariant under longitudinal Lorentz boosts, which is particularly advantageous
for measurements at hadron colliders, where the rest frame of the initial-state parton
pair has a nonvanishing boost in the longitudinal direction which cannot be controlled
experimentally.

3.2.1 Inner tracking system

Tracking is an essential part of particle reconstruction that consists of measuring the tra-
jectories of charged particles emerging from the proton collisions. In addition to provid-
ing information about the precise position at which a proton collision occurred, tracking
is essential in measuring the particle momentum, which can be inferred from the cur-
vature of the particle trajectories within the strong magnetic field at the center of the
detector.
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Figure 3.2 – Schematic transverse section through the CMS detector, showing the differ-
ent subsystems and the typical detection signatures of particles. Adapted from [5151].

The CMS tracking system consists of two subdetector systems which both make use of
silicon-based semiconductor tracking technology. The innermost subdetector consists
of an array of pixel sensors, providing the high resolution needed for an accurate recon-
struction in the high-particle flux environment of the LHC. In the outer regions, where
the particle flux is reduced, tracking information is provided by silicon strip detector
modules.

Pixel detector The pixel detector modules consist of sensors with a cell size of 100 ×
150 µm2 and are arranged in three cylindrical shells mounted at distances of 𝑟 =
4.1, 7.3 and 10.2 cm from the beam line, providing coverage of the barrel region of
the detector within |𝜂| < 2.5. This is complemented in the more forward regions
by two additional modules per quadrant, which are mounted vertically at 𝑧 =
±34.5 cm and ±46.5 cm, covering distances between 6 and 15 cm from the beam
line.

This configuration ensures high-resolution coverage of the interaction region, be-
ing able to reconstruct at least three high-precision points on the trajectory of
most charged particles within pixel coverage. This is instrumental not only in
reconstructing the full trajectories, but also in the identification of primary and
secondary interaction vertices and their association to one or more particles.

Silicon strip tracker The outer layers of the tracking system consist of silicon strip mod-
ules, covering approximately the same pseudorapidity region of |𝜂| < 2.5 as the
pixel sensors, but extending outward to distances of 𝑟 = 1.1 m from the beam line.
The modules are arranged both in cylindrical configurations with strips running
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parallel to the beam axis and along endcap rings with radial strips running per-
pendicular to it.

When traversed by a charged particle, each module delivers a one-dimensional
measurement of its position along the direction perpendicular to the strips. For a
module mounted at a distance 𝑟 in the barrel region, this yields a value of the 𝑟𝜙
coordinate of the particle, while for a module with radial strips mounted at fixed
𝑧 along the endcap, this results in a measurement of the 𝜙 coordinate. To provide
a second coordinate, a number of barrel layers and endcap modules are equipped
with two sets of modules, with the second being mounted at an angle of 100 mrad
with respect to the first. This enables the measurement of the position along the
long side of the strip, namely 𝑧 in the barrel and 𝑟 in the endcaps.

3.2.2 Electromagnetic calorimeter

While the momentum information provided by the tracking system is essential for parti-
cle reconstruction, a measurement of the particle energy is required to fully reconstruct
the associated four-momenta. Furthermore, tracking does not provide information on
neutral particles, which must be detected by additional means. Both of these require-
ments are addressed by the calorimeter system, which is designed to absorb the majority
of particles and provide a measurement of their energy.

Immediately outside the tracking system lies the electromagnetic calorimeter (ECAL). It
is a homogeneous calorimeter composed of over 70 000 lead tungstate (PbWO4) crystals,
which function as scintillators used to measure the energy of light, electromagnetically
interacting particles such as electrons, positrons and photons.

When these high-energy particles interact with the crystal material, they initiate a chain
reaction known as an electromagnetic shower. In this process, electrons and positrons emit
bremsstrahlung photons by scattering on atomic nuclei, while photons give rise to fur-
ther electrons and positrons via pair production. Below the pair production threshold,
shower photons deposit their energy in the material via the Compton and photoelectric
effects. As the resulting excited atomic electrons relax back to the ground state, scin-
tillation light is emitted, with the number of photons being proportional to the total
energy deposited. An energy measurement is then made by registering the number of
scintillation photons with the help of photodetectors.

The use of lead tungstate as a scintillation material is motivated by its high density of
8.3 g cm−3 and consequently short radiation length of 0.89 cm. Since this is the charac-
teristic length scale of energy deposition, lower values allow for a compact calorimeter
design, while ensuring that all of the particle energy is absorbed. Furthermore, lead
tungstate has a comparatively small Molière radius, which is a measure of the trans-
verse spread of electromagnetic showers within the material. With a value of 2.2 cm,
this makes it possible to lay out the scintillator crystals with a high granularity while
providing adequate lateral shower containment in each crystal.
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The ECAL is composed of several subsystems. The largest of these is the ECAL barrel
(EB), which covers the central detector region. This is complemented by the two ECAL
endcaps (EE), extending the range to cover the forward areas of the detector. In addition,
a preshower detector (ES) is mounted in front of each endcap.

ECAL barrel (EB) The ECAL barrel covers the pseudorapidity region |𝜂| < 1.479. This
range is subdivided into 170 regions, each with 360 crystals covering all directions
in 𝜙. These have a length of 230 mm, corresponding to 25.8 interaction lengths,
and are mounted with their main axis oriented towards the nominal interaction
point. The crystal shape is tapered and corresponds to a truncated pyramid, with
the cross section increasing from 22 mm2 at the inner face to 26 mm2. At the far
end of each crystal, silicon avalanche photodiodes are installed for reading out the
scintillation signals.

ECAL endcaps (EE) In the endcaps, crystals with a similar size to those in the barrel
are mounted on a rectangular 𝑥–𝑦 grid, covering the approximately ring-shaped
area within 1.479 < |𝜂| < 3.0. The photodetectors used here are vacuum phototri-
odes.

ECAL preshower (ES) Covering most of the ECAL endcaps are preshower detectors.
These are sampling calorimeters with a total depth of 20 cm consisting of two lay-
ers of lead radiators followed by silicon strip sensors. Their purpose is to provide
additional information to better distinguish individual high-energy photons from
collimated photon pairs resulting from neutral pion decay. In addition, they pro-
vide an improved position determination of electrons and photons and are also
useful for distinguishing electrons from minimum ionizing particles.

3.2.3 Hadron calorimeter

While the electromagnetic calorimeter (ECAL) is effective in absorbing light, electromag-
netically interacting particles, heavier decay products such as hadrons generally do not
deposit their entire energy in the ECAL and thus are able to escape this detection layer
without being absorbed. Since hadrons make up a significant fraction of decay products
and are the main component of particle jets, their containment is essential for measur-
ing the jet energy. To this end, the ECAL is complemented by an additional hadron
calorimeter system (HCAL).

High-energy hadrons traversing matter undergo inelastic collisions with the atomic nu-
clei. This creates a cascade of secondary particles that consists mainly of pions and
nucleons ejected from the nucleus, initiating a chain reaction called a hadronic shower.

The length scale of hadronic showers is characterized by the material-specific nuclear in-
teraction length, which is typically larger than the radiation length determining the extent
of electromagnetic showers. The containment of hadronic showers thus requires more
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material, with about 9 interaction lengths being necessary to contain the full shower
[5252].

In addition to the hadronic component, the secondary pions created in hadronic cas-
cades decay to highly energetic photon pairs, giving rise to secondary electromagnetic
showers. This makes it possible to obtain an estimate of the shower energy by sampling
the electromagnetic component of showers with scintillation detectors in a manner anal-
ogous to electromagnetic calorimeters.

Situated immediately outside the ECAL, the HCAL consists of four calorimeter subsys-
tems, covering different portions of the detector. The two largest are the HCAL bar-
rel (HB), which occupies the space between the ECAL barrel and the superconducting
solenoid magnet, and the two HCAL endcaps (HE), located outside the ECAL endcaps.
The HB is complemented by an outer calorimeter system (HO) that adds 1–2 additional
detection layers outside the magnet coil. Finally, two hadronic forward calorimeters
(HF) are placed in close proximity to the beam line at either end of the detector.

HCAL barrel (HB) The HCAL barrel covers the pseudorapidity region |𝜂| < 1.3 and is
organized into longitudinally aligned units with a trapezoidal cross section called
wedges. Eighteen such units cover the complete 𝜙 range separately in the positive
and negative 𝜂 regions, resulting in a total of 36 wedges. Each wedge functions as
a sampling calorimeter module, containing 14 alternating layers of brass absorber
plates and plastic scintillators, which provide the active detection medium. The
structure is reinforced by steel plates at the near and far ends of a wedge, which
also function as absorbers.

The scintillation light in the active layers is collected by optical fibers and brought
to an array of hybrid photodiodes (HPD) for readout. Signals are read out in terms
of a grid of so-called calorimeter towers, which are defined by partitioning the de-
tector volume into regions in terms of pseudorapidity and azimuthal angle. In HB,
each wedge has 16×4 towers, covering equally sized intervals in pseudorapidity
and azimuthal angle, respectively, which is equivalent to a granularity of 0.087 in
both variables.

To obtain energy measurements, the signals registered in each tower are summed
for the total projective depth of the calorimeter, which amounts to 5.39 nuclear
interaction lengths at 90° to the beam line, increasing to 10.3 at the outer limit of
the HB. The material of the ECAL barrel mounted in front of the HB corresponds
to an additional 1.1 interaction lengths.

HCAL outer calorimeter (HO) In order to contain the hadronic showers in the central
part of the calorimeter where the projective depth of the material is smaller, an
outer calorimeter system is installed outside the superconducting solenoid. Cov-
ering the pseudorapidity region |𝜂| < 1.3, it makes use of the material in the mag-
net coil and the iron return yoke as an absorber, measuring the energy of the final
shower portion using a series of scintillator layers installed inside the first layer
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of the iron return yoke. The innermost layer is complemented by a second layer,
which is placed directly outside the magnet coil. The resulting configuration en-
sures that the projective depth of the entire calorimeter system in the central region
remains above 11.8 interaction lengths, which is sufficient for shower containment.

HCAL endcaps (HE) The pseudorapidity region 1.3 < |𝜂| < 3 is covered by the HCAL
endcaps, which are mounted directly behind the ECAL endcaps. These consist of
layers of brass absorbers bolted together to form a compact structure, minimizing
the gap between the endcap and the HB. The total calorimeter length, including
the ECAL endcaps and preshower detectors, corresponds to about 10 interaction
lengths, ensuring an adequate containment of hadronic showers.

The active medium consists of plastic scintillator trays, which are inserted trans-
versely into the absorber structure. Like in the HB, the readout is organized into
towers, with the outermost set of HB towers overlapping with the innermost ones
in HE. The tower granularity in both 𝜂 and 𝜙 is 0.087 within |𝜂| < 1.6 and 0.17
beyond.

HCAL forward calorimeter (HF) The two forward calorimeters are installed close to
the beam line, covering the pseudorapidity region 2.8 < |𝜂| < 5.2. Due to the very
high radiation levels here, the calorimeter is encased in layers of concrete, steel and
polyethylene shielding. Steel plates are used as an absorber material, incorporat-
ing radiation-resistant quartz fibers as the active detection medium. These collect
the Cherenkov light emitted by charged shower particles, guiding it to external
photomultiplier tubes for readout. As in the other components, the HF readout is
organized into 𝜂 × 𝜙-towers, achieving a granularity of 0.175 in both variables.

3.2.4 Superconducting solenoid

The strong magnetic field at the center of the CMS detector is generated by a solenoidal
electromagnet with a length of 12.5 m and a free bore diameter of 6 m, surrounding the
inner tracking and calorimeter systems. In order to reach the field magnetic induction of
3.8 tesla needed for an accurate measurement of particle momenta, the main conductor
is made of a superconducting niobium-titanium (NbTi) alloy and wound around the
inner volume in a total of four layers, amounting to a total conductor length of 45.4 km.
At the full operating current of 19 kA, the magnet stores 2.6 GJ of energy.

For stability and structural reasons, the superconducting material in the winding is co-
extruded with an outer envelope of pure aluminium and reinforced with high-strength
aluminium alloy, resulting in a total mass of 220 tonnes. During operation, this mass is
cooled down to a temperature of 4.7 K using liquid helium as a cooling agent. This is
well below the 9.25 K critical temperature of the NbTi conductor, thus ensuring that it
remains superconducting.

An iron structure weighing 10 000 t called the return yoke encloses the solenoid and serves
to return the magnetic flux along the outer region of the detector. It has a compartmen-
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talized structure, allowing the detector modules of the muon system to be placed within
it and thus contributing to overall compact design.

3.2.5 Muon system

While most other particles are fully absorbed by the calorimeters in the inner part of
the detector, this is not the case for muons, which penetrate through to the outer lay-
ers largely unhindered. This is due to two factors. First, the lifetime of muons is suf-
ficiently long to prevent them from decaying on the distance scale of the detector. In
addition, since muons are leptons with a comparatively high mass, they deposit energy
in material mainly through ionization and do not initiate electromagnetic (or hadronic)
showers. This makes them minimum ionizing particles, allowing them to pass through
the calorimeter system without being absorbed.
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Figure 3.3 – Schematic longitudinal section through a quadrant of the CMS detector,
showing the pseudorapidity coverage of the different subsystems. The muon detectors
are embedded within the iron return yoke in the outer parts of the detector. Adapted
from [4646].

Muon detectors in CMS are thus installed in the outer detector regions, making use of
the compartments within the iron return yoke around the superconducting solenoid
(see figure 3.33.3). Their purpose is to reconstruct the trajectories of muons in the outer
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detector, thus resulting in an overall improved muon momentum resolution when cor-
related with information from the inner tracking detector. In contrast to the inner track-
ing system, however, the muon system modules all rely on gas ionization as the primary
detection mechanism.

For this purpose, an electric field is generated inside a volume of inert gas by applying
a high voltage between an anode and a cathode. When high-energy muons traverse
the volume, they ionize the gas atoms, releasing electrons which are then accelerated
towards the anode. This is detected as an electric signal, making it possible to pinpoint
the muon location.

Three distinct detector technologies are employed in the muon system. Drift tubes (DT)
are used as the primary detector type in the barrel region, where the magnetic field
is uniform and the overall muon rate is low. In the end caps, the magnetic field be-
comes nonuniform and the overall muon rate increases, prompting the use of the more
resilient cathode strip chambers (CSC) as primary detectors. Both these detector types are
complemented by additional modules composed of resistive plate chambers (RPC), serv-
ing mainly as an input to the trigger, on account of their speed. These components are
outlined below.

Drift tubes (DT) This technology is used in the pseudorapidity range |𝜂| < 1.2. DT
modules are arranged around the beam line in twelve sectors, each comprising
four stations at different radial distances. The individual DTs consist of a rectan-
gular volume filled with a gas mixture of 80% Ar and 10% CO2. The anode consists
of a wire running through the center of the tube, while electrodes affixed to the
tube walls function as cathodes. Electrons dislodged by high-energy muons drift
towards the anode wire, triggering avalanches in close proximity to it. The muon
position can then be inferred from timing measurements on the resulting electric
pulse.

The tubes are oriented parallel to the beam line, thus providing a measurement of
the muon tracks in the 𝑟–𝜙 magnetic bending plane. A complementary measure-
ment of the 𝑧 coordinate is provided by additional layers oriented perpendicular
to the beam line.

Cathode strip chambers (CSC) Detector modules of this type are installed in the end
caps of the iron return yoke, covering the pseudorapidity range 0.9 < |𝜂| < 2.4, in
partial overlap with the range covered by DTs. The individual CSC modules are
trapezoidal in shape and are arranged radially around the beam line, each covering
an azimuthal angle of 10°. The modules are filled with a gas mixture of 40% Ar,
50% CO2 and 10% CF4, providing the ionization medium.

Each module consists of alternating layers of cathode panels with metallic strips,
laid out radially at fixed Δ𝜙 intervals, and anode wires, running azimuthally at
right angles to the strips. This structure enables a precise tracking of the position
of incoming muons in both 𝑟 and 𝜙 by correlating the readout signals from cathode
strips and anode wires.
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Resistive plate chambers (RPC) In order to provide a fast detection signal, RPCs com-
plement the main detection modules (DTs and CSCs) in all areas of the detector.
Their response times are significantly lower than the 25 ns between proton bunch
crossings, making them suitable for triggering. The modules consist of resistive
plates made of Bakelite separated by a 2 mm gap, which contains a gas mixture
composed mostly of R134a (C2H2F3). The ionization signal is picked up by metal-
lic strips mounted outside the resistive plates, providing information on the muon
location.

3.3 Trigger system

The proton bunches circulating at the LHC are crossed at intervals of 25 ns, which cor-
responds to a frequency of 40 MHz. Multiple individual proton collisions occur during
each bunch crossing, resulting in a very high data rate. Since it is not feasible to read
out, process and store data from every collision event, a reduction of the rate by many
orders of magnitude is necessary.

This is the purpose of the CMS trigger system. Its role in the data acquisition process is to
identify the collision events which are considered useful for physics analysis or detector
calibration. By only writing out these events and discarding the rest, a reduction in the
event rate by approximately five orders of magnitude is achieved.

To meet the stringent time requirements imposed by the high rates, the trigger system
is divided into two tiers. A hardware-based Level-One trigger (L1) first identifies poten-
tially interesting events based on a fast but coarse readout of the detector. These are then
forwarded to the High-Level Trigger (HLT), which performs a more detailed analysis im-
plemented in software. In this way, an event rate of ca. 100 kHz after the L1 trigger, and
finally down to ca. 1 kHz after the HLT is achieved.

3.3.1 Level-One trigger (L1)

The L1 trigger is the starting point of the event processing chain and consists of purpose-
built, programmable electronics. These process the raw data coming from the different
detector subsystems in order to perform a coarse-grained reconstruction of an event and
decide whether it should be kept based on this information.

As shown in figure 3.43.4, the trigger is organized into a hierarchy of interconnected com-
ponents. At the lowest level are Trigger Primitive Generators, which reconstruct local fea-
tures in individual detector components, such as energy deposits in calorimeter towers,
and track segments or hit patterns in muon system modules.

Next areRegional Triggers, which combine trigger primitive information in larger regions
of the detector to produce trigger objects. These can be electron or photon candidates, or
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Figure 8.1: Architecture of the Level-1 Trigger.

determine the highest-rank calorimeter and muon objects across the entire experiment and transfer
them to the Global Trigger, the top entity of the Level-1 hierarchy. The latter takes the decision
to reject an event or to accept it for further evaluation by the HLT. The decision is based on al-
gorithm calculations and on the readiness of the sub-detectors and the DAQ, which is determined
by the Trigger Control System (TCS). The Level-1 Accept (L1A) decision is communicated to the
sub-detectors through the Timing, Trigger and Control (TTC) system. The architecture of the L1
Trigger is depicted in figure 8.1. The L1 Trigger has to analyze every bunch crossing. The allowed
L1 Trigger latency, between a given bunch crossing and the distribution of the trigger decision to
the detector front-end electronics, is 3.2 µs. The processing must therefore be pipelined in order to
enable a quasi-deadtime-free operation. The L1 Trigger electronics is housed partly on the detec-
tors, partly in the underground control room located at a distance of approximately 90 m from the
experimental cavern.

8.1 Calorimeter trigger

The Trigger Primitive Generators (TPG) make up the first or local step of the Calorimeter Trigger
pipeline. For triggering purposes the calorimeters are subdivided in trigger towers. The TPGs sum
the transverse energies measured in ECAL crystals or HCAL read-out towers to obtain the trigger
tower ET and attach the correct bunch crossing number. In the region up to |η |= 1.74 each trigger
tower has an (η ,φ )-coverage of 0.087× 0.087. Beyond that boundary the towers are larger. The
TPG electronics is integrated with the calorimeter read-out. The TPGs are transmitted through
high-speed serial links to the Regional Calorimeter Trigger, which determines regional candidate
electrons/photons, transverse energy sums, τ-veto bits and information relevant for muons in the
form of minimum-ionizing particle (MIP) and isolation (ISO) bits. The Global Calorimeter Trigger
determines the highest-rank calorimeter trigger objects across the entire detector.

– 248 –

Figure 3.4 – Architecture of the L1 trigger. Information from the calorimeters and muon
subdetectors is processed by a hierarchical structure of modules to reconstruct a simpli-
fied event representation in the form of trigger objects. The final decision is taken by the
Global Trigger based on the trigger object properties. Taken from [4646].

regional transverse energy sums in case of the regional calorimeter triggers, or muon
candidates for the regional muon triggers. Candidates are ranked and sorted based on
energy and quality criteria.

Subsequently, global triggers combine information across regions to produce a complete
representation of the event content. TheGlobal Calorimeter Trigger (GCT) reconstructs jets
using a simplified jet finder algorithm, and computes the total and missing transverse
energy. In addition, it selects the highest-rank electron or photon candidates. In the
Global Muon Trigger (GMT), redundant information from the three muon subsystems is
correlated in order to filter out spurious muon candidates, thereby lowering the trigger
rate and increasing the efficiency.

The highest-level component is the overall Global Trigger, which evaluates the trigger ob-
jects provided by the GCT and GMT and takes the decision to either reject the event or
accept it for further processing. For this purpose, up to 128 programmable logic path-
ways operating in parallel on trigger objects can be configured. The pathway decisions
are combined by a logical OR function, yielding the final trigger decision. In case of a
positive decision, a so-called L1 Accept signal (L1A) is issued, which instructs the detec-
tor subsystems to send event information to the Data Acquisition system (DAQ).

The decision criteria for each pathway are conceived in such a way as to maintain a
manageable event rate. However, since this depends strongly on the instantaneous lu-
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minosity, an additional mechanism of controlling the rate called trigger prescaling is em-
ployed. By configuring an integer prescaling factor 𝑘 for each pathway, only one in 𝑘
events meeting the criteria will be triggered, resulting in a 𝑘-fold reduction of the rate.

A table of prescaling factors is precomputed for each trigger pathway based on its ex-
pected event rate across a wide range of instantaneous luminosities. The factor applied
is then adjusted accordingly during data taking, regularly switching to a new set of
prescaling factors as the instantaneous luminosity decreases during a run. This enables
an optimal use of trigger bandwidth, avoiding potential deadtime or trigger idling due
to the event rate being to high or too low, respectively.

An important additional component is the Trigger Control System (TCS), which moni-
tors the status of the subdetectors and the DAQ and ensures that an L1A signal is only
issued when both systems are in a ready state. In addition, so-called trigger rules are
implemented in TCS to ensure that L1A signals are not sent too frequently, which could
overwhelm the DAQ. The trigger rules allow no more than one L1A signal to be issued in
an interval of 75 ns (equivalent to 3 bunch crossings). In addition, extended rules allow
no more than 2, 3 or 4 L1A signals per intervals of 0.625, 2.5 and 6 µs (25, 100, 240 bunch
crossings), respectively [5353].

3.3.2 High-Level Trigger (HLT)

Events which are accepted by the L1 trigger are forwarded to the High-Level Trigger
(HLT) for a more detailed analysis. Since the timing requirements at this level are re-
laxed compared to the L1 trigger, the HLT is implemented entirely in software and is
thus capable of running more complex reconstruction algorithms to identify interesting
events.

Processing is done on a distributed system with more than 13000 CPU cores [5454] called
a filter farm, allowing events to be evaluated in a highly parallelized fashion. In this way,
the event rate is further reduced to a maximum of 1 kHz after the HLT.

The software deployed on the HLT is an optimized version of the CMS software frame-
work (CMSSW) [5555], which is also used for the offline analysis of events, although the
criteria applied at the HLT-level are often simplified in the interest of processing speed.
The trigger criteria are organized into trigger paths, each of which delivers a binary ac-
cept/reject response for an event based on a series of reconstruction and filtering steps.
As for the L1 trigger, prescaling factors can be configured separately for individual HLT
paths and adjusted during data taking to optimize the final event rate. Events accepted
by at least one HLT path are forwarded to the data storage and are available for offline
analysis.
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4 Jet measurement at CMS

Jets are produced abundantly at hadron colliders in processes mediated by the strong in-
teraction. They originate from quarks and gluons in the final state of the hard scattering
process, which hadronize to form a stream of particles propelled in the same general
direction as the original quark or gluon. The connection between jets and partonic fi-
nal states makes them a valuable experimental handle on these processes, which can
be exploited for probing QCD across a wide kinematic range. This chapter provides an
overview of the experimental techniques used at CMS to reconstruct and measure jets.

Experimentally, jets are characterized by localized energy depositions in the calorime-
ters, with a high number of associated particle tracks in the inner tracking detector.
While it is possible to reconstruct jets only from calorimeter energies, a better descrip-
tion can be achieved by combining information from all subdetectors, which is done at
CMS using an approach called particle flow reconstruction. This provides well-defined
particle candidates that can be clustered to yield jets with a significantly improved res-
olution. Section 4.14.1 gives an overview of particle-flow reconstruction.

In addition, the composite nature of jets makes them susceptible to other factors such
as pileup or the detector response, which prompts the need for a dedicated calibration
procedure, which is described in section 4.24.2.

Finally, the strategies employed to identify jets on the trigger level and the associated
efficiencies are discussed in section 4.34.3.
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4.1 Particle-flow reconstruction

Particles created in high-energy proton collisions propagate through the CMS detector,
producing characteristic signals in the various subdetectors. The raw data collected
in this way consists of comparatively low-level information, such as individual points
on the trajectories of charged particles, or the magnitude of energy depositions in the
calorimeters. To analyze this data in a meaningful way, it is first necessary to reconstruct
high-level objects such as particles and jets, as well as other quantities of interest for
physics analysis.

At CMS, this is done using an approach called particle flow (PF), which combines infor-
mation from all subdetectors to identify and measure individual particles. This exploits
the strengths of each subdetector, leading to an improved event description.

In this section, a brief overview of the PF approach is given, starting with the recon-
struction of basic elements in the individual subdetectors, and outlining the strategies
used to obtain well-defined particle candidates by connecting these elements together.
A more detailed description can be found in references [5656, 5757].

4.1.1 Basic elements

The first step in the particle-flow approach consists in reconstructing the basic elements
specific to each subdetector: tracks left by the charged particles in the inner tracking
system and the outer detector layers, and clusters of energy depositions in the electro-
magnetic and hadronic calorimeters.

Tracks The trajectories of charged particles are reconstructed from hits in the inner
tracker layers using a combinatorial track finding algorithm [5858]. Starting from a
small number of hits in consecutive layers of the pixel detector called a seed, the ini-
tial trajectory is extended into the tracker volume, collecting hits from additional
layers along the way. The track parameters such as the initial direction, the orig-
inating vertex, and the transverse momentum are determined in a least-squares
fit. Finally, the resulting tracks are filtered based on quality requirements, such as
requiring a minimum number of hits or rejecting tracks originating from a vertex
too far from the interaction region.

In the muon chambers, the particle flux is significantly reduced compared to the
inner detector, largely due to the high probability of absorption of all other de-
tectable particles in the calorimeter layers. This allows muon tracks to be recon-
structed with a high efficiency and a comparatively low misidentification rate.
Similar reconstruction techniques are employed as for the inner tracker, starting
from hits in the DTs and CSCs as track seeds and gathering hits from other subde-
tectors along the initial seed direction to reconstruct track segments.
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Calorimeter clusters Energy deposited in the calorimeters is resolved with a granular-
ity given by the cellular structure of each subdetector. In the ECAL, a cell consists
of a single lead tungstate crystal, while the HCAL granularity corresponds to the
calorimeter towers, corresponding to an array of 5 × 5 ECAL crystals.

Calorimeter clusters are reconstructed by first identifying all cells with energy de-
positions larger than those of the neighboring cells above a predetermined thresh-
old, called cluster seeds. These are extended to form topological clusters by sequen-
tially incorporating neighboring cells with energies above the noise threshold. The
final positions and energies of calorimeter clusters are determined in a maximum
likelihood fit, assuming Gaussian profiles of energy depositions around the seeds
within a topological cluster.

4.1.2 Particle-flow candidates

After the basic elements have been identified, the particle content of the event is recon-
structed in the form of so-called particle-flow candidates (PF candidates). This is done
by first linking together potentially related elements based on their relative locations in
the detector, and subsequently analyzing the sets of linked elements to determine their
compatibility with different particle hypotheses.

Particle tracks are extrapolated to the calorimeter regions and linked to clusters there
based on the distance in (𝜂, 𝜙) space (or the 𝑥𝑦 plane for the end caps). Similarly, tracks
reconstructed in the inner detector are linked to track segments in the muon chambers
if their extrapolated positions are compatible, and calorimeter clusters in the ECAL and
HCAL are linked together if they contain overlapping cells. Ambiguous links are re-
solved by choosing the one with the smallest distance.

Elements connected by a link, either directly or through an intermediate related element,
form a so-called PF block. The final PF candidates are obtained by looking for signatures
specific to each particle type inside the individual PF blocks, ensuring the unique as-
sociation of basic elements to PF candidates by removing the elements associated to
successfully identified particles from PF blocks. The reconstruction of PF candidates in
each PF block proceeds in a predefined order, starting with muons, followed by elec-
trons and isolated photons, and finally hadrons and nonisolated photons, as described
in the following:

Muons In a first step, muons are identified by correlating the information of matched
tracks in the inner and outer detector layers, in association with calorimeter clus-
ters compatible with minimum ionizing particles. The muon momentum is ob-
tained exclusively from the inner track at values below 200 GeV, for which the
tracker provides a sufficiently high momentum resolution. At higher values, a
least-squares fit is performed including points on the outer track segments to ob-
tain the global muon momentum.
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Electrons and isolated photons Next, electrons are reconstructed from tracks linked
to ECAL clusters. An important property exploited for distinguishing between
electrons and charged hadrons is the high probability of the former to emit soft
bremsstrahlung photons in the longitudinal magnetic field. To take this into ac-
count, ECAL clusters spread over an extended region in 𝜙 are grouped into so-
called superclusters. In addition, tracks with a lower goodness-of-fit are refitted us-
ing an alternative method that better accounts for progressive energy losses due
to bremsstrahlung. The radiated photons are collected by extrapolating the tan-
gents of electron tracks to the ECAL, and the energy of associated clusters in these
regions is counted towards the electron energy.

Electron candidates are then discriminated from charged hadrons using a multi-
variate approach involving fourteen variables related to the linked clusters and
tracks. In the same step, isolated photons are identified from ECAL superclus-
ters without an associated particle track, provided the energy depositions in the
associated ECAL and HCAL clusters are consistent with an electromagnetic
shower.

Hadrons and nonisolated photons Finally, the remaining elements are processed to re-
construct charged and neutral hadrons, as well as nonisolated photons. Within the
tracker acceptance, calorimeter clusters without associated tracks are interpreted
as photons, while hadrons are given precedence outside this region in the pres-
ence of an HCAL cluster. Charged hadrons are identified by calorimeter clusters
linked to particle tracks. By comparing the calibrated calorimetric energy with the
track energy, the presence of overlapping neutral hadrons is inferred.

4.1.3 Missing transverse momentum

Missing transverse momentum (MET11), is defined as the negative sum of the transverse
momenta of all particles produced in a scattering interaction. In the idealized case of a
perfectly calibrated detector, and where no particles escape without being detected, this
quantity is expected to be zero, on account of the negligible transverse momentum of
the colliding protons.

In practice, however, a finite amount of missing transverse momentum is observed for
every reconstructed event. This can either have a physical origin – stemming, for in-
stance, from the production of undetectable particles such as neutrinos –, or it can be
traced back to experimental causes such as detector noise, imperfections in the detector
calibration or alignment, gaps in the detector acceptance or the finite detector resolution.
The former is referred to as genuine or true MET, while distortions due to the latter are
called anomalous or fake MET.

1The abbreviation is derived from the missing transverse energy, which corresponds to the magnitude of
the four-vector associated to the missing transverse momentum.

35



4 Jet measurement at CMS

In the particle-flow approach, the missing transverse momentum is estimated by taking
the negative vector sum of transverse momenta of all PF candidates, which is referred to
as the PF MET. Since this quantity is only a rough estimate of the true MET, it is refined
by applying further corrections, as described in section 4.2.54.2.5.

4.1.4 Jet reconstruction

The particle-flow approach described in the previous sections results in a collection of
PF candidates with well-defined four-momenta which can be used as an input to jet
clustering algorithms. Jets obtained in this manner are referred to as detector-level or
reconstruction-level jets, since the kinematic properties of the clustered objects are ulti-
mately reconstructed from detector signals and are therefore subject to detector-induced
biases and resolution effects.

This is contrasted to the concept of particle-level jets, which are defined as the result of
applying clustering algorithms directly to the stable particles produced in high-energy
collisions. While inaccessible in actual measurements, particle-level jets are a useful
notion in the context of simulations, providing a reference for studying the detector
response.

Standard jet reconstruction at CMS is done using the anti-𝑘T algorithm [4545]. PF candi-
dates are clustered for two values of the radius parameter, 𝑅 = 0.4 and 𝑅 = 0.8, yield-
ing two separate jet collections. In simulated samples, particle-level jets are additionally
clustered from the stable decay products of particles produced in the hard process, with
the exception of neutrinos. The clustering algorithm is implemented in the FastJet pack-
age [5959], interfaced to the CMS software framework CMSSW [5555].

4.1.5 Pileup mitigation

In the high-luminosity environment of the LHC, multiple proton collisions known col-
lectively as pileup occur during the same bunch crossing as the hard scattering, giving
rise to additional tracks and energy depositions in the calorimeters. With more than 20
pileup interactions happening on average during each bunch crossing, this affects the
reconstruction of jets emerging from the hard process, resulting in an additional contri-
bution to the reconstructed transverse momentum of jets, which has to be compensated.

The strategy employed to address this involves two complementary approaches: the tar-
geted subtraction of pileup contributions from charged hadrons using track and vertex
information, and an overall technique in which the per-jet pileup contribution is esti-
mated based on the jet area and the diffuse energy density in the event.
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Charged hadron subtraction

The excellent position resolution of the tracker allows pileup interactions to be inferred
from the additional primary vertices identified by the track reconstruction. These are
determined by grouping together tracks that originate at nearby longitudinal positions
along the beam line, and performing a least-squares fit to determine the vertex position
[6060]. The vertex with the highest 𝑝T sum of associated tracks is assumed to correspond
to the hard scattering, while the other vertices are identified with pileup interactions.

In the particle-flow approach, jet clustering is run indiscriminately on PF candidates
originating from both the hard scattering and pileup vertices, causing a degradation of
the jet energy measurement. To mitigate this, a pileup removal algorithm called charged
hadron subtraction (CHS) [6161] is applied during offline jet reconstruction to exclude all
charged hadrons associated to pileup vertices from the jet clustering.

This approach successfully suppresses a large part of the pileup contribution. However,
it does not account for contributions from neutral and nonhadronic pileup particles, and
is not applicable outside the tracker coverage. To estimate the remaining pileup contri-
butions, a more sophisticated approach involving jet areas is used and a corresponding
correction is applied as part of the jet calibration workflow (see section 4.24.2).

Jet area

An alternative approach to pileup mitigation is based on the notion of jet area, which
is a measure of the susceptibility of jets to contributions from diffuse sources [6262]. The
pileup contribution to the transverse momentum of jets can then be factorized in terms
of the jet area and the overall level of diffuse energy in the event [6363].

Jet areas are specific to the jet clustering algorithm and are determined by clustering the
original jet constituents together with a set of infinitely soft ”ghost” particles, distributed
evenly in rapidity and azimuth to represent a diffuse energy background. The jet area
is proportional to the number of ghost particles clustered as part of a jet. For the anti-
𝑘T algorithm with a radius parameter 𝑅, the resulting areas for well-separated jets are
roughly circular in (𝜂, 𝜙) space, with an area of approximately 𝜋𝑅2, while for jets in
close proximity, this results in a crescent-shaped area for the lower-energy jet.

To estimate the diffuse energy present in an event, the accessible (𝜂, 𝜙) range is divided
into a grid of equally-sized cells. The 𝑝T density is determined as the ratio of the total
transverse momentum of PF candidates in each cell to the cell area. The median across
all cells is taken as a robust estimator of the overall diffuse 𝑝T density 𝜌:

𝜌 = median
⎧{
⎨{⎩

𝑝cell
T

𝐴cell

⎫}
⎬}⎭

(4.1)
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4.2 Jet energy calibration

An essential part of jet measurements consists in relating the kinematic properties of
reconstructed jets with those of stable particles emerging from the fragmentation of par-
tons produced in the hard scattering process. Among these, the jet energy is particularly
susceptible to contributions from unrelated sources such as pileup or the underlying
event, and to the detector response relating the true and measured energies of jets and
their constituents.

While the jet energy measurement is significantly improved as a consequence of the
particle-flow approach, the jet energy scale requires further calibration to account for
these effects. At CMS, this is achieved in a multi-stage approach, in which correction
factors are derived with the aid of simulations and data-driven techniques, and applied
successively to the raw jet four-momenta to obtain the corrected jet energy.

Figure 4.14.1 shows an overview of the jet calibration workflow, highlighting the differ-
ent stages in which correction factors are derived and applied to jets in recorded data
and Monte Carlo simulation. The first stage involves the correction of the energy offset
caused by particles originating from pileup interactions. This is followed by the cor-
rection of the detector response, which connects the energy of jets clustered from PF
candidates after the detector simulation to that of the particle-level jets, as determined
directly from the simulated event record. Finally, additional corrections are derived for
recorded data in order to account for residual differences between the simulated and
actual detector response.

The derivation of correction factors for these steps is outlined in the following. The
described methods were originally developed for the analysis of CMS data taken during
Run 1 of the LHC at center-of-mass energies of 7 and 8 TeV, and adapted to 13 TeV data.
A more detailed description of the methods is given in references [6464] and [6565].

uncalibrated

jets

pileup

correction

simulated

response

correction

corrections applied to data →

corrections applied to Monte Carlo simulation →

residual corrections
(data only)

η-dependent pT-dependent
correction correction calibrated

jets

Figure 4.1 – Overview of the jet energy calibration workflow. Shifts in the jet energy due
to pileup and the simulated detector response are estimated with the aid of Monte Carlo
simulations and corrected accordingly in both simulated and recorded events. Residual
differences between data and simulation are accounted for using dedicated corrections
applied only in data. Adapted from [6464].
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4.2.1 Pileup offset correction

The first step in the jet calibration workflow aims to compensate for additional contribu-
tions to the jet energy from pileup. The magnitude of this shift, referred to as the pileup
offset, is estimated in a simulation-based approach by comparing the reconstructed jet
𝑝T in hard-scattering events with and without an admixture of pileup interactions.

The correction is derived as a multiplicative factor, expressed as a function of the raw
(uncalibrated) jet 𝑝T, the jet pseudorapidity 𝜂, the jet area 𝐴 and the median 𝑝T density
of the event 𝜌:

𝑐pileup(𝑝raw
T , 𝜂, 𝐴, 𝜌) = 1 −

[𝜌0(𝜂) + 𝜌 ⋅ 𝛽(𝜂) (1 + 𝛾(𝜂) ⋅ log(𝑝raw
T ))] ⋅ 𝐴

𝑝raw
T

(4.2)

The numerator in the above expression corresponds to the absolute pileup offset. The
parameters 𝜌0(𝜂), 𝛽(𝜂) and 𝛾(𝜂) account for the nonuniform response to pileup in dif-
ferent pseudorapidity regions and are determined from parametrizations of the pileup
offset, performed separately in each �bin as a function of the remaining correction vari-
ables.

Residual differences between data and simulation are acocunted for using an alterna-
tive method of estimating the pileup offset, known as the random cone method. Using
events from pileup-only simulations and so-called zero-bias data, where no hard scat-
tering interactions are present, the offset is determined using randomly placed cones
in (𝜂, 𝜙) and summing the transverse momenta of PF candidates inside the cone. A
scale factor, obtained separately in each pseudorapidity region from the ratio of the
average measured and simulated random cone offsets, is then multiplied to the corre-
sponding correction parameters 𝜌0(𝜂) and 𝛽(𝜂). The average pileup offset per pileup
interaction, determined as a function of 𝜂 using the random-cone method, as well as the
data/simulation scale factor can be seen in figure 4.24.2.

4.2.2 Simulated response correction

After the pileup correction has been applied, the jet energy is corrected for the detector
response, which connects the energy of particle-level jets to that of jets clustered from
PF candidates. The response is estimated from simulated event samples, which contain
a full detector simulation based on the Geant4 toolkit [6767], allowing detector effects to
be studied in detail.

To determine the detector response, jets in simulated samples are first matched to their
particle-level counterparts based on the distance Δ𝑅 in (𝜂, 𝜙) space. The response is then
estimated in bins of 𝜂 and 𝑝T from the ratio of the average transverse momenta of the
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matched reconstructed and particle-level jets:

𝑅ptcl =
⟨𝑝reco

T ⟩
⟨𝑝ptcl

T ⟩
(4.3)

Figure 4.34.3 shows the simulated jet response as a function of 𝜂 in the different 𝑝T regimes.
As can be seen, the varying detector composition in each pseudorapidity slice leads to
significant differences in the response behavior, which are compensated by the simu-
lated response correction.

4.2.3 Residual corrections

The derivation of the corrections outlined above relies heavily on simulated samples. In
order to account for any remaining differences observed between simulation and data,
a further set of so-called residual corrections is derived in recorded data using a series of
in situ calibration techniques.
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The residual correction is obtained in two stages. First, relative calibration factors are
obtained as a function of the jet pseudorapidity 𝜂 with respect to the energy of jets in the
central region at |𝜂| < 1.3. Subsequently, the absolute jet energy scale is measured in the
central region, using jets that are transversely balanced against different types of well-
measured reference objects. This approach takes advantage of the high reconstruction
accuracy in the central region to calibrate jets across the entire pseudorapidity range.

For the relative calibration stage, dijet events are selected for which the highest-𝑝T jet
is reconstructed within |𝜂| < 1.3, and the response is determined by comparing the
reference jet 𝑝T to that of the second jet as a function of the latter’s pseudorapidity. The
imbalance resulting from the presence of additional jets is compensated by measuring
the response as a function of the ratio of the third jet 𝑝T to the average dijet transverse
momentum, and extrapolating to zero.

To determine the absolute jet energy scale, events are selected in which jets are trans-
versely balanced against well-measured objects such as photons or Z bosons reconstruct-
ed from electron and muon pairs. As for the relative calibration, the response is mea-
sured in bins of the additional jet activity 𝛼, defined as the ratio of the second-leading
jet 𝑝T to that of the reference object, and extrapolated to the ideal topology at 𝛼 = 0.

The response is determined using two complementary methods, which are sensitive to
different biases. In the 𝑝T balance method, the response is defined directly as the ratio of
the jet 𝑝T to be calibrated and that of the reference object:

𝑅𝑝T
=

𝑝jet
T

𝑝ref
T

(4.4)

While this definition is effective in describing local influences on the jet reconstruction,
it is very sensitive to the additional jet activity, leading to large uncertainties due to the
𝛼 extrapolation. To avoid this, a second response definition is introduced based on the
fact that, for a well-calibrated jet energy scale, the missing transverse momentum in
Z+jets and 𝛾+jets events is expected to be zero. The projection of the missing transverse
momentum in the event onto the 𝑝T of the reference object can therefore be interpreted
as a measure of the miscalibration of the jet energy scale, leading to the so-called MPF
response definition:

𝑅MPF = 1 +
pmiss

T ⋅ pref
T

(𝑝ref
T )2 (4.5)

The absolute calibration factors for the jet energy scale are then determined as a func-
tion of 𝑝T in a global fit to all measurements. At high 𝑝T, the response is additionally
constrained using multijet events by balancing the recoil of the multijet system against
a high-𝑝T central jet. The resulting response after applying both the relative and the
absolute the calibration factors is shown on the right in figure 4.34.3.
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4.2.4 Jet energy resolution

The measurement of the jet energy is limited by the finite detector resolution, which
manifests as a random spread of the reconstructed jet 𝑝T with respect to the particle-level
jet. This effect is of particular importance when performing a differential measurement
of the steeply falling jet 𝑝T spectrum, which is systematically shifted towards higher
values as a result of the convolution with the detector resolution.

The jet 𝑝T resolution is estimated using simulated samples by examining the distribution
of the particle-level response, which is defined as the 𝑝T ratio of matched reconstructed
and particle-level jets. The distribution is fitted with a Gaussian function in different 𝑝T
and pseudorapidity regions, and the width parameter 𝜎 is taken as an estimate of the
resolution.

To ensure that the resolution is modeled accurately to reflect the actual measurement
conditions, scale factors are derived by comparing recorded and simulated events. Al-
ternative estimates of the jet 𝑝T resolution are obtained from the distribution of the 𝑝T
asymmetry of the two leading jets in dijet events, and the 𝑝T balance distribution in
𝛾+jets and Z+jets events. As in the case of residual corrections, additional jet activity
is extrapolated to zero to obtain the final resolution estimates. The scale factor is deter-
mined in bins of |𝜂| as the ratio of the resolution in data and simulation.

To adjust the 𝑝T resolution to that in data, the four-momentum of each jet is smeared by
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a random multiplicative factor 𝑐JER, derived as follows:

𝑐JER = 1 + 𝒩(0, 𝜎JER)√max(𝑠JER
2 − 1, 0) (4.6)

In the above equation, 𝒩(0, 𝜎JER) indicates a random number sampled from a normal
distribution with a mean of zero and a width parameter corresponding to the relative
jet 𝑝T resolution, as obtained from simulation. This number is then scaled further by an
expression involving the simulation-to-data scale factor 𝑠JER. The maximum function
prevents the resolution from being degraded if the scale factor should drop below unity.
Nevertheless, this is not observed to be the case. The scale factors obtained can be seen
in figure 4.44.4.
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Figure 4.4 – Simulation-to-data scale factors for the jet energy resolution (JER). Shown
are the scale factors obtained for the data taking periods 2016–2018 in bins of the abso-
lute jet pseudorapidity |𝜂|. Taken from [6666].

4.2.5 Missing transverse momentum correction

The corrections presented in the previous sections account for systematic biases affect-
ing the jet energy on a jet-by-jet basis. This introduces a discrepancy between the un-
derlying PF candidates clustered as part of the jet and the final corrected jet transverse
momentum. Since the missing transverse momentum (MET) in an event is calculated
based on the PF candidates, the corrections must be propagated to the MET to ensure
consistency.

This is done by applying the so-called type-I MET correction. For every jet above a
threshold of 15 GeV, the difference between the raw (uncalibrated) PF jet and the fully
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corrected jet is added back to the raw PF MET. To avoid anisotropies caused by the sub-
traction of pileup clustered into jets, which could result in a MET bias, the jet pileup
offset estimated with the random cone method, denoted ORC, is resubtracted. The type-
I-corrected MET is then given by:

pmiss,corr
T = pmiss,raw

T + ∑
𝑖
pjet,raw

T,𝑖 − ∑
𝑖
pjet,corr

T,𝑖 − ∑
𝑖
ORC,𝑖 (4.7)

4.3 Jet triggers

The presence of jets in events is detected by algorithms implemented in both the L1
trigger and the high-level trigger (HLT).

At the L1 trigger level, a full jet reconstruction cannot be performed due to the stringent
time constraints. Instead, jet-like objects are reconstructed from regions of high activity
in the electromagnetic and hadronic calorimeters, providing only a rough estimate of
the jet energy and location. Several jet-related L1 pathways are implemented, which de-
liver a positive trigger decision if jet-like objects with transverse momenta 𝑝T surpassing
preset thresholds are found.

At the HLT, two different categories of jet trigger paths are implemented. The simpler,
single-jet trigger paths identify the jet with the largest transverse momentum 𝑝T and
accept the event if this value lies above a preconfigured threshold. In addition, a set of
dedicated dijet trigger paths exists, for which the trigger decision is computed based on
the average transverse momentum ⟨𝑝T⟩1,2 of the two highest-𝑝T jets.

To take advantage of the L1 trigger decisions, HLT jet paths are seeded by a suitable L1
jet trigger pathway, meaning that events which were not accepted by this pathway are
also rejected by the HLT. The L1 pathway is chosen so that its 𝑝T threshold is sufficiently
below that of the HLT path and thus corresponds to looser event selection criteria. If no
such path is available, so-called zero bias pathways are used as L1 seeds, which deliver
random trigger decisions that are not based on the event content.

For events passing the L1 seed requirement, jets are clustered from particle-flow candi-
dates using the anti-𝑘T algorithm. For single-jet triggers, the clustering is done for both
of the standard radius parameter values used in CMS, 𝑅 = 0.4 and 𝑅 = 0.8, with a sep-
arate set of HLT paths for each radius, while for the dijet trigger paths, only jets with
𝑅 = 0.4 are considered.

To meet the time requirements imposed on the trigger, only a simplified version of the
track reconstruction is run at the trigger level compared to the full offline reconstruct-
ion. Due to the limited momentum resolution of the simplified reconstruction, the trig-
ger efficiency exhibits a characteristic ”turn-on” behavior as a function of the offline-
reconstructed 𝑝T (or ⟨𝑝T⟩1,2), reaching full efficiency only at values much larger than
the nominal trigger threshold. Figure 4.54.5 shows an example of typical trigger efficiency
curves, determined in 2016 data for a representative selection of single-jet trigger paths.
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Figure 4.5 – Illustration of typical efficiency turn-on curves, determined for a represen-
tative selection of single-jet triggers paths from a subset of the 2016 data. The efficiency
of each trigger path increases as a function of the offline-reconstructed jet 𝑝T, reaching
values of ca. 50% at the nominal trigger threshold value and full efficiency only at sig-
nificantly larger values. Taken from [6868].

4.3.1 L1 trigger prefiring

Data taken in 2016 is affected by a further source of trigger inefficiency which is due
to an association of L1 trigger ECAL primitives to the incorrect bunch crossing (BX),
leading to a so-called prefiring effect.

The effect is determined by a negative shift in the absolute ECAL timing, which is known
to be caused by the progressive loss of ECAL crystal transparency as a result of radiation
damage over time. The shift has an impact on the timing of L1 trigger primitives, causing
them to be incorrectly associated to the preceding BX, hence prefiring.

To counteract this, a time offset is implemented in the L1 trigger, whose value is opti-
mized to reduce the prefiring rate. However, during 2016, the accumulation of ECAL
radiation damage caused a timing shift for which the time offset was not adequately ad-
justed for data taking. This resulted in a dramatic increase in prefiring rates in a portion
of the endcap region of the ECAL (2 < |𝜂| < 3).

The inefficiency due to prefiring itself results from the L1 trigger rules put in place to
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avoid an overflow of the readout buffers (cf. section 3.3.13.3.1). One such rule prevents more
than one event from being read out within three consecutive bunch crossings. If this
occurs, the detector is only read out for the first triggered bunch crossing, while any
others are vetoed.

When prefiring occurs, this causes the detector readout to be triggered during the early
BX, which was mistakenly associated to the prefired L1 primitive, while the correct event
associated to the in-time BX is discarded. In addition, the mistimed detector readout
likely leads to an event which contains no interesting information and is thus discarded
by the HLT or during the offline analysis.

This inefficiency is not accounted for in simulation and its estimation is not directly pos-
sible in data using standard techniques: since all affected events are discarded during
data taking, there is no way to obtain a reference sample in the offline analysis. However,
it is possible to identify a subset of so-called unprefireable events, for which a mistimed
detector readout is prevented by the L1 trigger rules.

This is the case when a readout is triggered for events that are exactly three bunch cross-
ings apart, denoted here BX-3 and BX0 for simplicity. Assuming that prefiring occurs
for the later event in BX0, the readout would be triggered incorrectly for BX-1, while BX0
would be vetoed. However, if a readout is triggered for BX-3, a readout for BX-1 would
be forbidden by the trigger rules. This ensures that BX0 is correctly read out despite the
prefiring.

Using the set of unprefireable events, an estimate of the prefiring probability can be ob-
tained by determining the fraction of events for which a prefired L1 primitive exists in
the preceding bunch crossing. Due to the relative rarity of unprefireable events, this ap-
proach is impractical for use by individual analyses. Instead, the prefiring efficiency is
estimated centrally using a sufficiently large analysis-independent sample and provided
as a function of the transverse momentum 𝑝T and the pseudorapidity 𝜂 of reconstructed
objects which are likely to cause prefiring. Figure 4.64.6 shows the prefiring efficiency mea-
sured for jets in the affected pseudorapidity regions.
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Figure 4.6 – Prefiring probability, estimated in a special set of unprefireable events as
the fraction of events with a positive L1 trigger decision misattributed to the previous
bunch crossing BX-1. The misattributed trigger decision is due to calorimeter deposits
at pseudorapidities 2 ≤ |𝜂| ≤ 3 and is therefore associated with jets in these regions.
Shown are the fractions of prefired events in bins of the jet pseudorapidity and trans-
verse momentum.
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5 Triple-differential cross section
measurement

Jet observables at hadron colliders provide an excellent premise for precision measure-
ments, which are essential for constraining theoretical parameters such as PDFs and re-
ducing the theory-induced uncertainties in many analyses. The production of dijet pairs
is particularly well-suited for this purpose. Having one of the highest cross sections at
hadron colliders, a high degree of statistical precision can be reached. In addition, the
configuration of the dijet system can be exploited to improve the PDF sensitivity.

This chapter presents a triple-differential measurement of the dijet cross section per-
formed using proton collision data recorded at CMS during 2016 at a center of mass
energy of 13 TeV. The data samples analyzed are outlined in section 5.15.1.

Dijet events are identified by applying a set of selection criteria, which are described in
section 5.25.2. The differential cross section is then measured as a function of three observ-
ables describing the kinematics of the dijet system. Two measurements are performed
in parallel: one for the variables 𝑦∗, 𝑦b, and the average dijet transverse momentum
⟨𝑝T⟩1,2, and another using the dijet invariant mass 𝑚jj as an alternative observable. The
measurement phase space and binning are detailed in section 5.35.3.

Section 5.45.4 presents a comparison of the main kinematic variables in recorded data and
samples obtained from Monte Carlo simulation. The latter are used to study to gauge the
impact of the detector response and resolution on the measurement, which are corrected
for using a three-dimensional unfolding procedure, described in section 5.55.5.

The main uncertainties affecting the measurement are discussed in section 5.65.6. Finally,
the unfolded cross sections are compared to fixed-order calculations at next-to-leading
(NLO) and next-to-next-to-leading order (NNLO) accuracy in perturbative QCD (sec-
tion 5.75.7).
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5.1 Data samples

The measurement of the triple-differential dijet cross section presented here is based on
proton-proton collision data collected at a center-of-mass energy of 13 TeV by the CMS
detector in 2016. The total data set corresponds to an integrated luminosity of 35.9 fb−1.

Events recorded by CMS are grouped into so-called primary datasets depending on the
trigger path by which they were accepted. The JetHT primary dataset contains all the
events accepted by jet-related trigger paths, and is therefore chosen for this measure-
ment.

During data taking, events are organized into consecutively numbered runs, during
which the detector conditions remain largely unchanged. The length of a run is not
predetermined and can vary between a few seconds and several hours, depending on
the necessity to make adjustments to the detector parameters. Runs are further subdi-
vided into luminosity blocks, which correspond to a data-taking interval of roughly 25
seconds and during which the instantaneous luminosity is approximately constant.

Following data taking, each run and luminosity block is verified to ensure the well-
functioning of all detector components in a process called data certification. This analysis
uses only certified runs and luminosity blocks, a list of which is centrally provided by
the CMS collaboration.

In order to better gauge the impact of changing detector conditions over time, data col-
lected in 2016 is divided chronologically into seven data taking periods labeled alpha-
betically from 𝐵 to 𝐻, each covering a range of consecutive runs. The data samples
are cataloged along with the associated metadata in the CMS Data Aggregation System
(DAS) [6969]. An overview of the data taking periods, together with the corresponding
DAS datasets and the corresponding integrated luminosities can be seen table 5.15.1.

Simulated samples

To facilitate a better understanding of the data, a selection of simulated samples is pro-
vided by the CMS collaboration for a wide range of fundamental processes. These are
obtained using Monte Carlo (MC) event generators and include not only a simulation
of the hard scattering process, but also incorporate contributions from pileup and a full
simulation of the detector. This allows them to be compared directly to recorded data
and provides a means to gauge the impact of experimental and theoretical effects on the
measurement.

The main process of interest in this analysis is QCD jet production, which is simulated
using the Pythia 8 event generator [2929]. The hard scattering amplitude for this process
is calculated at leading order (LO) in perturbation theory, with additional higher-order
contributions from QCD radiation being modeled using the parton shower approach.
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Table 5.1 – Overview of proton collision datasets recorded by CMS in 2016. Events are
separated into seven data-taking periods, each of which covers a range of consecutive
runs and corresponds to a particular integrated luminosity.

Period Dataset(s) Luminosity/ fb−1 Run range
B /JetHT/Run2016B-17Jul2018_ver1-v1/MINIAOD,

/JetHT/Run2016B-17Jul2018_ver2-v2/MINIAOD
5.7 272007–275376

C /JetHT/Run2016C-17Jul2018-v1/MINIAOD 2.6 275657–276283
D /JetHT/Run2016D-17Jul2018-v1/MINIAOD 4.3 276315–276811
E /JetHT/Run2016E-17Jul2018-v1/MINIAOD 4.0 276831–277420
F /JetHT/Run2016F-17Jul2018-v1/MINIAOD 3.1 277772–278808
G /JetHT/Run2016G-17Jul2018-v1/MINIAOD 7.5 278820–280385
H /JetHT/Run2016H-17Jul2018-v1/MINIAOD 8.6 280919–284044

The simulation of the underlying event is configured using the CUETP8M1 tune [3636].
The hadronization of final-state partons is carried out using the Lund string model.

To simulate pileup, a random number of additional so-called minimum-bias interactions
are simulated and the resulting particles are appended to the products of the hard scat-
tering. The mean number of pileup interactions expected is determined from the overall
minimum-bias cross section and the instantaneous luminosity, and the exact number is
drawn from a Poisson distribution with a corresponding expectation value.

The interaction of the generated particles with the detector is simulated using the Geant4
toolkit [6767]. The simulated signals obtained in this way are processed employing the
same reconstruction methods as for recorded data.

Stitching

Differential jet cross sections depend strongly on the 𝑝T of the jets, decreasing expo-
nentially with 𝑝T over several orders of magnitude within the experimentally accessi-
ble phase space. This makes direct MC sampling across the entire 𝑝T range inefficient,
leading to oversampling at low 𝑝T where the cross section is highest, and a sparsely
populated high-𝑝T region.

To avoid this, the phase space is first partitioned into several ranges, chosen such that
the cross section decrease in each range is small compared to its average value, and an
adequate number of events are then sampled in each range.

The Pythia 8 QCD samples used here are sampled in bins of the generator variable ̂𝑝T,
which represents the characteristic transverse momentum of the hard process. The sam-
ples comprise a total of 14 regions, commonly referred to as slices, which cover the ̂𝑝T
region above 30 GeV.
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The final spectrum is obtained as a weighted distribution, where all events from a slice
are assigned a stitching weight based on the total cross section calculated for the corre-
sponding ̂𝑝T range. This is equivalent to normalizing the slices to the same equivalent
luminosity. Denoting the number of events in a ̂𝑝T slice as 𝑁total( ̂𝑝T), and the total cross
section there as 𝜎total( ̂𝑝T), the stitching weight is given by:

𝑤stitching( ̂𝑝T) = 𝜎total( ̂𝑝T)/𝑁total( ̂𝑝T) (5.1)
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Figure 5.1 – Distribution of the generator variable ̂𝑝T before (left) and after (right) ap-
plying stitching weights to normalize each slice to the same equivalent luminosity. The
weighting produces a spectrum with a characteristic steeply falling shape and elimi-
nates the discontinuities between ̂𝑝T slices.

An overview of the samples, together with the associated cross sections can be found in
table A.1A.1 in section A.1A.1 of the appendix.

Background processes

In addition to QCD jet production, a number of unrelated background processes can
also result in dijet pairs. This is mainly due to electroweak vector boson production,
where jets may arise from initial and final state QCD radiation, or the production of top
quark pairs, which decay to lighter quarks before hadronization, resulting in secondary
jets.

The cross section for these processes is orders of magnitude below that of QCD jet pro-
duction, so that their contribution to the main measurement can be neglected. Neverthe-
less, this is checked explicitly using additional MC samples for three main background
processes: W boson production (denoted ”W(→ ℓ𝜈) + jets”), production of a Z boson
decaying to neutrinos (”Z(→ 𝜈𝜈) + jets”), and top quark pair production (”tt + jets”).
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An overview of the explicit background samples used can be found in table A.2A.2 in sec-
tion A.1A.1 of the appendix.

All the background MC samples contain events generated based on LO matrix element
calculations performed with the MadGraph5_aMC@NLO software package [7070]. This
is interfaced to Pythia 8, which applies the parton shower algorithm, matching it to the
matrix element calculation in the MLM scheme.

5.2 Event selection

Events contained in the recorded and simulated data sets are filtered by applying spe-
cific selection criteria. The purpose of the selection is to obtain a representative, high-
quality sample of QCD dijet events for performing the cross section measurement.

The first selection of recorded data happens during data taking, where events containing
jets with transverse momenta above predefined thresholds are identified by the trigger
system and stored for offline analysis. These events are then reprocessed following data
taking, applying the latest calibrations and corrections.

While a simulation of the trigger is also available for simulated data sets, this is not taken
into account for the event selection, such that all simulated events are treated under the
assumption of a fully efficient, unprescaled trigger.

The reprocessed event sample then undergoes an offline selection, where analysis-specific
criteria are applied. The analysis phase space is defined by applying cuts to the kine-
matics of the two leading jets, taking into account the detector acceptance and the re-
construction efficiency.

The event sample is further refined by applying a series of quality cuts meant to reduce
the impact of background, detector noise and other sources of bias. These selection steps
are described in detail in the following.

5.2.1 Trigger selection

Events entering the analysis are first selected based on the trigger decision. As men-
tioned in section 4.34.3, a number of trigger paths that are specifically designed for jet
measurements are defined in the HLT configuration. Since the cross section decreases
exponentially across the experimentally accessible 𝑝T range, multiple prescaled trigger
paths with different thresholds are deployed to ensure that all of it is covered.

For a differential cross section measurement across the entire spectrum, the trigger paths
must be combined, taking the reduction in event numbers due to prescaling into account.
This is achieved by determining an effective luminosity for each trigger path, which cor-
responds to the integrated luminosity necessary for an equivalent unprescaled path to
result in the same overall number of accepted events.
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Since the prescaling factor is adjusted continually during data taking to optimize the
trigger bandwidth, the rate of overall accepted events varies with time. To obtain the
total effective luminosity, the integrated luminosity measured for each luminosity block
is scaled down by the prescaling factors configured during data taking for the HLT path
and the associated L1 seeds, and summed across all luminosity blocks contributing to
the measurement.

In this analysis, only events triggered by one of 9 available dijet HLT paths are consid-
ered. This set of triggers constitutes a natural choice for a dijet analysis, since they are
optimized for the exact jet topology that is being studied. Moreover, in a majority of
cases, they provide higher effective luminosities than the single-jet trigger paths with
corresponding thresholds. An explicit list of the trigger paths, together with their cor-
responding 𝑝T thresholds and effective luminosities is given in table 5.25.2.

A further aspect relevant to the trigger selection is the trigger efficiency. As discussed in
section 4.34.3, triggers exhibit a ”turn-on” behavior, causing a sharp decrease in the number
of events accepted by a trigger path at ⟨𝑝T⟩1,2 values below the trigger threshold.

In general terms, an estimate of the efficiency of a selection can be obtained by eval-
uating the proportion of true positives in a sample. To result in an unbiased estimate,
the preselection criteria for putting together this sample have to be independent of the
selection criteria.

In the specific case of dijet triggers, an event is considered a true positive if the average
transverse momentum of the two leading jets is above the trigger threshold both when
calculated from the final calibrated jets (”true”) and the corresponding trigger objects
(”positive”).

The method used for estimating the trigger efficiency in this analysis is known as trigger
emulation (also called bootstrapping), and is applicable to trigger paths that are part of a
set with increasing thresholds, as described in section 4.34.3.

In this case, the efficiency of a trigger path 𝑇 is determined from a sample of events
triggered by the path with the next-lowest threshold within the same set. For these
events, the decision of the trigger 𝑇 is emulated, and the fraction of events accepted by
the trigger emulation are taken as an estimate of the efficiency of 𝑇.

More rigorously, for a sequence of 𝑛 trigger paths (𝑇𝑘), 𝑘 ∈ {1, 2, … , 𝑛}, belonging to the
same set and arranged in ascending order of their HLT thresholds, let {𝑇𝑘} denote the
set of events accepted by the 𝑘-th trigger path. Furthermore, let {𝑇emulated

𝑘 } denote the
set of events for which the emulation of the decision of the 𝑘-th trigger path has resulted
in the event being accepted.

Then, using 𝑁 to mean set cardinality, an estimate for the efficiency of 𝑇𝑘 is given by:

̂𝜀(𝑇𝑘) =
𝑁({𝑇𝑘−1} ∩ {𝑇emulated

𝑘 })
𝑁({𝑇𝑘−1}) (5.2)
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Table 5.2 – Dijet trigger paths deployed in 2016. Each entry indicates the name of the
trigger path as it appears in the trigger menu, the effective luminosity for the entire 2016
data period, as well as the ⟨𝑝T⟩1,2 (𝑝T) thresholds for trigger objects used for determining
the HLT (L1) trigger decisions.

Trigger path Trigger thresholds / GeV Eff. luminosity / pb−1

HLT (⟨𝑝T⟩1,2) L1 (𝑝T)

HLT_DiPFJetAve40 40 – 0.1
HLT_DiPFJetAve60 60 – 1.7
HLT_DiPFJetAve80 80 60 4.2
HLT_DiPFJetAve140 140 90 27.6
HLT_DiPFJetAve200 200 120 138
HLT_DiPFJetAve260 260 170 523
HLT_DiPFJetAve320 320 170 2969
HLT_DiPFJetAve400 400 170 9026
HLT_DiPFJetAve500 500 170 29309

Compared to other strategies, the trigger emulation approach has the advantage of ex-
ploiting trigger-level information directly: Since the preselection of events is done on the
basis of jet triggers, the kinematic properties of jets reconstructed at the trigger level are
available and can be used to model the trigger behavior more accurately. This comes at
the expense of requiring a fully efficient jet trigger path for event preselection, meaning
that the efficiency of the lowest-threshold trigger path in a sequence cannot be estimated
using this method. Furthermore, the trigger paths used for preselection must be fully
efficient in the phase space region used for the efficiency measurement, which would
otherwise result in a biased estimate. Thus, the thresholds of successive triggers must
be sufficiently far apart to ensure that there is no overlap of the turn-on regions, which
is observed to be the case for all trigger paths considered.

The emulation of a trigger path consists of two steps. First, the HLT and L1 trigger
objects corresponding to the two leading jets are identified. For jets clustered with a
radius parameter 𝑅, these are defined as the trigger objects closest to the respective jets
in (𝜂, 𝜙)-space within a cone of Δ𝑅 < 𝑅/2.

An HLT match is always required to exist for both leading jets. For HLT paths that are
seeded by an L1 trigger pathway, an L1 match is required as well. If a required match
is not found for either one of the two leading jets, the event is considered to have been
rejected by the trigger path emulation.

If all required trigger object matches are found, the decision of the trigger path is emu-
lated by comparing the average momentum of the matched HLT (and, if applicable, L1)
trigger objects to the configured threshold(s). Events yielding values above the thresh-
old(s) are accepted, the others are rejected.
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Figure 5.25.2 shows the trigger efficiency curves obtained using this method as a function
of the average jet transverse momentum. The efficiencies shown here are derived based
on an inclusive sample where no offline event selection has been applied. In the final
analysis, the trigger efficiency is studied individually in each measurement bin, as dis-
cussed in section 5.3.25.3.2.
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Figure 5.2 – Efficiencies of the dijet trigger paths obtained using the emulation method.
The curves display the expected turn-on behavior as a function of the average jet trans-
verse momentum around the nominal trigger threshold. The emulation method pro-
vides reliable efficiency estimates only in regions where the preceding trigger path is
fully efficient. Outside these regions, the efficiency estimates are masked for better read-
ability. The error bars correspond to Clopper-Pearson confidence intervals.

5.2.2 Jet phase space selection

After the trigger selection, a further set of criteria is applied based on the kinematic
properties of the two 𝑝T-leading jets. Events are required to contain at least two jets,
with the 𝑝T of the leading and subleading jets being larger than 100 GeV and 50 GeV,
respectively. In addition, the absolute rapidity of both jets is required to be less than 2.5.

These criteria serve the primary purpose of restricting the measurement to a kinematic
region where the reconstruction efficiency is high. In addition, they provide a well-
defined phase space for the calculation of theory predictions, ensuring that a direct
comparison to the measurement can be made.
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5.2.3 Quality criteria

A further set of selection criteria is imposed in order to reduce the impact of detector
signals that do not originate from collision products. These can be caused by a variety
of sources, the main ones being calorimeter noise and the so-called beam halo, which
consists of particles produced by the interaction of the proton beams with the accelerator
material.

Since these signals disturb the transverse energy balance of events, a reliable method
for identifying these cases consists in examining the missing transverse momentum
(MET). Events with a particularly high MET are screened additionally for effects con-
sistent with noise or beam halo particles, for which dedicated algorithms have been
developed within CMS, and excluded from the measurement.

In addition, high-MET events are less likely to originate from pure QCD interactions,
since these do not give rise to the undetectable particles associated with genuine MET
(e.g. neutrinos). A variable commonly used to quantify this is the ratio of the missing
transverse energy to the total scalar sum of transverse energies of all particles.
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Figure 5.3 – Distribution of the missing transverse energy, as a ratio to the scalar sum
of particle transverse energies. QCD events occur predominantly at low values, while
higher regions are affected by detector noise and background. Events above a value of
0.3, indicated by the dashed line, are rejected from the final analysis.

Figure 5.35.3 shows the contribution from QCD and select non-QCD background processes,
as given by simulation. As can be seen, the vast majority of QCD events exhibit values
of this variable closer to 0, while events at larger values are almost exclusively due to
background. To ensure a high sample purity of QCD events and further limit the impact
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of noise, a cut is imposed on this value, rejecting events above a threshold value of 0.3.
This value is chosen in order to remain consistent with previous QCD analyses [44, 55].

A final quality criterion concerns the effect of noise on the jet reconstruction. The pres-
ence of detector noise can cause spurious energy clusters in the calorimeters with a
sufficiently high energy to be misidentified as jets or to make up a significant portion of
the energy of genuine jets.

Since these jets form a background to QCD jet production, they must be accounted for
in the final measurement. For this purpose, a set of jet identification criteria are recom-
mended within CMS. These are based on the multiplicity of the particle flow jet con-
stituents and the energy carried by different constituent types, as a fraction of the total
jet energy. Jets which do not pass these criteria are marked as invalid and removed from
the event.

Due to the different subdetector configurations, different criteria are applied depending
on the pseudorapidity of the jet. For instance, the contribution of charged constituents
is only considered within tracker coverage (|𝜂| < 2.4), extending to |𝜂| < 2.7 for muons.
A summary of the criteria can be found in table 5.35.3. These have been optimized to obtain
a high noise jet rejection rate, while keeping genuine jets unaffected. It is found that the
associated selection efficiency remains above 99% in all phase space regions considered
in this analysis.

Table 5.3 – Summary of the jet identification criteria. Different criteria are used depend-
ing on the pseudorapidity of the jet.

Pseudorapidity regions
|𝜂| < 2.4 2.4 ≤ |𝜂| < 2.7 2.7 ≤ |𝜂| < 3.0 3.0 ≤ |𝜂|

Energy fractions:
Neutral electromagnetic < 0.9 < 0.9 > 0.01 < 0.9
Neutral hadrons < 0.9 < 0.9 < 0.98 –
Muons < 0.8 < 0.8 – –
Charged hadrons > 0 – – –
Charged electromagnetic < 0.9 – – –

Number of constituents:
Total > 1 > 1 – –
Neutral – – > 2 > 10
Charged > 0 – – –
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5.3 Phase space and binning

The differential dijet cross section is measured as a function of three observable quan-
tities: 𝑦∗, 𝑦b, and a third kinematic variable, chosen to be either the average transverse
momentum of the two leading jets ⟨𝑝T⟩1,2 or the invariant mass of the dijet system 𝑚jj.

The quantity 𝑦∗ (”y-star”) is defined as half the absolute value of the difference between
the rapidity of the leading jet 𝑦jet 1 and the subleading jet 𝑦jet 2. Analogously, 𝑦b (”y-
boost”) is defined as half the absolute value of the rapidity sum:

𝑦∗ = 1
2 ∣𝑦jet 1 − 𝑦jet 2∣ , 𝑦b = 1

2 ∣𝑦jet 1 + 𝑦jet 2∣ (5.3)

The quantities ⟨𝑝T⟩1,2 and 𝑚jj are defined via the transverse momenta of the two leading
jets 𝑝jet 1

T and 𝑝jet 2
T , and the four-vectors 𝑝jet 1

𝜇 and 𝑝jet 2
𝜇 , respectively:

⟨𝑝T⟩1,2 = 1
2 (𝑝jet 1

T + 𝑝jet 2
T ) (5.4)

𝑚jj = √(𝑝jet 1
𝜇 + 𝑝jet 2

𝜇 ) (𝑝𝜇, jet 1 + 𝑝𝜇, jet 2) (5.5)

5.3.1 Binning

The cross section measurement is performed in bins of 𝑦∗, 𝑦b, and either ⟨𝑝T⟩1,2 or 𝑚jj.
Thus, an adequate binning scheme that is suited to the present analysis must be estab-
lished. The choice of variables exhibits a number of particularities that are addressed in
the following.

First, for a simultaneous binning in 𝑦∗ and 𝑦b, it must be considered that the overall
phase space results from a linear combination of the underlying rapidity phase spaces
of the two leading jets. This leads to a characteristic ”triangular” shape, which can only
partially be covered by conventional rectangular bins.

In addition, an adequate range and bin size must be chosen for ⟨𝑝T⟩1,2 and 𝑚jj, which
is largely governed by the accessible phase space and the detector resolution. An ad-
ditional particularity of the 𝑚jj measurement is that the accessible phase space shifts
toward higher values in the high-𝑦∗ region as a consequence of the invariant mass defi-
nition.

Binning in (y*, yb)

From the definitions in (5.35.3), it follows that 𝑦∗ and 𝑦b can take values between 0 and an
upper bound of 𝑦max, which is the maximum absolute rapidity of any of the two leading
jets, as required by the selection criteria.
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However, these two quantities are not independent, since they are formed from linear
combinations of 𝑦jet 1 and 𝑦jet 2, both of which are limited by the selection criteria. As a
consequence, not every combination of (𝑦∗, 𝑦b) values within those bounds is possible,
and it can be shown that the following restriction holds: 𝑦∗ + 𝑦b < 𝑦max. This results in
a characteristic triangular shape of the combined phase space in the (𝑦∗, 𝑦b) plane.

In this analysis, an identical equidistant binning is chosen for 𝑦∗ and 𝑦b, starting from 0
and with a bin size of 0.5 in each variable. The upper bound of the binning in each 𝑦∗

and 𝑦b region is determined in such a way as to ensure that all resulting bins lie fully
inside the available (𝑦∗, 𝑦b) phase space, as determined by 𝑦max.

Going up to a value of 𝑦max = 3.0, this results in a total of 15 (𝑦∗, 𝑦b) bins. In the region
with 0 ≤ 𝑦b < 0.5, there are five bins starting with (0.0 ≤ 𝑦∗ < 0.5) and going up to
(2.0 ≤ 𝑦∗ < 2.5). For each of the subsequent 𝑦b regions, there is one less 𝑦∗ bin than
in the previous one, ending with a single bin (0.0 ≤ 𝑦∗ < 0.5) for 2.0 ≤ 𝑦b < 2.5. The
resulting configuration is shown in figure 5.45.4.
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Figure 5.4 – Representation of the binning in (𝑦∗, 𝑦b), showing the characteristic trian-
gular shape of the phase space. The cone pairs represented schematically in each bin
are suggestive of the typical orientation of the leading dijet pair, with the horizontal
direction corresponding to the beam pipe.

Binning in ⟨pT⟩1,2

Before deciding on a concrete binning scheme in ⟨𝑝T⟩1,2, a number of criteria must first
be established as to what constitutes a suitable binning for a precision measurement of
the dijet cross section. In this analysis, three main criteria are considered, as outlined in
the following.
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event yield First, the number of events per bin is required to be of the order of at least
100 events. At the higher end of the spectrum, where the number of events nat-
urally tapers off due to the exponential decrease of the differential cross section,
this criterion establishes an upper bound on ⟨𝑝T⟩1,2. At lower values, events are re-
jected by the trigger threshold requirements and the offline selection criteria, thus
leading to an effective lower bound on ⟨𝑝T⟩1,2.

trigger efficiency As discussed in section 4.34.3, the trigger efficiency can cause the loss
of events in the ”turn-on” region near the trigger threshold. To minimize the im-
pact that a trigger inefficiency would have on the cross section measurement, only
phase space regions where at least one trigger path has been determined to be fully
efficient are considered. This requirement affects the lower part of the spectrum,
leading to an exclusion of the ”turn-on” region of the lowest-threshold trigger.

resolution Another important factor is the finite ⟨𝑝T⟩1,2 resolution. This causes a spread
of the reconstructed ⟨𝑝T⟩1,2 with respect to the true value, leading to a systematic
migration of events between bins. While this effect is accounted for using an un-
folding procedure (see section 5.55.5), the stability of this procedure depends on the
size of the migration effect. To ensure that the proportion of events that undergo
bin-to-bin migration is acceptably low, the chosen bin width must be larger than
or equal to the ⟨𝑝T⟩1,2 resolution.

A further thing to consider is that both the trigger efficiency and the ⟨𝑝T⟩1,2 resolution
can exhibit differences depending on the (𝑦∗, 𝑦b) region, potentially resulting in a differ-
ent lower bound or optimal bin width. Despite this, it is preferable to maintain a single
consistent ⟨𝑝T⟩1,2 binning, derived in such a way as to satisfy the criteria outlined above
for all (𝑦∗, 𝑦b) regions simultaneously. This is achieved as follows.

In a first stage, a preliminary binning model is determined using simulated samples
based on the ⟨𝑝T⟩1,2 resolution, without distinguishing between the different (𝑦∗, 𝑦b)
regions. Starting from a value of 100 GeV (which corresponds to the lower bound of
the leading jet 𝑝T, as required by the selection criteria), events are binned in very fine
⟨𝑝T⟩1,2 increments of 1 GeV, resulting in a collection of narrow bins. The ⟨𝑝T⟩1,2 resolu-
tion is then determined by taking the root-mean-square (RMS) of the absolute response
distribution in each bin.

Next, consecutive narrow bins are merged one after another to form a wide bin, recalcu-
lating the resolution each time. The merging continues until the value of the resolution
in the resulting wide bin is found to be less than or equal to half the bin width. Once
this condition is satisfied, the resulting wide bin is added to the model, and process is
repeated with the remaining narrow bins. This is done until the number of events in
the remaining bins drops below the required minimum of 100.

The binning obtained via the above procedure is then validated separately in each (𝑦∗, 𝑦b)
region. The absolute ⟨𝑝T⟩1,2 resolution is verified to ensure that it remains comparable
to the bin width. Furthermore, any bins at the upper end of the spectrum with event
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counts below the required minimum of 100 are discarded. Finally, the trigger efficiency
is evaluated in data as described in section 5.2.15.2.1, discarding all ⟨𝑝T⟩1,2 bins at the lower
end of the spectrum where no trigger path with an efficiency above 99.5% is found. The
resulting ⟨𝑝T⟩1,2 binning is given in table 5.45.4.

Binning in mjj

For establishing the binning used for the measurement as a function of 𝑚jj, an analo-
gous procedure as for ⟨𝑝T⟩1,2 is employed. However, an important difference to note
here is that the typical range of 𝑚jj at high values of 𝑦∗ is shifted towards higher values
with respect to the low-𝑦∗ region. This is because the invariant mass of the dijet system
increases as a function of the dijet rapidity separation. The same does not hold for 𝑦b,
since 𝑚jj is invariant under Lorentz boosts of the dijet system. The 𝑚jj binning is given
in table 5.55.5.

5.3.2 Active trigger ranges

As discussed in section 4.34.3, dijet triggers exhibit a ”turn-on” behavior, causing a sharp
decrease in the number of events accepted by a trigger path at ⟨𝑝T⟩1,2 values below the
trigger threshold. Furthermore, the reduction in effective luminosity caused by trigger
prescaling leads to a progressive drop in event numbers as the value of ⟨𝑝T⟩1,2 increases.
As a result, each individual trigger path effectively only covers a part of the total ⟨𝑝T⟩1,2
spectrum. The is also true for 𝑚jj, which is highly correlated to ⟨𝑝T⟩1,2.

In order to ensure that full trigger efficiency and an adequate event yield are maintained
throughout the entire spectrum, the ⟨𝑝T⟩1,2 (or 𝑚jj) phase space is divided into several
contiguous, nonoverlapping regions, each of which is assigned a single trigger path,
referred to as the active trigger. This is done independently in each (𝑦∗, 𝑦b) region, as
follows.

First, the efficiency of every trigger path is determined in each measurement bin using
the emulation method described in section 5.2.15.2.1. Starting with the trigger path with the
highest ⟨𝑝T⟩1,2 threshold as the active trigger, the bins are then traversed in order from
highest to lowest, evaluating the efficiency of the current active trigger for each bin.

As long as the efficiency of the current trigger path remains above a threshold value of
99.5%, it is assigned to the current bin. Otherwise, the trigger is switched to the next-
lowest path, for which the efficiency is again above threshold. This continues until the
lowest bin is reached. To avoid a bias of the efficiency measurement due to low event
counts, efficiency measurements derived from a reference of fewer than 20 events are
not considered during this process.

Once the active trigger regions have been established, the full ⟨𝑝T⟩1,2 (or 𝑚jj) spectrum
is obtained by normalizing the number of events accepted by the active trigger path in
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Table 5.4 – Binning scheme for ⟨𝑝T⟩1,2. A general binning model is first established
by evaluating the accessible phase space. The lower bound of the model results from
trigger efficiency considerations, the upper bound is chosen based on the observed event
counts, while the bin width is optimized based on the resolution. The actual ⟨𝑝T⟩1,2
binning used in each (𝑦∗, 𝑦b) bin represents a contiguous subset of bins from the general
model, with the bounds adjusted to the specific conditions in that bin.

Model for ⟨𝒑T⟩1,2 bin edges (GeV)

122, 147, 175, 207, 243, 284, 329, 380, 437, 499, 569,
646, 732, 827, 931, 1046, 1171, 1307, 1458, 1621, 1806,
2003, 2217, 2453, 2702

y∗ range yb range ⟨𝒑T⟩1,2 bin edges (GeV) Number of bins

[0.0, 0.5) [0.0, 0.5) 122, …, 2702 24
[0.0, 0.5) [0.5, 1.0) 122, …, 2217 22
[0.0, 0.5) [1.0, 1.5) 122, …, 1621 19
[0.0, 0.5) [1.5, 2.0) 122, …, 1046 15
[0.0, 0.5) [2.0, 2.5) 122, …, 732 12
[0.5, 1.0) [0.0, 0.5) 122, …, 2453 23
[0.5, 1.0) [0.5, 1.0) 122, …, 1806 20
[0.5, 1.0) [1.0, 1.5) 122, …, 1307 17
[0.5, 1.0) [1.5, 2.0) 122, …, 931 14
[1.0, 1.5) [0.0, 0.5) 122, …, 1806 20
[1.0, 1.5) [0.5, 1.0) 122, …, 1458 18
[1.0, 1.5) [1.0, 1.5) 122, …, 1046 15
[1.5, 2.0) [0.0, 0.5) 122, …, 1307 17
[1.5, 2.0) [0.5, 1.0) 122, …, 1046 15
[2.0, 2.5) [0.0, 0.5) 122, …, 827 13

(all) (all) – 264
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Table 5.5 – Binning scheme for 𝑚jj. A general binning model is first established by eval-
uating the accessible phase space. The lower bound of the model results from trigger ef-
ficiency considerations, the upper bound is chosen based on the observed event counts,
while the bin width is optimized based on the resolution. The actual 𝑚jj binning used
in each (𝑦∗, 𝑦b) bin represents a contiguous subset of bins from the general model, with
the bounds adjusted to the specific conditions in that bin.

Model for 𝒎jj bin edges (GeV)

249, 306, 372, 449, 539, 641, 756, 887, 1029, 1187,
1361,1556, 1769, 2008, 2273, 2572, 2915, 3306, 3754,
4244, 4805, 5374

y∗ range yb range 𝒎jj bin edges (GeV) Number of bins

[0.0, 0.5) [0.0, 0.5) 249, …, 5374 21
[0.0, 0.5) [0.5, 1.0) 249, …, 4244 19
[0.0, 0.5) [1.0, 1.5) 249, …, 2915 16
[0.0, 0.5) [1.5, 2.0) 249, …, 2008 13
[0.0, 0.5) [2.0, 2.5) 249, …, 1187 9
[0.5, 1.0) [0.0, 0.5) 372, …, 5374 19
[0.5, 1.0) [0.5, 1.0) 372, …, 4244 17
[0.5, 1.0) [1.0, 1.5) 372, …, 2915 14
[0.5, 1.0) [1.5, 2.0) 372, …, 2008 11
[1.0, 1.5) [0.0, 0.5) 539, …, 5374 17
[1.0, 1.5) [0.5, 1.0) 539, …, 4244 15
[1.0, 1.5) [1.0, 1.5) 539, …, 2915 12
[1.5, 2.0) [0.0, 0.5) 756, …, 5374 15
[1.5, 2.0) [0.5, 1.0) 756, …, 4244 13
[2.0, 2.5) [0.0, 0.5) 1187, …, 5374 12

(all) (all) – 223
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each bin to the corresponding effective luminosity. Events that lie outside the region
where the trigger path(s) that accepted them are active are rejected. This is achieved by
applying a trigger weight to each event as follows:

𝑤trigger(𝑥) =
⎧{
⎨{⎩

1/𝐿eff. (𝑇a(𝑥)) event accepted by trigger path 𝑇a(𝑥)
0 otherwise

(5.6)

Here, the shorthand notation 𝑥 is used to mean the values of the main event variables (𝑦∗,
𝑦b, and ⟨𝑝T⟩1,2 or 𝑚jj), 𝑇a(𝑥) refers to the active trigger assigned to the bin that contains
𝑥, and 𝐿eff. (𝑇a(𝑥)) denotes the effective integrated luminosity of the active trigger (see
table 5.25.2).

5.3.3 Prefiring efficiency

Section 4.3.14.3.1 discusses the inefficiency induced by L1 trigger prefiring, which causes
events to be falsely rejected already at the trigger level. The impact of this effect cannot
be estimated using standard techniques such as the trigger emulation method consid-
ered for active trigger assignment outlined in previous section, and must be handled
using a dedicated method.

Since the L1 trigger prefiring is caused by mistimed ECAL trigger primitives in the for-
ward region of the detector with 2 < |𝜂| < 3, it is closely associated to jets reconstructed
in this region. By counting the L1 jet trigger rates in this region using a special subset of
unprefireable events, an estimate of the per-jet prefiring probability can be obtained (cf.
figure 4.64.6). These are obtained from a comparatively small event sample and are there-
fore subject to a statistical uncertainty, which is provided alongside them. In addition,
an inherent systematic uncertainty equal to 20% of the prefiring rate is assigned.

The total efficiency for an event is then calculated as the probability of a jet not to cause
prefiring, which is in turn given by the product of the nonprefiring probabilities at-
tributed to each jet in the event:

𝜀prefiring = 1 − 𝑃(prefiring)

= ∏
𝑗 ∈ jets

(1 − 𝜀jet
prefiring(𝜂𝑗, 𝑝T,𝑗)) (5.7)

The resulting efficiency estimates derived for the present cross section measurement are
shown in figure 5.55.5. As can be seen, the largest impact occurs in the (𝑦∗, 𝑦b) regions at
the edge of the analysis phase space, where it can drop to values of 75%. These regions
are particularly susceptible to prefiring inefficiency since they are more likely to contain
a jet in the affected pseudorapidity region (2 < |𝜂| < 3). Conversely, all other rapidity
regions are significantly less affected, exhibiting efficiencies of 95% and above.
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Also shown in figure 5.55.5 is the uncertainty of the prefiring efficiency. It is obtained by
systematically shifting the per-jet prefiring rates in equation (5.75.7) upward and down-
ward by a factor corresponding to their total uncertainty, which is estimated as the sum
in quadrature of the statistical and systematic uncertainty (cf. section 4.3.14.3.1).
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Figure 5.5 – Efficiency due to trigger prefiring. Shown on the left are the five (𝑦∗, 𝑦b)
regions at the outer edge of the rapidity phase space, where large contributions from
forward jets cause the efficiency to decrease to levels close to 75%. In contrast, in the im-
mediately neighboring four rapidity regions shown on the right, the efficiency remains
above 95% at all times, while in all other regions (not shown), the prefiring efficiency
exceeds 99%. The dashed and dotted lines indicate the total uncertainty of the efficiency
estimation.

5.3.4 Cross section definition

For the cross section measurement, events are binned in the three-dimensional phase
space spanned by the observables (𝑦∗, 𝑦b, 𝑋), where 𝑋 refers to either ⟨𝑝T⟩1,2 or 𝑚jj. The
triple-differential cross section is then given by:

d3𝜎
d𝑦∗d𝑦bd𝑋 = 1

𝜀 𝐿eff.

𝑁events
Δ𝑦∗Δ𝑦bΔ𝑋 (5.8)

In the above, 𝑁events denotes the number of events reconstructed in each bin, and Δ𝑦∗,
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Δ𝑦b, Δ𝑋 refer to the bin dimensions. The quantity 𝐿eff. represents the integrated effec-
tive luminosity, which is accounted for in recorded data by the trigger-specific event
weight defined in (5.65.6), and 𝜀 stands for the total event selection efficiency. The latter
comprises the trigger efficiency, which remains above 99.5% in all bins by construction
(cf. section 5.3.25.3.2), and the total prefiring efficiency discussed in the previous section.

5.4 Comparison of recorded data to simulation

Predictions of observable quantities obtained from MC simulations are a useful tool for
modeling systematic effects on the measurement. In particular, the unfolding approach
described in a later section crucially relies on the accurate modeling of detector-related
effects in simulated samples. It is therefore necessary to ensure that the distributions of
the variables of interest and other closely related observables predicted by the simula-
tions are compatible to those observed in data.

Due to the steeply falling cross section, events in MC simulations are generated using dif-
ferent weights in different phase space regions, so that the entire phase space is covered
more efficiently. Similarly, recorded events are accepted by trigger paths with differ-
ent prescaling factors depending on the phase space region. To recover the differential
cross section across the entire spectrum, simulated events are assigned a weight corre-
sponding to the inverse of the equivalent luminosity of the simulated sample (cf. equa-
tion (5.15.1)), and events in recorded data are weighted with the inverse of the effective
luminosity of the trigger path by which they were accepted (cf. equation (5.65.6)).

Furthermore, in order to compare the recorded and simulated distributions on an equal
footing, the inefficiency incurred due to L1 trigger prefiring must be corrected in data,
since it is not accounted for in the simulated samples. This is done by applying an
additional event weight corresponding to the inverse of the prefiring efficiency (5.75.7).
In addition, the nominal distribution of pileup interactions assumed in the simulation
must be adjusted to the actual data-taking conditions. This is done using a reweighting
procedure, as described in the following.

5.4.1 Pileup reweighting

In order to perform a reweighting of the pileup profile, the amount of pileup per event
for both data and simulation is first quantified in terms of observable quantities.

A suitable quantity for this purpose is the expected average number 𝜇 of additional
proton collisions per bunch crossing. Given an estimated minimum bias cross section
𝜎pp of 69.2 mb [7171] and the nominal bunch crossing frequency 𝑓 of 40 MHz, an estimate
of 𝜇 can be obtained from the average instantaneous luminosity ⟨𝐿inst⟩:

𝜇 = 𝜎pp ⟨𝐿inst⟩/𝑓 (5.9)
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In recorded data, the value of ⟨𝐿inst⟩ is determined from dedicated luminosity measure-
ments for each luminosity block and varies with time according to data taking condi-
tions. Events recorded during the luminosity block are assigned a corresponding value
of 𝜇.

For Monte Carlo samples, 𝜇 is determined for each event by sampling from a target
distribution that roughly corresponds to the expected pileup profile in data. The actual
number of pileup interactions overlaid on top of the hard scattering event is drawn from
a Poisson distribution with a parameter 𝜇 (cf. 5.15.1).

To reweight the pileup profile in simulation, event weights are derived based on the
distribution of 𝜇 in data and simulation, binned equidistantly between 0 and 80 expected
pileup interactions. A simple reweighting scheme would then consist of taking the ratio
of these distributions in each bin of 𝜇, normalizing the distributions to unity beforehand
in order to preserve the total sum of weights.

It is observed, however, that the overall distribution of 𝜇 is different depending on the
trigger path. To take this difference into account when reweighting, a different set of
weights is determined based on the pileup distribution observed for each trigger path.
For a simulated event accepted by a trigger path 𝑇𝑘, the pileup weight is given by:

𝑤PU(𝜇𝑖, 𝑇𝑘) = 𝑁data(𝜇𝑖, 𝑇𝑘)/𝑁data(𝑇𝑘)
𝑁MC(𝜇𝑖, 𝑇𝑘)/𝑁MC(𝑇𝑘) (5.10)

In the above, 𝑁𝑆(𝑇𝑘) refers the to the total number of events in a sample 𝑆 that were
accepted by a trigger path 𝑇𝑘, and 𝑁𝑆(𝜇𝑖, 𝑇𝑘) denotes the subset of those events in the
𝑖-th pileup bin 𝜇𝑖. In the rare case that an event is accepted by multiple trigger paths,
the weight is derived based on the path with the highest ⟨𝑝T⟩1,2 threshold.

A further pileup-related observable is the number of primary vertices 𝑛PV reconstructed
in the event. However, this quantity is sensitive to the particularities of the track recon-
struction, and therefore not directly suitable for pileup reweighting. Nevertheless, it is
a useful quantity for performing a cross-check of the reweighting procedure.

The result can be seen in figure 5.65.6, indicating a greatly improved agreement between
data and simulation after reweighting.

5.4.2 Reconstructed spectra

After reweighting the simulated samples based on the pileup distribution in data and
applying the prefiring corrections to the data, the distributions of the main observable
quantities are compared. In addition to the main variables 𝑦∗, 𝑦b, ⟨𝑝T⟩1,2 and 𝑚jj, the
distributions of the dijet separation in the azimuthal angle Δ𝜙1,2 and the Euclidean dijet
separation in (𝜂, 𝜙) space Δ𝑅1,2 are also checked.
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Figure 5.6 – Distribution of pileup-related quantities before (top) and after (bottom)
pileup reweighting. Shown are the expected number of pileup interactions 𝜇 and the
number of primary vertices in the event 𝑛PV. The reweighting results in an improved
agreement for both observables.
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As can be seen in figure 5.75.7, the shapes of the distributions in data and simulated sam-
ples are largely compatible. Some deviations remain, which is expected on account of
the simulations being based only on leading-order QCD calculations.

5.5 Unfolding

One of the main sources of bias incurred by measurements at particle colliders is the
finite degree of accuracy and precision to which the properties of high-level analysis
objects such as particles and jets can be reconstructed.

This is characterized in terms of the detector response, which is defined as the difference
(or ratio) between the value of an observable, as measured with the help of the detector,
and its reference or ”true” value. Since the reconstruction process introduces a degree of
randomness, the response is modeled as a random variable characterized by a particular
mean value (also sometimes referred to as the response) and a measure of the spread of
the distribution, which is called the resolution.

While a shift in the mean response value is typically compensated by the overall cali-
bration, the effect of the resolution on a measurement remains and must be taken into
account separately. The main effect here consists in the reconstruction of events at a dif-
ferent point in phase space compared to the ”true” location obtained in the ideal case
of infinite resolution.

In binned measurements, this manifests as a migration of events from the bin that corre-
sponds to the ”true” observable values to a different bin based on the actually measured
observable values. Unfolding is a technique used to reverse these migrations and enable
the reconstruction of the ”true” distributions.

5.5.1 Simulated response

A prerequisite for unfolding is the characterization of the detector response, as it ap-
plies to a particular measurement. Since the reference quantities required for this are
not available in data, the response estimation relies instead on simulated samples, where
the final states coming from a Monte Carlo event generator are propagated through a
full detector simulation. This enables the estimation of the detector response and the
resolution of detector-level quantities by using generator-level information as a refer-
ence.

In the present analysis, the effect of the detector response on all three of the analysis vari-
ables 𝑦∗, 𝑦b and ⟨𝑝T⟩1,2 (or 𝑚jj) must be determined, with the corresponding reference
values given by their generator-level equivalents. The latter quantities are calculated
from jets clustered from all stable final-state generator particles, with the exception of
neutrinos.
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Figure 5.7 – Comparison of the variable distributions in data and MC simulation, shown
for the transverse momenta of the two leading jets (top row), the average dijet transverse
momentum and the dijet invariant mass (second row), the dijet rapidity separation 𝑦∗ and
total dijet boost 𝑦b (third row), as well as the dijet angle separation in azimuthal plane
(Δ𝜙) and the Euclidean dijet separation in the 𝜂–𝜙 plane (bottom row). Similar plots for
all rapidity regions can be found in section A.5A.5 of the appendix.
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It is important to note that the 𝑝T ordering of jets may change between the generator and
detector levels, potentially causing the analysis variables to be calculated based on un-
related objects. One way to restore the correspondence would be to perform a matching
between the detector-level and the generator-level jets based on a criterion such as their
separation in (𝜂, 𝜙) space. While such a matching would be useful in determining the
resolution of individual jets, it would not result in an accurate description of the total
detector response in the analysis variables, which are defined on an event-by-event basis
strictly based on the two 𝑝T-leading jets. Accordingly, no such matching is done when
determining the detector response for unfolding.

Phase space unraveling

On account of the triple-differential phase space, which is spanned by three observables,
bin migration effects would need to be modeled starting from three-dimensional distri-
butions. However, this is both highly impractical and would make the effect consider-
ably more difficult to visualize. Instead, a more accessible representation is achieved by
rearranging the bins of into a one-dimensional bin sequence. This is called phase space
unraveling.

The unraveling scheme used here results from first sorting the bins based on their char-
acteristic 𝑦∗, 𝑦b and ⟨𝑝T⟩1,2 (or 𝑚jj) values, in that order. The bins are then labeled based
on the global bin index corresponding to their position in the sorted sequence. The un-
raveling scheme is illustrated in figure 5.85.8.

Level 1:  y*

Level 2:  yb

0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 0 0.5 1 1.5 0 0.5 1 0 0.5

Level 3:  ⟨pT⟩ or mjj

1 2 3 ...4 N-3 N-2 N-1... N

... ... ... ... ... ... ...

Figure 5.8 – Phase space unraveling scheme for unfolding. The analysis bins are sorted
based on their characteristic 𝑦∗, 𝑦b and ⟨𝑝T⟩1,2 (or 𝑚jj) values and arranged in a linear
sequence. A bin is uniquely identified by its position in the resulting sorted sequence,
which is referred to as its global bin index.
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Marginal distributions

Using the unraveling scheme described above, it is possible to represent the binned
distribution of events as a one-dimensional vector of dimension 𝑁, indicating the total
number of bins. This is referred to as a marginal distribution and can be determined by
binning events as a function of either detector-level or generator-level quantities.
In the following, the detector-level marginal distribution is denoted r, with 𝑟𝑖 repre-
senting the effective number of events in the bin with the global index 𝑖. Likewise, g
stands for the generator-level marginal distribution, with 𝑔𝑗 being the effective number
of events in bin 𝑗.
It is important to note that, in addition to the binning, any other selection criteria applied
to the event sample that involve jets must also be evaluated based on the correspond-
ing observable level. Thus, the event selection used for obtaining the generator-level
distribution must be applied on the generator-level jets, while for the detector-level dis-
tribution, it must be applied on the detector-level jets.

Migration matrix

The migration of events between bins in the unraveled phase space is described by a
two-dimensional distribution. Formally, this corresponds to an 𝑁 × 𝑁 matrix M called
the migration matrix, with the entry 𝑀𝑖𝑗 representing the effective number of events that
have been generated in bin 𝑗 and reconstructed in bin 𝑖 on the detector level.
In order for an event to contribute to the migration matrix, it is necessary for it to pass
the selection criteria on both the generator and the detector levels.
If the migration matrix is normalized so that the sum of all the entries in each column
is equal to one, a new matrix A called the response matrix is obtained, where 𝐴𝑖𝑗 is an
estimate of the probability for an event generated in bin 𝑗 to be reconstructed in bin
𝑖 (not yet taking into account events that migrate outside of the measurement phase
space). This matrix is shown in figure 5.95.9.
The response matrix is an essential part of the unfolding process, since it expresses a lin-
ear map between the generator-level and the detector-level distributions. The essence
of unfolding consists of finding an inverse of this map, which can then be applied to
a given detector-level distribution to recover the underlying true distribution, as deter-
mined from generator-level quantities. However, in order to correctly account for any
events migrating in and out of the measurement phase space, additional information is
needed.

Fakes and acceptance losses

Events that contribute to the reconstructed detector-level spectrum but cannot be at-
tributed to one of the generator-level bins or otherwise fail the selection criteria on the
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Figure 5.9 – Migration probability matrices. The matrix entries indicate the probability
for an event to migrate from the respective generator-level bin on the 𝑥-axis to the de-
tector-level bin indicated on the 𝑦-axis. The most significant portion of migrations is
observed between immediately neighboring bins in ⟨𝑝T⟩1,2 (𝑚jj) and, to a lesser extent,
in 𝑦∗ and 𝑦b.
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generator level are considered to be ”fakes”. These can be caused by either spurious
reconstructions or by events migrating into the detector-level phase space from a region
outside the measurement phase space on the generator level.

Conversely, events that originate from a generator-level bin for which no corresponding
detector-level can be found are considered ”acceptance losses”. This can result from
migration or events to regions outside the measurement phase space or by an event
failing to pass the selection criteria based on the detector-level requirements.

Both ”fakes” and ”acceptance losses” need to be taken into account when performing
the unfolding. The effective number of ”fake” events in every detector-level bin, as well
as the effective number of ”lost” events in every generator-level bin can be estimated by
comparing the marginal distributions with the distribution of ”true” (t) and ”accepted”
(a) events, respectively. These are obtained by forming the row-wise and column-wise
sums of the migration matrix:

𝑎𝑗 = ∑
𝑖

𝑀𝑖𝑗, 𝑡𝑖 = ∑
𝑗

𝑀𝑖𝑗 (5.11)

Figure 5.105.10 shows the fraction of ”fake” events per detector-level bin, as well as the
fraction of ”accepted” events per generator-level bin. These fractions remain close to 0
and 1, respectively, with the notable exception of bins located at the overall phase space
boundaries. This is expected, since these regions are susceptible to events migrating
into and out of the measurement phase space, which is not taken into account by the
migration matrix, which only covers event migrations that remain within the overall
phase space.

5.5.2 Unfolding procedure

The unfolding procedure is applied on an input detector-level distribution y measured
in data. Information about the detector response is passed to the unfolding procedure
in the form of the migration matrix M and the corresponding marginal distributions
on the generator g and detector r levels, as determined in simulation. The result of the
unfolding procedure is the unfolded distribution, denoted x.

The input distribution y is obtained by first correcting the detector-level distribution
measured in data for ”fakes”. The correction is given by the proportion of ”true” events
in each detector-level bin in simulation:

𝑦𝑖 = 𝑟data
𝑖 ⋅

𝑡MC
𝑖

𝑟MC
𝑖

(5.12)

The overall efficiency due to ”acceptance losses” is taken into account by normalizing
the columns of the response matrix A to the overall acceptance probability (as opposed
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to unity). This is achieved by dividing each entry of the migration matrix by the total
marginal generator-level distribution g, where the acceptance losses are still present,
instead of the column-wise sum, where they are not:

𝐴𝑖𝑗 = 𝑀𝑖𝑗/𝑔𝑗 (5.13)

The unfolding itself is performed using the software package TUnfold [7272], which pro-
vides a way to obtain the unfolded distribution from a specified detector-level input
distribution, while also propagating the statistical uncertainty of the input distribution
to the output.

In the TUnfold approach, unfolding is treated as a minimization problem. The func-
tion to minimize is constructed analogously to the established 𝜒2 statistic used in least-
squares optimization by comparing the input detector-level distribution y to the result
of applying the linearized detector response A to the unfolded distribution x:

𝜒2 = (y − Ax)T (V𝑦)−1 (y − Ax) (5.14)

In the above expression, V𝑦 is the covariance matrix of the input distribution, which in
this case is diagonal and represents the statistical uncertainty. The 𝜒2 is then minimized
with respect to the entries 𝑥𝑗, yielding the final unfolded distribution x. The covariance
matrix of x is obtained by linear error propagation of V𝑦.

In this analysis, the number of bins on the detector level is identical to the number of
generator-level bins, so that the response matrix A is a square matrix. In this case, the
best estimate for the unfolded cross section distribution resulting from the minimization
approach used by TUnfold, as well as its covariance matrix can be written directly as a
function of the inverse matrix A−1:

̂x = A−1y (5.15)
V𝑥 = A−1V𝑦(A−1)T (5.16)

Procedure stability

As with all inverse problems, the stability of the unfolding procedure is highly depen-
dent on the input parameters. Most importantly, the stability is limited by the magni-
tude of the spread in the analysis variables caused by the detector resolution. If this
quantity is too large, the effect of event migrations can no longer be reliably reversed.

To quantify this effect and provide a rough estimate the expected impact on the un-
folding stability, it is useful to study two statistics derived from the response matrix
called the purity and stability. The purity 𝑃𝑖 is defined as the fraction of events in a de-
tector-level bin 𝑖 that originates in the same bin on the generator level. Analogously, the
stability 𝑆𝑗 is the fraction of events in a generator-level bin that is reconstructed in the
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same bin on the detector level. Using the definitions of ”true” and ”accepted” events in
equation (5.115.11), the purity and stability can be expressed as:

𝑃𝑖 = 𝑀𝑖𝑖/𝑎𝑖, 𝑆𝑗 = 𝑀𝑗𝑗/𝑡𝑗, (5.17)

The unfolding method displays the highest stability when both of these quantities are
high, typically remaining above the 50% threshold. As can be seen in figure 5.105.10, this
condition is satisfied in a majority of analysis bins. A notable exception to this occurs
in the high-𝑦∗ regions for the 𝑚jj measurement, where lower values are reached due to
a worsening of the resolution. Nevertheless, the number of affected bins remains small,
so that these do not have a significant impact the unfolding stability.

A further useful quantity in evaluating the stability of unfolding, is the condition number
of the response matrix, defined as the ratio between its largest and smallest eigenvalues.
As a rule of thumb, condition numbers less than 10 indicate that the unfolding is suf-
ficiently well-conditioned. In this analysis, this condition is satisfied, with the largest
condition number observed being approximately 7.

A further effect that can influence the unfolding stability are the statistical fluctuations
present in the simulated sample used to estimate the response matrix and the corre-
sponding marginal distributions. These are propagated to the unfolded cross sections,
and thus represent a new source of uncertainty, in addition to the statistical uncertainty
of the input data itself.

5.5.3 Validation

The consistency of the unfolding procedure is evaluated by unfolding the detector-level
distribution measured in simulation and comparing the unfolding result with the gene-
rator-level distribution. These are expected to be identical, since the unfolding parame-
ters are derived from the same simulated sample. This is explicitly confirmed, indicating
that the unfolding procedure is consistent.

In addition to the above consistency check, the result of applying the unfolding proce-
dure on data is evaluated. This is done by comparing the size of the unfolding correction
in data and simulation, which is defined as the ratio between the unfolded and the de-
tector-level cross section. The correction size is illustrated in figure 5.115.11 for the ⟨𝑝T⟩1,2
measurement in four representative (𝑦∗, 𝑦b) bins. In simulation, it is observed to be
generally less than unity and is subject to small fluctuations.

The general trend is consistent with the exponential decrease of the cross folded with a
largely symmetric response. This causes more events to migrate into a bin from lower
⟨𝑝T⟩1,2 (𝑚jj) values, causing a net increase in the number of events in the folded distribu-
tion. Unfolding reverses these migrations, thus yielding a lower cross section estimate
than on the detector level.
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Figure 5.10 – Characteristics extracted from the response matrix. The x axis shows the
bin index in the unraveled phase space. The purity and proportion of ”fake” recon-
structions are shown as function of the detector-level bin index, while the stability and
proportion of accepted events are shown as a function of the generator-level bin index.
The thick and thin vertical dashed lines indicate the transition points between the dif-
ferent 𝑦∗ and 𝑦b regions, respectively. The fraction of ”fake” and ”lost” events increases
in bins close to the overall phase space boundary.
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Figure 5.11 – Size of the unfolding correction in four representative (𝑦∗, 𝑦b) regions in
QCD simulation (left) and data (right), with no smoothing applied. Fluctuations are
observed in data which are not present to the same degree in simulation. This suggests
the presence of a bias in the data reconstruction.

The fluctuations observed in the unfolding corrections in simulation are largely due to
the limited sample size and appear compatible with the statistical uncertainty. In data,
however, it is immediately apparent that the level of fluctuations is increased compared
to the simulation. In particular, the fluctuations seen here appear too large to be covered
by the statistical uncertainty.

Since the unfolding parameters are derived from the simulated samples and thus are
identical in both cases, the origin of these enlarged fluctuations cannot be attributed to
the unfolding procedure. Rather, they suggest the presence of an additional systematic
effect that is specific to the recorded data, leading to a significant difference between
the input detector-level distribution observed in data and that in simulation. This dis-
crepancy propagates through the unfolding procedure, resulting in the observed fluc-
tuations.

5.5.4 Smoothing

To gain a better understanding of the enlarged fluctuations observed in data, as de-
scribed in the previous section, the input detector-level distributions are analyzed in
terms of a smooth parametrization.

The dependence of the dijet cross section on ⟨𝑝T⟩1,2 and 𝑚jj is predicted by QCD theory
to be smooth (i.e. exhibiting no localized fluctuations or discontinuities). This also holds
for the detector-level spectra, provided that the detector response in these variables can
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be accurately modeled by a continuous and monotonous (not necessarily linear) func-
tion.

While this is generally a reasonable assumption to make, given the complexity of the
experimental setup, the online and offline reconstruction processes, and the analysis
techniques employed, the measured distributions may exhibit deviations from the the-
orized smooth dependence. This can either be due to the statistical fluctuations caused
by the limited number of events in a particular phase space region, or due to a system-
atic effect causing a local perturbation of the response. In any case, the deviation from
a smooth spectrum is an experimental effect and must therefore be accounted for in the
final uncertainty model.

Before the level of smoothness exhibited by a distribution can be assessed, it first needs
to be approximated by a smooth function. Here, the distribution to approximate consists
of a series of discrete differential cross section measurements 𝑦𝑖, each corresponding to
a ⟨𝑝T⟩1,2 (or 𝑚jj) value 𝑥𝑖 and with an associated uncertainty 𝜎𝑖. The goal is to obtain a
smooth function 𝑓 (𝑥), whose values at the different 𝑥𝑖 values are a good approximation
of the cross section estimates 𝑦𝑖.

The approach taken here is to use a linear combination of Chebyshev polynomials, which
form a set of orthogonal functions over the interval [−1, 1], and are given by the follow-
ing recursive formula:

𝑇𝑘+1(𝑥) = 2𝑥𝑇𝑘(𝑥) − 𝑇𝑘−1(𝑥), with 𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥 (5.18)

An arbitrary function defined over [−1, 1] can then be approximated by a linear combi-
nation of the first few Chebyshev polynomials up to a maximum order of 𝑝. Denoting
the vector of the corresponding coefficients as 𝜃 = (𝜃0, … , 𝜃𝑝), this can be expressed as:

𝑆𝑝(𝑥, 𝜃) =
𝑝

∑
𝑘=0

𝜃𝑘 𝑇𝑘(𝑥) (5.19)

However, a polynomial approach is not suitable for modeling the cross section depen-
dence on ⟨𝑝T⟩1,2 (or 𝑚jj) directly, since this is observed to be exponential. This can be
remedied by performing an approximation of the logarithm of the cross section instead.
In addition, due to the large range in 𝑥 and the uneven spacing that results from the bin-
ning scheme, a better approximation is obtained by taking the logarithm (ln 𝑥) of the
independent variable. Finally, since Chebyshev polynomials are defined over [−1, 1],
the variable (ln 𝑥) must be mapped onto this range, which is readily accomplished via
a linear transformation.

With the modifications outlined above, the full expression for approximating the cross
section as a function of 𝑥 using the Chebyshev polynomials up to an order of 𝑝 is given
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by:

𝑓𝑝(𝑥, 𝜃) = exp (𝑆𝑝( ̃𝑥, 𝜃)) , with ̃𝑥 = 2 ln 𝑥/𝑥min
ln 𝑥max/𝑥min

− 1 (5.20)

In the above, 𝑥min and 𝑥max indicate the total range in ⟨𝑝T⟩1,2 (or 𝑚jj) covered by the cross
section measurement.

The final step consists of finding adequate values for the Chebyshev coefficients 𝜃. This
is achieved via a least-squares fit of the approximation function in equation (5.205.20), with
the 𝜒2 function given by:

𝜒2 = ∑
𝑖

⎛⎜
⎝

𝑦𝑖 − 𝑓𝑝(𝑥𝑖, 𝜃)
𝜎𝑖

⎞⎟
⎠

2

(5.21)

In (5.215.21), the expression in parentheses is called the pull of a data point. After the para-
metrization is obtained by minimizing the value of the 𝜒2 function with respect to the pa-
rameters 𝜃, the pulls indicate the level of agreement between the individual data points
and the parametrization, taking their uncertainty into account.

Assuming a Gaussian uncertainty model, pulls follow a standard normal distribution,
having an expectation value of 0 and a standard deviation of 1. Pulls with high absolute
values beyond a few standard deviations therefore indicate a localized tension between
the data point and the fitted parametrization.

The value of the pulls obtained can be seen in figure 5.125.12. They are observed to be sig-
nificantly larger in data, which indicates that the data distribution deviates significantly
more from the smooth parametrization than the simulated distribution.

The overall level of agreement between the data and the parametrization can be assessed
from the 𝜒2 value obtained after minimization. As the sum of squares of standard
normally-distributed variables, this quantity follows a 𝜒2 distribution with a number
of degrees of freedom 𝑛dof given by the number of data points, minus the number of fit
parameters:

𝑛dof = 𝑛points − 𝑛parameters (5.22)

The ratio 𝜒2/𝑛dof has an expectation value of 1 and deviations to higher values there-
fore indicate an overall incompatibility between the measurement and the smooth para-
metrization.

Figure 5.135.13 shows the value of 𝜒2/𝑛dof as a function of the maximum order of the
Chebyshev polynomials used in the smooth fit. For small 𝑝, this value is large, since
the polynomial complexity is not sufficient to describe the cross section dependence.
Conversely, for larger 𝑝, the value of 𝜒2/𝑛dof decreases as the agreement between the
measurement and the parametrization improves, finally stabilizing for values greater
than 6. This value is therefore chosen as the nominal value of 𝑝 for the smooth para-
metrization.
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Figure 5.12 – Pulls of the smooth parametrization in four representative (𝑦∗, 𝑦b) regions
in QCD simulation (left) and data (right), calculated with respect to the statistical un-
certainty. The magnitude of the pulls observed in data are significantly larger than in
simulation, reaching deviations of up to 9𝜎 .
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Figure 5.13 – Goodness of fit of the smooth cross section parametrization. Shown are
the values of 𝜒2/𝑛dof obtained for a parametrization using Chebyshev polynomials of
at most order 𝑝, in four representative (𝑦∗, 𝑦b) bins. The fit quality initially improves as
more orders are added, until finally stabilizing beyond 𝑝 = 6. In simulation (open col-
ored markers), the parametrization stabilizes at 𝜒2/𝑛dof ≈ 1, indicating that the smooth
parametrization agrees with the estimates. In data (black markers), significantly higher
values are observed.
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While the value of 𝜒2/𝑛dof beyond 𝑝 = 6 is close to the expectation value of 1 in simu-
lation, this is not the case in data, where the values of 𝜒2 are significantly higher, only
reaching down to values of ≈ 20 in some (𝑦∗, 𝑦b) bins.

This is an indication of an additional systematic effect in data that causes a deviation
from the smooth parametrization. To account for this effect, an additional systematic
uncertainty is introduced, taken as a bin-by-bin uncorrelated uncertainty relative to the
measurement value. With this additional uncertainty 𝑎, the 𝜒2 definition becomes:

𝜒2 = ∑
𝑖

(𝑦𝑖 − 𝑓 (𝑥𝑖, 𝜃)
𝜎𝑖 + 𝑎 𝑦𝑖

)
2

(5.23)

The final value of the additional uncertainty 𝑎 is determined separately in each (𝑦∗, 𝑦b)
bin by repeating the fit used to obtain the smooth parametrization with multiple values
of 𝑎. The smallest value of 𝑎 for which a value of 𝜒2/𝑛dof < 1 is reached is taken as
the final value of the additional uncertainty. The values obtained for 𝑎 can be seen in
table 5.65.6.

The inclusion of the additional uncertainty included in the 𝜒2 definition results in a
smooth parametrization of the measurement 𝑓 (𝑥, 𝜃) that remains statistically compatible
with it, while also accounting for the enlarged data fluctuations by construction. The
smoothed cross section values and associated uncertainties are obtained by evaluating
the smooth parametrization:

𝑦smooth
𝑖 = 𝑓 (𝑥𝑖, 𝜃) (5.24)

𝜎smooth
𝑖 = 𝜎𝑖 + 𝑎 𝑦smooth

𝑖 (5.25)

Effect on unfolding

To assess the effect that the uncovered discontinuities in the detector-level distribution
in data have on the unfolding result, the unfolding is performed using the smooth para-
metrization and its associated enlarged uncertainties as an input. The resulting un-
folded cross sections are then compared to the unfolded cross sections obtained from
simulation.

Figure 5.145.14 shows the resulting data/simulation ratios with and without input smooth-
ing. If the smoothing is not applied, the ratios exhibit discontinuities that are not cov-
ered by the uncertainty. These are not present when input smoothing is used, and any
remaining fluctuations are compatible within the uncertainties.

Owing to the factors outlined above, it is therefore concluded that performing a smooth
parametrization of the unfolding inputs in data results in a smaller systematic bias on
the unfolded cross section estimates. Accordingly, the smooth parametrization is used
as an input for obtaining the final unfolded cross sections. The potential bias incurred
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Table 5.6 – Additional uncorrelated uncertainty introduced in order to reflect the en-
larged fluctuations observed in data compared to the simulation. The values are deter-
mined by performing a smooth parametrization of the cross sections as a function of
⟨𝑝T⟩1,2 and 𝑚jj in each (𝑦∗, 𝑦b) bin, and choosing a value of 𝑎 so that the 𝜒2/𝑛dof of the
parametrization is ≈ 1. Different sets of values are obtained for the two jet radii.

𝑦∗ range 𝑦b range Additional uncorrelated uncertainty 𝑎 (%)
⟨𝑝T⟩1,2 𝑚jj

𝑅 = 0.4 𝑅 = 0.8 𝑅 = 0.4 𝑅 = 0.8
[0.0, 0.5) [0.0, 0.5) 0.5 1.3 0.6 1.7
[0.0, 0.5) [0.5, 1.0) 0.8 1.8 0.6 2.0
[0.0, 0.5) [1.0, 1.5) 0.9 1.4 0.7 2.0
[0.0, 0.5) [1.5, 2.0) 0.9 1.2 0.8 2.3
[0.0, 0.5) [2.0, 2.5) 1.8 2.1 0.1 1.0
[0.5, 1.0) [0.0, 0.5) 0.8 1.4 1.0 1.8
[0.5, 1.0) [0.5, 1.0) 0.6 1.4 0.5 1.9
[0.5, 1.0) [1.0, 1.5) 1.0 1.4 1.2 1.8
[0.5, 1.0) [1.5, 2.0) 1.3 2.5 3.2 1.5
[1.0, 1.5) [0.0, 0.5) 0.9 1.5 0.7 2.0
[1.0, 1.5) [0.5, 1.0) 0.6 1.1 0.3 2.0
[1.0, 1.5) [1.0, 1.5) 1.2 1.9 2.3 0.7
[1.5, 2.0) [0.0, 0.5) 0.6 0.8 0.8 1.3
[1.5, 2.0) [0.5, 1.0) 0.2 2.1 0.0 1.3
[2.0, 2.5) [0.0, 0.5) 2.1 2.4 0.0 2.3
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Figure 5.14 – Ratio of the unfolded cross sections in data and simulation in four selected
(𝑦∗, 𝑦b) bins, shown without (left) and with (right) applying smoothing to the unfolding
input in data. If left unsmoothed, the observed fluctuations in data which are not ob-
served in the simulation cause the unfolding to perform poorly, yielding jumps in the
data/simulation ratio which are not covered by the uncertainty. With smoothing, these
jumps are attenuated, and the associated additional uncertainty covers the remaining
fluctuations.

by the smoothing itself is accounted for in the final uncertainty model by the additional,
binwise uncorrelated uncertainty.

5.6 Uncertainties

The cross section measurement is subject to experimental uncertainties due to a number
of statistical and systematic effects. The main uncertainty contributions are studied in
detail and are described in the following.

Statistical and additional uncorrelated uncertainty

Due to the finite sample size, the cross section estimates are subject to a statistical uncer-
tainty typically modeled by a Poisson distribution. In this analysis, event numbers are
sufficiently high for this to be approximated by a Gaussian distribution instead. The un-
certainty size is computed from the standard deviation of the Gaussian approximation,
which is given by the square root of the sum of the squares of all event weights in a bin

While the statistical uncertainties of the detector-level distribution are uncorrelated be-
tween different bins, such a correlation is induced by the unfolding procedure. An esti-
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Figure 5.15 – Relative uncertainty on the cross section, showing the contributions from
different uncertainty sources in four representative (𝑦∗, 𝑦b) regions. Overall, the dom-
inant contribution is given by the jet energy scale uncertainty. A complete set of plots
showing the uncertainties in other rapidity regions can be found in the appendix (sec-
tion A.2A.2).
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mate of the correlated statistical uncertainty on the unfolded cross sections is obtained
by propagating the covariance matrix through the unfolding procedure, as described in
equation (5.165.16). The resulting correlations are strongest between neighboring ⟨𝑝T⟩1,2 (or
𝑚jj) bins, which exhibit negative correlation coefficients of the order of −50%, while bins
separated by one intermediate bin exhibit a weaker, positive correlation. The correlation
matrices can be seen in figures A.9A.9 and A.10A.10 in the appendix (section A.3A.3).

Furthermore, as discussed in section 5.5.45.5.4, fluctuations in the detector-level distributions
are observed in data to a higher degree than in the simulation. In order to avoid an
adverse effect on the unfolded cross sections, the unfolding input in data is parametrized
by a smooth function. An additional binwise uncorrelated uncertainty is introduced to
account for the potential bias incurred by the smoothing. The uncertainty values are
given in table 5.65.6. Since these are propagated through the unfolding procedure, they
exhibit the same correlation structure as the statistical uncertainty on the unfolded cross
section.

Jet energy scale (JES)

Since corrections are applied to the jet energy in multiple stages (see section 4.24.2), the
transverse momentum of reconstructed jets is subject to multiple sources of systematic
bias. The uncertainty on the jet energy associated with this bias is on the level of a few
percent. Propagated to the cross section, the effect is amplified by the steeply falling
spectrum, and thus represents the largest source of systematic bias in this analysis.

An estimate of the jet energy scale uncertainty is obtained by repeating the analysis
with systematic upward and downward shifts applied to the transverse momentum of
each reconstructed jet, according to the total jet energy scale uncertainty. The latter is
provided as a function of the individual jet kinematics and other event properties along
with the centrally-derived jet energy corrections.

The detector-level cross sections resulting from the shifted analyses are propagated
through the unfolding procedure, resulting in an upward and downward shifted esti-
mate of the unfolded cross section. To prevent a bias on the uncertainty estimate result-
ing from any residual fluctuations, the unfolded cross sections obtained from the shifted
inputs are parametrized by a smooth function, as described in section 5.5.45.5.4. Comparing
the shifted cross section estimated to the nominal ones results in an asymmetric confi-
dence interval, which is taken as the final uncertainty.

Jet energy resolution (JER)

The detector response used as an input for the unfolding procedure is based on the jet
energy resolution assumed in simulation. While this is explicitly adjusted to correspond
to the resolution seen in data (see section 4.2.44.2.4), the scale factors used remain subject to
an uncertainty, which is centrally provided alongside them.
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The impact of the jet energy resolution modeling on the unfolded cross section is es-
timated by repeating the unfolding procedure with alternative responses derived us-
ing systematic variations of the jet energy resolution. This is achieved by varying the
simulation-to-data scale factor used in the jet energy resolution (JER) smearing within
its uncertainty. Both an upward and downward variation are provided.

As with the jet energy scale, the final uncertainty due to JER is obtained from an asym-
metric confidence interval around the nominal cross section, as given by the shifted
estimates.

Prefiring uncertainty

The correction of the L1 trigger prefiring inefficiency in recorded data introduces an ad-
ditional uncertainty (see section 5.3.35.3.3). This is estimated by repeating the analysis with
a different set of prefiring weights, which correspond to an upward and downward vari-
ation of the prefiring correction, as determined by the total uncertainty of the prefiring
efficiency.

This uncertainty is most significant in the (𝑦∗, 𝑦b) regions at the edge of the phase space,
where it can reach values of 10–20%. This is due to the high likelihood for an event in
these regions to contain a jet in the pseudorapidity region affected by prefiring (2 < |𝜂| <
3). Outside these regions, however, the uncertainty is negligible.

Luminosity uncertainty

The effective integrated luminosities that enter into the cross section calculation are ob-
tained from measurements of the instantaneous luminosity performed live during data
taking. The systematic uncertainty of the luminosity inherent to these measurements is
estimated at 2.5% and propagated to the cross section.

Unfolding

As mentioned in section 5.55.5, an additional source of uncertainty introduced by the un-
folding process is due to the finite size of the simulated sample used to derive the de-
tector response. The response matrix obtained is therefore subject to a statistical uncer-
tainty which can cause fluctuations to appear in the unfolded cross sections even when
none are present in the input detector-level distribution. This effect is accounted for by
introducing an additional unfolding uncertainty.

This is achieved by first dividing the simulated sample randomly into 𝑁 statistically
independent subsamples. The unfolding procedure is then applied repeatedly to the
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input distribution, each time using a different response matrix, derived from each indi-
vidual subsample. This results in 𝑁 different estimates for the unfolded cross section,
which are treated as a statistical ensemble.

The standard error of the mean, as calculated in each measurement bin from these 𝑁 es-
timates, is a measure of the statistical uncertainty on the unfolded cross section induced
by the unfolding procedure. It is obtained by dividing the standard deviation 𝜎(𝑥) of
the cross section estimates {𝑥} by the square root of the number of estimates:

𝛿(⟨𝑥⟩) = 𝜎(𝑥)/√𝑁 (5.26)

It is worth noting that the standard deviation used here is particularly sensitive to out-
liers. To increase the robustness of the uncertainty estimator, a truncation is first per-
formed by removing the outlying 10% of estimates in each bin. An unbiased uncertainty
estimate is then obtained from the standard deviation of the truncated sample, correct-
ing for the truncation by an analytic factor derived from the variance of a truncated
normal distribution.

In this approach, 𝑁 is a free parameter, the choice of which represents a tradeoff be-
tween two kinds of statistical precision. On the one hand, if the chosen value for 𝑁 is
too large, the number of events in each subsample will no longer be sufficient for obtain-
ing a reliable estimate of the response matrix. In particular, this increases the likelihood
of distributions containing empty bins, in which case the response matrix becomes sin-
gular and the unfolding is no longer possible. On the other hand, small values of 𝑁 do
not provide a sufficient number of independent cross section estimates, decreasing the
reliability of the method. For this analysis, a value of 𝑁 = 100 is found to be an adequate
choice.

The unfolding uncertainties obtained are of the order of 1%, remaining mostly below
this value in well-populated areas of the phase space. A cross-check is performed for
an alternative choice of 𝑁 = 50, which yields comparable estimates in the vast majority
of bins. The only exception to this are bins at the upper edge of the ⟨𝑝T⟩1,2 (or 𝑚jj) phase
space, where the lower number of reconstructed events induces a larger spread of the
estimates of the unfolded cross section.

5.7 Comparison to fixed-order theory

Fixed-order theory predictions of the triple-differential cross section are obtained using
the software package NNLOJET [7373]. These calculations are used to derive interpolation
tables with fastNLO [7474, 7575], which allow cross section predictions to be obtained for
arbitrary PDFs.

The calculations are performed at NLO and NNLO accuracy in perturbative QCD for
jets reconstructed with both of the radius parameters used for the measurement: 𝑅 = 0.4
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and 𝑅 = 0.8. The dijet invariant mass 𝑚jj is chosen as the characteristic scale of the hard
process. This is in line with theoretical investigations of the perturbative convergence
which have identified this variable to be a suitable choice for predictions of dijet produc-
tion [7676].

The unfolded triple-differential cross sections in all 15 (𝑦∗, 𝑦b) regions are presented in
figure 5.165.16, along with the corresponding theory predictions. Overall, the shape of the
spectrum corresponds to the expected exponential dependence in all of the examined
phase space, with some deviations observed at high values of 𝑦b where the highest sen-
sitivity to the PDFs is expected.
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Figure 5.16 – Overview of the unfolded cross sections, compared to fixed-order theory
at NNLO accuracy. The corresponding cross section values in each (𝑦∗, 𝑦b) region are
scaled by a constant factor to minimize overlap for illustration purposes. The overall
spectrum is well described by the theory, with some deviations seen at high values of
𝑦b. Similar plots for the other measurements can be found in section A.3A.3 of the appendix.

The agreement is investigated in more detail in each (𝑦∗, 𝑦b) region by examining the
ratio of the measured cross sections to theory predictions obtained for different PDFs. A
selection of four recent PDF sets from global determinations at NNLO accuracy are con-
sidered: NNPDF3.1 [1818], CT14 [1919], MMHT2014 [2020], and ABMP16 [2121]. Figures 5.175.17 and 5.185.18
show the predictions obtained for these PDFs in a representative selection of rapidity
regions and the corresponding measurements as a ratio to the NNPDF3.1 prediction for
jets with 𝑅 = 0.4 and 𝑅 = 0.8, respectively. A full set of such plots can be found in
section A.4A.4 of the appendix.
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Figure 5.17 – Ratio of the unfolded cross sections to NLO (left) and NNLO (right) theory
predictions, shown for jets with 𝑅 = 0.4 in the central (𝑦∗, 𝑦b) region (top), the high-
𝑦∗ region, and three bins at highest 𝑦b (bottom 3). The reference predictions and PDF
uncertainties are obtained with the NNPDF3.1 PDF set, with other PDFs also shown
for comparison. The error bars and the yellow shaded area represent the statistical and
total uncertainty of the data, respectively. The fluctuations observed for NNLO are due
to the limited statistical precision of the calculation.
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Figure 5.18 – Ratio of the unfolded cross sections to NLO (left) and NNLO (right) theory
predictions, shown for jets with 𝑅 = 0.8 in the central (𝑦∗, 𝑦b) region (top), the high-
𝑦∗ region, and three bins at highest 𝑦b (bottom 3). The reference predictions and PDF
uncertainties are obtained with the NNPDF3.1 PDF set, with other PDFs also shown
for comparison. The error bars and the yellow shaded area represent the statistical and
total uncertainty of the data, respectively. The fluctuations observed for NNLO are due
to the limited statistical precision of the calculation.
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5 Triple-differential cross section measurement

Due to the long processing times required for the NNLO calculations, they were only
available with a limited statistical precision at the time of writing, leading to increased
fluctuations in the ratios. Despite this, the available precision is sufficient to recognize
the general trend of the predictions and assess the data/theory agreement within un-
certainties.

In addition to the experimental uncertainties, the uncertainty on the theory predictions
due to the PDFs is evaluated. It is shown to increase as a function of ⟨𝑝T⟩1,2 and is gen-
erally largest in the high-𝑦b region. Furthermore, the uncertainty due to missing higher
orders in perturbation theory (”scale uncertainty”) is estimated from independent vari-
ations of the renormalization and factorization scales by factors of 2 and 0.5, taking the
envelope of the resulting predictions as the uncertainty. In general, it is reduced at
NNLO accuracy compared to NLO.

In most regions, the data are seen to be in agreement with the calculations, within the
experimental and theory uncertainties. However, a number of deviations are observed,
with the data exhibiting different trends for the 𝑅 = 0.4 and 𝑅 = 0.8 measurements,
which are addressed in the following.

For 𝑅 = 0.4, the data generally indicate a preference for smaller cross sections. At low
values of 𝑦b and 𝑦∗, this trend is strongest in the lower part of the ⟨𝑝T⟩1,2 spectrum.
In this region, contributions from nonperturbative effects are known to be significant.
Since they are not accounted for in the parton-level calculations presented here, this may
explain part of the observed tension. Further corrections from electroweak radiative
effects also contribute, becoming sizeable beyond 1 TeV, particularly at low 𝑦∗ [55].

In the high-𝑦∗ region, the data are largely compatible with the predictions, with only
a small deviation to lower values beyond 500 GeV. In contrast, the data in the high-𝑦b
regions indicate a clear preference for consistently lower cross sections across the en-
tire ⟨𝑝T⟩1,2 range, exhibiting deviations from the theory predictions that are noticeably
larger than the confidence interval defined by the PDF, scale and experimental uncer-
tainties. Barring fluctuations due to the limited statistical precision of the NNLO calcu-
lation, a greater tension is observed for the NNLO theory compared to NLO.

For 𝑅 = 0.8, an overall difference in shape is observed between the data and the theory,
with the former generally showing a preference for larger cross sections in the lower part
of the spectrum. This is in contrast to the 𝑅 = 0.4 measurement and is consistent with
nonperturbative corrections, which depend strongly on the jet radius. At high ⟨𝑝T⟩1,2,
the same trend is seen as for the 𝑅 = 0.4 measurement in all rapidity regions, consistent
with the expectation of similar electroweak corrections, for which the jet radius depen-
dence is minimal. Some tension is observed at low ⟨𝑝T⟩1,2 in all rapidity regions. At high
𝑦b, this is also the case in the upper part of the spectrum where the PDF uncertainties
become sizable, although the effect is not as pronounced as for 𝑅 = 0.4.

While a full evaluation would require an improved statistical precision of the NNLO
calculation and the derivation of corrections for nonperturbative and electroweak radia-
tive effects, the present analysis already provides a strong indication of the sensitivity of
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5 Triple-differential cross section measurement

the measurement to PDFs in the boosted region, where the parton densities are probed
simultaneously at different fractions of the proton momentum. The inclusion of the
present measurement in PDF determinations is therefore expected to further constrain
the parton densities in these regions.
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6 Conclusion and Outlook

In this thesis, a triple-differential measurement of the dijet cross section has been pre-
sented, using proton-proton collision data recorded by the CMS experiment at a center-
of-mass energy of 13 TeV in 2016, corresponding to 35.9 fb−1.

The triple-differential cross section was measured in parallel using anti-𝑘T jets with ra-
dius parameters of 𝑅 = 0.4 and 𝑅 = 0.8 as a function of two sets of kinematic variables:
the dijet rapidity separation 𝑦∗, the total boost of the dijet system 𝑦b, and either the
average dijet transverse momentum ⟨𝑝T⟩1,2 or the dijet invariant mass 𝑚jj as the third
variable. Such measurements are performed for the first time at 13 TeV, with the present
analysis also being the first to include a systematic study of the triple-differential jet
cross section for both ⟨𝑝T⟩1,2 and 𝑚jj, as well as for two jet radii simultaneously.

The dijet spectrum is reconstructed by combining data from multiple triggers across a
wide kinematic range, starting at a value of 122 GeV in ⟨𝑝T⟩1,2 and 249 GeV in 𝑚jj. The
measurement is performed in 15 bins of the joint (𝑦∗, 𝑦b) phase space, going up to 2.5
in each variable. Detector effects are corrected through a three-dimensional unfolding
procedure, which corrects for bin-to-bin migrations in all three measurement variables
simultaneously. Through an appropriate choice of binning with respect to the resolu-
tion of the measurement variables, a well-conditioned response matrix is achieved, thus
eliminating the need for further regularization to suppress response-induced fluctua-
tions.

A detailed study of the experimental sources of uncertainty on the cross section is per-
formed. The jet energy scale is identified as the largest single uncertainty source, ranging
from 5% to more than 25% towards the upper end of the spectrum at high rapidities. A
further notable uncertainty is due to trigger prefiring, which is a source of trigger ineffi-
ciency linked to the presence of forward jets. In most of the investigated phase space,
the uncertainty is of the order of 1% or below, rising to 10% only in the outer rapidity
regions where there is a significant contribution from forward jets.
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6 Conclusion and Outlook

The goal of these measurements is to provide inputs for PDF determinations. The choice
of 𝑦∗ and 𝑦b as rapidity variables serves to better disentangle the PDF dependence of
the cross section from the dependence on the fixed-order matrix elements. In addition,
the large amount of data makes a triple-differential measurement possible with a high
statistical precision.

To assess the potential impact of the current measurement on PDF determinations, the
unfolded cross sections are compared to fixed-order calculations at NNLO accuracy in
perturbative QCD. In contrast to previous impact studies, such as the one performed
in reference [66], which makes use of interpolation tables accurate to NLO and binwise
𝑘-factors to estimate NNLO predictions, the theory treatment here consists in the compu-
tation of full interpolation tables at NNLO accuracy. While these offer a higher degree
of flexibility for this purpose, their calculation requires significantly longer processing
times to accumulate the statistical precision needed for PDF determinations at NNLO.

Nevertheless, with the statistical precision currently available it is possible to give a first
look into NNLO phenomenology. Taking the current calculations as a baseline for the
comparison, it is observed that they are largely in agreement with the data in most phase
space regions. However, potentially significant deviations from the fixed-order theory
are observed. Particularly at high 𝑦b, where the PDF-induced uncertainty is largest, the
deviation from theory exceeds the experimental and theory uncertainty, underlining the
benefit of including the presented measurements in PDF determinations.

In light of these findings, several avenues of study can be identified for further improv-
ing the results. A crucial aspect here consists in enhancing the statistical precision of the
NNLO fixed-order calculation. In addition, the inclusion of further data from the 2017
and 2018 data-taking periods would increase the integrated luminosity by more than a
factor of three, leading to an improvement of the statistical precision of the measurement
in the less populated areas of the phase space at high 𝑝T.

Furthermore, in order to improve the description of the data, correction factors account-
ing for nonperturbative effects, as well as electroweak contributions, must be derived
and applied to the fixed-order theory.

With the above improvements in place, it will be possible to evaluate the full benefit of
the current measurement for the determination of PDFs and the strong coupling con-
stant 𝛼s by performing a fit of the NNLO theory predictions to the data.
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A Appendix

A.1 Monte Carlo samples

The following tables list the Monte Carlo samples used throughout this analysis. The
Pythia 8 QCD signal samples are listed in A.1A.1, indicating the exact sample names and
the number of events, as they appear in the CMS Data Aggregation System (DAS). The
cross sections are taken from the CMS Cross Section Database (XSDB).

Table A.1 – Signal MC samples
DAS name
/QCD_Pt_⟨𝑝T slice⟩_TuneCUETP8M1_13TeV_pythia8/
RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v*/MINIAODSIM

pT slice Cross section / pb # of events
30to50 138900000 9980050
50to80 19100000 9954370
80to120 2735000 6986740
120to170 467500 6708572
170to300 117400 6958708
300to470 7753 4150588
470to600 642.1 3959986
600to800 185.9 3896412
800to1000 32.05 3992112
1000to1400 9.365 2999069
1400to1800 0.8398 396409
1800to2400 0.1124 397660
2400to3200 0.006752 399226
3200toInf 0.0001626 391735
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The background samples are obtained with MadGraph and Pythia 8 and comprise sim-
ulations of W boson production (denoted ”W(→ ℓ𝜈) + jets”), production of a Z boson
decaying to neutrinos (”Z(→ 𝜈𝜈) + jets”), and top quark pair production (”tt + jets”).
They are listed in table A.2A.2.

Table A.2 – Background MC samples
Sample
Z(→ 𝜈𝜈) + jets

/ZJetsToNuNu_Zpt-*_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/
RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v2/MINIAODSIM

W(→ ℓ𝜈) + jets
/WJetsToLNu_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/
RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v2/MINIAODSIM

tt + jets
/TTJets_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/
RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v1/MINIAODSIM
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A.2 Uncertainties on the unfolded cross section
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Figure A.1 – Relative uncertainty on the cross section measurement as a function of
(𝑦∗, 𝑦b, ⟨𝑝T⟩1,2), displaying the contributions from different sources. Shown are 6 out
of 15 rapidity bins at central rapidities. The remaining 9 rapidity regions are shown in
figure A.2A.2.
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Figure A.2 – (continued from figure A.1A.1) Relative uncertainty on the cross section mea-
surement as a function of (𝑦∗, 𝑦b, ⟨𝑝T⟩1,2), displaying the contributions from different
sources.
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Figure A.3 – Relative uncertainty on the cross section measurement as a function of
(𝑦∗, 𝑦b, 𝑚jj), displaying the contributions from different sources. Shown are 6 out of
15 rapidity bins at central rapidities. The remaining 9 rapidity regions are shown in
figure A.4A.4.

100



Appendix

−0.2

0.0

0.2

U
nc

er
ta

in
ty

35.9 fb  (13 TeV)

< . . * <

−0.2

0.0

0.2 < . * < .

−0.2

0.0

0.2 . < * < .

−0.2

0.0

0.2 . < . * <

−0.2

0.0

0.2 < . . * <

−0.2

0.0

0.2 < . * < .

−0.2

0.0

0.2 . < * < .

−0.2

0.0

0.2 . < . * <

100 1000200 500 2000 5000
 / GeV

−0.2

0.0

0.2

R = 0.4

< . * < .

−0.2

0.0

0.2

U
nc

er
ta

in
ty

35.9 fb  (13 TeV)

< . . * < Total
Stat. + uncor
Prefiring
Jet energy scale
Luminosity
Jet energy resolution
Unfolding

−0.2

0.0

0.2 < . * < .

−0.2

0.0

0.2 . < * < .

−0.2

0.0

0.2 . < . * <

−0.2

0.0

0.2 < . . * <

−0.2

0.0

0.2 < . * < .

−0.2

0.0

0.2 . < * < .

−0.2

0.0

0.2 . < . * <

100 1000 104 105200 500 2000 5000
 / GeV

−0.2

0.0

0.2

R = 0.8

< . * < .

FigureA.4 – (continued fromfigureA.3A.3)Relative uncertainty on the cross section measure-
ment as a function of (𝑦∗, 𝑦b, 𝑚jj), displaying the contributions from different sources.
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A.3 Supplementary material
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Figure A.5 – Overview of the unfolded cross sections as a function of ⟨𝑝T⟩1,2 for jets with
𝑅 = 0.4 (top) and 𝑅 = 0.8 (bottom), compared to fixed-order theory at NNLO accuracy.
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Figure A.6 – Overview of the unfolded cross sections as a function of 𝑚jj for jets with
𝑅 = 0.4 (top) and 𝑅 = 0.8 (bottom), compared to fixed-order theory at NNLO accuracy.
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Figure A.7 – Migration probability matrices for jets with 𝑅 = 0.8. The matrix entries
indicate the probability for an event to migrate from the respective generator-level bin on
the 𝑥-axis to the detector-level bin indicated on the 𝑦-axis. The most significant portion
of migrations is observed between immediately neighboring bins in ⟨𝑝T⟩1,2 (𝑚jj) and, to
a lesser extent, in 𝑦∗ and 𝑦b.
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FigureA.8 – Characteristics extracted from the response matrix for jets with 𝑅 = 0.8. The
𝑥-axis shows the bin index in the unraveled phase space. The purity and proportion of
”fake” reconstructions are shown as function of the detector-level bin index, while the
stability and proportion of accepted events are shown as a function of the generator-
level bin index. The thick and thin vertical dashed lines indicate the transition points
between the different 𝑦∗ and 𝑦b regions, respectively. The fraction of ”fake” and ”lost”
events increases in bins close to the overall phase space boundary.
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Figure A.9 – Correlation matrix of the statistical uncertainty on the unfolded cross
sections for jets with 𝑅 = 0.4. The strongest correlations appear between immedi-
ately neighboring bins, where negative coefficients of the order of -50% are observed,
while bins separated by one intermediate bin exhibit a weaker, positive correlation. Off-
diagonal correlations between different (𝑦∗, 𝑦b) regions are negligible. The correlation
coefficients on the diagonal are equal to unity by definition and are not explicitly dis-
played.
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Figure A.10 – Correlation matrix of the statistical uncertainty on the unfolded cross
sections for jets with 𝑅 = 0.8. The strongest correlations appear between immedi-
ately neighboring bins, where negative coefficients of the order of -50% are observed,
while bins separated by one intermediate bin exhibit a weaker, positive correlation. Off-
diagonal correlations between different (𝑦∗, 𝑦b) regions are negligible. The correlation
coefficients on the diagonal are equal to unity by definition and are not explicitly dis-
played.
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A.4 Cross section comparison to fixed-order theory
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FigureA.11 – Ratio of unfolded cross sections measured in data to NLO (left) and NNLO
(right) theory calculations as a function of (𝑦∗, 𝑦b, ⟨𝑝T⟩1,2) for jets with 𝑅 = 0.4. Shown
are 6 out of 15 rapidity bins at central rapidities. The remaining 9 rapidity regions are
shown in figure A.12A.12.

108



Appendix

0.5

1.0

1.5
R

at
io

 to
 N

LO
 (N

N
PD

F3
.1

)
35.9 fb  (13 TeV)

< . . * <

0.5

1.0

1.5

< . * < .

0.5

1.0

1.5

. < * < .

0.5

1.0

1.5

. < . * <

0.5

1.0

1.5

< . . * <

0.5

1.0

1.5

< . * < .

0.5

1.0

1.5

. < * < .

0.5

1.0

1.5

. < . * <

100 1000200 500 2000
,  / GeV

0.5

1.0

1.5

R = 0.4 < . * < .

0.5

1.0

1.5

R
at

io
 to

 N
N

LO
 (N

N
PD

F3
.1

)

35.9 fb  (13 TeV)

< . . * <

Data (Unfolded)
PDF uncertainty
Scale uncertainty
CT14
MMHT2014
ABMP16

0.5

1.0

1.5

< . * < .

0.5

1.0

1.5

. < * < .

0.5

1.0

1.5

. < . * <

0.5

1.0

1.5

< . . * <

0.5

1.0

1.5

< . * < .

0.5

1.0

1.5

. < * < .

0.5

1.0

1.5

. < . * <

100 1000 104200 500 2000 5000
,  / GeV

0.5

1.0

1.5

R = 0.4 < . * < .

Figure A.12 – (continued from figure A.11A.11) Ratio of unfolded cross sections measured in
data to NLO (left) and NNLO (right) theory calculations as a function of (𝑦∗, 𝑦b, ⟨𝑝T⟩1,2)
for jets with 𝑅 = 0.4.

109



Appendix

0.5

1.0

1.5

R
at

io
 to

 N
LO

 (N
N

PD
F3

.1
)

35.9 fb  (13 TeV)

< . * < .

0.5

1.0

1.5

< . . * <

0.5

1.0

1.5

< . * < .

0.5

1.0

1.5

. < * < .

0.5

1.0

1.5

. < . * <

100 1000200 500 2000
,  / GeV

0.5

1.0

1.5

R = 0.8 < . * < .

0.5

1.0

1.5

R
at

io
 to

 N
N

LO
 (N

N
PD

F3
.1

)

35.9 fb  (13 TeV)

< . * < .

Data (Unfolded)
PDF uncertainty
Scale uncertainty
CT14
MMHT2014
ABMP16

0.5

1.0

1.5

< . . * <

0.5

1.0

1.5

< . * < .

0.5

1.0

1.5

. < * < .

0.5

1.0

1.5

. < . * <

100 1000 104200 500 2000 5000
,  / GeV

0.5

1.0

1.5

R = 0.8 < . * < .

FigureA.13 – Ratio of unfolded cross sections measured in data to NLO (left) and NNLO
(right) theory calculations as a function of (𝑦∗, 𝑦b, ⟨𝑝T⟩1,2) for jets with 𝑅 = 0.8. Shown
are 6 out of 15 rapidity bins at central rapidities. The remaining 9 rapidity regions are
shown in figure A.14A.14.
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Figure A.14 – (continued from figure A.13A.13) Ratio of unfolded cross sections measured in
data to NLO (left) and NNLO (right) theory calculations as a function of (𝑦∗, 𝑦b, ⟨𝑝T⟩1,2)
for jets with 𝑅 = 0.8.
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FigureA.15 – Ratio of unfolded cross sections measured in data to NLO (left) and NNLO
(right) theory calculations as a function of (𝑦∗, 𝑦b, 𝑚jj) for jets with 𝑅 = 0.4. Shown are 6
out of 15 rapidity bins at central rapidities. The remaining 9 rapidity regions are shown
in figure A.16A.16.
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Figure A.16 – (continued from figure A.15A.15) Ratio of unfolded cross sections measured in
data to NLO (left) and NNLO (right) theory calculations as a function of (𝑦∗, 𝑦b, 𝑚jj) for
jets with 𝑅 = 0.4.
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FigureA.17 – Ratio of unfolded cross sections measured in data to NLO (left) and NNLO
(right) theory calculations as a function of (𝑦∗, 𝑦b, 𝑚jj) for jets with 𝑅 = 0.8. Shown are 6
out of 15 rapidity bins at central rapidities. The remaining 9 rapidity regions are shown
in figure A.18A.18.
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Figure A.18 – (continued from figure A.17A.17) Ratio of unfolded cross sections measured in
data to NLO (left) and NNLO (right) theory calculations as a function of (𝑦∗, 𝑦b, 𝑚jj) for
jets with 𝑅 = 0.8.
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A.5 Variable distributions

10−3

100

103

106

109

ar
b.

 u
ni

ts

35.9 fb  (13 TeV)

R = 0.4

< .
* < .

Data
QCD

100 1000200 500 2000
,  / GeV

0.5
1.0
1.5

D
at

a/
M

C

10−3

100

103

106

109

ar
b.

 u
ni

ts

35.9 fb  (13 TeV)

R = 0.4

< .
. * <

Data
QCD

100 1000200 500 2000
,  / GeV

0.5
1.0
1.5

D
at

a/
M

C

10−3

100

103

106

109

ar
b.

 u
ni

ts

35.9 fb  (13 TeV)

R = 0.4

< .
* < .

Data
QCD

100 1000200 500 2000
,  / GeV

0.5
1.0
1.5

D
at

a/
M

C

10−3

100

103

106

109

ar
b.

 u
ni

ts

35.9 fb  (13 TeV)

R = 0.4

< .
. * <

Data
QCD

100 1000200 500 2000
,  / GeV

0.5
1.0
1.5

D
at

a/
M

C

10−3

100

103

106

109

ar
b.

 u
ni

ts

35.9 fb  (13 TeV)

R = 0.4

< .
* < .

Data
QCD

100 1000200 500 2000
,  / GeV

0.5
1.0
1.5

D
at

a/
M

C

10−3

100

103

106

109

ar
b.

 u
ni

ts

35.9 fb  (13 TeV)

R = 0.4

. <
* < .

Data
QCD

100 1000200 500 2000
,  / GeV

0.5
1.0
1.5

D
at

a/
M

C

10−3

100

103

106

109

ar
b.

 u
ni

ts

35.9 fb  (13 TeV)

R = 0.4

. <

. * <
Data
QCD

100 1000200 500 2000
,  / GeV

0.5
1.0
1.5

D
at

a/
M

C

10−3

100

103

106

109

ar
b.

 u
ni

ts

35.9 fb  (13 TeV)

R = 0.4

. <
* < .

Data
QCD

100 1000200 500 2000
,  / GeV

0.5
1.0
1.5

D
at

a/
M

C

Figure A.19 – Comparison of the distribution of the average transverse momentum of
the two leading jets ⟨𝑝T⟩1,2 in data and MC simulation, shown for jets with 𝑅 = 0.4 in 8
out of 15 rapidity regions. The remaining ones are shown in figure A.20A.20.
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Figure A.20 – (continued from figure A.19A.19) Comparison of the distribution of the average
transverse momentum of the two leading jets ⟨𝑝T⟩1,2 in data and MC simulation, shown
for jets with 𝑅 = 0.4 in 7 out of 15 rapidity regions, as well as for the combination of all
rapidity regions (bottom right).
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Figure A.21 – Comparison of the distribution of the invariant mass of the two leading
jets 𝑚jj in data and MC simulation, shown for jets with 𝑅 = 0.4 in 8 out of 15 rapidity
regions. The remaining ones are shown in figure A.22A.22.
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FigureA.22 – (continued from figure A.21A.21)Comparison of the distribution of the invariant
mass of the two leading jets 𝑚jj in data and MC simulation, shown for jets with 𝑅 = 0.4 in
7 out of 15 rapidity regions, as well as for the combination of all rapidity regions (bottom
right).
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Figure A.23 – Comparison of the distribution of the dijet angle separation in azimuthal
plane 𝜂–𝜙 plane Δ𝜙1,2 in data and MC simulation, shown for jets with 𝑅 = 0.4 in 8 out
of 15 rapidity regions. The remaining ones are shown in figure A.24A.24.
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Figure A.24 – (continued from figure A.23A.23) Comparison of the distribution of the dijet
angle separation in azimuthal plane 𝜂–𝜙 plane Δ𝜙1,2 in data and MC simulation, shown
for jets with 𝑅 = 0.4 in 7 out of 15 rapidity regions, as well as for the combination of all
rapidity regions (bottom right).
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Figure A.25 – Comparison of the distribution of the rapidity of the subleading jet Δ𝑅1,2
in data and MC simulation, shown for jets with 𝑅 = 0.4 in 8 out of 15 rapidity regions.
The remaining ones are shown in figure A.26A.26.
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Figure A.26 – (continued from figure A.25A.25) Comparison of the distribution of the rapidity
of the subleading jet Δ𝑅1,2 in data and MC simulation, shown for jets with 𝑅 = 0.4 in 7
out of 15 rapidity regions, as well as for the combination of all rapidity regions (bottom
right).
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FigureA.27 – Comparison of the distribution of the transverse momentum of the leading
jet 𝑝jet 1

T in data and MC simulation, shown for jets with 𝑅 = 0.4 in 8 out of 15 rapidity
regions. The remaining ones are shown in figure A.28A.28.
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Figure A.28 – (continued from figure A.27A.27) Comparison of the distribution of the trans-
verse momentum of the leading jet 𝑝jet 1

T in data and MC simulation, shown for jets with
𝑅 = 0.4 in 7 out of 15 rapidity regions, as well as for the combination of all rapidity
regions (bottom right).
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Figure A.29 – Comparison of the distribution of the transverse momentum of the sub-
leading jet 𝑝jet 2

T in data and MC simulation, shown for jets with 𝑅 = 0.4 in 8 out of 15
rapidity regions. The remaining ones are shown in figure A.30A.30.

126



Appendix

10−3

100

103

106

109
ar

b.
 u

ni
ts

35.9 fb  (13 TeV)

R = 0.4

. <

. * <
Data
QCD

100 1000200 500 2000

 /  GeV

0.5
1.0
1.5

D
at

a/
M

C

10−3

100

103

106

109

ar
b.

 u
ni

ts

35.9 fb  (13 TeV)

R = 0.4

< .
* < .

Data
QCD

100 1000200 500 2000

 /  GeV

0.5
1.0
1.5

D
at

a/
M

C
10−3

100

103

106

109

ar
b.

 u
ni

ts

35.9 fb  (13 TeV)

R = 0.4

< .
. * <

Data
QCD

100 1000200 500 2000

 /  GeV

0.5
1.0
1.5

D
at

a/
M

C

10−3

100

103

106

109

ar
b.

 u
ni

ts

35.9 fb  (13 TeV)

R = 0.4

< .
* < .

Data
QCD

100 1000200 500 2000

 /  GeV

0.5
1.0
1.5

D
at

a/
M

C

10−3

100

103

106

109

ar
b.

 u
ni

ts

35.9 fb  (13 TeV)

R = 0.4

. <
* < .

Data
QCD

100 1000200 500 2000

 /  GeV

0.5
1.0
1.5

D
at

a/
M

C

10−3

100

103

106

109

ar
b.

 u
ni

ts

35.9 fb  (13 TeV)

R = 0.4

. <

. * <
Data
QCD

100 1000200 500 2000

 /  GeV

0.5
1.0
1.5

D
at

a/
M

C

10−3

100

103

106

109

ar
b.

 u
ni

ts

35.9 fb  (13 TeV)

R = 0.4

< .
* < .

Data
QCD

100 1000200 500 2000

 /  GeV

0.5
1.0
1.5

D
at

a/
M

C

10−3

100

103

106

109

ar
b.

 u
ni

ts

35.9 fb  (13 TeV)

R = 0.4

all  regions
all * regions

Data
QCD

100 1000200 500 2000

 /  GeV

0.5
1.0
1.5

D
at

a/
M

C

Figure A.30 – (continued from figure A.29A.29) Comparison of the distribution of the trans-
verse momentum of the subleading jet 𝑝jet 2

T in data and MC simulation, shown for jets
with 𝑅 = 0.4 in 7 out of 15 rapidity regions, as well as for the combination of all rapidity
regions (bottom right).
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Figure A.31 – Comparison of the distribution of the rapidity of the leading jet 𝑦jet 1 in
data and MC simulation, shown for jets with 𝑅 = 0.4 in 8 out of 15 rapidity regions. The
remaining ones are shown in figure A.32A.32.
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Figure A.32 – (continued from figure A.31A.31) Comparison of the distribution of the rapidity
of the leading jet 𝑦jet 1 in data and MC simulation, shown for jets with 𝑅 = 0.4 in 7 out of
15 rapidity regions, as well as for the combination of all rapidity regions (bottom right).
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Figure A.33 – Comparison of the distribution of the rapidity of the subleading jet 𝑦jet 2
in data and MC simulation, shown for jets with 𝑅 = 0.4 in 8 out of 15 rapidity regions.
The remaining ones are shown in figure A.34A.34.
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Figure A.34 – (continued from figure A.33A.33) Comparison of the distribution of the rapidity
of the subleading jet 𝑦jet 2 in data and MC simulation, shown for jets with 𝑅 = 0.4 in 7
out of 15 rapidity regions, as well as for the combination of all rapidity regions (bottom
right).
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