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Abstract

A search for s-channel single top quark production is presented, using 137 �
−1

of data

recorded at a center-of-mass energy of 13 TeV by the CMS experiment at the CERN LHC.

In the search, leptonically decaying top quarks are analyzed, resulting in a �nal state of the

signal process consisting of one charged muon or electron and its corresponding neutrino,

and two jets originating from hadronized bottom quarks. Depending on the jet and b jet

multiplicities, signal and control event categories, accounting for di�erent background

processes, are de�ned. All signal and background processes are modeled via event sim-

ulation, except for the QCD multijet background contribution, which is modeled with a

data-driven approach. A dedicated multivariate method is employed to enhance the sep-

aration between the signal process and the background processes, mainly top quark pair

production. By performing a simultaneous �t on the multivariate discriminator in all event

categories, the signi�cance for observing s-channel single top quark production, as well

as the inclusive cross section and the absolute value of the CKM matrix element Vtb, are

extracted.

With an observed (expected) signi�cance of 6.0 (4.7) standard deviations, this analysis is the

�rst discovery for s-channel single top quark production using proton-proton collisions of

the LHC. The measured cross section of this process is σs-ch. = 14.65
+2.48

−2.37
(stat. + syst.) pb

and Vtb is measured to be | fLVVtb | = 1.19 ± 0.09 (exp.) ± 0.02 (theo.), with the form factor

for potential anomalous left-handed vector boson couplings fLV being 1 in the SM. These

measured values are both within two standard deviations of the SM predictions.
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Introduction

Since the postulation of the standard model (SM) of particle physics in the 1960s and 1970s,

all predicted, yet unobserved, elementary particles have been discovered, with the last

missing piece, the Higgs boson, being observed for the �rst time in 2012 at the Large

Hadron Collider (LHC) near Geneva [1, 2]. Despite being now complete and demonstrated

to be successful in numerous aspects, there are still open questions that cannot be answered

by the SM: for instance, it does not describe gravity and does not provide any explanation

for the existence of dark matter. As new particles explaining these phenomena have not

been discovered so far in direct searches, indirect searches for new physics need to be

performed in addition. Therefore, it is essential to measure all processes predicted by

the SM, determine the properties of SM particles as accurate as possible, and search for

potentially existing small deviations that can be a hint for physics beyond the SM.

As the top quark is the heaviest elementary particle of the SM, with its mass comparable

to the mass of a gold atom, it may play a special role in the SM, in particular in the elec-

troweak symmetry breaking mechanism. It was discovered in 1995 at the Tevatron [3, 4],

a proton-antiproton collider situated at Fermilab, where only about 1000 top quark pairs

were produced by that time. Nowadays, the LHC can be considered a top quark factory.

During Run 2 of the LHC, proton-proton collisions were recorded from 2015 to 2018 at

a center-of-mass energy of 13 TeV, in which more than 200 million top quark pairs and

more than 80 million single top quarks were expected to be produced. Although being less

often created than top quark pairs, single top quarks are of special interest for probing

the electroweak sector of the SM. For example, single top quark processes enable direct

measurements of the Cabibbo–Kobayashi–Maskawa matrix element |Vtb | and are suitable

to search for possible anomalous Wtb couplings [5]. The production of single top quarks

was �rst discovered at the Tevatron in 2009 [6, 7]. During Run 1 of the LHC, which com-

prises measured data from 2010 to 2012 at center-of-mass energies of 7 TeV and 8 TeV, and

Run 2, two of the three main production modes for single top quarks, the t-channel pro-

cess and the associated production with a W boson, were already successfully measured.

However, the rarest of the three in proton-proton collisions, the s-channel process, has

not been observed at the LHC so far. The aim of this thesis is therefore the observation

of s-channel single top quark production by analyzing the 2016, 2017, and 2018 datasets

recorded by the Compact Muon Solenoid (CMS) experiment. In particular, small deviations

in the measured cross section of this process could be caused by contributions from new
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physics, which could manifest in the detector with the same signature as s-channel single

top quark production.

The structure of this thesis is as follows: In the �rst chapter, an overview of the theoretical

description of the SM and of the top quark properties is given. The second chapter presents

the design of the LHC and the CMS experiment. The simulation and reconstruction of

events is described in the third chapter. All multivariate machine learning methods and

statistical methods employed in this thesis are explained in the fourth chapter. The search

for s-channel single top quark production is presented in the �fth chapter, where each step

of the analysis is described in detail, starting with the search strategy and ending with the

discussion of the measured results. A summary of the analysis, possible improvements for

the search for s-channel single top quark production, and an outlook for future single top

quark analyses at the LHC and at future electron-positron colliders are provided in the last

chapter.
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1. Theoretical motivation

The properties of all known elementary particles and their interactions are described by the

standard model (SM) of particle physics, developed in the 1960s and 1970s. Many new par-

ticles described by this fundamental theory have been discovered afterwards, for instance

the top quark in 1995 at the Tevatron [3, 4]. In 2012, the last missing elementary particle

of the SM, the Higgs boson, has been observed at the Large Hadron Collider (LHC) [1, 2].

In this chapter, an overview of the fundamental forces and the elementary particles of the

SM is given, with emphasis on the properties of the top quark. Natural units (~ = c = 1)

are used for simpli�cation.

1.1 Standard model of particle physics

The SM is a quantum �eld theory (QFT), combining the principles of special relativity and

quantum mechanics. It unites two theories, quantum chromodynamics (QCD) [8, 9] de-

scribing the strong interaction, and the electroweak theory [10], describing the uni�cation

of electromagnetic and weak interaction. The SM is represented by the SU(3)C × SU(2)L ×

U(1)Y symmetry group. Noether’s theorem [11] states that each continuous symmetry of

a physical system leads to a conserved quantity. In case of the SM, the conserved quantum

numbers, namely color charge (C), the weak isospin (L), and the weak hypercharge (Y ) are

assigned to each elementary particle. Various �elds, corresponding to the forces and par-

ticles of the SM and whose excitations can be interpreted as particles observed in nature,

are de�ned in the QFT by a Lagrangian density:

LSM = Lgauge + Lfermion + LHiggs + LYukawa. (1.1)

The termLgauge describes the interaction of gauge bosons, while the dynamics of fermions

are grouped into Lfermion. The SM Lagrangian density is completed by the Higgs sector
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1. Theoretical motivation

(LHiggs) being correlated with the electroweak symmetry breaking and the fermion mass

terms due to their Yukawa coupling (LYukawa) to the Higgs �eld.

Despite the fact that all SM particles have been observed in nature and particles not in-

cluded in the SM have not been discovered so far, there are still some phenomena which

cannot be solved by the SM. For instance, atmospheric and solar neutrino oscillations have

been observed [12, 13], proving that they are not massless as built into the SM by con-

struction. The SM is furthermore incapable of explaining the existence of dark matter and

neglects gravity, an important interaction experienced in everyday life. Thus, it is crucial

to measure the properties of the SM particles as precise as possible to search for small

deviations that may hint to new physics.

According to their spin, the elementary particles of the SM are classi�ed into particles

with integer spin and spin-1/2 particles, called bosons and fermions, respectively. In the

following, these two particle groups are described in more detail, alongside with essential

mechanisms of the SM.

1.1.1 Bosons and fermions

The SM comprises four types of gauge bosons, the Higgs boson, and six di�erent �avors of

quarks and leptons. An overview of the elementary particles of the SM is given in Fig. 1.1.

All gauge bosons are vector bosons with spin 1, whereas the Higgs boson is a scalar boson

with spin 0. The strong, electromagnetic, and weak force between elementary particles are

mediated by di�erent gauge bosons listed in Table 1.1. The strong interaction is transmitted

by eight massless gluons (g), which couple to color-charged particles. As each gluon carries

one color and one anticolor charge, they can interact among themselves, thus limiting the

range of the strong force. The massive W
±

bosons and the Z boson mediate the weak

interaction. As a result of their masses of about 80 GeV and 91 GeV, respectively, the weak

interaction has only a short range. The only interaction with an in�nite range is thus the

electromagnetic interaction mediated by the massless photon (γ), which carries no electric

charge and which can only couple to electrically charged particles. The Higgs boson is the

excitation of the Higgs �eld and couples to the massive gauge bosons through the Higgs

mechanism, which is discussed in Section 1.1.3.

SM fermions are spin-1/2 particles, which can be separated into two groups based on their

color charge: quarks and leptons. They are further divided into three generations, ordered

by their masses. Each generation consists of two quarks and two leptons, which are distin-

guished by their weak isospin. The properties of all fermions are given in Table 1.2. For all

fermions, an antifermion exists, with identical mass but di�erent quantum numbers, such

as electric charge and parity.

Six di�erent �avors of quarks exist in the SM, which carry color and electric charge. Quarks

carrying an electric charge of+2/3 e are referred to as up-type quarks, whereas quarks with

an electric charge of −1/3 e are called down-type quarks. Each generation has one up- and

one down-type quark. The �rst generation consists of the up (u) and down (d) quark, which

are the lightest quarks. The charm (c) and strange (s) quark form the second generation,

2



1.1. Standard model of particle physics
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Figure 1.1: The standard model of particle physics. The SM contains

fermions, divided into six di�erent �avors of quarks and leptons and their corre-

sponding antiparticles, and bosons, four di�erent types of gauge bosons as force

mediators, and the Higgs boson. The fermions are further split into three gener-

ations.

Table 1.1: The gauge bosons of the standard model. Gauge bosons are the

mediators for three di�erent types of particle interaction: strong, electromag-

netic, and weak. The electric charge and the mass of each gauge boson are given.

All values taken from Ref. [14].

Force Gauge boson charge Mass (GeV)

Strong Gluons (g) 0 0

Electromagnetic Photon (γ) 0 0

Weak

W bosons (W
±

) ±1 80.379 ± 0.012

Z boson (Z) 0 91.1876 ± 0.0020
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1. Theoretical motivation

Table 1.2: The fermions of the standard model. The fermions are divided

into two groups, quarks and leptons, which are further split into three genera-

tions. In contrast to quarks, leptons do not carry color charge. The fermions are

ordered by the third component of their weak isospin and by their generation.

All values taken from Ref. [14].

Fermions

Generation Electric 3
rd

comp.

1 2 3 charge (e) of isospin

Quarks

u c t + 2

3
+ 1

2

d s b − 1

3
− 1

2

Leptons

νe νµ ντ 0 + 1

2

e µ τ −1 − 1

2

while the third generation includes the heaviest quark, the top (t) quark, and the bottom

(b) quark. Quarks are the only SM particles that can take part in all three interactions. In

particle detectors, isolated quarks cannot be observed. This is caused by the so-called con-

�nement, where the self-interaction of gluons leads to a �ux tube in the color �eld between

the quarks when trying to separate them. With increasing distance, it is energetically more

favorable for the quarks to create a new quark-antiquark pair. Consequently, quarks form

color-neutral bound states called hadrons, which can be observed in nature and can be

distinguished by their quark content. This mechanism is called hadronization. Hadrons

consisting of a quark-antiquark pair are called mesons, while bound states formed by three

quarks are referred to as baryons. As the heavier quarks are not stable, most hadrons are

formed by �rst-generation quarks, e. g., protons (uud) and neutrons (udd). At high ener-

gies, corresponding to small distances, quarks behave like free particles, as the strength of

their interactions decreases. This phenomenon is called asymptotic freedom and allows

perturbative calculations of strong interactions, which are not possible at low energies.

In contrast to quarks, leptons do not carry color charge and thus do not couple to the

strong force. They can be distinguished by their electric charge: charged leptons with an

electric charge of −e and electrically neutral neutrinos. Each generation consists of one

charged lepton and one neutrino. The �rst generation is formed by the electron (e) and

the electron neutrino (νe), the second generation by the muon (µ) and the muon neutrino

(νµ), and the third generation by the tau lepton (τ) and the tau neutrino (ντ). Because

of their electric charge, charged leptons couple to the electromagnetic and weak force,

whereas neutrinos only interact weakly. According to the SM, neutrinos are massless, but

is has been experimentally proven that they can change their �avor via oscillations, which

is only possible if they are massive. Hence, neutrinos do have small masses, which will be

measured at di�erent experiments. For instance, the KATRIN experiment [15] is designed

to measure the electron neutrino mass and has recently reported the best upper limit for

direct measurement of the neutrino mass [16].
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1.1. Standard model of particle physics

1.1.2 Electroweak interaction

The uni�cation of the electromagnetic and weak interaction by Weinberg and Salam in

the 1960s [10] was a great success of the SM, resolving divergences in the weak inter-

action by replacing the contact interactions of the Fermi theory [17] with the exchange

of vector bosons. The simplest symmetry group for the combination of these two forces

into the electroweak interaction is the SU(2)L × U(1)Y group, where SU(2)L describes the

weak isospin acting only on left-handed fermions because of parity violation in the weak

interaction [18], and where U(1)Y corresponds to the weak hypercharge Y acting on all

particles.

According to the weak isospin quantum number I and the value of its third component I3,

fermions are grouped into left-handed weak isospin doublets L (I = 1/2, I3 = ±1/2) and

right-handed weak isospin singlets R (I = I3 = 0):

L =

(
νe

e
−

)
L

, . . . ,

(
u

d

)
L

, . . . , (1.2)

R = e
−
R
, . . . , uR, dR, . . . . (1.3)

As right-handed neutrinos are not included the SM and do not couple to any known par-

ticle, they only occur in left-handed weak isospin doublets. The gauge transformation of

the SU(2)L symmetry group is given by U (x) = exp

[
i(σk/2)α

k (x)
]
, with the local phase

αk (x) and the three generators σk/2, where σk (k = 1, 2, 3) can be represented by the Pauli

matrices. Three gauge bosons W k
µ are obtained in total, where combinations of W 1

µ and

W 2

µ are directly related to the massive W
±

bosons:

W ±µ =
1

√
2

(
W 1

µ ∓ iW 2

µ

)
. (1.4)

The gauge boson W 3

µ cannot be directly associated with the massive Z boson, as no cou-

pling to right-handed fermions is allowed. The gauge transformation of the U(1)Y sym-

metry group is given by U (x) = exp

[
i
Y
2
12α(x)

]
, with the generator 12 and the weak

hypercharge Y , de�ned as a linear combination of electric charge Q and I3:

Y = 2(Q − I3), (1.5)

and one resulting gauge boson Bµ .

For the left- and right-handed fermions, di�erent covariant derivatives can be de�ned:

DµL =

(
∂µ − iд

σk
2

W k
µ − iд′

Y

2

12Bµ

)
L, (1.6)

DµR =

(
∂µ − iд′

Y

2

Bµ

)
R, (1.7)

5



1. Theoretical motivation

with the two coupling constants д and д′ for the weak isospin and the weak hypercharge,

respectively. There are no mass terms in the resulting Lagrangian density as these are not

gauge invariant under local SU(2)L transformations. On the other hand, the W
±

and Z

bosons are massive. This issue is resolved with the mechanism explained in the following

section.

1.1.3 Electroweak symmetry breaking and Higgs mechanism

The Higgs mechanism [19, 20, 21] generates gauge boson mass terms in the Lagrangian

density without violating gauge invariance through spontaneous electroweak symmetry

breaking [22]. The spontaneous symmetry breaking is achieved by introducing a new

scalar �eld Φ, called Higgs �eld, that is symmetric under the SU(2)L × U(1)Y group and

leads to three massive gauge bosons and one massless photon:

Φ =

(
ϕ+

ϕ0

)
. (1.8)

The Higgs �eld corresponds to an SU(2)L doublet consisting of two complex �elds ϕ+ and

ϕ0
. Its quantum numbers are given by I = 1/2, I3 = ±1/2, and Y = 1. The Lagrangian

density of the Higgs �eld can be written as

LHiggs = (DµΦ)
†(DµΦ) −V (Φ), (1.9)

with the covariant derivative

Dµ =

(
∂µ − iд

σk
2

W k
µ − iд′

Y

2

12Bµ

)
(1.10)

and the Higgs potential

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2. (1.11)

The form of the Higgs potential depends on the sign of µ2
. For µ2 < 0, only one global

minimum exists at Φ = 0. In case of µ2 > 0, which is illustrated in Fig. 1.2, in�nitely

many minima exist, located along a circle in the plane spanned by the real and complex

components of the Higgs �eld with the radius

v =

√
µ2

2λ
. (1.12)

The radius v corresponds to the vacuum expectation value of the Higgs �eld and is calcu-

lated as

v =
(√

2GF

)−1/2

= 246 GeV, (1.13)
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1.1. Standard model of particle physics

with the Fermi coupling constant GF [14].

In order to conserve the symmetry of the electromagnetic U(1) subgroup, which is broken

by the in�nite number of minima of V (Φ), the charged component ϕ+ of the Higgs �eld

must be set to zero, resulting in a massless photon. The neutral component ϕ0
can be

rewritten such that the Higgs �eld is given by

Φ(x) =
1

√
2

(
0

v + h(x)

)
, (1.14)

with the scalar �eld h(x) representing the Higgs boson.

The physical �elds of the gauge bosons, the photon �eldAµ and the Z �eldZµ , are obtained

by diagonalizing the matrix of the kinetic term of LHiggs:

(
Bµ
W 0

µ

)
=

(
cosθW − sinθW

sinθW cosθW

) (
Aµ
Zµ

)
, (1.15)

where θW is the weak mixing angle, also called Weinberg angle, and is de�ned as

cosθW =
д√

д2 + д′2
. (1.16)

The Weinberg angle has been measured to be sin
2 θW ≈ 0.23 [14]. The mass of the Z boson

is then given by the relation:

mZ =
mW

cosθW

. (1.17)

Through the Higgs mechanism, the masses of the gauge bosons are obtained. To generate

the fermion masses, a Yukawa coupling to the Higgs �eld is postulated, which is gauge

invariant under SU(2)L × U(1)Y transformations. In case of electrons, the corresponding

Yukawa term has the following structure:

− ye

(
LΦR + RΦ†L

)
. (1.18)

The mass of an electron can then be expressed in terms of the Yukawa coupling constant

of the electron �eld ye and the vacuum expectation value v :

me =
yev
√

2

. (1.19)
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1. Theoretical motivation

Figure 1.2: The Higgs potential. The real and imaginary parts of the Higgs

�eld for the scenario µ2 > 0 are shown. An in�nite number of minima located

at a circle with radius |ϕ | = v exist, where v is the vacuum expectation value.

Taken from Ref. [23].

1.1.4 Cabbibo–Kobayashi–Maskawa matrix

The quark masses can be derived in a similar way as the lepton masses through Yukawa

couplings to the Higgs �eld. Through the exchange of a W boson, the �avor of a quark

can be changed, leading to �avor mixing of the quarks: the mass eigenstates, which are

physically observable particles, are not identical to the �avor eigenstates, describing the

interactions with gauge bosons. This quark �avor mixing is expressed by the Cabbibo–

Kobayashi–Maskawa (CKM) matrix VCKM [24, 25]

©­«
d ′

s ′

b ′

ª®¬ = VCKM

©­«
d
s
b

ª®¬ = ©­«
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

ª®¬ ©­«
d
s
b

ª®¬ , (1.20)

with the �avor eigenstates d ′, s ′,b ′ and mass eigenstates d, s,b of the down-type quarks.

As the CKM matrix is a unitary matrix, V †
CKM

V
CKM
= 13, various conditions for the CKM

matrix elements need to be ful�lled. Using these conditions, the CKM matrix elements are

precisely measured [14] to be

|VCKM | =
©­«
0.97446 ± 0.00010 0.22452 ± 0.00044 0.00365 ± 0.00012

0.22438 ± 0.00044 0.97359
+0.00010

−0.00011
0.04214 ± 0.00076

0.00896
+0.00024

−0.00023
0.04133 ± 0.00074 0.999105 ± 0.000032

ª®¬ . (1.21)

The magnitudes of the diagonal CKM matrix elements are close to 1, meaning that transi-

tions within one generation are the most likely ones.
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1.2. Top quark properties

1.2 Top quark properties

The top quark is the heaviest particle of the SM and was discovered at the Tevatron in

1995 [3, 4]. In contrast to all other quarks, it decays before it forms bound states because

of its high mass of 173.34 ± 0.76 GeV [26] and because of its possibility to decay into real

W bosons. The top quark is of particular interest for the study of the Higgs boson cou-

plings and has the highest Yukawa coupling strength. With the measured top quark mass

given above and Eq. (1.19), it is determined as 0.997± 0.004, whereas the Yukawa coupling

strength of the other SM quarks is of order 10
−5

to 10
−2

, depending on the quark mass.

1.2.1 Top quark pair production

The dominant top quark production mode is the production of top quark pairs (tt) via the

strong interaction. The four relevant leading-order Feynman diagrams for tt production

are shown in Fig. 1.3. In the �rst three Feynman diagrams, initial-state gluons are involved

in the tt production. The production modes s and t channel directly refer to the Mandelstam

variables [27], where s is de�ned as the square of the center-of-mass energy and t as the

square of the momentum transfer. The fourth Feynman diagram shows the production of

a top quark pair via quark-antiquark annihilation. As the initial-state antiquark can only

arise from sea quarks, this production mode is the rarest one at the proton-proton collider

LHC, but was the dominant one at the proton-antiproton collider Tevatron. The predicted

cross section of tt production at the LHC for a center-of-mass energy of 13 TeV is

σ
tt
= 831.76

+19.77

−29.20
(scale) ± 35.06 (PDF+αs)

+23.18

−22.45
(mass) pb, (1.22)

calculated for a top quark mass of 172.5 GeV [28, 29].

1.2.2 Single top quark production

Single top quark production is less frequent than tt production, since single top quarks

can only be produced via electroweak interactions. The single top quark process allows a

direct measurement of the CKM matrix elementVtb, where small deviations could already

be a hint for physics beyond the SM. The leading-order Feynman diagrams of the di�erent

single top quark production modes are shown in Fig. 1.4. Single top quarks can be produced

via the t-channel process, in association with a W boson, or via the s-channel process.

In the t-channel process, which is the dominant single top quark production mode at the

LHC, a light-�avored quark and a bottom quark exchange a virtual W boson in the t chan-

nel, causing both initial quarks to change their �avor. In this process, the light-�avored

quark is preferably emitted in forward direction. The cross section at a center-of-mass

energy of

√
s = 13 TeV is calculated with next-to-leading-order (NLO) accuracy in QCD to

be

σt -ch. = 216.99
+6.62

−4.64
(scale) ± 6.16 (PDF+αs) pb, (1.23)
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Figure 1.3: Top quark pair production. Top quark pairs are produced via the

strong interaction. The dominant production mode at the LHC is gluon-gluon

fusion, via the s (top left), t (top right), oru channel (bottom left). In addition, top

quark pairs are also produced via quark-antiquark annihilation (bottom right).

assuming a top quark mass of 172.5 GeV [30, 31, 32]. There are higher-order cross section

calculations available [33, 34], but they do not consider all uncertainty sources. For that

reason, the cross section value given in Eq. (1.23) is used in ATLAS and CMS analyses.

Another possible single top quark production mode is the associated tW production, where

a gluon and a bottom quark produce a top quark and a W boson. The predicted cross section

at the LHC for

√
s = 13 TeV is [30, 35, 36]

σtW = 71.7 ± 1.80 (scale) ± 3.40 (PDF+αs) pb. (1.24)

The third production mode is the single top quark s-channel process, where the top quark

is produced together with a bottom quark through quark-antiquark pair annihilation into

a virtual W boson. As an initial-state antiquark is required and the probability to observe

an antiquark inside the proton with the relevant proton momentum fraction for single top

quark production is small, s-channel production is the rarest single top quark process at

the LHC. The process is predicted at 13 TeV with a small cross section [30, 31, 32] of

σs-ch. = 10.32
+0.29

−0.24
(scale) ± 0.27 (PDF+αs) pb (1.25)

at NLO accuracy in QCD. Similar to the t-channel process, a higher-order cross section

calculation is available [37], but does not consider all systematic uncertainties. Single top

quark production in the s-channel has only been observed at the Tevatron [38], while

there is only evidence so far at the LHC [39]. Small deviations in the measured s-channel
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W
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t
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b

g

W−

t

W+

q

q̄

t
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Figure 1.4: Single top quark production. Single top quarks are produced via

electroweak interaction. The dominant production mode at the LHC is the t-
channel process (left), where the top quark is produced together with a light-

�avored quark in forward direction, followed by the production of a single top

quark with a W boson (center), called tW process. The rarest production mode

is the production of a top quark with a bottom quark via the s channel (right).

production could be caused by physics beyond the SM. Such new physics is predicted

by models involving the exchange of a non-SM mediator, for example, a charged Higgs

boson [40] or a W
′

boson [41]. An overview of possible physics beyond the SM scenarios

for s-channel single top quark production is given in Ref. [42].

1.2.3 Top quark decay

As the CKM matrix element Vtb is close to 1, the top quark decays almost exclusively

into a bottom quark and a W boson, while the decays into other down-type �avors are

suppressed. The subsequent decay of the W boson, which decays either hadronically into a

quark-antiquark pair or leptonically into a charged lepton and the corresponding neutrino,

characterizes the top quark decay. For the decay of a top quark pair, three di�erent decay

modes are possible, with the frequencies calculated from the W boson decay branching

ratios. In case of the fully-hadronic �nal state (45.7% [14]), both W bosons decay into a

quark-antiquark pair, whereas in case of the semileptonic (43.8% [14]) and dileptonic �nal

states (10.5% [14]), one or both W bosons decay into a lepton-neutrino pair.
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2. The Compact Muon Solenoid
experiment at the Large Hadron
Collider

High energies are needed to observe and study heavy SM particles like the Higgs boson or

the top quark. Such a high amount of energy for producing these particles is provided by

a suitable accelerator. Their decay products are measured by a dedicated detector system.

In this chapter, the Large Hadron Collider and the Compact Muon Solenoid experiment

are brie�y described.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [43, 44, 45] is the largest particle accelerator ever built

and is located around 100 m beneath the ground at the European Organization for Nuclear

Research (CERN, Conseil Européen pour la Recherche Nucléaire) in Geneva, Switzerland.

It is a ring containing superconducting magnets and cavities with a circumference of 27 km

and is the last part of the CERN accelerator complex, illustrated in Fig. 2.1. The LHC has

two di�erent operation modes, accelerating either protons or heavy nuclei.

After being preaccelerated, two beams, each consisting of up to 2808 bunches with around

10
11

protons per bunch, are injected into the LHC accelerator tunnel, which comprises

eight arcs each containing 154 dipole magnets. These superconducting magnets are re-

sponsible for bending the beams and are cooled down by liquid helium to a temperature

of 1.9 K, providing a maximum magnetic �eld of 8.33 T. The beams are focused by 392

quadrupole magnets in total. Between the arcs, eight straight sections are installed, which

serve as insertions for experiments, beam injection, or acceleration utilities. Two cavity

systems, one for each beam direction, are installed in the straight section at Point 4 of the

LHC and are used to accelerate the protons until they reach high collision energies in the

range of several TeV. The two proton beams are accelerated in opposite directions in two
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2. The Compact Muon Solenoid experiment at the Large Hadron Collider

di�erent beam pipes situated next to each other and are brought to collision at four points

in the LHC tunnel.

At the collision points, the four main experiments of the LHC are installed. The ATLAS and

the Compact Muon Solenoid (CMS) experiments are general-purpose detectors designed

for the search of the Higgs boson and for physics beyond the SM, as well as for precision

measurements of SM processes. A Large Ion Collider Experiment (ALICE) is specialized in

measuring heavy-ion collisions and studies the quark-gluon plasma state at high energy

densities. The Large Hadron Collider beauty (LHCb) experiment is a forward detector

studying the properties of hadrons that contain bottom quarks.

The �rst proton beam was successfully injected into the LHC on 10th September 2008.

Due to an incident at the LHC around a week later, which resulted in several damaged

magnets [47], the �rst data taking was delayed and started in 2010. In Run 1 of the LHC,

data was recorded at two di�erent center-of-mass energies:

√
s = 7 TeV (2010-2011) and

8 TeV (2012), corresponding to beam energies of 3.5 and 4 TeV, respectively. From 2013

to 2014, the LHC was shut down for upgrades of the accelerator and detectors to prepare

for data taking at an increased center-of-mass energy of 13 TeV. Run 2 of the LHC started

in 2015 and data was taken until the end of 2018. After another long shutdown, Run 3

will start in May 2021 and data will be taken until the end of 2024 [48]. It has not been

decided yet, at which center-of-mass energy the collisions will take place, i. e., the LHC

will be either operated at 13 TeV or at a slightly increased energy up to its design energy

of 14 TeV.

The performance of an accelerator is measured by the instantaneous luminosity L. For

collider rings, L is de�ned as

L =
nbN1N2

4πσxσy
· f , (2.1)

with the number of bunches nb, the number of protons per bunch Ni in beam 1 and 2, the

widths of Gaussian cross-section pro�les σx and σy of the beams, and the beam revolution

frequency f . The design luminosity of the LHC is 10
34

cm
2
s
−1

and was �rst achieved in

June 2016 [49]. The number of interactions for a speci�c process is calculated with L and

the total cross section σ of the process:

N = σ ·

∫
L dt = σ · Lint. (2.2)

The integrated luminosity Lint is a measure of the amount of collected data. During Run 1

and 2, a total integrated luminosity of 192.3 �
−1

was delivered by the LHC [50].

2.2 The Compact Muon Solenoid experiment
The Compact Muon Solenoid (CMS) detector [51] is a multi-purpose particle detector and

is located at Point 5 of the LHC near Cessy, France. The CMS detector has a length of 21 m, a
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2.2. The Compact Muon Solenoid experiment

Figure 2.1: The CERN accelerator complex. Shown is the LHC with its four

experiments ALICE, ATLAS, CMS, and LHCb, as well as other smaller experi-

ments located at CERN. The acceleration of the protons starts at LINAC 2 and

ends with the injection from the SPS into the LHC. Taken from Ref. [46].
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Figure 2.2: Overview of the CMS detector. The innermost part of the CMS

detector consists of the pixel detector and the silicon tracker, followed by the

preshower and the electromagnetic and hadron calorimeters. These components

are surrounded by the superconducting solenoid. Di�erent muon detectors form

the muon system, which is the outermost part of the CMS detector. In addition,

very-forward calorimeters are installed in the endcaps of the detector. Taken

from Ref. [51].

diameter of 15 m, and a total weight of 14 000 t, with the steel return yoke alone weighing

around 12 500 t [52]. The CMS experiment consists of several subdetectors, which are

built around the interaction point of the two colliding beams. The silicon tracker and the

electromagnetic and hadron calorimeters are located within a superconducting solenoid,

whereas the muon system is located outside, being the outermost layer of the CMS detector.

An overview of the CMS experiment is given in Fig. 2.2.

The coordinate system conventionally used for the CMS detector is shown in Fig. 2.3. Two

angles are de�ned in this coordinate system: the azimuth angle ϕ in the x-y plane and

the polar angle θ with regard to the beam direction. Another quantity frequently used in

particle physics is the rapidity y, de�ned as

y =
1

2

ln

(
E + pz
E − pz

)
. (2.3)

Here, E corresponds to the energy and pz to the momentum of a particle in z direction.

The rapidity is a crucial observable in high-energy physics because di�erences in the ra-

pidity are invariant with regard to Lorentz boosts along the z axis, resulting in a Lorentz
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Figure 2.3: Coordinate system of the CMS detector. The x axis points ra-

dially inwards towards the center of the LHC, the y axis vertically upwards to-

wards the surface. The z axis is aligned with the beam direction such that a

right-handed coordinate system is formed. Taken from Ref. [53].

invariant angular separation of two particles under boosts in beam direction. As the en-

ergy and momentum of a relativistic particle are di�cult to measure, a related quantity

called pseudorapidity is de�ned, which only depends on the polar angle θ :

η = − ln

[
tan

(
θ

2

)]
. (2.4)

For massless particles, the two quantities y and η are identical. The pseudorapidity values

range from 0 for particles perpendicular to the beam axis to (minus) in�nity for particles

(anti)parallel to the beam. The Lorentz-invariant angular separation of two particles is

de�ned using the pseudorapidity and the azimuth angle ϕ:

∆R =

√
(η1 − η2)

2 + (ϕ1 − ϕ2)
2. (2.5)

Another important kinematic observable in particle physics is the transverse momentum

pT =

√
p2

x + p
2

y (2.6)

describing the momentum perpendicular to the beam pipes.

In the following, all CMS detector components are described, from the innermost to the

outermost layer of the CMS experiment. In addition, an overview of the trigger system

and of the LHC computing infrastructure is given.

2.2.1 Silicon tracker

Of all CMS subdetectors, the tracker system [54, 55] is built closest around the beam in-

teraction point. It measures the hits of electrically charged particles, which traverse the
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tracker system. By �tting various hits, a track of the charged particle is obtained. As the

tracker system is the innermost subdetector, it needs to be robust against radiation damage

to guarantee a long life span. At the same time, an accurate measurement of all particle

tracks is required to �nd the location of the hard interaction process. For these reasons, the

whole tracker system consists of semiconducting silicon. Charged particles that traverse

the silicon detector modules create electron-hole pairs, which are measured eventually as

a current.

An overview of the tracker system is shown in Fig. 2.4. The tracker system consists of two

parts, the inner silicon pixel detector and the outer silicon strip detector, which ensure

a spatial resolution up to 10 µm for the hit position of a particle. The pixel detector [56]

installed until 2016 covered a pseudorapidity area up to |η | < 2.5 and comprised three

cylindrical layers forming a barrel and two disk layers on each side of the barrel, resulting

in a total number of 1440 pixel detector modules. The barrel layers had radii of 4.3 cm,

7.3 cm, and 10.2 cm, and were 53.3 cm long. They contained 48 million pixels, which are

mostly of size 100 µm × 150 µm. The disk layers consisted of 18 million pixels in total

and they were located at a distance from the interaction point of ±34.5 cm and ±46.5 cm.

Between 2016 and 2017, the pixel detector was replaced in the Phase 1 upgrade [57] to

work e�ciently at higher instantaneous luminosities than the LHC design value. In this

upgrade, the number of barrel layers was increased to four, now having a length of 54.9 cm

and diameters of 3.0 cm, 6.8 cm, 10.9 cm, and 16.0 cm. The new pixel detector comprises

three instead of two endcaps per side, located±29.1 cm, ±39.6 cm, and±51.6 cm away from

the collision point. In total, the number of pixels has been increased to 124 million.

The silicon strip detector consists of 15 148 detector modules, which contain 9.3 million

strips in total and cover an area of 198 m
2
. The strip detector modules are arranged in four

subsystems: Tracker Inner Barrel (TIB) and Disk (TID), Tracker Outer Barrel (TOB), and

Tracker EndCap (TEC). The TIB consists of four cylindrical layers enclosed by two TIDs,

which each contain three wheels, and the TOB comprises six cylindrical layers. At each

end of the silicon strip detector, a TEC is installed, which contains nine wheels. In the TIB,

TID, and the four inner wheels of the TEC, silicon strips of thickness 320 µm are installed,

whereas the outer TEC wheels and the TOB consist of 500 µm thick silicon strips. In total,

the silicon strip detector has a length of 5.5 m and a diameter of 2.4 m [58], and covers a

pseudorapidity area of up to |η | < 2.5.

2.2.2 Electromagnetic calorimeter

The electromagnetic calorimeter (ECAL) [59, 60] is built around the CMS tracker system.

It is designed to measure the energy of electromagnetically interacting particles, i. e., elec-

trons, positrons, and photons. If they pass the detector material, they create a cascade

of electrons, positrons, and photons via bremsstrahlung, Compton scattering, and pro-

duction of electron-positron pairs, which is referred to as electromagnetic shower. This

cascade ends at the critical energy for electron-positron pair production. The particles are

then absorbed by the detector material, which emits the absorbed energy in form of scin-

tillation light. The energy deposit in the detector material is measured by transforming

the scintillation light into an electrical signal with photodiodes.
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Figure 2.4: The CMS tracker system until 2016. The inner part of the CMS

tracker system consists of three cylindrical pixel detector layers and two disks

(PIXEL), while the silicon strip tracker forms the outer part, comprising three

di�erent subdetectors. Four layers and three wheels form the Tracker Inner Bar-

rel (TIB) and Tracker Inner Disk (TID), respectively. The Tracker Outer Barrel

(TOB) consists of six layers. The two Tracker EndCaps (TECs) each comprise

nine wheels. Taken from Ref. [51].

As detector material, lead tungstate (PbWO4) crystals are used, acting as absorber and scin-

tillator at the same time. They are highly transparent and are fast scintillators with a small

Molière radius of 2.19 cm, which describes the transverse dimension of an electromagnetic

shower. They enable a precise energy measurement. Because of their radiation length X0

of 0.89 cm, de�ned as the mean distance after which an electron has 1/e of its initial energy

left, and their high density of 8.28 g/cm
3
, the ECAL can be compactly built. An overview

of the ECAL detector is given in Fig. 2.5. The ECAL Barrel (EB) covers a pseudorapidity

area of up to |η | < 1.48 and consists of 61 200 PbWO4 crystals, which are arranged in 36

supermodules, each containing 1700 crystals and weighing 3 t. The crystals in the EB have

a size of 2.2 cm × 2.2 cm × 23 cm, with the length corresponding to 25.8X0. Each ECAL

Endcap (EE) is divided into two halves, called Dees, and covers a pseudorapidity area of

1.48 < |η | < 3.0. The two EEs contain 14 648 PbWO4 crystals in total, which are of size

2.9 cm × 2.9 cm × 22 cm and have a length of 24.7X0. In front of the EE, the Preshower

detector (ES) is installed. The ES detector is a sampling calorimeter comprising one lead

and one silicon strip layer and is introduced to distinguish single high-energy photons

from pairs of low-energy photons stemming from neutral pion decays. With this setup, a

precise energy measurement is guaranteed for a pseudorapidity area up to |η | < 2.6. The

overall energy resolution of the CMS ECAL detector is given by
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Figure 2.5: The CMS electromagnetic calorimeter. The ECAL Barrel (EB)

comprises 61 200 lead tungstate crystals. Each ECAL Endcap (EE) is divided in

two halves, called Dees, with each Dee holding 3662 crystals. The Preshower

detector (ES) is a sampling calorimeter consisting of two layers, one layer of lead

radiators and one layer of silicon strip sensors. Taken from Ref. [62].

(σ
E

)
2

=

(
S
√
E

)
2

+

(
N

E

)
2

+C2. (2.7)

The stochastic term S describes �uctuations of the electromagnetic shower and photon

statistics, and the noise term N takes uncertainties in the energy measurement due to

electronics noise into account. Any constant impact on the resolution, e. g., calibration

e�ects, is summarized in the constant term C . It is crucial to keep the constant term as

small as possible, as this term dominates the energy resolution at high energies. The energy

resolution of the di�erent terms has been measured with an electron test beam [61] to be

(
σ

E(GeV)

)
2

=

(
2.8%√
E(GeV)

)
2

+

(
12%

E(GeV)

)
2

+ (0.3%)2 . (2.8)

2.2.3 Hadron calorimeter

The hadron calorimeter (HCAL) [63] measures in particular the energy of hadrons and

neutral particles that have not been detected or absorbed by the inner layers of the CMS

experiment yet. It is a sampling calorimeter consisting of alternating layers of absorber

material (either brass or steel) and plastic scintillator layers. Incoming hadrons interact

with the absorber material through inelastic scattering and produce secondary particles

of lower energy that are detected by the scintillation layers. These secondary particles
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HF

HE

HB

HO

Figure 2.6: The CMS hadron calorimeter. The positions of the Hadron Bar-

rel (HB), Hadron Endcap (HE), Hadron Outer (HO), and Hadron Forward (HF)

calorimeters are shown. The dashed lines indicate �xed η values. Taken from

Ref. [51].

also interact with the absorber layers, leading to a cascade of particles called hadronic

shower. The scintillation light is collected by wavelength shifting �bers [64, 65] and is

transformed into an electrical signal using photodiodes. The HCAL is divided into several

subdetectors as shown in Fig. 2.6. The HCAL Barrel (HB) consists of 36 wedges and covers

a pseudorapidity area of up to |η | < 1.3. It is restricted by the ECAL at a radial distance

of 1.77 m from the interaction point and by the magnet coil at a radial distance of 2.95 m.

At each end of the HB, an HCAL Endcap (HE) comprising 36 wedges is installed, covering

the pseudorapidity area 1.3 < |η | < 3. As a measurement of the full hadronic shower is not

guaranteed in the barrel region due to its geometrical restrictions, a Hadron Outer (HO)

calorimeter is installed outside of the solenoid, with the solenoid employed as an additional

absorber. Hadron Forward (HF) calorimeters are located at a distance of 11.2 m from the

collision point and extend the pseudorapidity coverage up to |η | < 5.2.

2.2.4 Superconducting solenoid

The momentum of charged particles is determined via the curvature of their tracks when

passing a magnetic �eld. A magnetic �eld of high strength is required to bend high-

energetic particles produced in proton-proton collisions and traversing the CMS tracker.

For this purpose, a superconducting niobium-titanium solenoid is installed around the

tracker and calorimeter layers of the CMS experiment. The solenoid has a diameter of

6.3 m and a length of 12.5 m and weighs around 220 t. It is designed to provide a magnetic

�eld strength of 4 T, but is operated at 3.8 T to increase its life span [66]. Liquid helium

is used to cool down the solenoid to a temperature of 4.45 K. The solenoid is surrounded
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by a steel return yoke, which consists of eleven large elements: �ve barrel wheels and two

endcaps, each consisting of three disks. The return yoke has a barrel length of 13 m and a

diameter of 14 m. With a weight of 12 500 t, it is the heaviest part of the CMS detector.

2.2.5 Muon system

As muons produced at the LHC typically have energies of the order of GeV, they are min-

imum ionizing particles, meaning they pass through the inner CMS detector layers with

only little interaction. Since all other particles, except neutrinos, which cannot be detected,

are mostly absorbed by the inner CMS subdetectors, it is bene�cial to reconstruct tracks of

muons in the outermost layer of the CMS experiment, where no further distinction from

other particle types is required. In Fig. 2.7, the subdetectors of the muon system [67] and

their location within the CMS experiment are shown. The muon system is embedded in

the return yoke and is divided into a cylindrical barrel section and two planar endcap re-

gions, in which four di�erent types of gaseous detectors are installed. Gaseous detectors

are �lled with inert gas, which gets ionized by charged particles traversing the detector

volume. They contain one or multiple wire anodes, which are surrounded by a cathode

cylinder or two cathode plates, respectively. High voltage between anode and cathode

leads to drifting electrons and heavy ions. They are accelerated by the electric �eld and

create additional free electrons, resulting in an avalanche of electrons that is measured as

a current at the anode wire. In addition to the inert gas, a quench gas, typically CO2, is

used to absorb UV photons, which can be emitted when the ions are recombining and can

cause an additional avalanche of electrons. As the magnetic �eld inside the return yoke

has a strength of up to approximately 2 T [66], the embedded muon chambers are able

to measure the transverse momentum of traversing muons independently of the tracker

system, which is needed for the muon trigger system.

The employed muon chambers are required to be inexpensive, reliable and robust, as they

cover a total detection plane area of 28 000 m
2
. In the barrel region of the muon system,

a low muon rate is expected and the magnetic �eld is homogeneous. Organized in four

stations and covering a pseudorapidity area up to |η | < 1.2, 250 Drift Tube (DT) chambers

are installed in the barrel, with the �rst three stations measuring the location of muons in

the r -ϕ bending and the r -z longitudinal plane, and the fourth station measuring muons

only in the r -ϕ bending plane. The endcaps of the muon system, where the magnetic �eld

is non-uniform and higher background rates are expected compared to the barrel region,

contain Cathode Strip Chambers (CSCs). With its fast response time, radiation resistance

and �ne segmentation, this kind of detector is suitable for the conditions in the endcap

region. Initially, 468 CSCs distributed in four stations were installed in a pseudorapidity

area of 0.9 < |η | < 2.4, with the fourth station covering only a pseudorapidity of |η | < 1.8.

During the �rst long shutdown of the LHC, the fourth endcap station has been extended

by 72 additional CSCs, now covering a pseudorapidity area up to |η | < 2.4 [68]. Resistive

Plate Chambers (RPCs) are installed in the barrel and the endcaps of the muon system to

complement the DTs and CSCs. They serve as a muon trigger system, with 480 RPCs lo-

cated in the barrel and 576 in the endcap region, organized in four stations in both regions.

In the initial endcap design, only three RPC stations were installed. The fourth RPC station
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2.2. The Compact Muon Solenoid experiment

Figure 2.7: The CMS muon system. The outermost part of the CMS detector

consists of four di�erent detector types. The Drift Tube (DT) chambers are po-

sitioned in the barrel region and are divided into four stations (MB1 – MB4). In

the endcap regions, Cathode Strip Chambers (CSCs), which are organized in four

stations (ME1 – ME4), are used. A complementary detector type, Resistive Plate

Chambers (RPCs), is installed both in the barrel and endcap regions, divided into

eight stations in total (RB1 – RB4 and RE1 – RE4). A �rst station of Gas Electron

Multiplier (GEM) chambers is installed (GE1), with an additional GEM station

planned to be added during the third long shutdown of the LHC. Furthermore,

the location of the inner components of the CMS detector is shown. Taken from

Ref. [69].

covering |η | < 1.9 was installed during the �rst long shutdown [68]. In early 2017, �rst

Gas Electron Multiplier (GEM) chambers were installed for demonstration in the forward

region (1.6 < |η | < 2.2) of the muon system with the aim to complement the CSCs [69].

During the second long shutdown of the LHC, the installation �rst GEM station has been

�nalized [70]. Major modi�cations of the muon system, including the installation of a sec-

ond layer of GEMs, are planned to be installed during the third long shutdown of the LHC

starting in 2025. These upgrades will enable muon identi�cation up to |η | < 2.8 [70].

2.2.6 Trigger system

With a data rate of the LHC of 40 MHz, corresponding to a bunch crossing interval of 25 ns,

it is impossible to store all measured data of the CMS detector. Potentially interesting

events need to be selected using a dedicated trigger system. The CMS trigger system [71,

72, 73, 74] consists of two parts, the hardware-based Level-1 (L1) and the software-based
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Figure 2.8: Overview of the CMS trigger system. The data rate of the LHC,

which is 40 MHz due to the bunch crossing interval of 25 ns, is reduced via the

hardware-based Level-1 (L1) and the software-based High-Level Trigger (HLT).

The L1 trigger searches for events that contain data of interest based on the

information from the muon system and calorimeters and reduces the data rate

to 100 kHz. The HLT is performing the �nal decision of keeping an event using

all available detector information, further reducing the data rate to the order of

10
3

Hz. Adapted from [75].

High-Level Trigger (HLT). The general structure of the CMS trigger system is shown in

Fig. 2.8. Based on the information from the muon system and calorimeters, the L1 trigger

searches for events of interest and reduces the data rate to 100 kHz. The HLT software is

operated on standard computer farms and performs a �rst event reconstruction by using

information of all detector components and employing loose requirements. It is therefore

responsible for the �nal decision of storing the event. After applying the HLT, the averaged

reduced data rate is of the order of 100 Hz to 1 kHz.

2.2.7 Computing

The data selected by the CMS trigger system is stored, preprocessed and made accessible

to physics analyzers. For this purpose, a distributed computing infrastructure at the LHC

is employed and commonly used by the four main experiments ATLAS, ALICE, CMS, and

LHCb. The Worldwide LHC Computing Grid (WLCG) [76, 77] is hierarchically structured

into four layers, the tiers 0, 1, 2, and 3. In Fig 2.9, the structure of the WLCG is depicted.

The original, raw data measured by the experiments at the LHC is stored at Tier-0, a data

center directly located at CERN. In this data center, a �rst data processing is performed

and the reconstructed data are sent to Tier-1. The Tier-1 currently comprises 13 large

computer centers at di�erent locations around the world, with one of them located at

Karlsruhe Institute of Technology (KIT). The main task of the Tier-1 is to fully reprocess

and store event data. About 160 Tier-2 sites are distributed mainly at scienti�c institutes

and universities. They do not have as much storage capacity as the Tier-1 computing
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2.2. The Compact Muon Solenoid experiment

Figure 2.9: TheWorldwide LHC Computing Grid (WLCG). The Tier-0 cen-

ter is located at CERN. One of the 13 large computer centers (Tier-1) is located

at Karlsruhe Institute of Technology (KIT). About 160 Tier-2 sites are distributed

around the world. Not shown is the Tier-3, which corresponds to local comput-

ing resources. Taken from Ref. [78].

centers, but they provide a large fraction of CPU power. The Tier-2 is mostly employed

for performing �nal physics analysis tasks. The �nal layer, Tier-3, corresponds to local

computing resources and cloud services that are accessed individually and are indirectly

related to the WLCG.
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3. Event simulation and reconstruction

In particle physics, thorough simulation of the outcome of collision events is needed to

understand the data composition and to compare measured data with theory predictions.

This simulation provides the likelihood for speci�c physics processes and the probability

density functions of their kinematic distributions and comprise multiple steps from the

hard interaction of partons to the detector response of the CMS experiment. The same

reconstruction chain is applied on the detector response of simulation and data in order to

obtain physics objects like leptons from the detector signals. An overview of the structure

of a proton-proton collision and tools used for event simulation is given in the �rst part

of this chapter. The second part of this chapter focuses on the event reconstruction, and

the �nal part of this chapter presents a preselection of physics objects used in the analysis

later on.

3.1 Event simulation

Data measured by the CMS experiment is usually compared with simulation to verify or fal-

sify theory predictions. For this simulation, a comprehensive understanding of the nature

of a proton-proton collision and of the translation of collision products into detector sig-

nals are required. The general structure of a proton-proton collision is outlined in Fig. 3.1.

Multiple software packages need to be employed to process the di�erent simulation steps

and to ensure a precise and accurate full event simulation.

3.1.1 Hard scattering

The initial particles involved in the hard interaction process are the partons of the protons.

These partons carry a certain proton momentum fraction x and can be either the valence

quarks of the proton, gluons, or sea quarks. The parton distribution function (PDF) f (x , µ2

F
)

expresses the probability to observe a speci�c parton with proton momentum fraction x
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3. Event simulation and reconstruction

Figure 3.1: Sketch of a proton-proton collision. The red circle in the cen-

ter of the sketch indicates the hard proton-proton scattering process. The hard

interaction is followed by parton showers, initiated by gluon radiation and

bremsstrahlung (red). The light and dark green structures show the hadroniza-

tion process and the decay of hadrons. In addition, a second scattering process,

called underlying event, is shown (purple) and the partons of the proton not in-

volved in the scattering process are indicated as light blue ellipses. Taken from

Ref. [79].
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Figure 3.2: The Neural Network Parton Distribution Function (NNPDF)
set. Shown are the NNPDF3.1 sets at next-to-next-to-leading order (NNLO) for

valence quarks, sea quarks, and gluons for the momentum transfers 10 GeV
2

(left)

and 10
4

GeV
2

(right). The gluon distribution, scaled by a factor of 1/10, is domi-

nant for low proton momentum fraction values x . Taken from Ref. [84].

and is evaluated at a given energy scale, the factorization scale µF. As no perturbation cal-

culation is available for the evolution of PDFs, one needs to apply the Dokshitzer–Gribov–

Lipatov–Altarelli–Parisi (DGLAP) equations [80, 81, 82]. Using the DGLAP equations, the

PDF measured at a given scale can be evaluated at another scale. PDFs are derived from

several measurements, e. g., deep-inelastic scattering processes, and are compiled by sev-

eral collaborations. In this thesis, the NNPDF set [83, 84] is used, shown in Fig. 3.2 for

two di�erent scales. Processes involving a bottom quark in the initial state are special, as

the bottom quark mass is higher than the minimum energy scale used for the evaluation

of most PDFs. Such processes can be either described with the four-�avor scheme (4FS)

or the �ve-�avor scheme (5FS). In the 4FS, it is assumed that bottom quarks cannot arise

as sea quarks in the proton. Hence, they �rst need to be created in pairs through gluon

splitting, with the second bottom quark being part of the �nal-state partons. In the 5FS,

bottom quarks are considered to be massless, thus they can be constituents of the proton.

The total cross section for producing a particle X in the hard interaction of a proton-proton

collision is calculated with the QCD factorization theorem [85, 86, 87] and is given by

σ (pp→ X) =
∑
j,k

∫∫
dx1 dx2 fj (x1, µ

2

F
)fk (x2, µ

2

F
)σ̂jk→X

(
x1,x2; µ2

F
, µ2

R

)
. (3.1)
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3. Event simulation and reconstruction

Here, fj,k andx1,2 are the PDFs and momentum fractions of the initial partons j andk , while

σ̂ is the cross section for the partonic subprocess jk → X. The partonic subprocess cross

section depends on the renormalization scale µR, which describes the scale dependence of

the strong coupling constant αs in perturbative calculations. For the calculation of σ̂ , in

principle all existing Feynman diagrams need to be considered to determine the matrix

element. As an in�nite number of Feynman diagrams can be de�ned by adding radiation

of gluons or by additional internal lines or loops, this is not possible. Instead, the cross

section is perturbatively determined in a series expansion in αs, which has small values

for high momentum transfers:

σ̂ = σBorn

(
1 + σ1

( αs

2π

)
︸   ︷︷   ︸

NLO

corrections

+σ2

( αs

2π

)
2︸    ︷︷    ︸

NNLO

corrections

+ . . .
)
. (3.2)

The leading-order (LO) cross section σBorn includes only Feynman diagrams that have the

smallest possible number of strong vertices, also referred to as Born-level Feynman dia-

grams. In the next-to-leading-order (NLO) cross section, the Born contribution and virtual

loop corrections (σvirt), which both lead to a �nal state of n partons, and corrections due to

real emission of an additional parton (σreal), resulting in a �nal state of n + 1 partons, are

considered:

σNLO =

∫
n

dσBorn +

∫
n

dσvirt +

∫
n+1

dσreal. (3.3)

By including Feynman diagrams with two additional real emissions, two virtual loops, and

one real emission and one virtual loop, the cross section at next-to-next-to-leading order

(NNLO) is calculated.

3.1.2 Parton shower

Higher-order real-emission corrections of lower energy compared to the hard scattering

are approximated with parton showers. In the parton shower step, additional gluon ra-

diation is simulated by adding gluon emissions either in the initial or in the �nal state of

the Feynman diagrams, referred to as initial-state radiation (ISR) and �nal-state radiation

(FSR). The added gluons can radiate further gluons and create quarks via gluon splitting,

resulting into a cascade of partons, called parton shower. At lower energies, matrix ele-

ment calculation cannot be used for parton shower simulation. Instead, the parton shower

evolution is simulated using Sudakov form factors [88, 89] and the Altarelli–Parisi split-

ting functions [82]. For processes at NLO accuracy, the simulation of additional radiation

can lead to double counting. For instance, the Born-level diagram of an NLO process can

overlap with an LO process, where the �rst radiation was added by the parton shower.

Matching and merging algorithms like MLM [90] and FxFx [91] are applied to solve this

issue.
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3.1. Event simulation

3.1.3 Hadronization

In the parton shower, free partons are simulated. As color con�nement is dominant at

lower energies, partons form colorless bound states. This process is called hadroniza-

tion and is described by phenomenological models, as no perturbation theory is applicable

because of low parton energies. One of these hadronization models is the Lund string

model [92]. In this model, all quarks and gluons are considered as �eld lines. These �eld

lines form a narrow tube as they are attracted to each other due to gluon self-interaction.

As soon as the energy of the �ux tube exceeds a critical value, a new quark-antiquark pair

with new tubes is created, preventing the occurrence of color-charged particles. Most of

the mesons and baryons produced in the hadronization step have a limited life span, hence

they subsequently decay into stable particles.

3.1.4 Underlying event and pileup

Besides the partons taking part in the hard scattering process, the colored remnants of

the protons can interact and cause additional hadronization. This is called underlying

event and needs to be simulated as well. As bunches containing large numbers of protons

are accelerated and brought to collision every 25 ns, multiple proton-proton collisions can

overlap, referred to as pileup. The e�ect of pileup needs to be considered in simulation and

is divided into two categories. In case of in-time pileup, multiple collisions occur in the

same bunch crossing, whereas out-of-time pileup describes the leakage of collisions from

di�erent bunches, caused by the detector response time.

3.1.5 Monte Carlo event generators

The aforementioned simulation steps are computed by Monte Carlo (MC) event generators.

Due to the statistical nature of quantum mechanics, a single collision cannot be predicted.

Therefore, a large number of collisions needs to be simulated with the MC method [93]

to obtain probability density functions for a given process. In this thesis, di�erent MC

event generators are used to determine the matrix elements of scattering processes at NLO

precision and to compute the subsequent parton shower, the hadronization, the underlying

event, and the pileup, although there are software packages available that can perform all

steps.

MadGraph5_aMC@NLO

MadGraph5_aMC@NLO [94] combines the features of the two MC event generators

MadGraph5 [95] and MC@NLO [96]. It provides simulated events and cross sections

at LO and NLO precision and matches the calculated matrix elements with the parton

shower simulation. The LO multi-leg (2 → n) processes, with 2 initial-state and n �nal-

state partons, are computed via MadGraph5, and the NLO diagrams are calculated with

MC@NLO. At NLO, possible double counting of radiation processes is prevented by intro-

ducing negative weights for a certain fraction of events. The negative weights originate

from subtraction terms, which depend on the subsequently used parton shower generator.

For a given initial and �nal state, all possible diagrams are automatically calculated.
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3. Event simulation and reconstruction

POWHEG

Another MC event generator used in this thesis is the positive weight hardest emission

generator (powheg) [97, 98, 99]. It provides matrix elements of a given process at LO and

NLO precision. In the matrix element calculations, the hardest radiation is determined

�rst. As subsequent parton showers are not allowed to simulate harder emissions and are

required to simulate pT-ordered showers, no negative event weights need to be assigned

to avoid double counting. This also means that the powheg generator is independent of

the choice of the parton shower generator due to the absence of subtraction terms. In

contrast to MadGraph5_aMC@NLO, every single process needs to be implemented by

the authors, thus only prede�ned processes can be generated.

PYTHIA

pythia [100, 101] is an event generator that provides, in addition to matrix element calcu-

lations, the computation of parton shower and hadronization as well as underlying event

simulation. As the matrix elements are only computed at LO precision, pythia is often

used for the parton shower and the subsequent simulation steps only. It is interfaced with

NLO MC event generators to obtain a full event simulation. The generated emissions of the

parton shower are pT-ordered and the Lund string model is applied for the hadronization

step.

3.1.6 Detector simulation

Before the generated events can be compared with measured data, the detector response

needs to be simulated. The software package Geant4 [102, 103, 104] provides a full sim-

ulation of the interaction of particles with di�erent subdetectors of the CMS detector. In

addition, the electronic signals of the sensors inside the detector are simulated, such that

a comparison with experimental data is possible.

3.2 Event reconstruction

The measured or simulated signals of each CMS subdetector need to be interpreted cor-

rectly and combined to reconstruct di�erent physics objects, such as muons and electrons.

In the following, the algorithms and programs used for the reconstruction of all relevant

physics objects are explained.

3.2.1 Particle Flow algorithm

The Particle Flow (PF) algorithm [105] is designed to reconstruct most of the detectable

particles produced within a proton-proton collision, i. e., electrons, muons, photons and

hadrons, by an optimal combination of the CMS subdetector information. This approach

requires �ne granularity of the di�erent detector components and e�cient tracking to dis-

tinguish individual particles. In a �rst step, the PF algorithm creates PF elements, which

comprise charged-particle tracks and calorimeter clusters. These elements are combined
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Figure 3.3: The Particle Flow algorithm. The algorithm combines the in-

formation collected by the ECAL, HCAL, and the silicon tracker and recon-

structs physics objects like neutral and charged hadrons or photons. Adapted

from [106].

to PF blocks, using a link algorithm that �nds the matching track for an energy deposit.

In a last step, an identi�cation and reconstruction sequence is applied on these blocks to

interpret them as physics objects. This sequence starts with the identi�cation of muons,

as they leave the simplest and most characteristic signature in the CMS detector, and ends

with the reconstruction of hadrons. The working principle of the PF algorithm is sketched

in Fig. 3.3. Subsequent algorithms are applied to build jets and to determine the miss-

ing transverse momentum pmiss

T
using all the individual particles reconstructed by the PF

algorithm.

3.2.2 Tracks and vertices

Trajectories of charged particles in the silicon pixel and strip detectors, called tracks, are re-

constructed by combining hits in di�erent layers of the tracking detectors. Hits are signals

induced by charged particles traversing the detector material. Tracks are reconstructed

from hits using the Combinatorial Track Finder (CTF) tracking software [107], which is

based on Kalman �lters [108, 109, 110]. An iterative approach is used, where tracks with

transverse momenta of pT > 0.8 GeV and nearby the interaction region are reconstructed

�rst and their associated hits are then removed before the next track is �tted. Each iter-

ation comprises four steps: First, initial track candidates with only two or three hits are

found. Kalman �lters are applied on these trajectories as the second step to �nd additional

hits that can be associated with the tracks. In the third step, a dedicated track-�tting mod-

ule based on Kalman �lters is employed to �nd the best possible track for the given hits.

Tracks that fail speci�c quality criteria are then discarded in the �nal step.

The reconstructed tracks are used to �nd the vertices of a proton-proton collision, in par-

ticular the primary vertex, which is the location of the hard interaction process. Further

vertices are caused by pileup and by subsequent particle decays, hence a reconstruction al-

gorithm is required that not only �nds all vertices, but also determines the primary vertex

of a collision. In principle, the vertex reconstruction consists of three steps: selection of

high-quality tracks, clustering of tracks that are candidates for originating from the same
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vertices, and �tting of the vertex position using the associated tracks. The deterministic

annealing (DA) algorithm [111] is used to cluster tracks according to their z coordinates

relative to the beam spot center. This algorithm ensures that as many vertices as possible

are resolved, without accidentally splitting a vertex into more than one cluster of tracks.

The position of a vertex is determined by applying the adaptive vertex �tter (AVF) algo-

rithm [112], which �nds the best possible vertex position using vertex candidates with at

least two associated tracks. The primary vertex of a collision is identi�ed to be the vertex

with the highest p2

T
sum of the physics objects, which are assigned to tracks associated

with the vertex.

3.2.3 Muons

Tracks of muons are reconstructed using the information of two subdetectors of the CMS

experiment, the tracker and the muon system. Muon tracks are �rst reconstructed inde-

pendently in the inner tracker (tracker track) and in the muon system (standalone-muon

track). These two track types can be combined in two di�erent ways using dedicated track-

ing algorithms [68]. By employing Kalman �lters, information of CSCs, DTs, and RPCs is

used to determine standalone-muon tracks. Tracker muon tracks are reconstructed with

the inside-out approach, where tracker tracks with transverse momentum pT > 0.5 GeV

and total momentump > 2.5 GeV are propagated to the muon system. Extrapolated tracker

tracks that can be matched with at least one muon segment, which is built up from recon-

structed hits in the CSCs or DTs, are then considered as tracker muon tracks. A third type

of muon tracks, called global muon tracks, are built outside-in by connecting standalone-

muon tracks with tracker tracks using a Kalman �lter. About 99% of all reconstructible

muons are either reconstructed as tracker tracks, global tracks, or both. Tracker muon

reconstruction is highly e�cient for muons with low pT, whereas global muon reconstruc-

tion provides high e�ciency for muons with pT > 200 GeV, which penetrate multiple sta-

tions of the muon system. Due to worse momentum resolution and higher cosmic muon

background, standalone muon reconstruction is least e�cient.

3.2.4 Electrons

As electrons have a signi�cantly lower mass than muons, the most challenging aspect of

electron reconstruction [113, 114] is bremsstrahlung caused in the tracker material. Due

to bremsstrahlung, electrons do not traverse as many subdetectors as muons and they

leave a shower with a large spread in azimuthal direction in the ECAL. Thus, elaborate

techniques and the combination of information from the tracker and ECAL are needed for

the di�cult electron reconstruction. Clustering algorithms collect bremsstrahlung photons

and construct superclusters using the energy deposits of ECAL crystals (clusters) within a

narrow region of the ECAL. These superclusters consist of multiple clusters and are the

starting point for extrapolating electron tracks towards the collision point. Electron tracks

are reconstructed using a Gaussian Sum Filter (GSF) [115, 116], which employs a dedicated

energy loss modeling. With the algorithms described above, electrons with pT > 5 GeV

can be reconstructed. In case of low-energetic electrons with pT < 5 GeV, tracks are �rst
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reconstructed with Kalman �lters and a GSF and are then matched to the energy deposits

of the ECAL.

3.2.5 Photons and hadrons

After identifying muons and electrons, the remaining PF blocks are assigned to hadrons

and photons. The reconstruction of isolated photons is performed in a similar way as

for electrons, but without assigning the ECAL superclusters to a track [117]. Non-isolated

photons, charged hadrons, and neutral hadrons originate from jet hadronization processes.

Within the tracker acceptance (|η | < 2.5), remaining ECAL and HCAL clusters that are not

linked to any track are reconstructed as non-isolated photons and neutral hadrons, respec-

tively. As roughly 25% of the hadronic jet energy is carried by photons and as only about

3% of the energy deposit in the ECAL is caused by neutral hadrons, ECAL clusters with

no tracks are always associated to photons. Remaining ECAL and HCAL clusters that are

connected to a track are classi�ed as charged hadrons. Outside of the tracker acceptance,

no track information is available to distinguish charged and neutral hadrons. As hadrons

deposit approximately 25% of the jet energy in the ECAL in the region |η | > 2.5, the choice

of reconstructing all ECAL clusters as photons is no longer justi�ed. Instead, only ECAL

clusters without a link to HCAL clusters are associated with photons, whereas connected

ECAL and HCAL clusters are classi�ed as charged or neutral hadrons originating from the

same hadron shower.

3.2.6 Jets

After all particles have been reconstructed with the PF algorithm, it needs to be deter-

mined if they are constituents of a particle shower caused by hadronization of partons.

This abstract physics object is called a jet, de�ned as a cascade of hadrons and their decay

products within a narrow cone. As some types of hadrons decay via weak and electromag-

netic interaction, jets can contain non-isolated leptons and photons.

Di�erent algorithms are available to reconstruct a jet by clustering particles. Cone-based

algorithms, which aim to cluster all particles within a cone of speci�ed size, and sequential

recombination algorithms, which subsequently combine particles to a jet, are the two main

jet algorithm types. All jet algorithms should be collinear and infrared safe, meaning that

they are insensitive to the collinear splitting of a hadron and to the soft emission of a gluon.

The most commonly used jet clustering algorithm in high-energy physics are sequential

recombination algorithms. They are collinear- and infrared-safe and are based on two

distance measures:

di j = min

(
k2n

T,i ,k
2n
T, j

) ∆2

i j

R2
, (3.4)

diB = k
2n
T,i . (3.5)

The distance di j between two particles i and j and the distance diB between a particle and

the beam both depend on the transverse particle momentum kT. The di�erence between
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Figure 3.4: The anti-kT jet clustering algorithm. The transverse momenta of

partons of a simulated event in the y-ϕ plane are shown. The anti-kT algorithm

reconstructs circular jets, each with a radius of R = 1. Taken from Ref. [118].

two particles in they-ϕ plane is de�ned as ∆i j =

√(
yi − yj

)
2

+
(
ϕi − ϕ j

)
2

and R is the �xed

radius parameter. Depending on the parameter n, a di�erent type of sequential clustering

algorithm is used. In case of the anti-kT algorithm [118], the value is set to −1. A value

of n = 0 refers to the Cambridge/Aachen algorithm [119, 120], whereas n is set to 1 for

the usage of the kT algorithm [121, 122]. The most common algorithm used for analyses

at the CMS experiment is the anti-kT algorithm, with the radius parameter set to R = 0.4.

In sequential recombination algorithms, particles are iteratively clustered into jets. First,

all distances di j and diB are calculated and the particle pair with the smallest distance di j
is grouped into a new object. In the next iteration step, all distances are recalculated and

further objects are combined. This procedure is repeated until all particles are clustered

into jets. As soon as the smallest distance corresponds to diB, the object is removed from

the set of particles and is considered as a jet. An example of jet reconstruction with the

anti-kT algorithm is shown in Fig. 3.4. As many particles are produced within a proton-

proton collision, the calculation of all particle distances is very computing intensive. Using

the nearest neighbor approach [123] of the FastJet software package [124], the number

of iteration steps for jet clustering is signi�cantly reduced.

The energy of a reconstructed jet needs to be corrected both in simulation and data to

account for the �nite detector resolution, inhomogeneous detector response and e�ects

caused by pileup interactions. A factorized approach is employed for applying jet energy

corrections (JEC) [125, 126, 127] in a �xed order, with each of these corrections taking

care of a di�erent e�ect. The �rst correction applied on data and simulation is the level 1

(L1) pileup correction, which removes energy stemming from pileup. By comparing the
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simulation of QCD dijet events processed with and without pileup overlay, the pileup con-

tribution is estimated. The pileup corrections are determined as functions of the energy

density, area, transverse momentum, and pseudorapidity of the jet. Residual di�erences

between data and simulation are calculated in dependence of jet η with the random cone

method applied on events that do not originate from any hard interaction processes. In

this method, many jets are reconstructed in each event by clustering particles in randomly

placed cones. By measuring the average transverse momentum of these jets, the average

energy o�set caused by pileup is determined. The L2L3 MC truth correction takes care of

e�ects due to the simulated jet response. The response corrections are derived by com-

paring the reconstructed jet pT with the pT at particle level and depend on jet pT and η.

Last remaining jet response di�erences between data and simulation are corrected with

the L2L3 residual corrections, which are only applied on measured data. The L2 residual

corrections are η-dependent corrections estimated from dijet events, where both jets have

similar pT, but one of them is required to originate from the barrel region. The absolute jet

energy scale is corrected by applying the L3 residuals, which are determined as a function

of jet pT from Z+jets, γ+jets and multijets processes. The L5 �avor correction accounts

for di�erences in the response for di�erent jet �avors and is applied on simulation. This

correction level is not included in this thesis.

3.2.7 b jets

With the exception of top quarks, all partons of the SM created in a proton-proton collision

hadronize and form jets. In top quark analyses, it is essential to reliably identify jets that

originate from a bottom quark, as the top quark decays in almost every case to a bottom

quark and a W boson. The CMS Collaboration has developed various algorithms for iden-

tifying these b jets, which are commonly referred to as b tagging algorithms [128, 129].

These algorithms make use of a special property, the secondary vertex, which is only

present in heavy-�avored jets, but not in light-�avored jets stemming from u, s, and d

quarks or gluons. The secondary vertex of b jets is caused by the decay of hadronized bot-

tom quarks, called B mesons. B mesons have a long lifetime of around 1.6 ps [14], as the

bottom quark cannot decay to a top quark and as decays to up or charm quarks are sup-

pressed by the small values of the CKM matrix elementsVub andVcb. Therefore, B mesons

travel, depending on their momentum, a distance of a few mm to 1 cm before decaying

to further particles. This creates a secondary vertex, which is displaced compared to the

primary vertex of the hard scattering process. The decay of a B meson and the creation

of a secondary vertex is sketched in Fig. 3.5. Similarly, c jets can be identi�ed, which is

more challenging because of the shorter lifetime of D mesons of 1 ps or less. In addition

to the lifetime, heavy-�avored jets can be identi�ed by the presence of non-isolated soft
leptons stemming from semileptonic B and D meson decays, and by the hard fragmenta-
tion of these jets caused by the mass of b and c quarks. This means that decay products of

heavy-�avor hadrons tend to have higher pT relative to the jet axis compared to the ones

in light-�avored jets.

In this thesis, the latest b tagging algorithm, DeepJet [130, 131], is used to identify b jets.

The DeepJet algorithm is based on a deep neural network (see also Section 4.1), which
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Figure 3.5: Identi�cation of b jets. At the primary vertex (PV), a B meson

is produced. Due to its long lifetime, it travels a macroscopic distance before

decaying to di�erent particles at the secondary vertex (SV). The decay products

cause charged-particle tracks that are displaced with regard to the PV and thus

have a large impact parameter (IP) value. Taken from Ref. [129].

employs advanced multivariate techniques like convolutional layers [132] and long short-

term memory architectures (LSTMs) [133] to distinguish b jets from other jets. For this

complex deep neural network structure, 16 properties of up to 25 charged PF jet con-

stituents, six di�erent kinematic variables of 25 neutral PF jet constituents, 17 properties

from up to four secondary vertices associated with the jet, and global variables are used as

input information. The DeepJet algorithm takes the phase-1 upgrade of the silicon pixel

detector into account, where an additional layer of pixel modules was added in early 2017.

The output of this algorithm are the probabilities for the identi�cation of jets stemming

from di�erent �avors, which are classi�ed into six categories [134]: jets containing exactly

one b hadron, at least two b hadrons, one leptonically decaying b hadron, at least one c

hadron but no b hadrons, light-quark jets, and gluon-jets. By calculating the sum of the

�rst three categories, the b jet identi�cation probability is determined. Figure 3.6 displays

receiver operating characteristic (ROC) curves, which are later explained in Section 4.1,

and shows the e�ciency of the DeepJet algorithm and of its predecessor, DeepCSV [129],

evaluated for jets from tt events. In general, three di�erent working points are de�ned for

b tagging algorithms, based on the probability of misidentifying light-�avored jets stem-

ming from u, s, and d quarks or gluons as b jets: loose (10%), medium (1%), and tight (0,1%).

At the medium working point, which is used in this thesis, the b tagging e�ciency of the

DeepJet algorithm is around 83%, therefore outperforming the DeepCSV algorithm, which

only provides an e�ciency of roughly 76% with the phase-1 pixel detector.
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Figure 3.6: b tagging e�ciency. The probability for misidentifying light-

�avored jets (solid line) and c jets (dashed line) as b jets is shown in dependence of

the b tagging e�ciency. The performance of the DeepJet algorithm (blue; called

DeepFlavour in this �gure) is compared for simulated tt events with its predeces-

sor DeepCSV, for the upgraded phase-1 pixel detector (red) and for the phase-0

pixel detector before the upgrade in early 2017 (green). Taken from Ref. [131].

3.2.8 Missing transverse momentum

The initial protons taking part in a proton-proton collision only carry longitudinal mo-

menta. Therefore, the total transverse momentum of all particles produced within the

collision is zero as a result of momentum conservation. As neutrinos only interact weakly,

they cannot be directly measured with the CMS detector. Instead, their presence leads to

an imbalance in the transverse momentum measurement, called missing transverse mo-

mentum. In addition to neutrinos, potentially existing particles caused by physics beyond

the SM could be indirectly detected as missing energy. The missing transverse momen-

tum vector ®p miss

T
is de�ned as the negative vectorial sum of the transverse momenta of all

reconstructed PF particles [135]:

®p miss

T
= −

N
particles∑
i=1

®p
T,i . (3.6)

Its magnitude is referred to as missing transverse momentum pmiss

T
. As the reconstruction

of PF particles is smeared by all the applied jet corrections as described in Section 3.2.6, the

missing transverse momentum needs to be calibrated to account for the detector response.

This is done by propagating the corrected jet pT to the missing transverse momentum:
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®p miss, corr

T
= ®p miss

T
−

NPF jets∑
j=1

(
®p corr

T, j − ®pT, j

)
. (3.7)

3.3 Preselection of physics objects
In this section, dedicated initial selection requirements for the reconstructed primary ver-

tices, leptons, jets, and missing transverse momentum are presented. By applying these

criteria, which slightly vary in each year because of di�erent data-taking conditions, high-

quality physics objects are obtained in all analyzed datasets.

3.3.1 Primary vertices

The primary vertex is required to be within a cylinder of radius 2 cm around the beam axis.

Its z coordinate needs to satisfy |z | < 24 cm, with z = 0 cm corresponding to the detector

center. The primary vertex needs to have at least �ve degrees of freedom, meaning that at

least four tracks are associated with this vertex.

3.3.2 Muons

Muon candidates are de�ned according to the muon identi�cation criteria provided by

the CMS Collaboration [136]. The aim of these identi�cation requirements, which are

summarized in muon identi�cation (ID) �ags, is to suppress cosmic muons and muons

stemming from kaon and pion decays. If a muon candidate does not ful�ll all criteria of a

given ID �ag, they are rejected and not further considered in the analysis. In this thesis,

the tight and loose muon ID criteria are applied on the muon candidates. The loose muon

ID provides an e�ciency of ≥ 99%, whereas the tight muon ID has an e�ciency of 95%

to 99%, depending on the η range. The selection requirements of these two muon IDs are

listed in Table 3.1. In addition, the relative muon isolation Irel,µ is de�ned, which describes

the amount of deposited energy of other particles within a cone around the muon:

Irel,µ =
1

pT,µ

[∑
pch. had.

T
+max

(
0,

∑
pneutr. had.

T
+

∑
pγ

T
− ∆β

∑
pch. had., PU

T

)]
. (3.8)

Here, pT,µ corresponds to the muon transverse momentum, and pch. had.
T

, pneutr. had.
T

, pγ
T

,

and pch. had., PU

T
are the transverse momenta of charged hadrons from the primary vertex,

neutral hadrons, photons, and charged hadrons from pileup, respectively. The cone around

the muon has a radius of R = 0.4 and ∆β is a correction factor that is applied to estimate

the contribution of neutral hadrons originating from pileup. This correction is necessary,

as it is not possible to determine if a neutral hadron is produced at the primary vertex or at

a pileup vertex. The fraction of neutral to charged hadrons from pileup is estimated to be

∆β = 0.5 [137]. Muons that stem from semileptonic decays within jets, called non-prompt

muons, are rejected by applying a selection requirement on the relative muon isolation.
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Table 3.1: Criteria for identifying tight and loose muons. A loose muon is

only required to be a PF muon (see Section 3.2.3) reconstructed as either a global

or tracker muon. Tight muons need to be reconstructed as global muons and

ful�ll stringent requirements on the �tted tracks.

Criterion tight muon ID loose muon ID

Global muon yes –

Global or tracker muon – yes

PF muon yes yes

χ 2/ndof of global-muon track �t < 10 –

Number of muon chamber hits > 0 –

Number of muon segments in muon stations > 1 –

Transverse impact parameter dxy wrt. primary vertex < 2 mm –

Longitudinal distance dz wrt. primary vertex < 5 mm –

Number of pixel hits > 0 –

Number of tracker layers with hits > 5 –

3.3.3 Electrons

The CMS Collaboration provides recommendations for the identi�cation of electrons [138]

to ensure a high quality of the reconstructed electron candidates. Similar to muons, the

selection criteria are summarized in electron ID �ags, with an identi�cation e�ciency of

around 70% and 95% for the tight and veto ID, respectively. These two electrons IDs are

applied in this thesis and their selection requirements are summarized in Table 3.2. As

the background conditions in the ECAL endcap are di�erent as in the barrel and as the

tracker coverage is restricted to |η | < 2.5, di�erent criteria need to be employed in the

forward region. Analogously to muons, the energy of other particles deposited within

a cone around the electron is expressed by the relative electron isolation Irel,e, which is

essential for electron identi�cation and is therefore already part of the electron ID �ags:

Irel,e =
1

pT,e

[∑
pch. had.

T
+max

(
0,

∑
pneutr. had.

T
+

∑
pγ

T
− ρAe�

)]
. (3.9)

In case of electrons, the cone has a radius of R = 0.3 and the pileup contribution is de-

termined by the average transverse momentum density ρ and the e�ective area Ae� of

the cone accounting for pileup arising from neutral hadrons. In addition to the ID �ag,

further requirements on the impact parameters with regard to the primary vertex, dxy
and dz , have to be applied on the electron candidates. These values are determined to be

dxy = 0.05 cm (0.10 cm) and dz = 0.10 cm (0.20 cm) in the ECAL barrel (endcap) region.

3.3.4 Jets

Depending on the year of data taking, di�erent selection criteria for jet identi�cation are

recommended by the CMS Collaboration [139]. These criteria depend on the jet pseudora-

pidity and comprise information about the number of charged and neutral jet constituents
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Table 3.2: Identi�cation of tight and veto electrons. The selection criteria

for electron identi�cation are di�erent for the ECAL barrel (|ηSC | ≤ 1.479) and

ECAL endcap (|ηSC | > 1.479) regions, which are de�ned by the supercluster (SC)

pseudorapidity ηSC. All momenta and energies given in this table are in units of

GeV. Requirements on the impact parameters dxy and dz need to be applied in

addition as they are not part of the electron IDs.

|ηSC | ≤ 1.479 tight electron ID veto electron ID

SC shower shape < 0.0104 < 0.0126

|∆η(SC, track)| < 0.00255 < 0.00463

|∆ϕ(SC, track)| < 0.022 < 0.148

Hadronic energy/EM energy < 0.026 + 1.15/ESC + 0.0324ρ/ESC < 0.05 + 1.16/ESC + 0.0324ρ/ESC

Electron isolation < 0.0287 + 0.506/pT < 0.198 + 0.506/pT

|1/ESC − 1/ptrack | < 0.159 < 0.209

Expected missing inner hits ≤ 1 ≤ 2

Pass conversion veto yes yes

|ηSC | > 1.479 tight electron ID veto electron ID

SC shower shape < 0.0353 < 0.0457

|∆η(SC, track)| < 0.00501 < 0.00814

|∆ϕ(SC, track)| < 0.0236 < 0.19

Hadronic energy/EM energy < 0.0188 + 2.06/ESC + 0.183ρ/ESC < 0.05 + 2.54/ESC + 0.183ρ/ESC

Electron isolation < 0.0445 + 0.963/pT < 0.203 + 0.963/pT

|1/ESC − 1/ptrack | < 0.0197 < 0.132

Expected missing inner hits ≤ 1 ≤ 3

Pass conversion veto yes yes
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Table 3.3: Identi�cation of jets. Depending on the year of data taking, di�er-

ent selection criteria are applied for jet identi�cation. The requirements depend

on the jet pseudorapidity and comprise information from neutral and charged

constituents of the reconstructed jet, and are summarized in the tight ID �ag.

2016 analysis |η | ≤ 2.4 2.4 < |η | ≤ 2.7 2.7 < |η | ≤ 3.0 |η | > 3.0

Number of constituents > 1 > 1 – –

Neutral hadron fraction < 0.90 < 0.90 < 0.98 –

Neutral EM fraction < 0.90 < 0.90 > 0.01 < 0.90

Number of neutral particles – – > 2 > 10

Charged hadron fraction > 0 – – –

Charged EM fraction > 0 – – –

Charged multiplicity < 0.99 – – –

2017 analysis |η | ≤ 2.4 2.4 < |η | ≤ 2.7 2.7 < |η | ≤ 3.0 |η | > 3.0

Number of constituents > 1 > 1 – –

Neutral hadron fraction < 0.90 < 0.90 – > 0.02

Neutral EM fraction < 0.90 < 0.90 > 0.02 and < 0.99 < 0.90

Number of neutral particles – – > 2 > 10

Charged hadron fraction > 0 – – –

Charged EM fraction – – – –

Charged multiplicity > 0 – – –

2018 analysis |η | ≤ 2.6 2.6 < |η | ≤ 2.7 2.7 < |η | ≤ 3.0 |η | > 3.0

Number of constituents > 1 – – –

Neutral hadron fraction < 0.90 < 0.90 – > 0.02

Neutral EM fraction < 0.90 < 0.99 > 0.02 and < 0.99 < 0.90

Number of neutral particles – – > 2 > 10

Charged hadron fraction > 0 – – –

Charged EM fraction – – – –

Charged multiplicity > 0 > 0 – –

and about the fraction of electromagnetic and hadronic energy within a jet. By applying

the selection requirements on the reconstructed PF jet candidates, misidenti�ed jets, jets

with low reconstruction quality, and jets stemming from detector noise are rejected, while

obtaining an e�ciency for high-quality jets of 98% to 99%. Similar to muons and electrons,

the recommended quality requirements are summarized in jet ID �ags. In this thesis, the

tight jet ID, listed in Table 3.3, is applied for all three years. For b tagging, the medium

working point of the DeepJet algorithm, which is described in detail in Section 3.2.7, is

chosen to ensure a balance between event selection and b jet identi�cation e�ciency. The

medium working point is calculated for each year [140] and is given by DeepJet discrimi-

nant values of 0.3093, 0.3033, 0.2770 for 2016, 2017, and 2018 data, respectively.
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3.3.5 Missing transverse momentum

Several �lters are available to reject reconstructed missing transverse momentum that

stems from detector noise in the HCAL barrel and endcap, low-quality crystals in the ECAL

endcap, as well as beam halo e�ects and low-quality reconstructed PF objects [141]. These

�lters are applied on measured data and simulation in all years of data taking. As they are

especially designed for searches for beyond the SM physics with high missing transverse

momentum in the �nal state, their impact on this analysis is small.
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Elaborate tools need to be employed for a successful signal extraction, especially if the

signal process is extremely rare compared to the overwhelming background. For this pur-

pose, multivariate methods are applied in the event classi�cation. These methods combine

the information of several kinematic variables and are therefore a powerful tool for distin-

guishing signal from background events. In the �rst part of this chapter, the multivariate

method used in this thesis, a deep neural network, is presented. The second part of this

chapter focuses on statistical methods used in this thesis for signal extraction, maximum

likelihood estimation and signi�cance calculation, and on the treatment of systematic un-

certainties within a �t.

4.1 Deep neural networks

An arti�cial neural network is a machine learning method, which is inspired by the inter-

connection of biological neurons and which is used to learn and �nd common features in a

given set of data. In the following, the discussion is restricted to supervised learning. This

means that labeled data with known classi�cation, i. e., simulated signal and background

events, is used for the learning process. Arti�cial neural networks are in general organized

in multiple layers comprising a di�erent number of neurons. In case of fully connected

neural networks, all neurons of a layer are connected with all neurons of the previous and

next layer, and each connection is assigned with a weight, which is modi�ed during the

learning process, also called training. The �rst layer of a neural network is referred to as

input layer, as each neuron of this layer corresponds to an input variable. Starting from

a single neuron, the weighted average of n inputs x1,x2 . . . ,xn of one event is calculated,

using the current weight vector ®w and bias b, which is an optional pre-assumption of the

data modeling and changes during the training:

z = ®wT®x + b . (4.1)
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The result z is then passed to a non-linear activation function f to obtain the predicted

value of the neuron, a = f (z). The activation function decides if a feature of a dataset is

important enough for the learning process. Di�erent activations are available, for instance

the Recti�ed Linear Unit (ReLU), which applies the function fReLU(v) = max(0,v), or the

sigmoid function fsig(v) = 1/(1 + e
−v ). The latter one is in particular chosen for the output

layer in case of a binary classi�cation problem, where values between 0 and 1 should be re-

turned, whereas the former one is one of the most common activation functions nowadays

used for hidden layers, i. e., the layers between the input and output layers. The weights

change the steepness of the activation function, and the bias shifts the entire function by

an o�set.

An arti�cial neural network usually contains only one hidden layer between the input and

output layer, whereas deep neural networks (DNNs) have more than one hidden layer and

can be combined with low-level input. In Fig. 4.1, an example architecture for a DNN is

shown. For a DNN with multiple hidden layers, each neuron i of layer l calculates a value

z[l ]i , with the activation ®a of the previous layer, which corresponds to the input ®x for the

input layer:

z[l ]i = ®w
T

i ®a
[l−1] + bi . (4.2)

The activation of a neuron i in layer l is then given by a[l ]i = f [l ](z[l ]i ). All neurons of layer

l can be expressed with the weight matrixW [l ] and bias vector
®b[l ], de�ned as

W [l ] =

©­­­­­«
®w [l ]T

1

®w [l ]T
2

...

®w [l ]TNl

ª®®®®®¬
, ®b[l ] =

©­­­­­«
b[l ]

1

b[l ]
2

...

b[l ]Nl

ª®®®®®¬
, (4.3)

with the total number of neurons Nl of layer l .

The results of all neurons of layer l are then calculated with

®z =W [l ]®a[l−1] + b[l ], (4.4)

where the activation of layer l is given by ®a[l ] = f [l ](®z[l ]). The activation of the last layer,

the output layer, is the �nal predicted value y of the DNN.

The learning process is monitored by a loss function, which expresses the di�erence be-

tween the valuey predicted by the DNN and the true value ŷ from data and should therefore

be as small as possible. In general, cross entropy is a suitable loss function, as it is de�ned

as the average amount of information obtained by measuring a random variable. For a

classi�cation into signal and background events, the binary cross entropy is employed as

loss function. Form events, it is de�ned as:

L(y, ŷ) = −
1

m

m∑
i=1

[ŷi lnyi + (1 − ŷi ) ln(1 − yi )] . (4.5)
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Input layer Hidden layer 1 Hidden layer 2 Output layer

Figure 4.1: Example of a deep neural network. A deep neural network has

in general at least two hidden layers, several input nodes and at least one output

node. In this example, a fully connected deep neural network is shown, i.e., all

nodes of neighboring layers are connected with weights. For illustration pur-

pose, the number of nodes per layer is signi�cantly reduced compared to the

number of nodes actually used in deep neural networks, indicated by the dots.

Generated with [142].
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In the training of a DNN, the loss function L needs to be minimized, which is realized with

the gradient descent method implemented in a backpropagation algorithm [143]. During

backpropagation, the weights and bias are adjusted to minimize the loss function, starting

from the last layer until the �rst layer:

W [l ]
′

=W [l ] − α
∂L

∂W [l ]
, (4.6)

®b[l ]
′

= ®b[l ] − α
∂L

∂®b[l ]
. (4.7)

If the value chosen for the learning rate α is too small, the learning process is too slow

and local minima are potentially falsely identi�ed as the global minimum, whereas high

learning rates lead to the risk that the global minimum cannot be found. In this thesis, the

Adam algorithm [144] is used for optimizing the loss function. It determines learning rates

individually for di�erent parameters through adaptive moment estimation. This means

that estimations of the �rst and second moment of the gradient are employed to adapt the

learning rate for each weight of the DNN.

In this thesis, a DNN is employed for classi�cation of events into signal and background,

implemented with the machine-learning tools Keras [145] and TensorFlow [146]. The

training of the DNN is performed on a subset of simulated events, which is later removed

from the further analysis to avoid biasing the �nal result of the event classi�cation. If the

structure of the DNN is too complex or if the number of events for training is too small, the

risk of overtraining is increased. Overtraining means that the DNN is not generalizing fea-

tures to separate signal from background events and is learning statistical �uctuations of

the training dataset instead. This leads to a worse performance of the event classi�cation

when applied to a di�erent, independent subset of events. By comparing the DNN output

distribution of the training subset with the outcome of an independent subset, potential

overtraining is detected. If no overtraining occurred, these two subsets have a similar dis-

tribution of the DNN output values, which can be determined by the Kolmogorov–Smirnov

(KS) test [147, 148]. For a �xed size of a training dataset, overtraining is in general avoided

by reducing the complexity of a neural network, e. g., fewer layers or fewer neurons per

layer. In case of a DNN, the dropout method [149, 150] is used to avoid overtraining, al-

lowing to maintain the complex structure. In this method, a de�ned fraction of random

neurons in one or more hidden layers is deactivated during the training to avoid too large

in�uence of single neurons.

The performance of the event classi�cation is measured with the receiver operating char-

acteristic (ROC) curve. It is a probability curve, where the true positive rate is shown

against the false positive rate of a machine-learning classi�er. The ROC curve is obtained

by scanning the DNN output distribution from low to high values, determining the true

positive and false positive rates for each value. The true positive rate is the fraction of

signal events in the dataset that is correctly classi�ed as signal by the classi�er, whereas

the false positive rate corresponds to the fraction of background events wrongly classi�ed
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as signal events. An event classi�er is required to have a large true positive rate and a

low false positive rate. The area under the ROC curve (AUC) is taken as measure of the

performance of a classi�er. If the AUC equals 1, the true positive rate is 1 and the false

positive rate is 0, meaning that the classi�er perfectly separates signal and background

events. An AUC value of 0.5 corresponds to a random decision for classifying an event as

signal or background. Therefore, good event classi�ers are required to have AUC values

as close to 1 as possible.

4.2 Statistical methods
The statistical methods introduced in this section are implemented with the combine soft-

ware package [151, 152], which employs the RooFit library [153].

4.2.1 Maximum likelihood estimation

For a measurement x , where the functional form of its probability density function f is

known, but one or more of its parameters are unknown, the maximum likelihood method is

used to estimate these parameter values, such that f describes the distribution of a dataset

the best. If a variable x has been measured n times, resulting in values x1,x2, . . . xn , them
parameters a = {a1,a2, . . . ,am} are computed by maximizing the likelihood function

L(a) =
n∏
i=1

f (xi |a), (4.8)

i. e., �nding the best parameter set â, for which L(â) ≥ L(a) is ful�lled for all possible

parameter sets a. The likelihood function is often transformed with the negative natu-

ral logarithm, resulting in a function containing sums instead of products, which is less

computationally intensive and which is minimized instead of maximized:

− lnL(a) = −
n∑
i=1

ln f (xi |a). (4.9)

Therefore, two conditions need to be satis�ed by the best parameters â:

∂(− lnL)

∂aj

����
a=â

!

= 0, (4.10)

∂2(− lnL)

∂ai∂aj

����
a=â

is negative de�nite. (4.11)

In this thesis, binned distributions in histograms are obtained from counting experiments,

which means that the probability density function follows a Poisson distribution. For a

histogram with k bins, the mean value of each bin i is de�ned as
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νi = n

∫ xi

xi−1

f (x |a) dx , (4.12)

with the number of total events n of the histogram. The likelihood function is then rewrit-

ten as

L(a) =
k∏
i=1

νnii
ni !

e
−νi . (4.13)

Each bin value νi consists of a predicted number of signal events si and background events

bi , which both depend on nuisance parameters θ that describe systematic uncertainties of

the measurement. With the observed number of events per bin ni , the likelihood function

is given by

L(data|µ,θ ) =
k∏
i=1

(µsi (θ ) + bi (θ ))
ni

ni !
e
−(µsi (θ )+bi (θ )), (4.14)

where µ = σ/σSM is a signal strength modi�er, usually de�ned as the ratio of observed to

predicted signal production cross section, and is the parameter of interest that is adjusted

in the �t. A value of µ = 1 means an observation as predicted by the SM.

4.2.2 Nuisance parameters

Each experimental and theoretical uncertainty that impacts an analysis is considered as a

nuisance parameter in the maximum likelihood estimation. There are two types of system-

atic uncertainty sources, rate and shape uncertainties. A rate uncertainty does not change

the shape, but the normalization of a predicted histogram, called template, by shifting all

bins of a template by the same value in the same direction. A shape uncertainty alters the

shape of a template, either by a correlated shift of the bins, e. g., in case of a shifted en-

ergy scale, or by an uncorrelated shift of the bins, referred to as bin-by-bin uncertainties.

Rate uncertainties are implemented in the �t by extending the likelihood function with a

log-normal distribution:

π (n) =
1

nσn
√

2π
exp

[
−
(ln(n) − ln(n))2

2σ 2

n

]
, (4.15)

with the number of events n and the corresponding median n and uncertainty σn . The

advantages of this distribution compared to a Gaussian distribution are that unphysical

values n < 0 are avoided and that multiplicative uncertainties like scale factors and e�-

ciencies can be described. For each rate uncertainty, the likelihood function is multiplied

with a log-normal distribution. In case of shape uncertainties, a more complex approach

needs to be used to incorporate them as nuisance parameters, as they a�ect each bin of a
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template di�erently. This kind of uncertainty is usually provided by two additional tem-

plates that correspond to an up and down variation of the nominal template by one stan-

dard deviation of the uncertainty. As these three templates represent discrete values, a

template morphing method [154, 155] is applied to access templates at values that lie in

between or beyond the three values.

4.2.3 Signi�cance

For the search of a new signal process, two di�erent hypotheses are introduced. In the

background-only hypothesis, also called null hypothesis, the signal strength modi�er µ
is set to 0, whereas in the signal-plus-background hypothesis, µ is larger than 0. In the

special case that a signal is measured with the same cross section as predicted, µ is set

to 1. The signal-plus-background hypothesis is tested against the null hypothesis using

a dedicated test statistic q, which decides if the null hypothesis is rejected in favor of

the signal-plus-background hypothesis. This is the case if the measured data is very un-

likely to be reproduced only by background processes. According to the Neyman–Pearson

lemma [156], the ideal test statistic is the likelihood ratio of the two hypotheses. In the

combine framework, a slightly modi�ed test statistic [157] is chosen:

qµ = −2 ln

(
L(data|µ = 0, ˆθ0)

L(data|µ = µ̂, ˆθ )

)
, (4.16)

with
ˆθ0 maximizing the likelihood function under the assumption of the null hypothesis,

and µ̂ and
ˆθ maximizing the likelihood function without any condition other than µ̂ ≥ 0.

The measured test statistic qobs

µ is used to determine the p-value:

p =

∫ ∞

qobs

µ

f (qµ |µ,θ ) dqµ , (4.17)

with the probability density function of the test statistic for a given signal strength µ,

f (qµ |µ,θ ), which is computed with MC toy experiments. The p-value expresses the prob-

ability to measure a value qµ ≥ qobs

µ for a given µ under the assumption that the signal

process exists. In particle physics, the statistical signi�cance of a signal process is quoted

as Z score instead of a p-value. The Z score is computed by converting the p-value with

the quantile function of the Gaussian distribution Φ−1
:

Z = Φ−1(1 − p). (4.18)

Therefore, Z corresponds to the distance from the mean in standard deviations if the test

statistic qµ follows a Gaussian distribution. Arbitrary values have been set for the signif-

icance for constituting evidence or observation of a new signal process. In case of evi-

dence, a value of Z ≥ 3 is required, corresponding to a p-value of 0.0013. A discovery is

declared if the signi�cance is Z ≥ 5, i. e., the probability that a data excess originates from
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a background-only prediction is less than 2.87 · 10
−7

. In general, two di�erent numbers are

quoted for the signi�cance of a signal process: the expected signi�cance is computed based

on the prediction of the simulation for a given dataset, whereas the observed signi�cance

is based on the measured data.
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production at

√
s =13TeV

Of the three main production modes for single top quark production, the t-channel process

and the associated production with a W boson has been already precisely measured at

the LHC [158, 159], whereas single top quark production in the s channel is the rarest

production mode and has not been observed yet in proton-proton collisions.

Single top quark production in general was �rst observed by the CDF and D0 Collabora-

tions at the Tevatron in 2009 [6, 7], with no distinction made with regard to the production

mode. As the Tevatron was a proton-antiproton collider and therefore provided valence

antiquarks inside the antiprotons to annihilate with the valence quarks inside the protons,

the s-channel process was the dominant production mode. In 2013, �rst evidence solely

for s-channel single top quark production was announced by the D0 Collaboration [160],

and the process was observed one year later by a combined search of the CDF and D0

Collaborations [38].

Due to the missing valence antiquark in the colliding protons, the s-channel process is

strongly suppressed at the LHC, as it is far less likely to observe sea quarks within the

proton momentum fraction range relevant for single top quark production. During Run 1,

searches for this particular production mode were performed by the ATLAS and CMS Col-

laborations. The ATLAS Collaboration announced evidence for s-channel single top quark

production with an observed signi�cance of 3.2 standard deviations in 2016, based on the

matrix element method [161] and using datasets recorded at center-of-mass energies of
√
s = 7 and 8 TeV [39]. The CMS Collaboration also performed a search for s-channel sin-

gle top quark production, which employed boosted decision trees and used 7 and 8 TeV

data from Run 1 of the LHC, resulting in an observed signi�cance of 2.5 standard devia-

tions [162].

No analyses focusing on s-channel single top quark production were published yet using

Run 2 data at a center-of-mass energy of 13 TeV. Compared to the dominant background
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Figure 5.1: Cross sections of single top quark production modes mea-
sured at di�erent center-of-mass energies at the Tevatron and the LHC.
The measured cross sections for the t-channel process, associated production

with a W boson, and s-channel process are shown. In addition, theory predic-

tions for proton-proton and proton-antiproton collisions are shown. Taken from

Ref. [163].

process, tt production, and to all other single top quark production modes, the predicted

cross section of the s-channel process increases less strongly as a function of the center-

of-mass energy, as shown in Fig. 5.1. This makes it even more challenging to observe this

production mode at higher center-of-mass energies. Nevertheless, as Run 2 has delivered

about �ve times more data compared to Run 1 and as more elaborate analysis tools are

available for signal extraction, it is possible to obtain at least evidence.

In this chapter, the search for s-channel single top quark production using the 2016, 2017,

and 2018 datasets is described in detail. The general outline of the analysis and the event

topology of the signal process and of the relevant background processes are presented in

Sections 5.1 and 5.2. Sections 5.3 and 5.4 describe the simulation and selection of events,

and the reconstruction of the top quark. Necessary corrections of the simulated events and

the data-driven estimation of the QCD multijet background contribution are explained in

Sections 5.5 and 5.6. Sections 5.7 and 5.8 are devoted to the event classi�cation using a

DNN and to the signal extraction procedure. In Section 5.9, all systematic uncertainty

sources considered are discussed. The expected and observed signi�cances for s-channel

single top quark production and the measured production cross section are presented in

Section 5.10.
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5.1 Search strategy

The goal of this analysis is to observe s-channel single top quark production at the LHC

with a signi�cance of at least �ve standard deviations. For this purpose, datasets recorded

by the CMS detector in 2016, 2017, and 2018 at a center-of-mass energy of

√
s = 13 TeV

are analyzed. These datasets correspond to integrated luminosities of 35.9 �
−1

, 41.5 �
−1

,

and 59.7 �
−1

, respectively, adding up to a total integrated luminosity of 137.1 �
−1

. Only

leptonic decay modes of the top quark are considered to suppress the background con-

tribution from QCD multijet processes. Events with one muon or electron in the �nal

state are selected, including tau leptons stemming from W boson decays that further de-

cay into muons or electrons. Depending on the number of jets and b-tagged jets, events

are classi�ed into four independent event categories: one signal category and three dif-

ferent control categories that account for the modeling of the most important background

processes. The remaining QCD multijet background contribution is estimated with a dedi-

cated data-driven approach, whereas all other processes are modeled using MC simulation.

The top quark is reconstructed from its decay products, assuming that the missing trans-

verse momentum is entirely caused by the neutrino from the top quark decay. Due to the

overwhelming background, the signal-to-background ratio is only around 1%. Therefore,

deep neural networks are employed to classify events as signal- or background-like. In the

�nal step of the analysis, a maximum likelihood �t of templates in the multivariate clas-

si�er distribution is performed simultaneously in all years of data taking and in all event

categories to compare the background-only with the signal-plus-background hypothesis.

If the background-only hypothesis can be rejected, the cross section for s-channel single

top quark production is measured by extracting the signal strength from the maximum

likelihood �t.

5.2 Event topology

It is crucial to understand the composition of background events that contribute to the

event categories chosen in the search for s-channel single top quark production for a suc-

cessful signal extraction. Several background processes need to be considered in this anal-

ysis, as they can mimic the �nal state of the signal process. In the following, the �nal-state

signatures of the s-channel single top quark process and of its main backgrounds are pre-

sented.

5.2.1 Signal process

In s-channel single top quark production, a top quark is produced together with a bottom

quark. In Fig. 5.2, the LO Feynman diagram for this production mode is shown, together

with the subsequent leptonic decay of the top quark. Therefore, the �nal state of the signal

process comprises a charged lepton and its corresponding neutrino, measured as missing

transverse momentum in the detector, as well as two bottom quarks that hadronize within

the detector and are identi�ed as b-tagged jets.
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Figure 5.2: The s-channel single top quark signal process. The LO Feynman

diagram for single top quark production in the s channel and the subsequent de-

cay of the top quark are shown. Leptonically decaying top quarks are considered,

where the W boson stemming from the top quark decays into a lepton-neutrino

pair.

5.2.2 Background processes

All relevant background processes in the search for s-channel single top quark production

are described in the following. In Fig. 5.3, one LO Feynman diagram, including the �nal-

state particles, is shown for each background contribution.

t-channel single top quark production

The t-channel single top quark process is the dominant production mode for single top

quarks at the LHC, with its predicted cross section being a factor of around 20 higher than

the predicted s-channel cross section at

√
s = 13 TeV. The �nal state of leptonically decay-

ing t-channel single top quark events comprises a lepton-neutrino pair and one bottom

quark from the top quark decay. In the 4FS, a second bottom quark is produced through

gluon splitting in the initial state, which is shown in Fig. 5.3, and often fails the detector

acceptance due to its low transverse momentum. In contrast to the signal process, a light-

�avored quark, which is preferably emitted in forward direction, is produced together with

the top quark. If, for instance, the second bottom quark is not detected and if the jet stem-

ming from the light-�avored quark is falsely reconstructed as a b-tagged jet, the �nal state

of the signal process is obtained.

Single top quark production in association with a W boson

The production of a top quark in association with a W boson (tW) is the second most com-

mon production mode for single top quarks. In the 5FS, its �nal state consists of one bottom

quark and two W bosons, which subsequently decay into further particles, as shown in

Fig. 5.3. The �nal-state signature of the signal process can be mimicked by the tW process

56



5.2. Event topology

b

t
W+

W+

g

q

b̄

b

ν
`

`+

q′

b

t

W−

W+

b

g

b

q̄′

q

ν̄
`

`−

g

t

t̄

W+

W−

g

g

b̄

q̄′

q

ν`

`+

b

g

W+

q̄′

q

q̄

q

ν`

`+

g

Z

q̄

q

q̄

q

`−

`+

g

g

g

g

g

q̄

q

q̄

q

Figure 5.3: Background processes for s-channel single top quark produc-
tion. LO Feynman diagrams for all relevant background processes that can

mimic the �nal state of the signal process are shown: the t-channel and tW sin-

gle top quark production modes (top left and top right), tt production, which is

the dominant background (center left). Minor background contributions are the

production of W and Z bosons in association with jets (center right and bottom

left), and QCD multijet production (bottom right).
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if one of the W bosons decays leptonically and the other hadronically, meaning that the

�nal state of the tW process comprises a lepton-neutrino pair and two quarks of preferen-

tially light �avor from the W boson decays, as well as the aforementioned bottom quark.

If one of the light-�avored quarks is falsely identi�ed as a bottom quark, the same �nal

state is found as for the s-channel process.

Top quark pair production

Top quark pair production is the dominant production mode for top quarks, with a cross

section 80 times higher than for the s-channel single top quark process in proton-proton

collisions at

√
s = 13 TeV. Di�erent decay modes exist for tt production, of which the

semileptonic decay, shown in Fig. 5.3, contributes the most to the background, followed

by the dileptonic decay. The �nal state of a semileptonically decaying top quark pair con-

sists of a lepton-neutrino pair, two bottom quarks, and two quarks from the decay of one of

the W bosons, which are preferably light-�avored. Thus, up to four jets are reconstructed

for semileptonic tt processes. This background contribution can be partially rejected by re-

quiring exactly two jets in the �nal state. In case of dileptonically decaying top quark pairs,

the �nal state comprises two leptons and the corresponding neutrinos, as well as two bot-

tom quarks, resulting in two jets measured in the detector. These events can be suppressed

by requiring exactly one lepton. With the two aforementioned selection requirements, the

third tt decay mode, fully hadronic, is almost entirely rejected and therefore not considered

as a background process in the search for single top quark production in the s channel.

Production of W and Z bosons in association with jets

The production of W and Z bosons in association with jets is referred to as W+jets and

Z+jets production, of which the latter is a minor background contribution. The vector

bosons can be produced together with a gluon that further splits into quarks, which hadro-

nize and form jets. These two processes can mimic the �nal-state signature of the signal

process if the produced quarks are identi�ed as bottom quarks and if the vector bosons

decay leptonically. In case of a W boson, this leads to a lepton-neutrino pair, whereas two

charged leptons are produced in the Z boson decay. If one of these two leptons is not

reconstructed, the signature of the Z+jets process corresponds to the signal �nal state.

QCD multijet production

Another minor background contribution is the production of multiple jets through QCD

interactions. Despite the fact that the �nal state does not contain any isolated lepton in the

hard scattering with high transverse momentum, QCD multijet processes still contribute

to the background due to their high production cross section of around 70 mb. This means

that a small, but non-negligible number of QCD multijet events passes the selection criteria

for the signal process. Jets falsely identi�ed as leptons, or leptons produced within a jet

and falsely reconstructed as isolated leptons can lead to the same �nal state as s-channel

single top quark production.
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5.3 Event simulation and selection

The signal process and the background contributions need to be precisely modeled to ana-

lyze the composition of the measured data. For all processes but QCD multijet production,

dedicated simulation samples are used, which are described in the �rst part of this section.

A data-driven approach is employed for the modeling of the QCD multijet background,

which is described in detail in Section 5.6. In the second part of this section, the selection

criteria applied to enrich signal events and to de�ne control categories, accounting for the

main background contributions, are presented.

5.3.1 Event simulation

Depending on the year of data taking and on the simulated process, di�erent PDF sets, gen-

erator versions for MC event generation and parton shower simulation, as well as di�erent

tunes to model the underlying event and multiparton interactions are chosen, summarized

in Table 5.1. All processes are generated at NLO accuracy. The s-channel signal process

is generated in the 4FS using the MC event generator MadGraph5_aMC@NLO, whereas

the other two single top quark production modes, t channel and tW, are simulated with

powheg [164, 165, 166], applying 4FS and 5FS, respectively. The 4FS is applied to improve

the simulation for t-channel production with regard to the second bottom quark stemming

from gluon splitting. In case of the tW process, the 5FS is chosen to avoid interference at LO

with tt production, which is also generated with powheg [167]. For all processes involving

top quarks, the value of the top quark mass is set to mt = 172.5 GeV. The production of

W and Z bosons in association with jets is simulated with MadGraph5_aMC@NLO. For

these two processes, the FxFx merging scheme is applied to account for additional par-

tons in the matrix element calculation. The parton shower and hadronization steps are

modeled with pythia for all simulated samples. In 2016, the underlying event was ini-

tially modeled with tune CUETP8M1 [168, 169], whereas tune CP5 [170] is employed for

simulation samples generated in 2017 and 2018. By the time of writing this thesis, most

of the simulated samples used in 2016 have been regenerated with tune CP5 to achieve a

coherent description of the underlying event throughout all years of data taking. In case

of the W/Z+jets processes, these samples were not available. Similarly, the 2016 samples

were initially produced using the NNPDF 3.0 NLO PDF set [83], whereas the NNPDF 3.1

NNLO PDF set [84] is employed in 2017 and 2018. With the exception of W/Z+jets produc-

tion, all simulated samples for the 2016 analysis are now generated with the NNPDF 3.1

NNLO PDF set. For all simulation samples, the number of pileup interactions expected to

be found in data are included, and the detector response is simulated using Geant4. A full

list of all MC simulation samples is provided in Appendix A.

5.3.2 Event selection

The �nal state of s-channel single top quark production comprises a bottom quark and

a top quark, for which leptonic decays are considered in this thesis. Therefore, exactly

one isolated muon or electron, an imbalance in the total transverse momentum caused by

the neutrino, and two b-tagged jets are measured in the detector. By applying a dedicated
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Table 5.1: Summary of settings for MC simulation. The di�erent versions

for PDF set, MC event generators, and parton shower and underlying event mod-

eling used in the simulation of the signal and background processes are listed.

Depending on the simulated process, di�erences between 2016 and 2017/2018

exist.

Simulation step 2016 2017/2018

PDF set

NNPDF 3.1 NNLO 3.1 NNLO

3.0 NLO (W/Z+jets)

MC event generator

MadGraph5_aMC@NLO 2.4.2 2.4.2

2.2.2 (W/Z+jets) 2.6.0 (W+jets)

powheg v2 v2

Parton shower and underlying event

pythia 8.226 8.230

8.212 (W/Z+jets)

Tune CP5 CP5

CUETP8M1 (W/Z+jets)

event selection, a phase-space region is de�ned, for which the signal-to-background ratio

is increased compared to the entire phase space, referred to as the signal event category.

In addition, multiple phase-space regions are de�ned to serve as control event categories,

which are employed to check the modeling and provide additional constraints for speci�c

background processes.

In a �rst step, events of interest are preselected by passing the requirements of one or

more HLT paths. Di�erent HLT paths are applied for events with muons and electrons,

which are listed in Table 5.2. Each HLT path comprises a threshold on the transverse

momentum of the lepton, which is desired to be small for single top quark analyses. As

the increased luminosity and the computation power of the CMS trigger system limit the

available bandwidth for a single trigger, the pT threshold of the chosen trigger paths di�er

per year of data taking. In addition, some HLT paths have a requirement on the maximum

absolute pseudorapidity. From 2017 onwards, new HLT paths have been developed, which

store events with one electron and one additional central jet, allowing to decrease the pT

threshold of the electron compared to single-electron trigger paths.

Each reconstructed lepton must pass a slightly higher pT threshold than required by the

chosen HLT paths to avoid the kinematic region a�ected by turn-on e�ects of the HLT

paths, where the trigger e�ciency may be di�erent in data compared to simulation. For

each lepton �avor and year of data taking, these pT requirements are summarized in Ta-

ble 5.3. As de�ned in Section 3.3.2, the reconstructed muon is required to have a maxi-

mum absolute pseudorapidity of |η | < 2.4 and needs to ful�ll the quality criteria of the
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Table 5.2: High-level trigger paths used for event selection. Di�erent high-

level trigger paths are applied per year of data taking and per lepton �avor. In

cases with multiple trigger paths, events must ful�ll the requirements of at least

one of these paths. From 2017 onwards, dedicated trigger paths are in addition

available, which select events with one electron and one jet.

Year lepton �avor trigger path

2016

µ
HLT_IsoTkMu24
HLT_IsoMu24

e HLT_Ele32_eta2p1_WPTight_Gsf

2017

µ HLT_IsoMu27

e

HLT_Ele35_WPTight_Gsf
HLT_Ele30_eta2p1_WPTight_Gsf_CentralPFJet35_EleCleaned

2018

µ HLT_IsoMu24

e

HLT_Ele32_WPTight_Gsf
HLT_Ele30_eta2p1_WPTight_Gsf_CentralPFJet35_EleCleaned

tight ID working point. In addition, it must have a relative isolation of Irel < 0.06. Events

with one electron must satisfy an electron pseudorapidity requirement of |η | < 2.1 and

need to pass the tight electron ID working point as de�ned in Section 3.3.3, where the

criterion on the relative isolation is already included. Furthermore, electrons that are re-

constructed from superclusters of the transition region between ECAL barrel and endcap,

i. e., 1.442 < |ηSC | < 1.566, are rejected. This de�nition of tight leptons suppresses most

QCD multijet background events, which mainly comprise non-isolated leptons with lower

transverse momenta. Background contributions from leptonically decaying Z bosons are

suppressed by removing events that contain more than one lepton candidate, where the

additional leptons ful�ll loose selection criteria. Loose muons need to pass the loose ID

working point and need to satisfy pT > 10 GeV, |η | < 2.4, and Irel < 0.2, whereas loose

electrons are required to pass the veto ID working point and to ful�ll pT > 15 GeV and

|η | < 2.5. Jets that satisfy pT > 40 GeV, |η | < 4.7, and pass the tight jet ID working point as

described in Section 3.3.4 are selected. For the analysis of 2017 and 2018 data, thepT thresh-

old is increased to 60 GeV for forward jets with |η | > 2.4 to suppress detector noise e�ects

in the ECAL and HCAL that occurred during data taking [171, 172]. Furthermore, jets are

neglected if their spatial distance to tight leptons in the η-ϕ plane is ∆R < 0.4. In addition

to the aforementioned jet selection criteria, candidates for b tagging must pass the medium

working point of the DeepJet algorithm and must ful�ll |η | ≤ 2.4. The medium working

point is chosen to ensure a high selection e�ciency while having a moderate mistagging

e�ciency. The tight working point provides a lower mistagging e�ciency, but also leads to

a smaller selection e�ciency for possible signal events, which results in a lower measured

signi�cance of the signal process. In order to further suppress the QCD multijet back-

ground, events are required to have a missing transverse momentum of pmiss

T
> 30 GeV. In

addition, this requirement accounts for the neutrino that originates from the leptonically

decaying W boson.
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Table 5.3: Lepton pT thresholds. Depending on the year of data taking and

the lepton �avor, di�erent pT requirements are set according to the applied HLT

paths.

Year lepton �avor pT (GeV)

2016

µ > 26

e > 35

2017

µ > 30

e > 32

2018

µ > 26

e > 32

Depending on the number of selected jets and b-tagged jets, four di�erent event categories

are de�ned. As the �nal state of s-channel single top quark production comprises two

bottom quarks, the signal category is required to have two selected jets, which are both

b-tagged. Therefore, the signal category is referred to as 2-jet 2-tag (2j2t) category. Three

di�erent control categories are de�ned to examine the modeling and to constrain speci�c

background processes in the �nal �t for signal extraction. The 2-jet 1-tag (2j1t) category

requires two jets, of which exactly one jet is b-tagged, and accounts for t-channel single top

quark and W+jets production. In addition, this event category is employed to validate the

data-driven approach for QCD multijet background estimation. The 3-jet 1-tag (3j1t) and

3-jet 2-tag (3j2t) categories require three jets, of which one or two are identi�ed as b jets,

respectively. These two event categories account for the dominant background process

in this analysis, tt production. All event categories share the same trigger paths and the

same lepton and pmiss

T
requirements, and contain events with either one isolated muon

or electron in the �nal state. A summary of the selection criteria for all event categories

is given in Table 5.4. The expected event yields for the signal process and all background

processes and of measured data in the signal and control categories are shown in Tables 5.5

and 5.6.
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Table 5.4: List of event selection criteria. The 2-jet 2-tag category is the signal

category. Three control categories are de�ned to account for the t-channel single

top quark and W+jets backgrounds (2-jet 1-tag), and for the tt background (3-jet

1-tag and 3-jet 2-tag). Di�erences in the de�nitions of the event categories are

highlighted.

Requirement

2-jet 1-tag 2-jet 2-tag 3-jet 1-tag 3-jet 2-tag

(2j1t) (2j2t) (3j1t) (3j2t)

Trigger paths see Table 5.2 see Table 5.2 see Table 5.2 see Table 5.2

Tight leptons = 1 = 1 = 1 = 1

Add. loose leptons = 0 = 0 = 0 = 0

Selected jets = 2 = 2 = 3 = 3
b-tagged jets = 1 = 2 = 1 = 2
pmiss

T
> 30 GeV > 30 GeV > 30 GeV > 30 GeV

Table 5.5: Event yields of simulated processes and measured data in the
signal category. For each year of data taking, the event yields of all considered

processes are listed. The yield uncertainties of all simulated processes include

statistical and systematic uncertainties included in the analysis.

2j2t category 2016 2017 2018

t channel 11 500 ± 1100 17 000 ± 2100 25 900 ± 2300

tW 5340 ± 680 6700 ± 1000 11 900 ± 1400

tt 136 000 ± 18 000 171 000 ± 25 000 297 000 ± 40 000

W+jets 16 100 ± 3200 20 200 ± 3800 36 400 ± 6300

Z+jets 2860 ± 550 3410 ± 550 6030 ± 870

QCD multijet 9650 ± 150 16 470 ± 230 22 420 ± 240

Sum of bkgs. 181 000 ± 18 000 235 000 ± 25 000 400 000 ± 41 000

s channel 2460 ± 190 2890 ± 230 5120 ± 370

Data 169 832 259 545 424 282
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Table 5.6: Event yields of simulated processes and measured data in the
control categories. For each year of data taking and each control category, the

event yields of all considered processes are listed. The yield uncertainties of all

simulated processes include statistical and systematic uncertainties included in

the analysis.

2j1t category 2016 2017 2018

t channel 112 300 ± 9700 112 000 ± 11 000 177 000 ± 13 000

tW 59 500 ± 6200 70 600 ± 7400 115 000 ± 11 000

tt 472 000 ± 63 000 562 000 ± 75 000 930 000 ± 120 000

W+jets 461 000 ± 66 000 528 000 ± 79 000 890 000 ± 130 000

Z+jets 47 100 ± 7200 56 200 ± 9300 98 000 ± 19 000

QCD multijet 145 460 ± 390 243 890 ± 670 386 400 ± 810

Sum of bkgs. 1 297 000 ± 92 000 1 570 000 ± 110 000 2 600 000 ± 180 000

s channel 3290 ± 140 3150 ± 190 5420 ± 300

Data 1 225 890 1 687 290 2 709 810

3j1t category 2016 2017 2018

t channel 29 800 ± 3500 24 700 ± 3800 38 800 ± 5700

tW 42 100 ± 4700 45 300 ± 5200 74 800 ± 8500

tt 511 000 ± 72 000 533 000 ± 72 000 890 000 ± 120 000

W+jets 158 000 ± 30 000 144 000 ± 27 000 227 000 ± 42 000

Z+jets 17 700 ± 3500 17 900 ± 4200 30 200 ± 7300

QCD multijet 60 310 ± 310 97 840 ± 550 142 380 ± 610

Sum of bkgs. 819 000 ± 78 000 863 000 ± 77 000 1 400 000 ± 130 000

s channel 964 ± 81 860 ± 100 1490 ± 180

Data 794 537 957 258 1 471 660

3j2t category 2016 2017 2018

t channel 18 100 ± 1900 18 400 ± 2400 28 500 ± 2600

tW 10 100 ± 1300 11 900 ± 1800 20 900 ± 2600

tt 305 000 ± 43 000 357 000 ± 50 000 618 000 ± 82 000

W+jets 13 000 ± 2200 12 800 ± 2300 19 300 ± 3800

Z+jets 2130 ± 580 2350 ± 490 4000 ± 830

QCD multijet 12 590 ± 390 10 180 ± 350 7750 ± 200

Sum of bkgs. 361 000 ± 43 000 413 000 ± 50 000 698 000 ± 82 000

s channel 883 ± 73 960 ± 110 1670 ± 170

Data 328 502 455 725 716 013
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5.4 Top quark reconstruction

As top quarks decay before they reach the detector, they need to be reconstructed from

their decay products. In this thesis, leptonically decaying top quarks are considered, where

the decay products are a bottom quark and a W boson, which subsequently decays into a

charged lepton and its corresponding neutrino. Hadronically decaying top quarks, where

the W boson decays into a quark-antiquark pair, are not considered to suppress background

events from QCD multijet processes. The lepton considered in the top quark reconstruc-

tion is a muon or electron that either directly originates from the W boson decay or is

created through the decay of a tau lepton stemming from the W boson. In the �rst step of

the top quark reconstruction, the four-momentum of the W boson is determined. As the

neutrino cannot be directly measured in the detector, its four-momentum is inferred from

the missing transverse momentum pmiss

T
. The information on the longitudinal neutrino

momentum is missing, making the full reconstruction of the W boson four-momentum

challenging. Assuming that the x and y components of pmiss

T
correspond to the ones of the

neutrino and applying a constraint on the W boson mass by requiring the literature value

ofmW = 80.385 GeV [14], one obtains for the W boson mass:

m2

W
= 2 ·

(
E`

√
pmiss

T

2

+ p2

z,ν − pT, `p
miss

T
cos∆ϕ − pz, `pz,ν

)
= (80.385 GeV)2 . (5.1)

The energy of the lepton is de�ned as E` =
√
p2

T, `
+ p2

z, ` and ∆ϕ is the azimuthal angle

between the charged lepton pT, ` and pmiss

T
. The z component of the neutrino momentum

is then determined as the solution of a quadratic equation:

pz,ν =
Λpz, `

p2

T, `

±

√√√
Λ2p2

z, `

p4

T, `

−
E2

`

(
pmiss

T

)
2

− Λ2

p2

T, `

, (5.2)

with

Λ =
m2

W

2

+ p
T, `p

miss

T
cos∆ϕ . (5.3)

Depending on the value of the discriminant in Eq. (5.2), di�erent solutions for pz,ν are

obtained. If the discriminant is positive, two solutions exist, of which the one with the

smaller absolute value is chosen. Due to �nite detector resolution, the pmiss

T
reconstruction

is imperfect and can lead to a negative discriminant resulting in complex pz,ν solutions. In

this case, which occurs in approximately one third of all s-channel single top quark events,

the x and y components of pmiss

T
are slightly modi�ed without violating the requirement

mW = 80.385 GeV, such that the discriminant becomes zero [173]. With the solution for

pz,ν, the neutrino four-momentum is determined and used together with the lepton four-

momentum to reconstruct the W boson. The top quark is then reconstructed with the
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Figure 5.4: Reconstructed top quark mass in the 2j2t signal category. The

distributions for 2016 (top left), 2017 (top right), and 2018 (bottom) are shown.

The prediction is scaled to the number of measured events and all corrections

later described in Section 5.5 are applied on the simulated events. The gray band

in the ratio panel corresponds to statistical uncertainties of the simulation.

four-momenta of the W boson and the b jet candidate stemming from the top quark de-

cay. In case of more than one possible b jet candidate, di�erent top quark hypotheses

are determined by calculating the invariant top quark mass for each candidate. The b jet

candidate leading to an invariant top quark mass closest to the value used in simulation,

mt = 172.5 GeV, is chosen for the top quark reconstruction. In Fig. 5.4, the reconstructed

top quark mass is shown for the 2j2t signal category for each year of data taking. For all

other event categories, the reconstructed top quark mass is shown in Appendix B.

5.5 Event correction

Last remaining di�erences between simulation and data are resolved by calculating e�-

ciency corrections and applying dedicated event weights. For most e�ciencies, o�cial

scale factors are provided by the physics object groups (POGs) of the CMS Collaboration.
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5.5.1 Number of pileup vertices

Depending on the year of data taking, conditions like the instantaneous luminosity slightly

change, leading to a di�erent expected average number of pileup interactions for each

year. As the measured maximum instantaneous luminosity in 2017 and 2018 is approxi-

mately 2.1 · 10
32

cm
−2

s
−1

and therefore higher than the measured maximum instantaneous

luminosity of around 1.5 · 10
32

cm
−2

s
−1

in 2016, the average number of primary vertices

per event in these two years is increased to 32 compared to 23 in 2016 [174]. Due to

the time-consuming production of the simulation samples, they are already produced be-

fore and during the data-taking period. This requires a preliminary pileup simulation, in

which the pileup distribution is modeled from a Poisson distribution with the mean set

to a rough estimate of the average number of pileup interactions [175], which can lead

to a signi�cant discrepancy compared to measured data. Therefore, each simulated event

is reweighted such that the simulated distribution agrees with the number of pileup in-

teractions in data, which is computed with a total inelastic proton-proton cross section

of 69.2 mb [176, 177, 178]. In Fig. 5.5, the e�ect of pileup reweighting is shown for each

year of data taking. After applying pileup reweighting, the agreement between simulation

and measured data is only slightly improved and mismodeling is still visible. By choosing

an alternative inelastic proton-proton cross section of 80.0 mb, as predicted by pythia, in

the pileup reweighting, signi�cantly improved agreement can be obtained. As the total

inelastic proton-proton cross section is accurately determined at the CMS experiment and

as all relevant kinematic distributions are not e�ected by the reweighting, this alternative

approach is not employed nevertheless.

5.5.2 Lepton e�ciencies

Remaining di�erences in the reconstruction e�ciencies of leptons between data and sim-

ulation are corrected using dedicated scale factors, which depend on lepton pT and η and

which take di�erent e�ects of the lepton reconstruction into account.

For muons, the overall e�ciency is computed as

ϵ = ϵID · ϵisolation |ID · ϵtrigger |isolation, (5.4)

with identi�cation (ID), isolation, and trigger e�ciencies. As indicated in Eq. (5.4), the

isolation e�ciency depends on the calculated ID e�ciency and the trigger e�ciency on the

isolation e�ciency. Each e�ciency correction is determined with a tag-and-probe method

using J/ψ meson or Z boson resonances [179, 180] and is provided by the MUO POG for

each year of data taking [181, 182, 183]. As a very strict muon isolation requirement of

Irel < 0.06 is imposed to suppress QCD multijet production, no o�cial isolation scale

factors are available. Therefore, privately derived trigger and isolation scale factors, which

are described in detail in Ref. [184], are employed.

For electrons, e�ciency corrections for identi�cation and reconstruction are computed

with a tag-and-probe method using Z→ e
+

e
−

events [185, 186] and are centrally provided
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Figure 5.5: Application of pileup reweighting on the distribution of the
number of primary vertices. The distributions are shown in the 2j1t control

category before (left) and after (right) pileup reweighting, for the 2016 (top), 2017

(center), and 2018 (bottom) data. Before and after pileup reweighting, all other

event weights considered in this thesis are applied. The prediction is scaled to

the number of observed events. The gray band in the ratio panel corresponds to

statistical uncertainties of the simulation.
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by the EGamma POG [187]. As the electron trigger e�ciency scale factors are not centrally

available, custom scale factors need to be computed. Depending on the chosen electron

trigger, two di�erent methods are employed. In case of the single electron trigger of the

2016 analysis, HLT_Ele32_eta2p1_WPTight_Gsf, dedicated scale factors are calculated with

the tag-and-probe method, as described in Ref. [188]. The trigger HLT_Ele30_eta2p1_WP
Tight_Gsf_CentralPFJet35_EleCleaned combines requirements on the electron and one jet

and is used together with a single electron trigger path in the analysis of 2017 and 2018

data. For this trigger, a di�erent approach [189] needs to be employed to determine the

scale factors. In this method, data samples containing single muon events and simulated

dileptonically decaying tt events are used to compute the trigger e�ciencies. Both data

and simulation need to pass a loosened selection for s-channel single top quark events,

which is summarized in Table 5.7. The e�ciency of the chosen electron trigger paths as

listed in Table 5.2 is de�ned by

ϵtrigger =
Ne-triggers+µ-trigger

Nµ-trigger

, (5.5)

with the number of events Nµ-trigger passing the aforementioned event selection and the

single muon trigger path as given in Table 5.2 and the number of events Ne-triggers+µ-trigger

passing in addition the electron trigger paths. For this method, uncorrelated electron and

muon trigger paths need to be employed. The correlation is checked on the dileptonic tt

simulation sample by computing

α =
ϵMC

µ-trigger
· ϵMC

e-triggers

ϵMC

e-triggers+µ-trigger

. (5.6)

A value of α = 1 means that the electron trigger paths and the single muon trigger path

are uncorrelated. In 2017 and 2018, the values for α were determined as 0.998. The trigger

e�ciency is evaluated in di�erent pT and |η | bins of the electron and of each jet, which are

chosen such that the number of events is approximately the same in each bin. The trigger

scale factors are calculated as

SFtrigger =
ϵData

trigger

ϵMC

trigger

, (5.7)

for three di�erent cases: electron pT and |η |, electron pT and leading jet pT, and leading

jet pT and |η |. The corresponding scale factors are shown in Appendix C, separately for

2017 and 2018. In addition to statistical uncertainties, a systematic uncertainty of 1% is

applied on the calculated scale factors to account for a possible performance di�erence of

the triggers in data and simulation. As the trigger e�ciencies depend mostly on electron

pT and |η |, the scale factors calculated in di�erent electron pT and |η | bins are chosen to be

applied in this analysis.
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Table 5.7: Event selection criteria used for calculation of electron trigger
e�ciencies. The event selection is based on the 2j2t signal category (see Ta-

ble 5.4), but requires loosened selection criteria to ensure a signi�cantly higher

number of events for e�ciency computation.

Physics object number

Tight electrons = 1

Add. loose electrons = 0

Jets (pT > 40 GeV, |η | < 2.4, no b tagging) = 2

In Fig. 5.6, the e�ect of lepton e�ciency scale factors is shown for the analysis of 2016,

2017, and 2018 data. The di�erence in the shape of the reconstructed lepton pT distribu-

tion caused by the applied weights is negligible. In addition, the overall normalization is

changed by approximately 4%.

5.5.3 b tagging e�ciency

The simulated events are reweighted using b tagging e�ciency scale factors to predict the

corrected event yield as observed in data. A dedicated method [190] is applied, for which

only simulated events passing the analysis-speci�c selection need to be considered in the

�nal event weight calculation. This means that no events are migrated to a di�erent b-

tagged jet multiplicity. By conserving the multiplicity of b-tagged jets, the de�nition of

variables that rely on a speci�c number of b-tagged jets is maintained, as these variables

are otherwise ill-de�ned if, for instance, one b-tagged jet is missing in an event due to the

jet-multiplicity migration.

For each simulated process, e�ciencies for identifying jets of true �avor f as b jets via

b tagging need to be determined before the event selection is applied. The e�ciencies are

determined in dependence of speci�c jet pT and η bins and are given by

ϵf (pT,η) =
N

b-tagged

f (pT,η)

N total

f (pT,η)
, (5.8)

with the total number of jets N total

f and b-tagged jets N
b-tagged

f with true �avor f . For b-

�avored jets, ϵb corresponds to the b tagging e�ciency, i. e., the fraction of b jets that is

correctly identi�ed by the b tagging algorithm. In case of c-�avored and light-�avored

jets, ϵc and ϵudsg are mistagging e�ciencies for falsely identifying c jets and jets from u, d,

s quarks and gluons (udsg) as b jets, respectively.

The probabilities for correctly identifying all jets in simulation and data are determined

for a given number of jets and b-tagged jets in the event selection and are calculated as
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Figure 5.6: Application of lepton e�ciency scale factors on the pT distri-
bution of the reconstructed isolated lepton. The distributions are shown in

the 2j1t control category before (left) and after (right) applying lepton e�ciency

scale factors, for the 2016 (top), 2017 (center), and 2018 (bottom) data. Before

and after lepton e�ciency correction, all other event weights considered in this

thesis are applied. The prediction is scaled to the number of observed events.

The gray band in the ratio panel corresponds to statistical uncertainties of the

simulation.
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P(MC) =
∏

i=tagged

ϵ i
b

∏
j=untagged

(
1 − ϵ j

c,udsg

)
, (5.9)

P(Data) =
∏

i=tagged

SF
i
b
ϵ i

b

∏
j=untagged

(
1 − SF

j
c,udsg

ϵ j
c,udsg

)
. (5.10)

Here, ϵ i
b

and ϵ j
c,udsg

are the b-tagging and mistagging e�ciencies in simulation for each

b-tagged jet i and untagged jet j, and SF
i
b

and SF
j
c,udsg

are the scale factors of the DeepJet

algorithm for b jets and jets of �avor c or udsg, respectively. These scale factors express

the di�erence in the b tagging and mistagging e�ciencies between data and simulation

and are de�ned as SF = ϵData/ϵMC. They are centrally provided for the CMS Collaboration

by the b Tag & Vertexing POG [191, 192, 193].

The �nal event weight is then computed as

w =
P(Data)

P(MC)
. (5.11)

The e�ect of b tagging weights on the shape of the distribution of the reconstructed b-

tagged jet with highest pT is shown in Fig. 5.7 for each year of data taking. Di�erences in

the shape are mainly observed for a low pT range of around 40 GeV to 60 GeV. The event

yield is changed by around 3% when applying b tagging weights.

5.5.4 L1 ECAL pre�ring

During the 2016 and 2017 data-taking periods, a high fraction of high-η L1 trigger primi-

tives [71] (TPs), which are electronic signals generated by the ECAL employed in the L1

trigger, was erroneously associated to the previous bunch crossing. This issue was caused

by the gradual timing shift of the ECAL readout electronics not being propagated properly

to the L1 TPs. This leads to events that can veto themselves, as two consecutive bunch

crossings are forbidden to �re the L1 trigger according to L1 rules. This veto occurs in

case of a signi�cant ECAL energy deposit in the region 2.0 < |η | < 3.0 and is not modeled

in simulation. Therefore, weights are computed based on the probability of an event not

to pre�re and applied to the simulated events [194]. These weights are de�ned as

w = 1 − P(pre�re) =
∏
i=jets,

photons

(
1 − ϵ i

pre�re
(η,pT)

)
, (5.12)

with the pre�ring e�ciency ϵ i
pre�re

of a jet or photon i and the transverse momentum pT

of a photon or jet. In Fig. 5.8, the pre�ring e�ciencies for 2016 and 2017 data are shown

in dependence of jet pT and η.
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Figure 5.7: Application of b tagging weights on the distribution of the re-
constructed b-tagged jet with highest pT. The distributions are shown in the

2j1t control category before (left) and after (right) applying b tagging weights,

for the 2016 (top), 2017 (center), and 2018 (bottom) data. Before and after b tag-

ging e�ciency correction, all other event weights considered in this thesis are

applied. The prediction is scaled to the number of observed events. The gray

band in the ratio panel corresponds to statistical uncertainties of the simulation.
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Figure 5.8: L1 ECAL pre�ring e�ciencies for jets. The pre�ring e�ciencies

in dependence of jet pT and η are centrally provided [194]. Modi�ed version

taken from Ref. [195].

5.6 QCD multijet background estimation
The modeling of the QCD multijet background contribution is challenging because of the

high production cross section and the tiny event selection e�ciency of this process. Ex-

tremely large simulation samples are required to accurately model QCD multijet produc-

tion, which is a computationally intensive task.

Thus, an alternative approach is employed for the QCD multijet modeling using data from

sideband regions enriched in QCD multijet events. The QCD-enriched sideband regions

are obtained by inverting the isolation criterion of the selected lepton and removing the

requirement pmiss

T
> 30 GeV, with the same requirements for jets and b-tagged jets as

described in Section 5.3.2. As the modeling of other kinematic variables for QCD multijet

production is independent of the applied isolation criterion, the QCD multijet modeling in

the sideband regions can be used for the signal and control event categories. For muons, a

relative isolation of Irel > 0.2 is required, and electrons must fail the veto ID working point,

described in Table 3.2, as the relative electron isolation is part of the ID requirements.

By performing a �t on a discriminating variable, the QCD contribution is estimated. With

the shape of this variable, QCD multijet events can be distinguished from all other pro-

cesses considered in this thesis. In the latest t-channel single top quark cross section mea-

surement of the CMS Collaboration [158], di�erent variables are used depending on the

lepton �avor. For events with muons, the transverse W boson mass mW

T
is employed,

whereas the missing transverse momentum pmiss

T
is used in case of electrons. This di�er-

ence is caused by a mismodeling of the mW

T
distribution for electrons. In this thesis, only

pmiss

T
is considered as a discriminating variable for the estimation of QCD multijet events,

as no distinction is made between muons and electrons. The QCD template Q(pmiss

T
) used

for the estimation is obtained from the data distribution in each sideband region. As the

sideband regions contain a small fraction of non-QCD multijet events, these are estimated

from simulation and subtracted from the QCD template.

A maximum likelihood �t is performed on the pmiss

T
distribution of the data in each event

category. This �t employs the aforementioned QCD template and a non-QCD template
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Table 5.8: Estimation of theQCDmultijet background contribution in the
2j2t signal category. The event yields are obtained from the �t of the missing

transverse momentum distribution and are displayed together with their statis-

tical uncertainties for the full range and for pmiss

T
> 30 GeV.

Year QCD yield (nQCD) QCD yield non-QCD yield (nnon-QCD) non-QCD yield

full range pmiss

T
> 30 GeV full range pmiss

T
> 30 GeV

2016 18 810 ± 210 9650 ± 150 197 360 ± 540 159 890 ± 450

2017 25 990 ± 300 16 470 ± 230 295 500 ± 710 243 020 ± 640

2018 36 350 ± 300 22 420 ± 240 491 700 ± 1200 402 100 ± 1100

N (pmiss

T
), which is determined by the sum of all processes with isolated leptons, including

the signal process, and has two �t parameters nQCD and nnon-QCD, which represent the

number of QCD and non-QCD multijet events, respectively. The pmiss

T
distribution in data

is then parameterized as

D(pmiss

T
) = nQCD ·Q(p

miss

T
) + nnon-QCD · N (p

miss

T
). (5.13)

The �t is performed separately for each event category and for each year of data taking.

The �t result for the 2j2t signal category is shown in Fig. 5.9, and the obtained number of

QCD and non-QCD multijet events in Table 5.8. In Appendix D, the outcome of the QCD

estimation is presented for the 2j1t, 3j1t, and 3j2t control categories.

5.7 Event classi�cation

As the signal-to-background ratio is still tiny after applying the event selection, advanced

multivariate methods are employed to discriminate s-channel single top quark production

from its main background contribution, top quark pair production. For this purpose, a

deep neural network (DNN) implemented in Keras [145] is used, which is con�gured as

shown in Table 5.9. A separate training of the DNN is performed for each year to take the

di�erent data-taking conditions into account. In all three years, the same signal and back-

ground processes, the same DNN con�guration, and the same input variables are used.

The available simulated signal and background samples are split into two subsets, one of

which is only employed for the DNN training and the other one only used for the further

analysis to avoid a biased event classi�cation result. The signal process, s-channel sin-

gle top quark production, is trained against semileptonically and dileptonically decaying

top quark pair events in the 2j2t signal category. The signal and background samples are

normalized according to their predicted cross section multiplied by the event selection ef-

�ciency. For technical reasons, the signal training sample comprises a third of all available

signal events in 2016 and 2018, and half of the events in 2017. In all three years, 12% of the

available tt events are used as background training sample to have approximately twice

as many background as signal events for the training. This makes sure that both semilep-

tonically and dileptonically decaying tt events are trained against the signal process. No
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Figure 5.9: Estimation of the QCD multijet background contribution in
the 2j2t signal category. The �t is performed to the pmiss

T
distributions for 2016

(top left), 2017 (top right), and 2018 (bottom) data. The error bars in the ratio

panel correspond to statistical uncertainties.
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Table 5.9: Parameter settings of the DNN training for event classi�ca-
tion. The DNN is implemented with the Keras software package [145]. Details

on the DNN parameters are explained in Section 4.1. The early-stopping method

prevents overtraining of the DNN by stopping the training when the loss of a val-

idation subset of the training data (val_loss) did not approved within 50 epochs.

During one epoch, the entire training dataset is passed forward and backward

through the DNN once.

Parameter value

Topology 2 hidden layers (activation function fReLU, 100 neurons per layer,

dropout for 25% of neurons)

output layer (activation function fsig, 1 neuron)

Epochs 100

Batch size 512

Metrics accuracy

Loss binary crossentropy

Optimizer Adam (default settings, see Ref. [144])

Early stopping monitor: val_loss, patience: 50

dedicated training is performed in the control categories as they serve to constrain the

background contributions in the signal extraction procedure.

Di�erent kinematic input variables are considered for the DNN training, which describe

the characteristics of the s-channel process and are required to provide separation power

between signal and background. These need to be well-modeled when compared to data.

In addition, the correlation between the variables needs to be studied. The full list of the

kinematic variables is given in Table 5.10. No unexpected correlation between the chosen

input variables was found. Depending on the year of data taking, the importance of the

input variables to the event classi�cation di�ers. The variable importance is estimated by

calculating the total sum of all weights of the �rst hidden layer for each input variable.

The ranking of the input variables employed in the DNN training are shown for each year

in Table 5.11. In addition, the sum of all weights of the �rst hidden layer is listed for each

variable for all years in Appendix E.

For the 2016 analysis, the three most important variables are the invariant mass of the lep-

ton and subleading b jet, the reconstructed lepton pT, and the absolute di�erence between

η of the lepton and η of the leading b jet. The leading and subleading b jet is the recon-

structed b-tagged jet with highest and second highest pT, respectively. The modeling and

the shapes of these three variables are shown for the 2j2t signal category in Fig. 5.10.

For the 2017 analysis, the azimuthal di�erence between reconstructed top quark and lead-

ing b jet, pmiss

T
, and the absolute η di�erence between the top quark and the b jet stemming

from the virtual W boson, contribute the most. In Fig. 5.11, the modeling and the shape

distributions of these variables are shown.
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For the 2018 analysis, the invariant mass of the lepton and subleading b jet, pmiss

T
, and

the azimuthal di�erence between reconstructed top quark and leading b jet are the three

most important variables and are shown in Fig. 5.12. For all presented input variables,

a signi�cant shape di�erence between the signal process and the background processes,

in particular tt production, is observed. The remaining input variables are shown in Ap-

pendix E.

The DNN training is checked for overtraining by comparing the DNN output distribution

of the signal and background training samples, which are discarded from further analysis

to avoid a bias on the �nal result, with separate test samples for signal and background. In

Fig. 5.13, the result of the comparison is shown for each year and a clear separation between

signal and background is observed. As a smaller number of signal events is available in 2016

compared to 2017 and 2018 and as the geometry of the CMS pixel detector was di�erent

in 2016, the shape of the DNN output distribution di�ers. In all three years, the training

and test samples show no sign of overtraining. This is also veri�ed by checking the loss

function values of the training and test datasets with regard to the epoch of the DNN

training. As the loss functions of the test samples do not increase towards the end of the

DNN training, no potential overtraining is observed. For each year, the loss function values

are shown in Appendix E. The area under the ROC curve is determined to be 82% for 2016

and 78% for 2017 and 2018, i. e., a slightly better separation between signal and background

is achieved by the DNN training compared to 2017 and 2018. This e�ect is caused by the

higher pileup contribution in 2017 and 2018 compared to 2016. The DNN is applied to

the 2j2t signal category and all control categories. For control categories with only one

b-tagged jet, the subleading b jet always corresponds to the untagged jet. In case of the

2j1t category, only one untagged jet exists and is thus chosen as subleading b jet, whereas

two untagged jets are selected for the 3j1t control category. Here, the untagged jet with

highest pT is assigned as subleading b jet.
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Table 5.10: Description of the input variables employed in the training
of the DNN. Leading and subleading b jet refer to the reconstructed b jet with

highest and second highest transverse momentum, respectively.

Variable description

pmiss

T
missing transverse momentum

pT(`) transverse momentum of the charged lepton

pT(bl) transverse momentum of the leading b jet

pT(bs) transverse momentum of the subleading b jet

pbb

T
vectorial sum of transverse momenta of the two b jets

in the event

HT scalar pT sum of all b jets, the charged lepton and pmiss

T

in the event

η(bl) pseudorapidity of the leading b jet

η(bs) pseudorapidity of the subleading b jet

|η(`) − η(bl)| absolute pseudorapidity di�erence between the charged

lepton and the leading b jet

|η(ts) − η(bl)| absolute pseudorapidity di�erence between the top

quark reconstructed from the subleading b jet and the

leading b jet

|η(t) − η(bW)| absolute pseudorapidity di�erence between the recon-

structed top quark and the b jet from the virtual W bo-

son

∆ϕ(t, bl) ∆ϕ between the reconstructed top quark and the leading

b jet

∆ϕ(bl, bs) ∆ϕ between the two b jets of the event

cosθ ∗ cosine of the angle between the charged lepton from top

quark decay and the b jet from virtual W boson in the

rest frame of the top quark

m(t) invariant mass of the reconstructed top quark

m`b2 invariant mass of the charged lepton and the subleading

b jet

Fox Wolfram #3 third-order Fox-Wolfram moment [196, 197] of the event

q(`) lepton charge
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Table 5.11: Ranking of input variables used in the training of the DNN.
The ranking is an estimate of the importance of each input variable, determined

by the sum of all weights of the �rst layer of the DNN for the variable under study.

For each year, a di�erent ranking is obtained, re�ecting the di�erent conditions

during data taking per year and showing that the input variables are mainly of

similar importance.

Variable 2016 2017 2018

m`b2 1 4 1

pT(`) 2 11 7

|η(`) − η(bl)| 3 7 4

pT(bs) 4 10 8

∆ϕ(t, bl) 5 1 3

|η(t) − η(bW)| 6 3 6

|η(ts) − η(bl)| 7 15 5

η(bs) 8 9 9

∆ϕ(bl, bs) 9 6 10

Fox Wolfram #3 10 14 16

q(`) 11 8 11

η(bl) 12 5 14

cosθ ∗ 13 12 15

pmiss

T
14 2 2

m(t) 15 13 13

pbb

T
16 17 17

Ht 17 16 12

pT(bl) 18 18 18
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Figure 5.10: The three most important input variables for the DNN train-
ing in 2016. The distributions are shown in the 2j2t signal category for simu-

lation and data (left) and for simulation only (right). In the distributions on the

left-hand side, the prediction is scaled to the number of observed events. The

gray band in the ratio panel corresponds to statistical uncertainties of the sim-

ulation. The distributions on the right-hand side show the shapes of the input

variables for each process.
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Figure 5.11: The three most important input variables for the DNN train-
ing in 2017. The distributions are shown in the 2j2t signal category for simu-

lation and data (left) and for simulation only (right). In the distributions on the

left-hand side, the prediction is scaled to the number of observed events. The

gray band in the ratio panel corresponds to statistical uncertainties of the sim-

ulation. The distributions on the right-hand side show the shapes of the input

variables for each process.
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Figure 5.12: The three most important input variables for the DNN train-
ing in 2018. The distributions are shown in the 2j2t signal category for simu-

lation and data (left) and for simulation only (right). In the distributions on the

left-hand side, the prediction is scaled to the number of observed events. The

gray band in the ratio panel corresponds to statistical uncertainties of the sim-

ulation. The distributions on the right-hand side show the shapes of the input

variables for each process.
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Figure 5.13: Result of the DNN training. The DNN output distributions of

the signal and background training samples are compared to the corresponding

test samples for the 2016 (top), 2017 (center), and 2018 (bottom) analysis. No

overtraining is detected.
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5.8 Signal extraction

The signi�cance of s-channel single top quark production is extracted by performing a

maximum likelihood �t, as described in Section 4.2.3, simultaneously on the DNN output

distributions of all event categories. This means that four di�erent DNN output distribu-

tions, corresponding to the signal category and the three control categories, are considered

per year of data taking. In total, twelve DNN output distributions from three di�erent years

are included in the �nal �t for signal extraction. The DNN output distributions are shown

in Fig. 5.14 for the 2j2t signal category and in Figs. E.11, E.12, and E.13 of Appendix E for

the 2j1t, 3j1t, and 3j2t control categories. The binning of the DNN output distributions has

been chosen such that no bins without any or very small background contribution exist,

while still being sensitive to the di�erence in the shapes for signal and background events.

This choice guarantees that the performed maximum likelihood �t is not too sensitive to

bins with high statistical �uctuations of the background. The displayed uncertainty band

in the DNN output distributions comprises not only the statistical uncertainty, but also all

sources of systematic uncertainty that are considered in the �t. These distributions are

referred to as pre�t distributions. In the �t, the magnitude of each systematic uncertainty

source is computed, which is later presented in Section 5.10. In general, two di�erent sig-

ni�cances are quoted: besides the observed signi�cance computed by a �t to measured

data, the expected signi�cance is determined using an Asimov dataset [157]. The Asimov

dataset is constructed from all simulated background processes and the signal process, i. e.,

it corresponds to the expectation of the signal-plus-background hypothesis. In addition,

the measured cross section for s-channel single top quark production is determined from

the �t.

5.9 Systematic uncertainties

Di�erent uncertainty sources are taken into account in the search for s-channel single top

quark production, which can be grouped into experimental and theoretical uncertainties.

All uncertainty sources are incorporated as nuisance parameters (see Section 4.2.2) in the

�tting procedure for signal extraction, either as a separate parameter per process or as a

common parameter for several processes. As three years of data taking are analyzed and

the same uncertainty sources are taken into account for each year, a dedicated model needs

to be de�ned for the treatment of correlations among the systematic uncertainties.

5.9.1 Experimental uncertainties

Luminosity

As the integrated luminosities can only be determined within a certain uncertainty, a nor-

malization uncertainty is applied on all simulated samples to consider this e�ect. The

uncertainties in the integrated luminosities are measured to be 2.5% [198], 2.3% [199], and

2.5% [200] for the 2016, 2017, and 2018 datasets.
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Figure 5.14: Pre�t distributions of the DNN output values in the 2j2t sig-
nal category. The distributions are shown for the 2016 (top left), 2017 (top right),

and 2018 analysis (bottom). The signal is depicted on top of the histogram. The

hatched area in the main panel and the blue uncertainty band in the ratio panel

comprise the statistical uncertainty and all systematic uncertainty sources.
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Pileup

An uncertainty in the pileup reweighting procedure, which corrects the number of pileup

interactions as described in Section 5.5.1, is applied by shifting the nominal inelastic proton-

proton cross section by ±4.6% as recommended by the Luminosity POG [177]. This value

covers both the uncertainty in the reweighting method [201] and in the measurement of

the total inelastic proton-proton cross section [178].

Lepton e�ciencies

For each computed identi�cation, reconstruction, isolation, and trigger e�ciency correc-

tion of selected muons and electrons, a dedicated uncertainty is applied (see Section 5.5.2).

It is composed of the statistical uncertainty in the determination of the corresponding

scale factors and the systematic uncertainty accounting for the di�erent event topology

used for the calculation of the e�ciency corrections. The uncertainty is evaluated by ap-

plying event weights, which are varied up and down by the computed value and alter the

shape of the nominal DNN output distribution.

b tagging e�ciency

The correction of the b tagging e�ciency applied to simulated events (see Section 5.5.3)

leads to a systematic uncertainty that needs to be considered in this analysis. Each centrally

available b tagging scale factor is computed within a certain uncertainty [191, 192, 193],

which is employed to determine event weights that are shifted up and down by this value

to evaluate this uncertainty source.

Jet energy scale

As described in Section 3.2.6, di�erent jet energy corrections are applied on simulated

events, which a�ect thepT of all jets and therefore in�uence the jet energy scale (JES). Each

uncertainty that arises from the computation of these corrections is taken into account

using templates of the DNN output distribution for each process, which are shifted up and

down by the determined uncertainty value. In total, 26 di�erent JES uncertainty sources

are derived, which represent the statistical and systematic component of the determined

corrections for physics objects like light-�avored and heavy-�avored jets, and for e�ects

caused by, e. g., pileup interactions and �nal-state radiation [202].

Jet energy resolution

Corrections are derived for jets in simulation, which smear the jet energy resolution (JER)

to match the distribution observed in data [203]. The uncertainties associated to these

corrections are taken into account by dedicated samples that provide templates of the DNN

output distribution shifted up and down by the computed JER uncertainty for each process.
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Unclustered energy

As di�erent physics objects contribute to the reconstructed missing transverse momentum,

uncertainties corresponding to the energy resolution of each of these objects have to be

considered in this analysis [204]. Similar to the JES and JER uncertainties described above,

the analysis is reiterated by employing templates of the DNN output distribution that are

shifted up and down by the estimated uncertainty in the unclustered energy to take this

uncertainty source into account.

L1 ECAL pre�ring

As described in Section 5.5.4, a signi�cant number of the high-η L1 ECAL trigger primi-

tives was mistakenly associated to the previous bunch crossing during the 2016 and 2017

data-taking periods. The event weights accounting for the pre�ring probability are shifted

up and down according to their uncertainties. For each event weight, the maximum be-

tween the statistical uncertainty of the corresponding (η,pT) bin and 20% of the pre�ring

probability is assigned as conservative uncertainty [194].

Limited size of simulated samples

Due to the �nite number of simulated events of the samples used for the modeling of

all background processes (see Section 5.3.1), an additional uncertainty has to be consid-

ered. The uncertainty is implemented as a bin-by-bin uncertainty and evaluated with the

Barlow–Beeston method [155, 205]. The basic idea of this method is to assign one nui-

sance parameter to each bin of the DNN output distribution for each process in each event

category, based on the number of events in the speci�c bin. This procedure introduces

hundreds of additional nuisance parameters, which require high computing power for

evaluation. Therefore, a modi�ed approach is employed in this analysis, which assigns

a single nuisance parameter per bin for all processes combined to decrease the total num-

ber of nuisance parameters. This approach is referred to as Barlow–Beeston light method.

As a signi�cantly higher number of signal events is simulated in general compared to the

expected number in data, the statistical uncertainty caused by �uctuations between bins

of the simulation sample is negligible with regard to the statistical uncertainty in data.

Therefore, the Barlow–Beeston light method is only applied to the background processes.

5.9.2 Theoretical uncertainties

PDF and αs

Uncertainties due to the choice of the PDF and the value for αs are taken into account.

For each simulated process, a normalization uncertainty according to the predicted PDF

and αs uncertainty is applied. A rate uncertainty of 3% is applied to t-channel single top

quark production [30]. In case of the tW and tt processes, an uncertainty of 5% [28, 30]

is assigned. Rate uncertainties of 4% and 1% [206] are considered for W and Z boson

production in association with jets, respectively. The applied normalization uncertainties

are preliminary, they will be replaced by dedicated uncertainties that describe the e�ect
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of the choice of the PDF and αs value on the shape of the DNN output distribution. These

uncertainties will be obtained by reweighting the DNN output distribution to account for

100 di�erent shape variations of the nominal PDF and two variations of αs, all derived from

the eigenvector variations of the PDF set NNPDF3.0 NLO [83] for W/Z+jets production in

2016 and NNPDF3.1 NNLO [84] for all other simulation samples. The �nal uncertainty

will be determined by calculating the full envelope of the up and down variations for each

process, following the PDF4LHC recommendations [207, 208, 209].

Renormalization and factorization scales

The uncertainty due to the choice of the renormalization and factorization scales µR and µF

is derived by employing the LHE reweighting procedure [210]. With this approach, shifted

templates of the DNN output distribution are obtained for each process, corresponding to

di�erent combinations of double and half the nominal µR and µF values. The envelope of

these templates is taken as the �nal template, omitting variations in which the two scales

are shifted in opposite directions.

Matching of parton shower and matrix element

The matching of the parton shower generated by pythia to the matrix element calculated

by powheg is controlled by a damping function, which depends on the parameter hdamp

and which in addition regulates the high-pT radiation of partons [170]. As this can lead to

additional jets that pass the selection requirements of this analysis, the e�ect of the damp-

ing function needs to be considered as uncertainty source. The uncertainty is evaluated for

the tt process using dedicated simulation samples that have been generated with a variation

ofhdamp according to the uncertainties of the nominal value, 1.379
+0.926

−0.5052
·mt [170, 211, 212],

with mt set to 172.5 GeV. For single top quark processes, this uncertainty source is found

to be negligible.

Initial-state and �nal-state radiation

The impact on the modeling of the initial-state (ISR) and �nal-state radiation (FSR) caused

by the choice of the αs value for the parton shower is taken into account by shifted event

weights. These event weights correspond to doubled and halved probabilities for additional

gluon radiation in the initial and �nal state and are provided by pythia for all simulated

single top quark processes and tt production in 2016 and 2017. In 2018, these event weights

are available for all simulated processes used in the analysis.

Underlying event

The underlying event and multiparton interactions, i. e., interactions between constituents

stemming from di�erent colliding partons, of the tt process are modeled by the generator

tune CP5. Uncertainties connected to the tune settings are evaluated using dedicated tt

simulation samples, which provide varied settings for multiparton interactions and for

color string formations between �nal partons from independent hard scatterings, referred

to as color reconnection [170].
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Table 5.12: Rate uncertainties for the normalization of the 2016W/Z+jets
simulation samples with regard to di�erent tunes. The uncertainties are

calculated from the di�erence in the selection e�ciency of the s-channel single

top quark process when switching from tune CUETP8M1 to CP5. Rate uncer-

tainties slightly higher than the calculated e�ciency di�erences are applied to

be conservative.

Event category s-channel e�ciency change (%) W/Z+jets rate uncertainty (%)

2j1t +1.4 ±2.0

2j2t +12.0 ±12.0

3j1t -8.5 ±9.0

3j2t +0.4 ±1.0

W/Z+jets underlying event normalization

As described in Section 5.3.1, the simulation samples for W/Z+jets production used in 2016

are generated with tune CUETP8M1, whereas all other simulation samples are generated

with the latest tune CP5. Di�erences in the modeling of the underlying event need to be

considered when using a mixture of simulation samples with di�erent tunes. Under the

assumption that the yields of the W/Z+jets background processes change in the same way

as for the signal process, conservative rate uncertainties are derived for the W/Z+jets nor-

malization based on the change in the signal selection e�ciencies when switching to the

new tune. As the shape of the signal process is insensitive with regard to the tune switch,

no shape uncertainties need to be derived. The relative change of the selection e�ciency

of s-channel single top quark production for each event category and the corresponding

W/Z+jets rate uncertainties are listed in Table 5.12.

Top quark pT

According to di�erential measurements of the top quark pT distribution in tt events, the

predicted pT spectrum is shifted towards higher values compared to the observed spec-

trum [213]. As it is not recommended by Top Quark Physics Analysis Group of the CMS

Collaboration [214] to correct this e�ect by reweighting the top quark pT distribution for

the tt process, the mismodeling is taken into account by assigning an additional uncer-

tainty. The uncertainty is assessed with a template in the DNN output distribution that

is shifted by the measured di�erence between simulation and data [214]. As this e�ect is

one-sided, no interpolation between up- and down-varied templates is performed for this

uncertainty source.

Background normalization

For each background process, a normalization uncertainty is applied. In case of the t-
channel single top quark and tt processes, the uncertainty is taken from theory prediction,

as the former shows no mismodeling in the selected phase space and as the cross section
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of the latter was determined by CMS measurements [215, 216] with an uncertainty of the

same size as predicted. The uncertainty in the cross section for t-channel single top quark

and tt production is predicted to be 4% [31, 32] and 6% [29], respectively. A conservative

uncertainty of 10% is assigned to the W/Z+jets processes, to cover possible e�ects caused

by the selection of heavy-�avored jets. For the tW process, an uncertainty of 11%, taken

from the most recent CMS measurement [159], is applied to account for systematic uncer-

tainties arising from a possible overlap with the tt process at NLO accuracy. As the QCD

multijet contribution is estimated with a data-driven method, no dedicated uncertainty is

applied. Instead, the normalization of this background process is included in the �t as a

free-�oating rate parameter.

5.9.3 Correlation model of systematic uncertainties

Because of the di�erent physics processes and the di�erent years of data taking considered

in this thesis, it is inevitable to de�ne a dedicated correlation model for the treatment of

systematic uncertainty sources. The decision to either fully correlate, partially correlate

or uncorrelate a speci�c source of systematic uncertainty is driven by physics motivation

and by technical implementation. In the following, the chosen correlation model between

di�erent processes and di�erent years are presented.

Correlation between processes

As experimental uncertainty sources a�ect each considered process in the same way, they

are all treated as fully correlated, meaning that all processes share one common nuisance

parameter per experimental uncertainty source. In case of theoretical uncertainties, dif-

ferent normalization uncertainties are assigned for each background process (see Sec-

tion 5.9.2), leading to an uncorrelated treatment of this uncertainty source. For the un-

certainty in the renormalization and factorization scales, a distinction is made between

processes that are induced by electroweak (EWK) interactions, i. e., all three single top

quark production modes and W/Z+jets production, and the processes induced by strong

(QCD) interactions, i. e., tt production. This results into two nuisance parameters for this

uncertainty source, one taking care of EWK-induced and the other for QCD-induced pro-

cesses. The same approach is employed for the correlation of the uncertainties in the

initial-state radiation, as the parton shower approximates speci�c higher-order matrix el-

ements. For instance, the matrix element describing additional gluon emission is di�erent

in single top quark processes compared to the tt process [217]. As these e�ects do not occur

in the �nal-state radiation, this uncertainty source is treated as fully correlated between

all processes. Furthermore, the uncertainty caused by the choice of the PDF set and the

αs value is treated as correlated between all processes that have been generated with the

same PDF set. No dedicated correlation model needs to be de�ned for the uncertainties in

the matching of matrix element with parton shower, in the underlying event, and in the

top quark pT distribution, as these uncertainty sources are considered only for top quark

pair production.
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Correlation between years

When calculating the signi�cance and extracting the cross section for s-channel single top

quark production using the combined 2016, 2017, and 2018 datasets, a potential correla-

tion between certain systematic uncertainty sources needs to be considered. In particular,

experimental uncertainties comprise a systematic component, as the same method is used

in all years of data taking, and a statistical component, because statistically independent

samples per year are employed to estimate each uncertainty source.

In case of the experimental uncertainties, the following correlation model is chosen: The

uncertainty in the luminosity is partially correlated by splitting the corresponding nui-

sance parameter into one uncorrelated component per year and components that are ei-

ther correlated between all years or only between two of the three years [218]. The un-

certainty in the number of pileup interactions is considered to be fully correlated between

all data-taking periods [177]. The uncertainty in the muon and electron e�ciencies is

treated separately for each source of e�ciency correction. In case of the muon identi�-

cation e�ciency, separate scale factors are provided by the MUO POG [181, 182, 183] to

account for the systematic and statistical component of this uncertainty source, therefore

allowing to treat the former as correlated and the latter as uncorrelated. As privately pro-

duced scale factors, which are derived with a di�erent dataset per year, are employed to

estimate the uncertainty in the muon isolation and trigger paths, these two sources are

considered as uncorrelated. The uncertainties in the electron e�ciency for identi�cation

and reconstruction are fully correlated, as the systematic component dominates the es-

timation of these e�ciencies [187]. The electron trigger e�ciency is determined using

privately computed scale factors, based on di�erent HLT paths per year, and is therefore

treated as an uncorrelated uncertainty source. The uncertainty in the b tagging e�ciency

is considered as uncorrelated, as di�erent datasets and working points of the b tagging

algorithm per year are employed for e�ciency calculation. For the 26 di�erent JES uncer-

tainty sources taken into account in this thesis, a dedicated correlation model is employed

(see Appendix F), which treats sources with dominant systematic component as correlated

and sources taking statistical uncertainties into account as uncorrelated [202]. In addition,

the JER uncertainties and the uncertainties in the unclustered energy between the di�er-

ent years of data taking are uncorrelated. The uncertainty in the pre�ring issue of the L1

ECAL trigger primitives, which only occurred in 2016 and 2017, is fully correlated between

these two years. As di�erent samples per year are employed in this thesis, the resulting

uncertainty due to the limited size of these samples is considered as uncorrelated between

all data-taking periods.

In principle, all theoretical uncertainty sources are treated as fully correlated among the

di�erent years, as the theory predictions are independent of the year of data taking. One

exception is the uncertainty in the choice of the PDF and the αs value for the associated

production of W and Z bosons with jets, as they use a di�erent PDF set in 2016 compared

to the samples employed in 2017 and 2018 (see Section 5.3.1). Therefore, this uncertainty

source is treated as uncorrelated between 2016 and the other two data-taking periods for

these two processes.
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5.9. Systematic uncertainties

Table 5.13: Correlation of the systematic uncertainties between di�erent
years of data taking. The systematic uncertainties are included as nuisance

parameters in the �t, and are either considered as fully correlated, partially cor-

related, or uncorrelated between the years.

Uncertainty source corr. 2016/2017 (%) corr. 2016/2018 (%) corr. 2017/2018 (%)

Experimental uncertainties

Luminosity ≈20 ≈30 ≈30

Pileup 100 100 100

Muon e�. (ID, syst.) 100 100 100

Muon e�. (ID, stat.) 0 0 0

Muon e�. (isolation) 0 0 0

Muon e�. (trigger) 0 0 0

Electron e�. (ID) 100 100 100

Electron e�. (reconstruction) 100 100 100

Electron e�. (trigger) 0 0 0

b tagging e�ciency 0 0 0

JES see Appendix F see Appendix F see Appendix F

JER 0 0 0

Unclustered energy 0 0 0

L1 ECAL pre�ring 100 – –

Limited sample size 0 0 0

Theoretical uncertainties

PDF+αs (W/Z+jets) 0 0 100

PDF+αs (tt and single top) 100 100 100

µR/µF scale (EWK-induced) 100 100 100

µR/µF scale (QCD-induced) 100 100 100

hdamp 100 100 100

ISR (EWK-induced) 100 100 100

ISR (QCD-induced) 100 100 100

FSR 100 100 100

Underlying event 100 100 100

Top quark pT 100 100 100

Background normalization 100 100 100

A summary of the correlation model of all experimental and theoretical uncertainty sources

is presented in Table 5.13.

5.9.4 Impact of systematic uncertainty sources

In the �t employed to extract the signal, the systematic uncertainties a�ect the calculated

signi�cance. The impact of each uncertainty source is computed as the relative change

of the expected signi�cance of s-channel single top quark production when not consid-

ering the systematic uncertainty source under study. These contributions are determined

by calculating the signi�cance for each di�erent uncertainty source, with the nuisance pa-

rameters corresponding to the respective uncertainty source being �xed at its pre�t value.

The �nal impact is then determined as the relative change of the signi�cance to the nom-
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Table 5.14: Expected impact of systematic uncertainties for each year and
for the combined 2016–2018 analysis. The experimental and theoretical un-

certainty sources are sorted by descending impact on the combined 2016–2018

analysis. For simpli�cation, the di�erent uncertainties in the muon and electron

e�ciencies, as well as the di�erent PDF+αs uncertainties, are each summarized

into one single group.

Uncertainty source change (%), 2016 change (%), 2017 change (%), 2018 change (%), 2016–2018

Experimental uncertainties

Limited sample size 49.5 36.9 74.7 62.7

Pileup 9.0 6.6 18.7 7.8

JES 2.1 8.5 5.8 5.6

b tagging e�ciency 12.9 0.9 6.0 3.2

Lepton e�ciencies 1.4 2.1 0.2 1.7

Unclustered energy 0.8 <0.1 0.7 0.6

Luminosity 0.6 0.2 <0.1 0.6

JER 0.7 <0.1 1.3 0.3

L1 ECAL pre�ring 0.5 0.4 – 0.2

Theoretical uncertainties

Background normalization 4.3 6.1 1.5 5.1

FSR 1.2 4.6 0.9 2.9

hdamp <0.1 1.1 2.2 1.9

µR/µF scale (QCD-induced) 1.2 2.7 0.4 1.6

ISR (QCD-induced) 5.1 0.2 0.2 1.5

Underlying event <0.1 <0.1 2.1 0.9

ISR (EWK-induced) <0.1 0.4 1.3 0.6

PDF+αs 0.5 <0.1 0.2 0.3

µR/µF scale (EWK-induced) 0.4 4.3 0.7 0.3

Top quark pT 0.5 <0.1 <0.1 0.1

inal value. The impacts are determined for di�erent uncertainty groups and are listed in

Table 5.14 for each year of data taking and for the combined 2016–2018 analysis. In case

of the uncertainties in the JES and in the limited sample size, all associated nuisance pa-

rameters are grouped into a single uncertainty source during the impact computation. The

experimental uncertainty source with by far the largest impact on the signi�cance of the

combined 2016–2018 analysis is the uncertainty in the limited sample size. The normaliza-

tion of the background processes is the theoretical uncertainty that a�ects the signi�cance

the most. This means that the analysis is sensitive to the number of events of the available

simulation samples due to the small selection e�ciency. Variations of the impact of several

systematic uncertainties between the years of data-taking periods occur. These are caused

by a di�erent shape of the DNN output distribution per year, by potential di�erences in

the estimation of systematic uncertainty sources between the years, and by potential can-

cellations of systematic impacts due to correlation e�ects.
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5.10 Results

As described in Section 5.8, the observed and expected signi�cances are determined by a

maximum likelihood �t of the DNN output distributions of the 2j2t signal category and the

2j1t, 3j1t, and 3j2t control categories to data from all three years of data taking. The sig-

ni�cance is computed separately for each year and for the combined 2016–2018 analysis,

the values are listed in Table 5.15. For the combined 2016–2018 analysis, single top quark

production in the s-channel is observed with a signi�cance of 6.0 standard deviations, with

4.7 standard deviations expected. While the observed signi�cance in 2017 data alone is not

su�cient to claim evidence for s-channel single top quark production, evidence is found

in the analyses of the 2016 and 2018 datasets independently. Starting from the expected

signi�cance of 2.3 standard deviations for the 2016 analysis, one naively expects an in-

crease of the signi�cance per year by a factor of

√
N , with N being the ratio between the

luminosity of the dataset under study and the one of the 2016 dataset. With this formula,

signi�cances of 2.5, 3.0, and 4.5 standard deviations are expected for the 2017, 2018, and the

combined 2016–2018 analysis. These values agree well with the ones shown in Table 5.15.

Small di�erences can for instance arise from the CMS pixel detector, which has been up-

graded before the start of the data taking in 2017 and leads to an improved b tagging of

jets. In Fig 5.15, all DNN output distributions are combined by sorting the correspond-

ing bins by their signal-to-background ratio. A signi�cant excess of the measured data

compared to the background-only hypothesis is observed for the bins with high signal-to-

background ratio values, which can be described by the presence of s-channel single top

quark production.

In addition, the measured cross section of the combined 2016–2018 analysis is determined

from the �t used for the signi�cance extraction. During the �t, the actual impact of each

systematic uncertainty source listed in Section 5.9 is computed and the overall �t uncer-

tainty is determined, which is depicted in the post�t DNN output distributions shown in

Figs. 5.16, 5.17, and 5.18. The result of the maximum likelihood estimation is the signal

strength µ, which is multiplied with the predicted value of σ theo.
s-ch.

= 10.32
+0.29

−0.24
(scale) ±

0.27 (PDF+αs) pb to obtain the measured cross section. With a measured signal strength

of µ = 1.42
+0.24

−0.23
, where the uncertainty comprises the statistical and systematic uncertain-

ties, the measured cross section is

σs-ch. = 14.65
+2.48

−2.37
(stat. + syst.) pb, (5.14)

which is in agreement with the SM prediction within two standard deviations.

The measured cross section is used to measure the absolute value of the CKM matrix ele-

ment Vtb, which is given by

| fLVVtb | =

√
σs-ch.

σ theo.
s-ch.

, (5.15)
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Figure 5.15: Comparison of prediction and data for the combined 2016–
2018 analysis. The bins of all DNN output distributions included in the �t

are sorted in ascending order of the logarithm of their predicted signal-to-

background ratio. These values are evaluated for the background prediction

(gray), for the expected and observed signal (red), and for the measured data.

A signi�cant excess is observed for high values, which can be described within

two standard deviations by SM s-channel single top quark production and there-

fore excludes the background-only hypothesis in favor of the signal+background

hypothesis.

Table 5.15: Observed and expected signi�cances for s-channel single top
quark production. The signi�cance values are calculated separately per year

of data taking and for the combined 2016–2018 analysis.

Year signi�cance (std. dev.)

obs. exp.

2016 3.5 2.3

2017 1.9 2.5

2018 4.7 3.1

Combined 6.0 4.7
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Figure 5.16: Post�t distributions of the DNN output values in the 2016
analysis. The distributions are shown for all event categories. The signal is

depicted on top of the histogram. The hatched areas in the main and in the ratio

panel comprise the statistical uncertainty and all systematic uncertainty sources.
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Figure 5.17: Post�t distributions of the DNN output values in the 2017
analysis. The distributions are shown for all event categories. The signal is

depicted on top of the histogram. The hatched areas in the main and in the ratio

panel comprise the statistical uncertainty and all systematic uncertainty sources.
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Figure 5.18: Post�t distributions of the DNN output values in the 2018
analysis. The distributions are shown for all event categories. The signal is

depicted on top of the histogram. The hatched areas in the main and in the ratio

panel comprise the statistical uncertainty and all systematic uncertainty sources.
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under the assumption that the CKM matrix elements |Vtd | and |Vts | are negligible compared

to |Vtb |. Here, σ theo.
s-ch.

is the predicted cross section, calculated with |Vtb | = 1, and fLV is a

form factor, which considers the possible presence of anomalous Wtb couplings [5]. In

case that the Wtb interaction is a left-handed weak coupling as predicted by the SM, fLV is

set to 1, whereas for couplings caused by physics beyond the SM, it is set to fLV , 1. The

measured cross section leads to an absolute CKM matrix element Vtb value of

| fLVVtb | = 1.19 ± 0.09 (exp.) ± 0.02 (theo.), (5.16)

with the experimental uncertainty derived from the total uncertainty in the measured cross

section, and the theoretical uncertainty computed from the uncertainty in the SM predic-

tion. In addition, lower and upper exclusion limits on |Vtb | of 0.99 and 1.36, respectively,

are determined at 95% con�dence level with the Feldman–Cousins uni�ed approach [219],

assuming the unitarity of the CKM matrix.
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6. Conclusion

In this thesis, the search for s-channel single top quark production using data recorded

by the CMS detector in 2016, 2017, and 2018 at a center-of-mass energy of 13 TeV has

been presented. This process is the only single top quark production mode that has not

been previously observed at the LHC. The presented analysis is the �rst s-channel sin-

gle top quark analysis performed with data taken during Run 2 and reports an observed

signi�cance for the signal process of 6.0 standard deviations, with 4.7 standard deviations

expected. The cross section and the CKM matrix element Vtb have been measured to be

σs-ch. = 14.65
+2.48

−2.37
(stat. + syst.) pb and | fLVVtb | = 1.19 ± 0.09 (exp.) ± 0.02 (theo.), which

are within two standard deviations of the SM predictions.

The analysis of the CMS Collaboration performed with data taken during Run 1 of the

LHC measured s-channel single top quark production with an observed signi�cance of

2.5 standard deviations [162]. Compared to this previous analysis, a di�erent analysis

strategy has been employed by choosing a DNN for the event classi�cation instead of BDTs.

With this more elaborate analysis tool and with more data being analyzed, an increased

sensitivity compared to the previous analysis has been achieved. In addition, the result of

this analysis is improved compared to the Run 1 result of the ATLAS Collaboration, which

reported an observed signi�cance of 3.2 standard deviations [39].

The sensitivity of the presented analysis can be improved by employing simulated sam-

ples with a higher number of events, as the analysis is dominated by the uncertainty in

the limited size of the employed background samples. In particular, the analysis would

pro�t from a larger simulated sample for the W+jets background process, as this process

has a relatively large cross section, but low event selection e�ciency. By employing a mul-

ticlassi�cation DNN, which is in addition to the signal and background separation capa-

ble of distinguishing di�erent background contributions, the sensitivity could be further

increased. With this approach, not only the dominant background process, tt, but also

other single top quark production modes and W+jets production could be separated from

s-channel single top quark production.
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6. Conclusion

As the LHC is expected to collect an amount of data of around 350 �
−1

during Run 3 of the

LHC [220], planned to start in May 2021, the precision of the measured s-channel single top

quark production cross section will be further improved, especially if Run 3 is operated at a

center-of-mass energy of 13 TeV. In this case, a combined analysis of Run 2 and Run 3 data

would be possible, leading to a higher precision because of a larger number of measured

events. Furthermore, the high-luminosity LHC (HL-LHC) [220, 221], which is designed to

provide an instantaneous luminosity of 5 times the design value of the LHC and requires

a major upgrade of the current LHC, aims to record around 3000 �
−1

of collision data at

a center-of-mass energy of 14 TeV. With this amount of measured data, it will be possible

to perform precision measurements of, e. g., di�erential cross sections, allowing to detect

possible deviations from the SM predictions. Such small deviations for s-channel single

top quark production can be caused by a non-SM mediator, for instance charged Higgs

bosons [40] or heavy W
′

bosons [41], or by contributions of anomalous �avor-changing

top quark couplings [42].

In future circular and linear electron-positron colliders like the FCC-ee or the ILC, single

top quarks can be produced, either via SM interactions or via potential �avor-changing

neutral currents [222, 223]. As neither pileup interactions nor underlying events occur in

electron-positron collisions, they provide much cleaner �nal states compared to the pro-

duction via proton-proton collisions and therefore enable high-precision measurements,

where small deviations could be more easily detected.
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A. List of MC simulation samples and
datasets

A.1 2016 analysis

Table A.1: Nominal simulation samples for the 2016 analysis. The sam-

ples are listed together with the generated number of events and the cross sec-

tion times branching ratio (BR). If not stated otherwise, the cross section ob-

tained from the generator is used. The fragment “RunIISummer16NanoAODv5-

PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7-v1. . . ” and the

post�x “/NANOAODSIM” are omitted everywhere.

Sample name

events cross section

(×10
6
) × BR (pb)

ST_s-channel_4f_leptonDecays_TuneCP5_PSweights_13TeV-amcatnlo-pythia8 9.8 3.36 (nlo [14, 30])

ST_t-channel_top_4f_InclusiveDecays_TuneCP5_PSweights_13TeV-powheg-pythia8 31.8 136.02 (nlo [30])

ST_t-channel_antitop_4f_InclusiveDecays_TuneCP5_PSweights_13TeV-powheg-pythia8 17.8 80.95 (nlo [30])

ST_tW_top_5f_inclusiveDecays_TuneCP5_PSweights_13TeV-powheg-pythia8 5.0 35.85 (nnlo [30])

ST_tW_antitop_5f_inclusiveDecays_TuneCP5_PSweights_13TeV-powheg-pythia8 5.0 35.85 (nnlo [30])

TTTo2L2Nu_TuneCP5_PSweights_13TeV-powheg-pythia8 65.9 88.2 (nnlo [14, 28])

TTToSemiLeptonic_TuneCP5_PSweights_13TeV-powheg-pythia8 107.3 365.3 (nnlo [14, 28])

WJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8 259.8 61526.7 (nnlo [206])

WToLNu_0J_13TeV-amcatnloFXFX-pythia8 98.9 50131.98 (nnlo)

WToLNu_1J_13TeV-amcatnloFXFX-pythia8 41.4 8426.09 (nnlo)

WToLNu_2J_13TeV-amcatnloFXFX-pythia8 253.2 3172.96 (nnlo)

DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8 120.8 5765.4 (nnlo [206])
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Table A.2: Systematically varied tt samples for the 2016 analysis. The

samples are privately produced using o�cial miniAODv3 samples and ac-

count for systematic uncertainties in the matching of parton shower to

matrix element, controlled by the parameter hdamp, and in the underlying

event. They are scaled with the same cross section times branching ratio

as for the nominal samples. The fragment “mullerd-privNanoAODv5_2016-

bf4f02b1b38�dc426e6dbc4bfc0a03c/USER” is omitted everywhere.

Sample name events (×10
6
)

hdamp

TTTo2L2Nu_hdampDOWN_TuneCP5_PSweights_13TeV-powheg-pythia8 14.9

TTTo2L2Nu_hdampUP_TuneCP5_PSweights_13TeV-powheg-pythia8 14.5

TTToSemiLeptonic_hdampDOWN_TuneCP5_PSweights_13TeV-powheg-pythia8 29.8

TTToSemiLeptonic_hdampUP_TuneCP5_PSweights_13TeV-powheg-pythia8 29.7

Underlying event

TTTo2L2Nu_TuneCP5down_PSweights_13TeV-powheg-pythia8 11.1

TTTo2L2Nu_TuneCP5up_PSweights_13TeV-powheg-pythia8 13.9

TTToSemiLeptonic_TuneCP5down_PSweights_13TeV-powheg-pythia8 23.4

TTToSemiLeptonic_TuneCP5up_PSweights_13TeV-powheg-pythia8 21.7

Table A.3: Datasets for the 2016 analysis. The di�erent 2016 data taking

periods with the corresponding run ranges and integrated luminosities are listed.

The fragments “SingleMuon” and “SingleElectron” are indicated with “. . . ”.

Period run range int. luminosity (�
−1

)

/. . . /Run2016B_ver2-Nano1June2019_ver2-v1/NANOAOD 272007–275376 5.8

/. . . /Run2016C-Nano1June2019-v1/NANOAOD 275657–276283 2.6

/. . . /Run2016D-Nano1June2019-v1/NANOAOD 276315–276811 4.2

/. . . /Run2016E-Nano1June2019-v1/NANOAOD 276831–277420 4.0

/. . . /Run2016F-Nano1June2019-v1/NANOAOD 277772–278808 3.1

/. . . /Run2016G-Nano1June2019-v1/NANOAOD 278820–280385 7.5

/. . . /Run2016H-Nano1June2019-v1/NANOAOD 280919–284044 8.6

Total 272007–284044 35.9
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A.2. 2017 analysis

A.2 2017 analysis

Table A.4: Nominal simulation samples for the 2017 analysis. The sam-

ples are listed together with the generated number of events and the cross

section times branching ratio (BR). If not stated otherwise, the cross section

obtained from the generator is used. The fragment “RunIIFall17NanoAODv5-

PU2017_12Apr2018_Nano1June2019_102X_mc2017_realistic_v7-v1. . . ” and the

post�x “/NANOAODSIM” are omitted everywhere.

Sample name

events cross section

(×10
6
) × BR (pb)

ST_s-channel_4f_leptonDecays_TuneCP5_PSweights_13TeV-amcatnlo-pythia8 9.8 3.36 (nlo[30])

ST_s-channel_4f_leptonDecays_TuneCP5_13TeV-amcatnlo-pythia8 9.6 3.36 (nlo[30])

ST_t-channel_top_4f_InclusiveDecays_TuneCP5_PSweights_13TeV-powheg-pythia8 122.7 136.02 (nlo[30])

ST_t-channel_antitop_4f_InclusiveDecays_TuneCP5_PSweights_13TeV-powheg-pythia8 64.8 80.95 (nlo[30])

ST_tW_top_5f_NoFullyHadronicDecays_TuneCP5_PSweights_13TeV-powheg-pythia8 5.1 19.6 (nnlo[30])

ST_tW_antitop_5f_NoFullyHadronicDecays_TuneCP5_PSweights_13TeV-powheg-pythia8 5.6 19.6 (nnlo[30])

TTTo2L2Nu_TuneCP5_PSweights_13TeV-powheg-pythia8 69.7 88.2 (nnlo[28])

TTToSemiLeptonic_TuneCP5_PSweights_13TeV-powheg-pythia8 111.3 365.3 (nnlo[28])

WJetsToLNu_0J_TuneCP5_13TeV-amcatnloFXFX-pythia8 180.7 50131.98 (nnlo)

WJetsToLNu_1J_TuneCP5_13TeV-amcatnloFXFX-pythia8 169.9 8426.09 (nnlo)

WJetsToLNu_2J_TuneCP5_13TeV-amcatnloFXFX-pythia8 98.3 3172.96 (nnlo)

DYJetsToLL_M-50_TuneCP5_13TeV-amcatnloFXFX-pythia8 186.0 5765.4 (nnlo [206])
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A. List of MC simulation samples and datasets

Table A.5: Systematically varied tt samples for the 2017 analysis. The

samples account for systematic uncertainties in the matching of parton shower

to matrix element, controlled by the parameter hdamp, and in the underly-

ing event. They are scaled with the same cross section times branching

ratio as for the nominal samples. The fragment “RunIIFall17NanoAODv5-

PU2017_12Apr2018_Nano1June2019_102X_mc2017_realistic_v7-v1. . . ” and the

post�x “/NANOAODSIM” are omitted everywhere.

Sample name events (×10
6
)

hdamp

TTTo2L2Nu_hdampDOWN_TuneCP5_PSweights_13TeV-powheg-pythia8 5.5

TTTo2L2Nu_hdampUP_TuneCP5_PSweights_13TeV-powheg-pythia8 3.3

TTToSemiLeptonic_hdampDOWN_TuneCP5_PSweights_13TeV-powheg-pythia8 26.4

TTToSemiLeptonic_hdampUP_TuneCP5_PSweights_13TeV-powheg-pythia8 24.0

Underlying event

TTTo2L2Nu_TuneCP5down_PSweights_13TeV-powheg-pythia8 5.5

TTTo2L2Nu_TuneCP5up_PSweights_13TeV-powheg-pythia8 5.5

TTToSemiLeptonic_TuneCP5down_PSweights_13TeV-powheg-pythia8 27.1

TTToSemiLeptonic_TuneCP5up_PSweights_13TeV-powheg-pythia8 20.1

Table A.6: Datasets for the 2017 analysis. The di�erent 2017 data taking

periods with the corresponding run ranges and integrated luminosities are listed.

The fragments “SingleMuon” and “SingleElectron” are indicated with “. . . ”.

Period run range int. luminosity (�
−1

)

/. . . /Run2017B-Nano1June2019-v1/NANOAOD 297046–299329 4.8

/. . . /Run2017C-Nano1June2019-v1/NANOAOD 299368–302029 9.7

/. . . /Run2017D-Nano1June2019-v1/NANOAOD 302030–303434 4.3

/. . . /Run2017E-Nano1June2019-v1/NANOAOD 303824–304797 9.3

/. . . /Run2017F-Nano1June2019-v1/NANOAOD 305040–306462 13.5

Total 297046–306462 41.5
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A.3. 2018 analysis

A.3 2018 analysis

Table A.7: Nominal simulation samples for the 2018 analysis. The samples

are listed together with the generated number of events and the cross section

times branching ratio (BR). If not stated otherwise, the cross section obtained

from the generator is used. The fragment “RunIIAutumn18NanoAODv5-

Nano1June2019_102X_upgrade2018_realistic_v19-v1. . . ” and the post�x

“/NANOAODSIM” are omitted everywhere.

Sample name

events cross section

(×10
6
) × BR (pb)

ST_s-channel_4f_leptonDecays_TuneCP5_13TeV-madgraph-pythia8 20.0 3.36 (nlo[30])

ST_t-channel_top_4f_InclusiveDecays_TuneCP5_13TeV-powheg-madspin-pythia8 154.3 136.02 (nlo[30])

ST_t-channel_antitop_4f_InclusiveDecays_TuneCP5_13TeV-powheg-madspin-pythia8 79.1 80.95 (nlo[30])

ST_tW_top_5f_NoFullyHadronicDecays_TuneCP5_13TeV-powheg-pythia8 7.6 19.6 (nnlo[30])

ST_tW_antitop_5f_NoFullyHadronicDecays_TuneCP5_13TeV-powheg-pythia8 5.8 19.6 (nnlo[30])

TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8 64.3 88.2 (nnlo[28])

TTToSemiLeptonic_TuneCP5_13TeV-powheg-pythia8 101.6 365.3 (nnlo[28])

WJetsToLNu_0J_TuneCP5_13TeV-amcatnloFXFX-pythia8 192.2 50131.98 (nnlo)

WJetsToLNu_1J_TuneCP5_13TeV-amcatnloFXFX-pythia8 171.7 8426.09 (nnlo)

WJetsToLNu_2J_TuneCP5_13TeV-amcatnloFXFX-pythia8 98.3 3172.96 (nnlo)

DYJetsToLL_M-50_TuneCP5_13TeV-amcatnloFXFX-pythia8 182.2 5765.4 (nnlo [206])
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A. List of MC simulation samples and datasets

Table A.8: Systematically varied tt samples for the 2018 analysis. The

samples account for systematic uncertainties in the matching of parton shower

to matrix element, controlled by the parameter hdamp, and in the underlying

event. They are scaled with the same cross section times branching ratio

as for the nominal samples. The fragment “RunIIAutumn18NanoAODv5-

Nano1June2019_102X_upgrade2018_realistic_v19-v1. . . ” and the post�x

“/NANOAODSIM” are omitted everywhere.

Sample name events (×10
6
)

hdamp

TTTo2L2Nu_hdampDOWN_TuneCP5_PSweights_13TeV-powheg-pythia8 5.5

TTTo2L2Nu_hdampUP_TuneCP5_PSweights_13TeV-powheg-pythia8 5.3

TTToSemiLeptonic_hdampDOWN_TuneCP5_PSweights_13TeV-powheg-pythia8 25.9

TTToSemiLeptonic_hdampUP_TuneCP5_PSweights_13TeV-powheg-pythia8 26.9

Underlying event

TTTo2L2Nu_TuneCP5down_PSweights_13TeV-powheg-pythia8 5.0

TTTo2L2Nu_TuneCP5up_PSweights_13TeV-powheg-pythia8 5.4

TTToSemiLeptonic_TuneCP5down_PSweights_13TeV-powheg-pythia8 20.5

TTToSemiLeptonic_TuneCP5up_PSweights_13TeV-powheg-pythia8 26.9

Table A.9: Datasets for the 2018 analysis. The di�erent 2018 data taking

periods with the corresponding run ranges and integrated luminosities are listed.

The fragments “SingleMuon” and “EGamma” are indicated with “. . . ”.

Period run range int. luminosity (�
−1

)

/. . . /Run2018A-Nano1June2019-v1/NANOAOD 315252–316995 14.0

/. . . /Run2018B-Nano1June2019-v1/NANOAOD 317080–319310 7.1

/. . . /Run2018C-Nano1June2019-v1/NANOAOD 319337–320065 6.9

/. . . /Run2018D-Nano1June2019-v1/NANOAOD 320673–325175 31.9

Total 315252–325175 59.7
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B. Distributions of reconstructed top
quark mass

0

0.05

0.1

0.15

610×

E
ve

nt
s/

B
in Data

 channels

 channelt

tW

tt

W+jets

Z+jets

QCD

 (13 TeV)-135.9 fb

)µ2j1t (e+

100 200 300 400
m(t) (GeV)

0.2−
0.1−

0
0.1
0.2

P
re

d.
D

at
a-

P
re

d. MC stat.

0

0.05

0.1

0.15

0.2

610×

E
ve

nt
s/

B
in Data

 channels

 channelt

tW

tt

W+jets

Z+jets

QCD

 (13 TeV)-141.5 fb

)µ2j1t (e+

100 200 300 400
m(t) (GeV)

0.2−
0.1−

0
0.1
0.2

P
re

d.
D

at
a-

P
re

d. MC stat.

0

0.1

0.2

0.3

610×

E
ve

nt
s/

B
in Data

 channels

 channelt

tW

tt

W+jets

Z+jets

QCD

 (13 TeV)-159.7 fb

)µ2j1t (e+

100 200 300 400
m(t) (GeV)

0.2−
0.1−

0
0.1
0.2

P
re

d.
D

at
a-

P
re

d. MC stat.

Figure B.1: Reconstructed top quark mass in the 2j1t control category.
The distributions for 2016 (top left), 2017 (top right), and 2018 (bottom) are

shown. The prediction is scaled to the number of observed events. The gray

band in the ratio panel corresponds to statistical uncertainties of the simulation.
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B. Distributions of reconstructed top quark mass
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Figure B.2: Reconstructed top quark mass in the 3j1t control category.
The distributions for 2016 (top left), 2017 (top right), and 2018 (bottom) are

shown. The prediction is scaled to the number of observed events. The gray

band in the ratio panel corresponds to statistical uncertainties of the simulation.
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Figure B.3: Reconstructed top quark mass in the 3j2t control category.
The distributions for 2016 (top left), 2017 (top right), and 2018 (bottom) are

shown. The prediction is scaled to the number of observed events. The gray

band in the ratio panel corresponds to statistical uncertainties of the simulation.
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C. Calculation of electron trigger
e�ciencies

C.1 2017 analysis

Table C.1: Electron trigger scale factors in dependence of electron pT and
|η | for the 2017 analysis. In addition to statistical uncertainties, a systematic

uncertainty of 1% is applied.

SF(|ηe |, pT,e) 32–37 GeV 37–45 GeV 45–55 GeV 55–200 GeV

0–0.8 0.876 ± 0.022 0.933 ± 0.020 0.936 ± 0.019 0.943 ± 0.013

0.8–1.5 0.790 ± 0.025 0.912 ± 0.024 0.936 ± 0.024 0.946 ± 0.015

1.5–2.1 0.652 ± 0.027 0.847 ± 0.029 0.904 ± 0.030 0.920 ± 0.019

Table C.2: Electron trigger scale factors in dependence of electron and
leading jet pT for the 2017 analysis. In addition to statistical uncertainties, a

systematic uncertainty of 1% is applied.

SF(pT, jet1, pT,e) electron

32–37 GeV 37–45 GeV 45–55 GeV 55–200 GeV

j
e
t

40–50 GeV 0.771 ± 0.063 0.896 ± 0.058 0.931 ± 0.058 0.939 ± 0.035

50–100 GeV 0.808 ± 0.020 0.908 ± 0.018 0.930 ± 0.018 0.940 ± 0.013

100–200 GeV 0.803 ± 0.025 0.918 ± 0.023 0.930 ± 0.023 0.942 ± 0.015
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C. Calculation of electron trigger e�iciencies

Table C.3: Electron trigger scale factors in dependence of leading jet pT
and |η | for the 2017 analysis. In addition to statistical uncertainties, a system-

atic uncertainty of 1% is applied.

SF(|ηjet1 |, pT, jet1) 40–50 GeV 50–100 GeV 100–200 GeV

0–0.8 0.922 ± 0.037 0.918 ± 0.014 0.929 ± 0.020

0.8–1.5 0.900 ± 0.042 0.922 ± 0.016 0.922 ± 0.024

1.5–2.0 0.911 ± 0.064 0.913 ± 0.022 0.908 ± 0.034

2.0–2.4 0.888 ± 0.077 0.914 ± 0.031 0.923 ± 0.050
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Figure C.1: Electron trigger scale factors in dependence of electron pT
and |η |. The scale factors are calculated using 2017 single muon data samples

and simulated dileptonic tt events.
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C.1. 2017 analysis
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Figure C.2: Electron trigger scale factors in dependence of electron and
leading jet pT. The scale factors are calculated using 2017 single muon data

samples and simulated dileptonic tt events.
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Figure C.3: Electron trigger scale factors in dependence of leading jet pT
and |η |. The scale factors are calculated using 2017 single muon data samples

and simulated dileptonic tt events.
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C. Calculation of electron trigger e�iciencies

C.2 2018 analysis

Table C.4: Electron trigger scale factors in dependence of electron pT and
|η | for the 2018 analysis. In addition to statistical uncertainties, a systematic

uncertainty of 1% is applied.

SF(|ηe |, pT,e) 32–37 GeV 37–45 GeV 45–55 GeV 55–200 GeV

0–0.8 0.932 ± 0.020 0.953 ± 0.017 0.959 ± 0.017 0.967 ± 0.012

0.8–1.5 0.868 ± 0.023 0.952 ± 0.021 0.952 ± 0.021 0.968 ± 0.014

1.5–2.1 0.820 ± 0.027 0.912 ± 0.025 0.936 ± 0.026 0.948 ± 0.017

Table C.5: Electron trigger scale factors in dependence of electron and
leading jet pT for the 2018 analysis. In addition to statistical uncertainties, a

systematic uncertainty of 1% is applied.

SF(pT, jet1, pT,e) electron

32–37 GeV 37–45 GeV 45–55 GeV 55–200 GeV

j
e
t

40–50 GeV 0.899 ± 0.058 0.958 ± 0.050 0.972 ± 0.050 0.958 ± 0.029

50–100 GeV 0.888 ± 0.018 0.945 ± 0.016 0.958 ± 0.016 0.965 ± 0.012

100–200 GeV 0.892 ± 0.023 0.947 ± 0.020 0.954 ± 0.020 0.964 ± 0.013

Table C.6: Electron trigger scale factors in dependence of leading jet pT
and |η | for the 2018 analysis. In addition to statistical uncertainties, a system-

atic uncertainty of 1% is applied.

SF(|ηjet1 |, pT, jet1) 40–50 GeV 50–100 GeV 100–200 GeV

0–0.8 0.922 ± 0.037 0.918 ± 0.014 0.929 ± 0.020

0.8–1.5 0.900 ± 0.042 0.922 ± 0.016 0.922 ± 0.024

1.5–2.0 0.911 ± 0.064 0.913 ± 0.022 0.908 ± 0.034

2.0–2.4 0.888 ± 0.077 0.914 ± 0.031 0.923 ± 0.050
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C.2. 2018 analysis
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Figure C.4: Electron trigger scale factors in dependence of electron pT
and |η |. The scale factors are calculated using 2018 single muon data samples

and simulated dileptonic tt events.
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Figure C.5: Electron trigger scale factors in dependence of electron and
leading jet pT. The scale factors are calculated using 2018 single muon data

samples and simulated dileptonic tt events.
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C. Calculation of electron trigger e�iciencies
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Figure C.6: Electron trigger scale factors in dependence of leading jet pT
and |η |. The scale factors are calculated using 2018 single muon data samples

and simulated dileptonic tt events.
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D. QCD multijet background estimation
in the control categories
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D. QCD multijet background estimation in the control categories
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Figure D.1: Estimation of the QCD multijet background contribution in
the 2j1t control category. The �t is performed to the pmiss

T
distributions for

2016 (top left), 2017 (top right), and 2018 (bottom) data. The error bars in the

ratio panel correspond to statistical uncertainties.

120



0 20 40 60 80 100 120 140 160 180 200 (GeV)miss

T
p

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
610×

E
ve

nt
s 

/ 1
0 

G
eV Data

Fit
Non-QCD
QCD

 (13 TeV)-135.9 fb

µ3-jet 1-tag e+

0 20 40 60 80 100 120 140 160 180 200

 (GeV)miss

T
p

0.8
0.9

1
1.1
1.2

D
at

a 
/ F

it 0 20 40 60 80 100 120 140 160 180 200 (GeV)miss

T
p

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

610×

E
ve

nt
s 

/ 1
0 

G
eV Data

Fit
Non-QCD
QCD

 (13 TeV)-141.5 fb

µ3-jet 1-tag e+

0 20 40 60 80 100 120 140 160 180 200

 (GeV)miss

T
p

0.8
0.9

1
1.1
1.2

D
at

a 
/ F

it

0 20 40 60 80 100 120 140 160 180 200 (GeV)miss

T
p

0.05

0.1

0.15

0.2

0.25

610×

E
ve

nt
s 

/ 1
0 

G
eV Data

Fit
Non-QCD
QCD

 (13 TeV)-159.7 fb

µ3-jet 1-tag e+

0 20 40 60 80 100 120 140 160 180 200

 (GeV)miss

T
p

0.8
0.9

1
1.1
1.2

D
at

a 
/ F

it

Figure D.2: Estimation of the QCD multijet background contribution in
the 3j1t control category. The �t is performed to the pmiss

T
distributions for

2016 (top left), 2017 (top right), and 2018 (bottom) data. The error bars in the

ratio panel correspond to statistical uncertainties.
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Figure D.3: Estimation of the QCD multijet background contribution in
the 3j2t control category. The �t is performed to the pmiss

T
distributions for

2016 (top left), 2017 (top right), and 2018 (bottom) data. The error bars in the

ratio panel correspond to statistical uncertainties.
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Table D.1: Estimation of the QCD multijet background contribution in
the 2j1t control category. The event yields are obtained from the �t to the

missing transverse momentum distribution and are displayed together with their

statistical uncertainties for the full range and for pmiss

T
> 30 GeV.

Year QCD yield (nQCD) QCD yield non-QCD yield (nnon-QCD) non-QCD yield

full range pmiss

T
> 30 GeV full range pmiss

T
> 30 GeV

2016 281 790 ± 540 145 460 ± 390 1 404 500 ± 2300 1 081 500 ± 2000

2017 377 720 ± 840 243 890 ± 670 1 814 600 ± 3400 1 443 500 ± 2900

2018 627 300 ± 1000 386 400 ± 810 2 946 100 ± 5400 2 319 800 ± 4700

Table D.2: Estimation of the QCD multijet background contribution in
the 3j1t control category. The event yields are obtained from the �t to the

missing transverse momentum distribution and are displayed together with their

statistical uncertainties for the full range and for pmiss

T
> 30 GeV.

Year QCD yield (nQCD) QCD yield non-QCD yield (nnon-QCD) non-QCD yield

full range pmiss

T
> 30 GeV full range pmiss

T
> 30 GeV

2016 105 260 ± 410 60 310 ± 310 907 500 ± 1200 733 800 ± 1100

2017 141 450 ± 660 97 840 ± 550 1 034 500 ± 1800 858 000 ± 1600

2018 216 330 ± 750 142 380 ± 610 1 607 700 ± 2600 1 326 400 ± 2300

Table D.3: Estimation of the QCD multijet background contribution in
the 3j2t control category. The event yields are obtained from the �t to the

missing transverse momentum distribution and are displayed together with their

statistical uncertainties for the full range and for pmiss

T
> 30 GeV.

Year QCD yield (nQCD) QCD yield non-QCD yield (nnon-QCD) non-QCD yield

full range pmiss

T
> 30 GeV full range pmiss

T
> 30 GeV

2016 21 760 ± 520 12 590 ± 390 389 830 ± 480 315 260 ± 420

2017 14 610 ± 430 10 180 ± 350 542 040 ± 750 445 990 ± 680

2018 11 750 ± 250 7750 ± 200 864 900 ± 1000 708 760 ± 930
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E. DNN for event classi�cation

E.1 DNN training

Table E.1: Sum of all weights of �rst hidden layer per variable for the
2016 DNN training. The variables are sorted by the highest value for the sum

of all weights obtained in the �rst hidden layer of the 2016 DNN.

Variable
∑

weights

m`b2 5.6

pT(`) 2.5

|η(`) − η(bl)| 2.2

pT(bs) 1.8

∆ϕ(t, bl) 1.8

|η(t) − η(bW)| 0.3

|η(ts) − η(bl)| 0.3

η(bs) −0.3

∆ϕ(bl, bs) −0.4

Variable
∑

weights

Fox Wolfram #3 −0.6

q(`) −0.8

η(bl) −1.0

cosθ ∗ −1.1

pmiss

T
−1.2

m(t) −1.4

pbb

T
−2.2

Ht −2.3

pT(bl) −4.5
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E. DNN for event classification

Table E.2: Sum of all weights of �rst hidden layer per variable for the
2017 DNN training. The variables are sorted by the highest value for the sum

of all weights obtained in the �rst hidden layer of the 2017 DNN.

Variable
∑

weights

∆ϕ(t, bl) 1.9

pmiss

T
0.8

|η(t) − η(bW)| 0.7

m`b2 0.6

η(bl) 0.3

∆ϕ(bl, bs) 0.1

|η(`) − η(bl)| 0.1

q(`) 0.0

η(bs) −0.2

Variable
∑

weights

pT(bs) −0.4

pT(`) −0.5

cosθ ∗ −0.6

m(t) −0.8

Fox Wolfram #3 −1.0

|η(ts) − η(bl)| −1.5

Ht −1.9

pbb

T
−3.2

pT(bl) −5.2

Table E.3: Sum of all weights of �rst hidden layer per variable for the
2018 DNN training. The variables are sorted by the highest value for the sum

of all weights obtained in the �rst hidden layer of the 2018 DNN.

Variable
∑

weights

m`b2 2.8

pmiss

T
2.6

∆ϕ(t, bl) 1.7

|η(`) − η(bl)| 1.7

|η(ts) − η(bl)| 1.6

|η(t) − η(bW)| 1.0

pT(`) 0.4

pT(bs) 0.2

η(bs) 0.2

Variable
∑

weights

∆ϕ(bl, bs) 0.1

q(`) 0.0

Ht −0.2

m(t) −0.7

η(bl) −1.3

cosθ ∗ −2.2

Fox Wolfram #3 −2.3

pbb

T
−2.9

pT(bl) −4.6
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E.1. DNN training

0

20

40

60

80

310×

E
ve

nt
s 

/ b
in Data

 channels

 channelt

tW

tt

W+jets

Z+jets

QCD

 (13 TeV)-135.9 fb

)µ2j2t (e+

0 50 100 150 200
) (GeV)

s
(b

T
p

0.2−
0.1−

0
0.1
0.2

P
re

d.
D

at
a-

P
re

d. MC stat.

0

50

100

310×

E
ve

nt
s 

/ b
in Data

 channels

 channelt

tW

tt

W+jets

Z+jets

QCD

 (13 TeV)-135.9 fb

)µ2j2t (e+

0 1 2 3
)
l

(t,bφ∆

0.2−
0.1−

0
0.1
0.2

P
re

d.
D

at
a-

P
re

d. MC stat.

0

10

20

30

310×

E
ve

nt
s 

/ b
in Data

 channels

 channelt

tW

tt

W+jets

Z+jets

QCD

 (13 TeV)-135.9 fb

)µ2j2t (e+

0 2 4 6
)|

W
(bη(t) - η|

0.2−
0.1−

0
0.1
0.2

P
re

d.
D

at
a-

P
re

d. MC stat.

0

10

20

30

310×
E

ve
nt

s 
/ b

in Data

 channels

 channelt

tW

tt

W+jets

Z+jets

QCD

 (13 TeV)-135.9 fb

)µ2j2t (e+

0 1 2 3 4 5
)|
l

(bη) - 
s

(tη|

0.2−
0.1−

0
0.1
0.2

P
re

d.
D

at
a-

P
re

d. MC stat.

0

5

10

15

20

310×

E
ve

nt
s 

/ b
in Data

 channels

 channelt

tW

tt

W+jets

Z+jets

QCD

 (13 TeV)-135.9 fb

)µ2j2t (e+

2− 1− 0 1 2
)

s
(bη

0.2−
0.1−

0
0.1
0.2

P
re

d.
D

at
a-

P
re

d. MC stat.

0

20

40

310×

E
ve

nt
s 

/ b
in Data

 channels

 channelt

tW

tt

W+jets

Z+jets

QCD

 (13 TeV)-135.9 fb

)µ2j2t (e+

0 1 2 3
)s,b

l
(bφ∆

0.2−
0.1−

0
0.1
0.2

P
re

d.
D

at
a-

P
re

d. MC stat.

Figure E.1: Input variables ranked 4th to 9th for the DNN training in 2016.
The distributions are shown in the 2j2t signal category for simulation and data.

The prediction is scaled to the number of observed events. The gray band in the

ratio panel corresponds to statistical uncertainties of the simulation.

127



E. DNN for event classification
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Figure E.2: Input variables ranked 10th to 15th for the DNN training in
2016. The distributions are shown in the 2j2t signal category for simulation and

data. The prediction is scaled to the number of observed events. The gray band

in the ratio panel corresponds to statistical uncertainties of the simulation.
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Figure E.3: Input variables ranked 16th to 18th for the DNN training in
2016. The distributions are shown in the 2j2t signal category for simulation and

data. The prediction is scaled to the number of observed events. The gray band

in the ratio panel corresponds to statistical uncertainties of the simulation.
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Figure E.4: Input variables ranked 4th to 9th for the DNN training in 2017.
The distributions are shown in the 2j2t signal category for simulation and data.

The prediction is scaled to the number of observed events. The gray band in the

ratio panel corresponds to statistical uncertainties of the simulation.
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Figure E.5: Input variables ranked 10th to 15th for the DNN training in
2017. The distributions are shown in the 2j2t signal category for simulation and

data. The prediction is scaled to the number of observed events. The gray band

in the ratio panel corresponds to statistical uncertainties of the simulation.
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Figure E.6: Input variables ranked 16th to 18th for the DNN training in
2017. The distributions are shown in the 2j2t signal category for simulation and

data. The prediction is scaled to the number of observed events. The gray band

in the ratio panel corresponds to statistical uncertainties of the simulation.
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Figure E.7: Input variables ranked 4th to 9th for the DNN training in 2018.
The distributions are shown in the 2j2t signal category for simulation and data.

The prediction is scaled to the number of observed events. The gray band in the

ratio panel corresponds to statistical uncertainties of the simulation.
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Figure E.8: Input variables ranked 10th to 15th for the DNN training in
2018. The distributions are shown in the 2j2t signal category for simulation and

data. The prediction is scaled to the number of observed events. The gray band

in the ratio panel corresponds to statistical uncertainties of the simulation.
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Figure E.9: Input variables ranked 16th to 18th for the DNN training in
2018. The distributions are shown in the 2j2t signal category for simulation and

data. The prediction is scaled to the number of observed events. The gray band

in the ratio panel corresponds to statistical uncertainties of the simulation.
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Figure E.10: Loss function of the DNN training. The loss function values in

dependence of the epoch are shown for the training and test samples for the 2016

(top), 2017 (center), and 2018 (bottom) analysis. No overtraining is detected.
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E.2. Prefit DNN output distributions

E.2 Pre�t DNN output distributions
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Figure E.11: Pre�t distributions of the DNN output values in the 2j1t con-
trol category. The distributions are shown for the 2016 (top left), 2017 (top

right), and 2018 analysis (bottom). The hatched area in the main panel and the

blue uncertainty band in the ratio panel comprise the statistical uncertainty and

all systematic uncertainty sources.

137



E. DNN for event classification

0

200

400

310×

E
ve

nt
s 

/ 0
.0

67
 u

ni
ts Data

 channels

 channelt

tW

tt

W+jets

Z+jets

QCD

Prefit unc.

 (13 TeV)-135.9 fb

)µ3j1t (e+

0 0.2 0.4 0.6
DNN output

0.2−

0

0.2

P
re

d.
D

at
a-

P
re

d.

Prefit unc.

0

100

200

310×

E
ve

nt
s 

/ 0
.0

67
 u

ni
ts Data

 channels

 channelt

tW

tt

W+jets

Z+jets

QCD

Prefit unc.

 (13 TeV)-141.5 fb

)µ3j1t (e+

0 0.2 0.4 0.6
DNN output

0.2−

0

0.2

P
re

d.
D

at
a-

P
re

d.

Prefit unc.

0

100

200

300

400

310×

E
ve

nt
s 

/ 0
.0

67
 u

ni
ts Data

 channels

 channelt

tW

tt

W+jets

Z+jets

QCD

Prefit unc.

 (13 TeV)-159.7 fb

)µ3j1t (e+

0 0.2 0.4 0.6
DNN output

0.2−

0

0.2

P
re

d.
D

at
a-

P
re

d.

Prefit unc.

Figure E.12: Pre�t distributions of the DNN output values in the 3j1t con-
trol category. The distributions are shown for the 2016 (top left), 2017 (top

right), and 2018 analysis (bottom). The hatched area in the main panel and the

blue uncertainty band in the ratio panel comprise the statistical uncertainty and

all systematic uncertainty sources.
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Figure E.13: Pre�t distributions of the DNN output values in the 3j2t con-
trol category. The distributions are shown for the 2016 (top left), 2017 (top

right), and 2018 analysis (bottom). The hatched area in the main panel and the

blue uncertainty band in the ratio panel comprise the statistical uncertainty and

all systematic uncertainty sources.
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F. Correlation model for JES uncertainty
sources

Table F.1: Correlation of the JES uncertainties between di�erent years of
data taking. The systematic uncertainties are included as nuisance parameters

in the �t, and are either considered as fully correlated or uncorrelated.

JES uncertainty source Corr. 2016/2017 (%) Corr. 2016/2018 (%) Corr. 2017/2018 (%)

AbsoluteMPFBias 100 100 100

AbsoluteScale 100 100 100

AbsoluteStat 0 0 0

FlavorQCD 100 100 100

Fragmentation 100 100 100

PileUpDataMC 100 100 100

PileUpPtBB 100 100 100

PileUpPtEC1 100 100 100

PileUpPtEC2 100 100 100

PileUpPtHF 100 100 100

PileUpPtRef 100 100 100

RelativeFSR 100 100 100

RelativeJEREC1 0 0 0

RelativeJEREC2 0 0 0

RelativeJERHF 100 100 100

RelativePtBB 100 100 100

RelativePtEC1 0 0 0

RelativePtEC2 0 0 0

RelativePtHF 100 100 100

RelativeBal 100 100 100

RelativeStatEC 0 0 0

RelativeStatFSR 0 0 0

RelativeStatHF 0 0 0

SinglePionECAL 100 100 100

SinglePionHCAL 100 100 100

TimePtEta 0 0 0
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