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Abstract

This thesis enhances the understanding of Neural Network (NN) trainings by
investigation of the learning process especially focusing on the dependence
of the NN output on the input space for given tasks. For this purpose, the
NN function is decomposed into a Taylor expansion. The Taylor coefficients
serve as a metric to illustrate the influence of input space features on the
output at each step of the training. Both, the arithmetic mean values of the
Taylor coefficients and their dependence on each point of the input space are
investigated, giving new insights into the decision taking of NNs.
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Abstract

Diese Arbeit verbessert das Verständnis der Trainingsprozesse von neuronalen
Netzen, indem der Lernprozess untersucht wird. Hierbei liegt der Fokus auf
der Abhängigkeit der Ausgabe neuronaler Netze vom Eingangsdatensatz für
verschiedene Aufgabestellungen. Für diesen Zweck wird die Funktion des neu-
ronalen Netzes in eine Taylorreihe entwickelt. Die Taylorkoeffizienten dienen
zur Illustration des Einflusses von Eigenschaften des Eingangsdatensatzes auf
die Ausgabe des Netzes zu jedem Zeitpunkt des Trainings. Sowohl die Mittel-
werte der Taylorkoeffizienten, als auch deren Abhängigkeit von jedem Punkt
des Eingangsdatensatzes werden untersucht. Dies liefert neue Einblicke in die
Entscheidungsfindung von neuronalen Netzen.
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CHAPTER 1

Introduction

Artificial Neural Networks (NNs) as a part of machine learning methods are an in-
creasingly important subject of current research and are becoming a key instrument
for practical applications like automation tasks. Today, intelligent software enables near-
human-level image classification, speech and handwriting recognition, autonomous driving,
automated diagnoses in medicine and much more. Also, in high-energy particle physics,
NNs have received considerable attention as they can be applied to distinguish a signal
from one or more backgrounds and identify most influential input features. An advantage
of the application of NNs on the discrimination of signal from background is that a NN
can be sensitive to marginal distributions of the input variables but also to correlations
across input variables.
However, a major problem with NNs is the so-called black box phenomenon: a NN can
approximate any function but gives no insights on how the output is derived or which
input characteristics are relevant. In general, NNs are non-identifiable models: two differ-
ent NNs can generate the same results but with different intrinsic parameters. Although
extensive research has been carried out on NNs, few authors have been able to draw on
any systematic research into decision taking of NNs.
The main goal of this thesis is to develop a deeper understanding of NN learning pro-
cesses by illustration of trainings and identification of the significance of single input
characeristics on the NN decision taking. For this purpose, the NN model function is
decomposed into a Taylor expansion for several toy datasets. The corresponding Taylor
coefficients are associated with n-dimensional features of the input space variables and
with correlations across these variables and can be used as metric that allows for the
identification of the importance of the associated features for the decision taking of a
NN.
This thesis begins by laying out the theoretical foundations of this research by describing
the NN model architecture, the implementation of the NN model and how the Taylor
coefficients are obtained. The following chapter covers the methods that are used in this
thesis and presents the findings and corresponding analysis of these findings, focusing
on the Taylor coefficients that are used to understand the input space influence on the
NN output. Finally, the conclusion gives a brief summary of the findings and includes a
short outlook on recommendations on potential future projects in this area.
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CHAPTER 2

Introduction to Artificial Neural Networks

NNs are computing systems inspired by biological neural networks. During the training
of NNs on given data samples, specific characteristics are identified and learned in order
to execute dataprocessing tasks like classification to predefined classes. In this context,
learning describes the automated search process for better performance on a desired
task and the adjustment steps, made for this purpose. In general, NNs are stochastic
minimization processes applied to a high-dimensional input space.
The following chapter is mainly based on information given by [1] and [2]. In this
chapter the general structure and application of Neural Networks are described in order
to understand the methods used in chapter 3. For this purpose, especially the model
configuration used in this thesis is described in more detail. For comparibility reasons
the configuration is chosen to be similar to the one used by [3].
The first section presents the general architecture of NNs. The second section describes
the implementation and training of the used NN model. The final section is concerned
with Taylor coefficients obtained from the NN model function gradients which are later
on used to analyse the NN learning progress.

2.1 Model Architecture and Training of a NN

As shown in Fig.2.1, a NN consists of several mathematical building blocks, called modules.
The core of the model, which is built by a combination of an arbitrary number of layers
is run on the input data x to obtain the corresponding predictions y. Each layer is
characterized by internal trainable parameters: weights and biases. Besides the trainable
parameters weights and biases there are parameters that have to be specified before
training and which determine the network structure and how the network is trained,
so-called hyperparameters.
The iterative optimization of the trainable parameters for a given task is called training.
For this purpose, a loss function is constructed to compare the predictions y with the
true targets ytrue corresponding to the input data x. The mismatch between y and ytrue

is quantified by the loss score obtained from the evaluation of the loss function on ytrue

and y. Finally, an optimizing algorithm (optimizer) using this loss score is run in order
to update the weights and biases of all layers with the attempt to reduce the loss in the
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Figure 2.1: Schematic neural network model architecture (grey) and its training steps (green)s.

next iteration. This is called back-propagation. After completing a single training loop,
the described process is repeated as long as specified by the training initialization. After
a sufficiently large number of training loops, the loss score should be converged to a
small value. At this point, the NN has learned the features of the dataset. The following
sections will present the NN modules and the NN training more precisely.

2.2 Model Architecture

2.2.1 Input Data

Before NNs can be trained, an input dataset containing a collection of many training
samples and corresponding targets e.g. labels is required. A sample, also called data
point, is a collection of features that the NN has to process. In general, all NN systems
use tensors as basic data structures. Four main types of data formats are common:
2D, 3D, 4D, and 5D tensors. The least complex format is the two-dimensional vector
data format containing samples and corresponding features. Adding timesteps as an
additional dimension, generates time-series data (3D). Another common format is the
four-dimensional image format (samples, height, width, color channels) and based on this,
the five-dimensional video format.
For simplicity, in this work, only two-dimensional sample vectors x ∈ R2 are used for
NN training and testing where each entry xi is a feature of the sample. Later on, the
used datasets are split into two equal but independent halves. The first half is used as
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2.2 Model Architecture

Input Hidden Layer Output

Figure 2.2: Sketch of neural network layer architecture of a two-layer model with two-dimensional
input xi, 100 neurons n in the hidden layer and a one-dimensional output yi.

training dataset in order to train the NN and to validate the predictions. The second
half is used to test the trained model on unknown data.

2.2.2 Neurons and Layers

The core of a typical NN model consists of several data-processing modules, so-called
layers which perform transformations on n-dimensional data. A model is built by chaining
several layers: one input layer, an arbitrary number of hidden layers and one output layer.
The input layer receives the inputs and propagates these to the subsequent hidden layer.
The calculations and outputs of hidden layers are not visible from outside of the NN. For
most problems one hidden layer is sufficient but the more hidden layers are used in a NN
the more complex problems can be solved. Finally, an output layer is used to calculate the
final results. Its dimension is equivalent to the dimension of the targets associated to the
given data, where the targets contain information about the desired output for a given
input. In this case, the targets are 1-dimensional and have the value 0 or 1. The layer
structure used in this work is shown in Fig.2.2. There is only one hidden layer and the
information moves directly from the input layer via the hidden layer to the output layer,
where only fully connected layers (also called dense layers) are used. This simple kind of
network is called fully connected feed-forward network or multilayer perceptron. However,
there are many other different types of networks like Recurrent Neural Networks, Markov
Chains, Deep Convolutional Networks or Generative Adversarial Networks.
The layers of a NN model are composed of multiple nodes represented by mathematical
functions: neurons. As shown in Fig.2.3, the output n of a single neuron k for a total
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Figure 2.3: Graphic representation of an artificial neuron function as described by Eq. 2.1.

number N of neurons per layer is

nk(vk) = ϕ(vk) = ϕ

 m∑
j=1

wkjxj + bk

 k ∈ {1, . . . , n}, j ∈ {1, . . . , m} (2.1)

where vk is the weighted sum of the inputs xj plus bias bk with an m-dimensional input
vector x = (x0, . . . , xm). Since in this work, a two-dimensional input vector x is used, m
equals 2. The corresponding weights wkj with k ∈ {1, . . . , n}, j ∈ {1, . . . , m} represent
the relative importance of each connection between the neurons and parameterize the
data transformation implemented by the layers. The bias b = {b0, . . . , bm} is added to
additionally shift the weighted inputs.
Finally, the output of a neuron is characterized by the activation function ϕ. There
are several different function types used as activation functions (also called transfer
functions). Commonly used functions are step, sigmoid (logistic), ReLu (Rectified Linear
Unit) or hyperbolic tangent function. In this thesis, the hypberbolic tangent and the
sigmoid function

nk(vk) = tanh(vk) and nk(vk) = (1 + e−vk)−1 (2.2)

are used. As before, nk is the output of the k-th neuron and vk the weighted sum of the
inputs xj plus bias bk as in equation 2.1.

2.3 Training
Learning takes place by finding a set of parameters w and b for all layers in order to
map an example input correctly to associated targets. The iterative optimization of the
weights and biases is achieved by the loss function and the optimizer algorithm.

2.3.1 Loss Function

Following the information flow through the network, the loss function is used to compare
the generated predictions y of the trained network with the true targets ytrue. It represents
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a measure of success and provides the loss score that will be minimized during training.
Depending on the given task, an optimal loss function should be chosen: For example,
categorical cross-entropy is suitable for classification problems and mean-squared error for
regression problems. In this thesis, binary cross-entropy [4] as a special two-dimensional
case of categorical cross-entropy is used as given by

H(x) = − 1
N

N∑
i=1

ytrue,i · log(y(xi)) + (1− ytrue,i) · log(1− y(xi)) (2.3)

where N is the number of samples of the input dataset, ytrue,i are the targets associated
to the samples xi and y the associated predictions computed by the NN. The quantity
H(x) has to be minimized to obtain optimal predictions.

2.3.2 Optimizer

The minimization of the loss score throughout the training is performed by the optimizer.
Initially, the parameters w and b are assigned to random values. The optimizer updates
the weights and biases of the neurons after each training step in order to reduce the value
of the loss score by a small amount. This minimization can be achieved by using the
gradient of the NN function, which points to the minimum of the loss function dependent
on all trainable parameters. Since the loss value is a function of the parameters w, b and
the input x, the model is optimized by altering the weights and biases in small steps
with opposite sign of the gradient based on the current loss value. This method is called
gradient descent [5]. In this thesis, the gradient is applied by the complex optimization
algorithm adaptive momentum estimation (Adam) optimizer [6], which is a popular
deep-learning gradient-based optimizer.

2.4 Building a Network

2.4.1 Keras and Tensorflow

In this thesis, TensorFlow [7] and Keras [8] are used for the implementation of the NN.
TensorFlow is a commonly used open-source library to develop and train machine learning
models in Python [9]. Keras is also an open-source model-level library written in Python.
It uses Tensorflow but also any other tensor library as backend. In this case, Tensorflow
is needed for construction of the model structure and Keras for model building.

2.4.2 Initialization and training procedure of NN

For building of a NN model, the model itself has to be implemented by defining the single
layers as shown in Listing 2.1.

1 from keras. models import Sequential
2 from keras. layers import Dense
3

4 model = Sequential ()
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5 model.add(Dense(100, activation = ’tanh ’, input_dim =2))
6 model.add(Dense(1, activation =’sigmoid ’))

Listing 2.1: Two-layer NN model defined using the Sequential class with a hidden layer
activated by a hyperbolic tangent containing 100 nodes and a one-dimensional output activated
by a sigmoid function.

A two-layer model is defined using a sequence of two layers from the Sequential
class. The input is not specified as layer in this example but it is characterized as two-
dimensional in the attributes of the first layer. This is the only hidden layer consisting of
100 neurons with a hyperbolic tangent as activation function. It is implemented with the
Keras built-in Dense class. The output layer including 1 neuron is activated by a sigmoid
function and gives an output between 0 and 1. Here, 1 corresponds to a classification of
a given data point to signal class and 0 refers to the background class. An output of 0.5
indicates that the classification whether the given sample point is from the background
or signal class is not possible. All values in between can be interpreted in terms of
classification certainty.
Once the model architecture is defined, its compilation parameters have to be configured.
This is shown in Listing 2.2.

1 model. compile ( optimizer =’adam ’, loss = ’binary - crossentropy ’, metrics =
[’acc ’])

Listing 2.2: Network compilation using Adam optimizer and binary-cross entropy as loss function.
The classification accuracy is used as metric to display the classification success.

Here, the optimizer Adam [6] and the binary cross-entropy as loss function are used.
In this case, the prediction accuracy (’acc’) which displays the proportion of correctly
classified output is the metric to monitor the training performance.
Finally, after defining the network it has to be trained. For this purpose, the model.fit-
method is used as can be seen in Listing 2.3.
1 early_stop = keras. callbacks . EarlyStopping ( patience =30)
2 history = model.fit( input_dataset , input_labels , batch_size = input_shape

, validation_split =0.2, epochs = 2000, shuffle =True , callbacks =
early_stop )

Listing 2.3: Network training for 2000 epochs using an early stopping condition with a patience
of 30 gradient steps, a batch size equivalent to the number of samples and a validation rate of
20 percent. The samples are shuffled after every epoch to prevent overfitting.

Also in this case, several parameters can be specified. For example, the input-data,
batch size, number of training loops (epochs) or the ratio of input-data that is not used
for training but for validation of the trained network can be defined.
Like the number of epochs, the batch size is a hyperparameter that has to be set before
training. The batch size defines the number of samples that are worked through before
the the weights and biases are updated. In contrast to the number of epochs that can be
arbitrarily high, possible batch sizes range from 1 to the total number of samples. The
training dataset can be separated according to three main kinds of batch sizes [10]: (1)
all training samples are assigned to a single batch. So the batch size equals the size of the
training dataset which is called batch gradient descent. (2) The batch size equals the size
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of a single entry in the dataset (sample point), which is called stochastic gradient descent.
(3) a batch size in between one and the total training data size is called mini-batch
gradient descent. Commonly used batch sizes are equal to 32, 64 or 128. However, in this
thesis, the batch size is equal to the number of samples within the entire dataset. Despite
the advantages of small batch sizes (faster training, less memory usage), a large batch size
generates a more accurate estimate of the gradient. This approach is adequate for this
thesis which is focused on accuracy. Nevertheless, it might be interesting to investigate
the behavior of the NN with smaller batch sizes.
The number of epochs which determines the number of complete passes through the
whole dataset can be set to an arbitrary value. In this case, each epoch corresponds to
exactly one gradient step due to the choice of the batch size being equal to the number
of samples. In this thesis, a training epoch size of 2000 is used. After that period, the
training is mainly completed for all given example tasks which can be seen by converged
Taylor coefficient values. In addition, the value of the early-stop-function (patience)
is set to 30 epochs. Early stopping terminates the training before the last training epoch
is reached if the accuracy value on the validation dataset has not improved over the last
30 epochs.
Twenty percent of the training dataset are chosen randomly in order to validate the
NN model. The validation loss is a measure of training performance: the smaller the
validation loss value, the closer the predictions of the NN are to the targets. Finally,
after completion of a whole training epoch, the dataset is shuffled to reduce the risk of
overfitting on the given dataset. Overfitting and underfitting are main problems that
can occur during NN trainings. Overfitting occurs when the model has memorized the
training dataset to well leading to a bad performance on unknown data. Underfitting
occurs when the model has not trained long enough on the training dataset, hence, has
not learned all features of the input leading, also, to poor predictions on new data.
Now, the NN is fully defined and can be applied to any two-dimensional input datasets.

2.5 Taylor coefficients of the NN function

In order to obtain the Taylor coefficients of the NN model functions, the gradients which
are the multidimensional derivatives of the NN functions have to be calculated. In order to
generate the gradients of a NN function, for technical reasons, the function must at first be
converted from Keras to Tensorflow. Tensorflow provides the function tf.gradients, that
determines the gradients of a given network function. These multidimensional derivatives
can then be used to obtain the Taylor coefficients of the NN model functions. Here,
the Taylor series expansion T [11] of a two-dimensional function y(x) that is infinitely
differentiable at the point a is given where yn(a) is the n-th derivative of y(x) at expansion
point a:

T (x1, x2) =
∞∑

n1=0

∞∑
n2=0

∂n1+n2y(a1, a2)
∂xn1

1 ∂xn2
2

(x1 − a1)n1 · (x2 − a2)n2

n1!n2! . (2.4)
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Introduction to Artificial Neural Networks

For practical reasons, in this case, only the first two orders are considered as shown
in Eq.2.5. This equation shows the first and second order of a two-dimensional Taylor
expansion with a two-dimensional input vector x and an expansion point a. Here, the
function y is a composition of the functions of each model layer: y(x) = y2(y1(x)) where
y2 and y1 are defined by Eq.2.1. In the following chapter, the expansion points a will
equal the given samples i.e. datapoints.

Tf(x; a) =y(a) + ∂y(a)
∂x1

(x1 − a1) + ∂y(a)
∂x2

(x2 − a2)

+ 1
2

∂2y(a)
∂x1∂x1

(x1 − a1)(x1 − a1) + 1
2

∂2y(a)
∂x1∂x2

(x1 − a1)(x2 − a2)

+ 1
2

∂2y(a)
∂x2∂x1

(x2 − a2)(x1 − a1) + 1
2

∂2y(a)
∂x2∂x2

(x2 − a2)(x2 − a2) (2.5)

= t0 + tx1(x1 − a1) + tx2(x2 − a2) + tx1x1(x1 − a1)2

+ tx1x2(x1 − a1)(x2 − a2) + tx2x2(x2 − a2)2 (2.6)

Comparison of the coefficients leads to the following set of equations

t0 = y(a), tx1 = ∂y(a)
∂x1

, tx2 = ∂y(a)
∂x2

, tx1x1 = 1
2

∂2y(a)
∂x1∂x1

tx1x2 = 1
2

(
∂2y(a)
∂x1∂x2

+ ∂2y(a)
∂x2∂x1

)
= ∂2y(a)

∂x1∂x2
, tx2x2 = 1

2
∂2y(a)
∂x2∂x2

(2.7)

These Taylor coefficients are used to analyze the NN response sensitivity to the input
space. As proposed in [3], the features ti are interpreted as characteristics of single
elements or pair-wise relations between two input space elements and can be used to
quantify the influence of the corresponding features on the NN output. The first-order
features corresponding to first-order expansion coefficients display the influence of single
input elements on the NN output. Whereas, second-order features capture the influence
of pair-wise and self-correlations across the input space variables. In the next chapter,
Taylor coefficients are determined and studied in order to understand sensitivity of the
NN to certain input features.
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CHAPTER 3

Analysis of the NN Learning Process

This chapter is divided into four sections. The first section describes the datasets
that are used throughout this thesis and the creation of these test samples. The second
section deals with the analysis of the arithmetic mean Taylor coefficients 〈ti〉 of the NN
functions according to the datasets defined in the first section. The third section presents
the analysis method from section two but applied to 100 NN functions, each of them
trained with a different seed in order to consolidate the findings of section two. The final
section analyses the Taylor coefficients with respect to the input space features providing
a deeper insight into the NN training.

3.1 Creating Test Samples

In order to analyze and understand the training process of a NN learning, fundamental
feature characteristics of inputs, toy datasets are produced. As this work focuses on fun-
damental neural network characteristics, simple classification tasks are chosen. Gaussian
distributed signal and background classes with two input variables x1 and x2 for differ-
ent parameter sets as seen in Tab. 3.1 are used for binary classification. The resulting
distributions are shown in Fig.3.1. The signal class is represented by red contours, the
background class by blue contours where darker colors indicate a higher sample density.
For each of the six distributions, 400000 pseudo data points are generated: 200000 each
for the signal and the background class.
The first example distribution at the top left of Fig.3.1 contains two Gaussian distri-
butions with different mean values but equal spread. The second example differs from
example 1 only in switching positions of the signal and the background class centers.
For the third example, both signal and background class share the same mean value
but are distributed asymmetrically with a shift in orthogonal directions relative to each
other. The signal class is stretched along the diagonal axis, the background class along
the off-diagonal axis. This is achieved by introducing off-diagonal elements into the
covariance matrix. Thus, signal and background have different correlations between x1
and x2. The fourth example combines the first and third example by two distributions
that do not share the same center and are stretched orthogonal relative to each other.
The fifth example shows two distributions that share the same center but have different
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Analysis of the NN Learning Process

Table 3.1: Mean values and covariance matrices used to initialize the Gaussian distributed
datasets for the signal and background classes that can be seen in figure 3.1.

Example Mean value Covariance matrix
Signal (x1, x2) Background (x1, x2) Signal Background

1) (0.5, 0.5) (-0.5, -0.5)
(

1 0
0 1

) (
1 0
0 1

)

2) (-0.5, -0.5) (0.5, 0.5)
(

1 0
0 1

) (
1 0
0 1

)

3) (0, 0) (0, 0)
(

1 0.5
0.5 1

) (
1 −0.5
−0.5 1

)

4) (0.5, 0.5) (-0.5, -0.5)
(

1 0.5
0.5 1

) (
1 −0.5
−0.5 1

)

5) (0, 0) (0, 0)
(

0.5 0
0 0.5

) (
3 0
0 3

)

6) (0.5, 0.5) (-0.5, -0.5)
(

1 0.5
0.5 1

) (
3 −1.5
−1.5 3

)

spreads. Finally, the last example distribution implements a combination of the last
two introduced distributions which is the most difficult and realistic example in this
thesis. In summary, the differences of the following key characteristics between signal
and background are tested: position of the center, spread and correlation.
For the training of the NN, the samples are split into two equal halves. The first half
(training dataset) is used to train and validate the NN, the second independent half (test
dataset) is used to calculate the taylor coefficients ti that are later on used to interpret
the NN training process. Having generated the toy datasets, a NN as described in the
previous chapter is initialized and trained on these datasets. The next section of this
thesis will discuss the analysis of the trained NN models.
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3.2 Analysis of mean Taylor Coefficients 〈ti〉

Figure 3.1: Contours of the distributions used as NN example training tasks as discussed in
section 3.1 and specified in Tab. 3.1. The red contours represent the signal class, blue contours
represent the background class.

3.2 Analysis of mean Taylor Coefficients 〈ti〉
Now, after the NN is trained, the Taylor coefficients ti can be obtained. The first and
second-order gradients are used to determine the first and second order Taylor coefficients
ti as described in section 2.5. In this case, the so far unused test dataset is used to calculate
the gradients. Besides, saving all ti(x1, x2) for later analysis in 3.4, the arithmetic means
of the absolute values of the Taylor coefficients

〈ti〉 = 1
N

N∑
k=1
|ti({xj})|k| i, j, k ∈ N, (3.1)

are calculated to serve as a general metric for the sensitivity of the NN on the input space
after training as proposed by [3]. Here, {xj} are the input space variables x1, x2 and N
is the number of samples in the test dataset. The 〈ti〉 are calculated for each training
epoch. The average of the absolut values gives a better measure of the influence of inputs
than the average of the signed values as the average of the signed values can produce
averages near to zero despite both large positive and large negative values. The first
order coefficients 〈tx1〉 and 〈tx2〉 display the influence of marginal distributions of single
input space variables on the NN output and the second-order coefficients are related
to pairwise and self-correlations between x1 and x2, where, high values indicate a high
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Analysis of the NN Learning Process

influence on decision finding of the NN. The resulting 〈ti〉 for the examples given in Eq.
3.1 using a maximum of 2000 gradient steps are shown in Fig.3.2. In addition, the loss
score of the validation dataset is displayed in order to give information on the training
performance.
The resulting Taylor coefficients and the loss function of the first two classification

tasks are similar since the underlying datasets are equal except for exchanging mean
values of signal and background class and are, therefore, discussed at once. Compared
to the other tasks the training is completed fast after about 160 training epochs. Here,
the early stopping condition leads to an end of training as can be seen by the constant
validation loss at the end of training. In this case, the validation loss has converged to
the value of about 0.5.
The first order features, as well as the self-correlation features converge to pairwise equal
values due to the symmetry of the given example dataset. Here, 〈tx1〉 and 〈tx2〉 reach an
end value of 0.16, whereas 〈tx1x2〉 reaches an end value of 0.07 and the self-correlations
〈tx1x1〉 and 〈tx2x2〉 reach only 0.04 in the end. Large values of 〈tx1〉 and 〈tx2〉 at the
end of the training process can be interpreted in the following way: First-order features
are more important for the NN decision finding compared to second-order features. The
explanation of giving the first-order features a much higher influence than the correlations
between input space variables might be that the classification of samples at the margins
is relatively clear. For example, a point at the upper right corner of the plot is most likely
from the signal class, a point at the lower-left corner from the background class. Large
〈tx1〉 and 〈tx2〉 indicate, therefore, a good spacial separation of signal and background
which is of more importance than the correlation between the input variables.
The small differences between the plots of example 1 and 2 except for the switched
colors can be explained by fluctuations at the beginning of the trainings as the NNs are
initialized randomly.
Looking at example 3, a fluctuation of the 〈txi〉 can be seen at the beginning. This suggests
a high NN uncertainty resulting in various adjustments on the model weights and biases.
Then, after about 50 gradient steps, all values begin to increase intensively until step 300.
After vast improvements in the early training steps from this point on the validation loss
does barely improve. After 300 gradient steps, the highest value (0.21) is reached by the
correlation feature 〈tx1x2〉 which still increases after this point to an end value of 0.22.
Thus, the difference between signal and background in correlation is picked up by the NN
as most important feature. The first order features approach a value below 〈tx1x2〉: 〈tx2〉
has converged immediately at about 0.17 and 〈tx1〉 decreases slightly from epoch 300 on
until it converges to a similar value as 〈tx2〉. The least important features, in this case, are
the self-correlations. Also, here 〈tx1x1〉 has approached its value immediately and 〈tx2x2〉
decreases until both values converge to 0.05. On closer inspection, the self-correlation
values decrease slightly until the end. But in combination with the increase of 〈tx1x2〉 the
validation loss stays constant even though the metric values change. In contrast to the
first two examples, the signal and background class have different covariance matrices
leading to different correlations between x1 and x2. This characteristic is identified by
the NN as the most influencial feature of the input space. Also the first order features are
taken into account as separation by the marginal distributions is a promising approach.
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Figure 3.2: Values of the metrics 〈ti〉 defined by equation 3.1 over the training process with a
maximum of 2000 training steps (gradient steps) and behaviour of the validation loss showing
the performance success of the NN.
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The fourth example of Fig.3.2 is the most interesting case so far. At the beginning, all
metrics start to increase steeply until they reach local maxima after about 100 training
epochs. Again, the first order features gain the highest influence followed by 〈tx1x2〉
and lastly the self-correlations. Like in the first example, the NN focuses on the spacial
differences. To be more precise, example 4 and 1 are numerically identical for the first
100 epochs. But after this point, the first-order features decrease while the second-order
features stay nearly constant. About 150 steps later there is a steep rise in 〈tx1x2〉 that
does not stop until the thousandth training step. The value gets even higher than the
values of the first-order features. The simultaneous rise in 〈tx1x1〉 and 〈tx2x2〉 stops a lot
earlier. The training is mainly completed after 1000 epochs. The observations for this
example can be interpreted as follows: up to the 100th epoch the classification made
by the NN is made without taking account of the difference in spreads of signal and
background. The distributions are interpreted like in example 1. After about 100 gradient
steps, also the difference in the covariances of signal and background class is recognized.
The influence of the additionally learned feature leads to a result more similar to the third
example task. Moreover,an additional performance gain corresponding to a decreased
validation loss can be observed.
The training on example 5 does not lead to new insights. All values rise until they reach
stable values at 500 gradient steps. The value of 〈tx1x2〉 is small as the distributions are
symmetrically in x1 and x2 and, thus, the correlation between x1 and x2 has no great
importance. Compared to the examples before the values of 〈tx1x1〉 and 〈tx2x2〉 are high
but still smaller than 〈tx1〉 and 〈tx2〉. Again, the marginal distributions are the most
important feature of the input space in order to classify the dataset. Looking at the plot,
this is reasonable as in regions near the origin the propability for samples from the signal
class is much higher than for background class and vice versa in outer regions. But also
the self-correlation features are a characteristic that is used to distinguish the signal from
the background class as the spreads are different.
Lastly, in the sixth example the combination of example 4 and 5 is shown in Fig.3.2. As
expected, the resulting Taylor coefficient progressions look similiar to the ones of example
4. The most important difference is that 〈tx1x2〉 does not reach a higher value than the
first order features 〈tx1〉 and 〈tx2〉.
In this section, the findings of [3] could be reproduced for example 4. Furthermore, with
this method, five new examples (1,2,3,5,6) could be analyzed.

3.3 Analysis of 〈ti〉 for different training seeds

In the last section, the metrics 〈ti〉 have been studied as functions of the training epochs.
But each training has only been performed once. So it is not obvious wether the NN
decides similarily if the calculation is repeated several times. In order to consolidate the
results of the previous section and quantify reliability of the converged NN models, the
metrics 〈ti〉 are evaluated for 100 NN models trained with different seeds. Each time the
seed used to initialize the random seed function is increased by 1. This leads to different
network initializations for each training and simultaneously enables the possibility of
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Figure 3.3: Taylor coefficients evaluated for 100 trainings with different seeds.

replication by controlling randomization. In Fig.3.3, the resulting metrics are shown.
The darker lines illustrate the arithmetic mean values of the corresponding 〈ti〉 and the
transparent error bands around the mean values present the 68 nearest values to the
mean for each gradient step. At the end of the training, all 100 models converge to the
same metric values. It can be seen that no matter how the network is initialized at the
beginning for each training, it produces the same end results. Thus, it is important to
stop the training not at an early stage as there can be vast differences in dependencies
on the input space during the training process.
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It can also be seen, that the resulting plots for example 1 and 2 look similar. This
confirms that the differences of these plots in the previous section are due to stochastical
fluctuations.
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3.4 Analysis on Input Space Dependence of Taylor
Coefficients ti

In the previous sections, the mean values of the Taylor coefficients were discussed as
metrics that display the influence of input space characteristics on the NN output. But the
importance of input features does not only depend on the size of the Taylor coefficients,
but also on the location in the input space. This section will now take a closer look at
the dependence on the input space by discussing the Taylor coefficients as functions of
the input space. For this purpose, the previously obtained Taylor coefficients are plotted
as colormaps with respect to x1 (horizontal axis) and x2 (vertical axis). Therefore, the
Taylor coefficients are filled into bins which are normalized by the input space samples
before being plotted as there are many samples in the plot center and few near the
margins regarding the input data as shown in Fig.3.1. A bin number of 41 is used in x1
and x2 direction as an odd number is more suitable for displaying symmetries around the
origin. For the purpose of illustrating positive and negative values, a diverging colormap is
chosen. High absolute values are indicated by dark colors where blue represents negative
and red positive values. To improve comparability, a constant color scale is used for as
many epochs as long as recognizability is not affected. The color black indicates that a
bin is empty. This is likely to happen near the plot margins as there the probability for
occuring samples is small due to the used distributions. In addition to first and second-
order Taylor coefficients, now, also the output function f is shown in the following figures.
Another color range from 0 to 1 is assigned to f . Here, dark red corresponds to an output
value 1 and dark blue 0. In the following, the colormaps for the six example toy datasets
are shown in Fig.3.4 to Fig.3.11 for different training epochs. For practical reasons, only
a few but representative training epochs are chosen.

3.4.1 Input space Dependency: example 1 and 2

Beginning with Fig.3.4, colormaps corresponding to example 1 as defined in Tab. 3.1 in
section 3.1 are shown for epochs ranging from 1 to 100. At the beginning, the upper half
of the input space is interpreted as background and the lower half as signal class due
to random initialization of the NN parameters. This interpretation changes represented
by a point-symmetric rotation of the output. In the end, a rotation of 135 degrees is
completed. Now, the off-diagonal is colored white, the upper right half red and the bottom
left half blue. This evaluation made by the NN seems to be reasonable, since a sample in
the upper right half is more likely to be from the signal class and a sample in the lower
left half from thebackground class. Only in the area around the off-diagonal axis the
NN is not able to find a clear classification represented by the white-colored off-diagonal
axis. This is reasonable, since the propabilities for signal and background class from
the original dataset are equal along this axis. In summary, the final output matches
well to the original example dataset which indicates a reasonable decision-making of the
NN. Having discussed the output f of the NN, the following discussion will address the
resulting Taylor coefficients and the relationship between output and Taylor coefficients.
In order to give a better understanding of the results, different slices of the colormaps
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Figure 3.4: Illustration of the dependence on the input space of the first and second order
Taylor coefficients for different training epochs of example distribution 1. x1 is displayed on
the horizontal axis and x2 on the vertical axis. Moreover the output function f is displayed
with a separate colorbar ranging from 0 to 1. The green arrows indicate the path of the
two-dimensional slices of the three-dimensional colormaps shown in Fig.3.5.
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Figure 3.5: Two-dimensional slices of the ti in x1 and x2 as marked in Fig.3.4.

are shown in Fig.3.5. Such a slice can be obtained by fixing one of the variables or their
combination to a certain value. These slices are marked in Fig.3.4 by green arrows. For
example, following the horizontal arrow in the output plot, the output increases mono-
tonically from zero (blue) to one (red). The Taylor coefficient tx1 is a derivative of f in
x1 direction and tx1x1 is again a derivative of tx1 in x1 direction and, thus, a second-order
derivative of f in x1 direction. So, the first-order Taylor coefficients can be interpreted
as measure of the gradient and the second-order features as measure of curvature.
Now, the slice plots are easier to understand. The point with the highest gradient of f
corresponds to a maximum of tx1 and a zero-point of tx1x1 . The curvature at this point
changes from concave up to concave down. As the output function f is monotonically
increasing in x1 direction, all tx1 values are positive. Near the upper right and lower
left margins of the plot the output function reaches near constant values, therefore, the
corresponding tx1 values approach zero. Interesting is, also, the correlation feature tx1x2

that can be explained as a sum of the derivative of tx1 in x2 direction and the derivative of
tx2 in x1 direction that both look similar due to the symmetry of the data. Also because
of the symmetry, tx1x2 looks similar to tx1x1 but with higher absolute values. Also for tx2

and tx2x2 , a similiar explanation can be applied. The two-dimensional slices are a good
method to improve understanding of the three-dimensional plots in Fig.3.4.
Focusing on the first-order feature colormaps for different epochs it can be seen that
both are classified differently at the beginning: tx2 is colored completely blue and tx1

completely red. Then, the values of both metrics increase until both look equal showing
a dark red band across the off-diagonal axis and white bins at the remaining margins.
As classification in these white-colored areas should be relatively simple, this suggests
the assumption that the color white indicates a high level of certainty of the NN about
the classification of samples in so-colored bins. Consequently, the optimal metric would
look completely white in this illustration. According to this interpretation, the dark red

25



Analysis of the NN Learning Process

in the middle might represent a high level of uncertainty of the NN. In dark colored
regions, a small difference in the input space can lead to a big change in classification
of the NN. So, regions with high first order Taylor coefficients have a strong impact on
the NN output. On the other hand, in the beginning the most bins of the ti plots are
light-colored and become darker during training. So, the absolute values get higher which
again corroborates the earlier asumption stating that high absolute values correspond to
a high influence on the NN output. These results confirm the findings in [3] and regions
are identified where uncertainties on variables have a high influence on the NN output.
In the end, the second-order feature plots look similiar to the plot of the output function

f except for switched colors blue and red and white colored upper right and lower left
corners. Here, the darkest colors occur in the tx1x2 plot.
Overall, the colormaps are a useful instrument in order to characterize the output f . In
addition, the colormaps provide a good illustration of the first and second-order Taylor
coefficients as derivatives of the output function f .

The results corresponding to example distribution 2 are similar to the results of example
distribution 1. The only differences are, that the bin colors are interchanged from red
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Figure 3.6: Illustration of input space dependence on first and second order Taylor coefficients
for different training epochs of example distribution 2.
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to blue and blue to red. This result is consistent with the dataset where also the colors
are switched and the results from the previous sections. Considering an interpretation
as used for example 1, a horizontal slice of the output f would show a monotonically
decreasing function. Thus, the first-order gradients and the first-order Taylor coefficients
are overall negative. The results of the second-order coefficients can be explained in a
similar way.

3.4.2 Input space Dependency: example 3

In the case of Fig.3.7, the training progress according to example distribution 3 can be
seen. The output f evolves from two differently colored halves separated by a narrow
white area to four quadrants separated by a narrow point-symmetric white cross centered
at the origin. The upper right and lower left quadrant are colored dark red, the other
two quadrants dark blue. This geometry resembles the symmetry of the analyzed dataset.
From the beginning on, the network realizes the symmetry of the classification but it
takes about 100 training epochs until the NN identifies the four quadrants dominating
the final plots. In each of the first-order feature plots after 1999 epochs a broad bar
covering the axes can be seen changing color from blue to red; for tx1 horizontally and
for tx2 vertically.
As for example 1, slices are shown in 3.8. This time, the slices are not taken from the
center of the plots but shifted away from the center, as through the center the path is
along a white area and, thus, nothing remarkable can be seen. For example, looking at
the horizontal center, also the tx1 and tx1x1 plots display white lines. The same applies
to tx2 and tx2x2 in vertical direction. Now, looking at the corresponding slice of f in x1
direction, a monotonically decreasing function similar to the one from example 1 can be
seen that results in negative tx1 values. Moving the slice above a x2 value of 0, would
result in a monotonically increasing function and positive tx1 values. The curvature of
the diagonal slice leads to the plot that can be seen for tx1x2 . The corners of the ti plots
are colored white. Looking at the corresponding data sample in Fig.3.1, these regions
should be easy to classify by the marginal distributions. For example, the possibility for
a signal class like data point in the upper right corner is relatively high. This confirms
the theory that white regions of the metrics indicate certainty of the NN classification.
The bins at x1 = x2 = 0 are colored white which would correspond to a straightforward
classification as stated in 3.4.1. But in this case, the color white does not correspond
to a maximum or minimum but to a saddle point as can be seen by the second order
features and, therefore, this white-colored area does not indicate high certainty of the
NN in classification.
The self-correlation metrics tx1x1 and tx2x2 form a frame around a centered white cross
similar to the one that can be seen in the output plot but with contrary colors. As
for the first-order metrics, either the horizontal or vertical framing is more pronounced:
horizontal for tx1x1 and vertical for tx2x2 . The findings suggest unambiguous classification
at the corners. Interesting is also the plot of tx1x2 that shows a star-like geometry which
can again can be understood better by looking at the slices.

27



Analysis of the NN Learning Process

2.5 0.0 2.5
4
2
0
2
4

f

0

0.5

1

2.5 0.0 2.5
4
2
0
2
4

tx1

2.5 0.0 2.5
4
2
0
2
4

tx2

2.5 0.0 2.5
4
2
0
2
4

tx1x1

2.5 0.0 2.5
4
2
0
2
4

tx1x2

2.5 0.0 2.5
4
2
0
2
4

tx2x2

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Example 3 Epoch 1

2.5 0.0 2.5
4
2
0
2
4

f

0

0.5

1

2.5 0.0 2.5
4
2
0
2
4

tx1

2.5 0.0 2.5
4
2
0
2
4

tx2

2.5 0.0 2.5
4
2
0
2
4

tx1x1

2.5 0.0 2.5
4
2
0
2
4

tx1x2

2.5 0.0 2.5
4
2
0
2
4

tx2x2

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Example 3 Epoch 20

2.5 0.0 2.5
4
2
0
2
4

f

0

0.5

1

2.5 0.0 2.5
4
2
0
2
4

tx1

2.5 0.0 2.5
4
2
0
2
4

tx2

2.5 0.0 2.5
4
2
0
2
4

tx1x1

2.5 0.0 2.5
4
2
0
2
4

tx1x2

2.5 0.0 2.5
4
2
0
2
4

tx2x2

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Example 3 Epoch 100

2.5 0.0 2.5
4
2
0
2
4

f

0

0.5

1

2.5 0.0 2.5
4
2
0
2
4

tx1

2.5 0.0 2.5
4
2
0
2
4

tx2

2.5 0.0 2.5
4
2
0
2
4

tx1x1

2.5 0.0 2.5
4
2
0
2
4

tx1x2

2.5 0.0 2.5
4
2
0
2
4

tx2x2

0.4

0.2

0.0

0.2

0.4

Example 3 Epoch 300

Figure 3.7: Illustration of input space dependency on first and second order Taylor coefficients
for different training epochs of example distribution 3.
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Figure 3.8: Two-dimensional slices of the ti in x1 and x2 as marked in Fig.3.7.

3.4.3 Input space Dependency: example 4, 5 and 6

For examples 4, 5 and 6 only few plots are shown. The corresponding plots during training
are shown in the appendix section A.
Looking at Fig.3.9 a plot displaying the geometry of the input data emerges for f and the
metrics ti. As discussed in section 3.2 the plots look similar to example 1 up to the 100th
epoch. After this point, the additional features are recognized, leading to the final plot
after 1999 epochs. The reddish bottom left corner of f can be explained by samples from
signal class of the input dataset that are located in this corner even though the possibility
for signal class is very small in this area. The colormaps of the Taylor coefficients are
too complex to discuss in detail in this thesis.
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Figure 3.9: Illustration of input space dependency on first and second order Taylor coefficients
for training epoch 1999 of example distribution 4.
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Figure 3.10: Illustration of input space dependence on first and second order Taylor coefficients
for training epoch 1999 of example distribution 5.

2.5 0.0 2.5
4
2
0
2
4

f

0

0.5

1

2.5 0.0 2.5
4
2
0
2
4

tx1

2.5 0.0 2.5
4
2
0
2
4

tx2

2.5 0.0 2.5
4
2
0
2
4

tx1x1

2.5 0.0 2.5
4
2
0
2
4

tx1x2

2.5 0.0 2.5
4
2
0
2
4

tx2x2

0.10

0.05

0.00

0.05

0.10

Example 6 Epoch 100

2.5 0.0 2.5
4
2
0
2
4

f

0

0.5

1

2.5 0.0 2.5
4
2
0
2
4

tx1

2.5 0.0 2.5
4
2
0
2
4

tx2

2.5 0.0 2.5
4
2
0
2
4

tx1x1

2.5 0.0 2.5
4
2
0
2
4

tx1x2

2.5 0.0 2.5
4
2
0
2
4

tx2x2

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Example 6 Epoch 1999

Figure 3.11: Illustration of input space dependence on first and second order Taylor coefficients
for different training epochs of example distribution 6.

Also in the cases of example 5 and 6 (Fig.3.10, Fig.3.11), the output function f and its
Taylor coefficients resemble the geometries of the associated datasets. Also in example 6,
the NN decides similarily to example 1 up to the 100th epoch but then recognizes the
additional features of the dataset. The NN adapts to the dataset by emerging a geometry
looking like a Y similar to example 4.
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CHAPTER 4

Summary, Conclusion and Outlook

The purpose of this thesis is to develop a deeper understanding of Neural Network
learning processes by illustration of trainings and examination of the significance of single
input characeristics on Neural Network decision taking. The investigation of Artificial
Neural Network trainings has shown that it is in fact possible to visualize the training
process of NNs by analysis of the Taylor coefficients of the NN model function. This
research serves as a base for future studies and the methods used for this thesis can be
applied to other NN studies.
Within this work, the findings of [3] could be reproduced and applied to further examples.
This thesis has shown, that NN trainings with different seeds can be used to analyze the
convergence and stability of a NN model. If the training is performed long enough, NNs
that are initialized differently at the beginning can produce similar outputs in the end.
The illustration of the training process using colormaps is a valuable method in order
to gain a deeper understanding of the training process and especially of the final NN
output. This method has facilitated a comparison between the NN outputs and the six
toy datasets, which has shown that the decision taking of the NNs is indeed reasonable
in these cases. By analysis of the Taylor coefficients corresponding to the NN output
functions, regions of the input space could be determined in which small variations of the
input variables for example caused by systematical uncertainties lead to great variations
of the NN output. So, especially in these regions, it is important to gain control over
uncertainties of the input space. Furthermore, those Taylor coefficients allow for general
predictions on the influence of variations of the input variables xi on the NN output.
The findings suggest that areas of the first-order taylor coefficient plots with values near
to zero correspond to areas with high classification confidence of the NN or to saddle
points.
Although the current study is based on a small number of datasets, this thesis contributes
in enhancing the understanding of Neural Network training. Further studies can inves-
tigate on applying these finding to other classification problems or even tasks besides
classification in order to confirm and generalize the results of this thesis. As this thesis
only investigated on NN trainings of feedforward network with one hidden layer, it would
be interesting to investigate on the behaviour of different and particularly more complex
NN models. For example, the number of layers and nodes or the batch sizes are attributes
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Summary, Conclusion and Outlook

of NN models that can be easily changed and can lead to variations of the training perfor-
mance. The methods used in this thesis can be applied to find a most suitable NN model
for a given task. Also, further research might investigate on Taylor coefficients of higher
than second-order. Another interesting approach would be to investigate on classification
of an input space with more than two independent variables. In this case, the colormap
method presented in section 3.4 can be very helpful as the Taylor coefficients can be
used to display the dependence of the NN output on all given input variables.
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APPENDIX A

Appendix

A.1 Input space Dependency: example 4, 5, 6
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Figure A.1: Illustration of input space dependency on first and second order taylor coefficients
for different training epochs of example distribution 4.
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Figure A.2: Illustration of input space dependency on first and second order taylor coefficients
for different training epochs of example distribution 4.
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Figure A.3: Illustration of input space dependency on first and second order taylor coefficients
for different training epochs of example distribution 4.
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