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1. Introduction

Modern machine learning (ML) methods are becoming increasingly popular among natural
sciences and are already widely used in high-energy physics to solve classification and
regression tasks for large amounts of data. In the analysis of H → ττ events based on
multi-variate methods (MVA), neural networks (NN) are an integral part of the analysis and
are used for the classification of signal and background events. NNs by construction learn
to classify these events directly from the data presented to them and without additional
human inputs. The classification of the NN is hereby not only based on selections on the
input variables but also on non-trivial correlations among the used input variables, making
the classification of the NN oftentimes more efficient than a selection-based analysis.
Due to this self-learning capabilities of the NN, it is necessary to understand on the one
hand the decision made by them and on the other hand the input variables given to them
in the training process. In the first part of this thesis, a strategy is developed and used to
remove input variables with small impact on the classification of the NN by using Taylor
coefficients [1] to assess their influence on the NN output. This is done for two reasons: To
ease the computational effort needed to verify the input variables and to align the set of
input variables used for the analysis across the multiple NNs used in the H → ττ analysis.
The input variables of the NN represent real physics measurements and as such are subject
to systematic uncertainties. In the current analysis, no prior information about systematic
uncertainties is implemented in the NN training. However, there are two motivations to
do this: On the one hand, the prediction of the NN could be compromised by systematic
uncertainties if the prediction is based on the information of input variables with large
systematic uncertainties. On the other hand, the systematic uncertainties of a given input
variable might be directly dependent on other parameters. These dependencies might only
be poorly known or even unknown. In such a case, the NN output might become more
reliable if it is made more robust against those input variables. In the second part of
this thesis, two approaches to implement prior information about systematic variations
are investigated: Firstly, an already known approach using adversarial NNs [2] is tested.
Secondly, a novel approach is introduced in which a penalty term in the loss function is
used to uncorrelate the NN output from a given input variable with systematic variations.
This approach is first investigated with a simple pseudo-experiment and afterwards with a
high-energy physics example.
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2. The H → ττ analysis

An integral part of the current standard model of particle physics (SM) is the Higgs boson.
The successful discovery of this boson in 2012 [3] confirmed the SM as the so far best and
most complete theory in particle physics. The discovery of the Higgs boson was confirmed
by using highly pure final states with clear signals. Since then, it was discovered in many
more – often more complicated – final states. One of these final states is the Higgs boson
decay into two tau leptons. In this chapter an overview of the current MVA-based analysis
of the H → ττ decay will be given which implements NNs to classify the events. This
analysis is based on data measured by the Compact Muon Solenoid (CMS) detector [4]
located at the European Organization of Nuclear Research (CERN) [5].

2.1. The Higgs boson

As the name implies, the intrinsic spin of a Higgs boson is an integer value of 0. Other
than the rest of the bosons in the SM, however, the Higgs boson does not mediate a gauge
interaction. Mathematically, it is a remnant of the Higgs mechanism, an additional degree
of freedom which was not absorbed by the vector bosons. The so-called SM Higgs boson is
the result of the simplest possible formulation of the Higgs mechanism [7, 8, 9, 10, 11, 12].
All measurements indicate that the particle discovered in 2012 at mH = 125GeV does
indeed behave like this SM Higgs boson [3, 13]. The Higgs boson does not carry any
charges. The coupling of a Higgs boson to other particles solely depends on the mass of
those particles. In fact it can be shown that the Higgs boson couples linearly to the mass of
fermions and quadratically to the mass of the gauge bosons. This can be seen in figure 2.1
where the coupling constant of fermions and the square root of the coupling constant of
gauge bosons is shown as a function of the mass of the particles.

In general there are four main processes via which a Higgs boson is produced at the Large
Hadron Collider (LHC) at CERN [15]. Figure 2.2 shows the Feynman diagrams for all
four processes. From these four, the gluon fusion (top left) and vector boson fusion (top
right) have by far the largest production cross section. A comparison of all production
cross sections are shown in figure 2.3. As can be inferred from this graph, the cross section
of gluon fusion is larger than the cross section of vector boson fusion (VBF) by a factor of
around 10. Nevertheless, the VBF production has a significant influence on the analysis as
the unique event topology provides a more distinct signature that allows the suppression of
background processes.

As all SM particles except gluons and photons have mass, the Higgs boson can decay into
almost every kinematically possible particle of the SM directly and into all particles via
loop interactions. The branching ratios of the Higgs boson can be seen in figure 2.4. As the
coupling of the Higgs boson is dependent on the mass of particles, the branching ratios are
dominated by vector bosons for higher masses and by bottom quarks for lower masses. The
initial discovery of the SM Higgs boson in 2012 was driven by the decay of the Higgs boson
into two Z bosons, which further decayed into four leptons, as well as the decay into two
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4 2. The H → ττ analysis

Figure 2.1.: Coupling of the SM Higgs boson. The y-axis has a different scale for
fermions and bosons [6].

photons. Both decays have very low branching ratios compared to b quarks or W bosons,
but they make up for this drawback by having very clean final states that are easier to
reconstruct and distinguish from background processes. The decays into b quarks and W
bosons face the problem of large backgrounds induced by processes with similar signatures.

At the relevant mass of mH = 125GeV, the branching ratio into two tau leptons is
approximately 6 %. The decay of the Higgs boson into two fermions is illustrated by the
Feynman graph in figure 2.5. While the decay of the Higgs boson into two tau leptons
is not necessarily rare and does not have the same problems of a large background as b
quarks and W bosons, the reconstruction of this final state is still challenging, mostly due
to the problematic decay of the two τ ’s into at least two undetectable neutrinos.

2.2. The CMS experiment

The data which this analysis uses was collected by the CMS experiment. The CMS
experiment is stationed at the LHC, a proton proton collider with 27 km in circumference
and a center of mass energy of currently

√
s = 13TeV. The CMS experiment is one of

four major experiments located at the collider (see figure 2.6). The detector is a classic 4π
detector encompassing the beam tubes with a point of collision at its center. It consists
of four main components as seen in figure 2.7, that are aligned around the beam pipe.
The detector weighs around 14000 t with a length of 21m and 15m in diameter. The
superconducting solenoid produces a magnetic field of 3.8T to bend the tracks of charged
particles. The four main components from most inner to most outer component are:

• Tracking system: Nearest to the beam pipe is the tracking system of the detector.
It consists of an array of silicon pixel and strip detectors. Charged particles lead to an
electric signal in the silicon detectors along their trajectory. Each electric signal ("hit")
is measured and the particle track is later reconstructed by following the path of the
detectors that were hit. The interaction point of particles can also be reconstructed
by extrapolating the paths of the particles. From the curvature of the track, the
transverse momentum as well as the charge of the particle can be determined.
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(a) Gluon fusion production (b) Vector boson fusion

(c) tt̄ associated production (d) Higgs strahlung of boosted vector bosons

Figure 2.2.: Main processes for Higgs production at the LHC.

• Electromagnetic calorimeter: Next in line is the electromagnetic calorimeter
(ECAL). It measures the energy of photons and electrons by initiating an electro-
magnetic shower when a photon or electron passes through. A scintillating material
produces photons proportional to the energy of the particles in the shower. The
emitted photons are then measured with photo diodes. The ECAL of the CMS
experiment is homogeneous meaning that the same material is used for producing
showers and scintillation. This way, no energy information is lost by being deposited
in material that does not produce photons. The downside is that the scintillation of
the material is much weaker than in specialized szintillator materials and thus harder
to read out with photo diodes. The used material is lead tungstate crystals.

• Hadronic calorimeter: The hadronic calorimeter (HCAL) measures the energy of
hadrons which pass through the ECAL. It does this by the same principle as used in
the ECAL. The HCAL is a sampling calorimeter. Absorbing material such as brass
alternates with scintillating material. In general an HCAL is much larger than the
ECAL due to the larger interaction length of hadrons and has a larger uncertainty
on the measured energy mostly due to the decay of hadrons into uncharged particles.

• Muon system: The muon system follows the superconducting solenoid which sur-
rounds the HCAL. As muons are minimally interacting particles and can penetrate
several meters of iron without interaction, they are the only SM particles beside neu-
trinos that reach this point. The muon system consists of gaseous tracking chambers,
the so-called muon chambers. The momentum and charge of the particle can again
be determined by the curvature of a muon in this tracking systems. This information
is combined with the information of the innermost tracking system for consistency.
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Figure 2.3.: Cross sections of various production processes for different masses of the
Higgs boson [14].

As τ leptons have a mean lifetime of only 2.9× 10−13 s, they cannot be directly measured
in the detector. Instead the decay products of the di-tau system are measured. The decay
of a τ lepton is shown in figure 2.8. There are four "final states" which can be directly
measured in the detector: the eµ final state, the eτh final state, the µτh final state and the
τhτh final state. Here, τh represents a particle jet induced by a decay of a τ lepton.
After the measurement by all subdetectors, the data is processed by several triggers to
reduce the immense influx of data from an event rate of 40MHz to 100Hz. As rare
processes such as the production and decay of a Higgs boson are the focus of analyses, most
proton-proton collisions that are measured at the experiment can be immediately discarded
as they are only related to already known physics. The trigger system at CMS has two
parts: The level one trigger system (L1) is a system of hardware triggers implemented in the
form of field-programmable gate arrays (FPGA) directly on the detectors that immediately
reduce the rate of events to approximately 100 kHz. This data is then sent to the high
level trigger system (HLT) which is a computer farm of around 1000 standard computers
performing simple analysis tasks to reduce the amount of data further and concentrate on
only those events that are of interest. The events are then finally stored to disk for further
offline analysis [19].

2.3. Event identification and uncertainties

The events measured at the CMS experiment can be classified into signal processes which
are of interest and background processes which have a similar signature then the signal
processes and can therefore obscure them. Furthermore, each measurement in a physics
analysis is subject to systematic variations which shift the data in certain directions making
the processes potentially harder to discern from each other. As such a good understanding
of the systematic variations is paramount for a successful signal extraction.

2.3.1. Signal processes

The signal classes consist of three Higgs production processes in which the produced Higgs
boson decays into a di-tau system: the VBF, Higgs Strahlung in which the vector boson
decayed into two quarks, and gluon fusion. Those processes are selected due to their unique
event topology which makes it easier to suppress background processes. The VBF and
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Figure 2.4.: SM Higgs boson branching ratios [16]. The highlighted area of the left
graph is enlarged in the right graph. The mass of the SM Higgs boson is shown as a
dashed red line.

Figure 2.5.: Higgs decay into two fermions.

Higgs Strahlung process are combined into a single signal category due to very similar
signatures. The two signal categories are then further split into smaller categories based
on the reconstructed mass, transverse momentum and number of jets. This so-called stage
1.2 binning is depicted in figure 2.9. The stage 1.2 binning was slightly changed for this
analysis. The red boxes around the categories symbolize which categories were condensed
into one category for the training of the NN discussed in section 2.4.1. The condensation
of categories was necessary to have a sufficient amount of data in each category for the
training of the NN and for the statistical inference afterwards. For each signal category, a
signal strength can be extracted and the contributions of each category can be combined to
extract a single inclusive signal strength for the process H → ττ . For the analysis described
in section 3, the signal categories of stage 1.2 binning were simplified to the so called stage
0 binning. It only consists of the two categories: gluon fusion and the combination of VBF
and Higgs Strahlung. In theory, one could also combine those two signal categories into
one single signal category. This inclusive analysis, however, was not used for the training
of any NN presented here. The signal processes are the same for all four final states of the
di-tau system measured in the detector and across all years.
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Figure 2.6.: The accelerator complex at CERN with all parts [17].

2.3.2. Background processes

There are several physics processes that have similar final states as the one described above
and can thus be confused with signal processes. For this analysis, the following background
processes are relevant:

• Z → ττ : Z bosons are produced very frequently via the Drell-Yan process at the
LHC. The Z boson can decay into tau leptons with a branching ratio of 3.3%. The
measured final states are the same as for the H → ττ decay except for the invariant
mass of the two tau leptons and the spin. As mentioned before though, accurately
measuring the energy of the system is difficult due to neutrinos produced in the decay.
This makes this background difficult to separate from the signal processes and thus
it is the most dominant background process.

• Z → ll : The ll denotes the decay of Z bosons to electrons, muons and neutrinos.
Those decays have the same branching ratio as the τ decay due to lepton universality.
In principle, this decay should be discernible from the signal processes due to different
final states, but due to object misidentification in the reconstruction of the particles,
the leptons could be falsely identified as τ leptons. Those misidentified leptons can
also occur due to pile-up or initial state radiation. This background can be effectively
suppressed with additional lepton vetos.

• W + Jets: This process can be mistaken for the signal process in two different ways:
Firstly, a jet can be falsely identified as a hadronically decaying τ . Secondly, the W
boson can decay into a τ lepton and – together with a misidentified jet – can mimic
the final state of the signal process. This background is produced very frequently at
the LHC. It can be suppressed in certain channels with additional vetos and cuts on
the τ mass.

• tt̄ : Top quark production is not the most frequent process at the LHC. Nevertheless
it is a relevant background for this analysis, as the top quark exclusively decays into
W bosons which again can decay further into τ leptons potentially creating a di-tau
system with a similar signature to the signal process. As in other processes, jets and
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Figure 2.7.: Slice of the CMS detector with all major detector components and example
tracks [18].

leptons produced by this process can also be misidentified as hadronically decaying τ
leptons. This background can also be suppressed by b-tag vetos due to the presence
of two b quarks in this decay.

• QCD: The QCD background sums up all final states with a high jet multiplicity.
It is the most frequent and most versatile background, and most analyses at the
LHC have to take this background into account. Some of this final state jets may be
reconstructed as hadronically decaying taus, making it a background for this analysis
as well.

• Di-Boson: This background is a combination of Z and W bosons decaying in such
a way to be misidentified as the signal process. The contribution of this process is
relatively small.

Figure 2.8.: Potentially decays of a τ− lepton. Most decays involve two undetectable
neutrinos.
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(a) Binning for gluon fusion.

(b) Binning for vector boson fusion.

Figure 2.9.: Binning scheme for signal classes in classification with NNs [20]. The red
boxes around the processes indicate one signal class during the NN classification as some
processes were combined into one process to have enough events for training for the NN.
The high mass category for mjj > 350 of the gluon fusion was merged with the VBF
process.

In general these backgrounds were estimated using Monte Carlo (MC) simulation techniques.
Sometimes certain backgrounds were grouped together when training the NN into a misc
category due to a low number of events or similar signatures.

While the MC simulation shows good agreement with the data, a background estimation
that is derived from real data is in general preferable as the agreement to real data should
be given by construction. The current analysis uses two of this data-driven methods to
estimate most backgrounds given above:

• τ-embedding: All process with two genuine τ leptons – meaning not a τ due to
misidentification in reconstruction – in the final state can be estimated using this
technique. Taking events from data with a µµ final state, the muons are removed
from the event record and replaced with simulated τ leptons. The simulation part is
reduced to the decay of the τ leptons. Furthermore, due to the high number of µµ
events in data, the overall statistics for all events are increased by the embedding
method. A more detailed description can be found in [21].
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• FF method: All processes with jets misidentified as hadronically decaying τ leptons
can be estimated with this method. The general principle of the FF method is to
measure a transfer factor ratio FF in a so-called determination region free of genuine
ττ events which is not used in the actual analysis. FF is defined by the number of
hadronic τ decays with certain identification requirements to the number of hadronic
τ decays where those identification requirements were inverted. Afterwards a signal
region is defined, which is mostly populated by signal events relevant for the analysis
but also with a small number of background events that is estimated by this method.
This signal region is then mirrored into an application region by inverting a certain
requirement that was used to construct the signal region, e.g. the requirement of
the τ leptons to be isolated. The requirement that is inverted is chosen in such a
way that the application region is orthogonal to the signal region. The application
region would then only uses events with e.g. non-isolated τ leptons. This region is
therefore dominated by background events with only a small number of signal events.
The universal assumption made in this technique is that FF which was previously
measured in the determination region is the same for the number of background
events measured between the signal region and the application region. With this
assumption the number of background events NSignal Region can simply be estimated
as

NSignal Region = NApplication Region × FF . (2.1)

A more detailed description of the technique and the requirements used in this analysis
is given in [22].

Other than the signal processes, the background categories for the classification of the NN
can vary between final states as certain processes are more relevant in certain final states.
For the main analysis of H → ττ events, the data-driven background categories are used for
the training of the NN. For the study in section 3, however, the MC simulated backgrounds
are used.

2.3.3. Systematic uncertainties

An important part in any physics analysis is the handling of systematic uncertainties.
Systematic uncertainties are all uncertainties that are not caused by statistical fluctuations
of the data. They are often caused by inaccuracies in measurements, simulation and theory.
The correct handling of them is paramount to get a reliable and robust result for the
accuracy of the measurement. In general, the systematic uncertainties in this analysis are
applied on histogram level after the classification of the processes either via additional
datasets containing the shifted values or via weights. It is to be noted that many variables
are highly correlated and systematic uncertainties have to be propagated to all correlated
variables. There are three main sources of systematic uncertainties in the current analysis
that can then be further separated into categories.

The largest group are the shape uncertainties. They cause shifts in the shapes of the
histograms and are applied via statistical weights or shifts for the events in each respective
variables. Shape uncertainties are:

• Energy scale uncertainties: There are several uncertainties on measured energy
scales. For this analysis the τ energy scale, the electron energy scale, the jet energy
scale, the fake τ energy scale as well as the missing transverse momentum (MET)
energy scale are considered.
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• Reweighting uncertainties: Reweighting uncertainties are applied to the top quark
pT and the Drell-Yan mass mll and pT . They account for higher-order effects and
miss-modeling in the matrix element calculation in the simulation.

• Reconstruction uncertainties: Those uncertainties encompass the b-tagging effi-
ciency mostly used to identify the tt̄ background as well the the τh tracking efficiency
in embedded event samples.

• FF method uncertainties: The FF method introduces several uncertainties that
are dependent on which background is estimated using this method. This includes
a statistical uncertainty due to a fit uncertainty, uncertainties due to non-closure
corrections and uncertainties due to data-to-simulation correction factors. For a more
complete overview see [23].

• QCD estimate uncertainties: This uncertainty is only applied in the eµ final
state, as all other methods use the FF method to estimate the QCD background.

• Bin-by-bin uncertainties: Bin-by-bin uncertainties stem from the limited number
of the simulated events. The Barlow-Beeston approach [24] is used to measure the
effect of them. Each bin is weighted with its associated Poisson error to produce
alternative shapes and simulate the bin-by-bin uncertainty.

• Other uncertainties: Other uncertainties include the uncertainty due to prefiring
and the tt̄ contamination in the embedded samples. Prefiring means that a trigger
for a detector is prematurely blocked because jets or photons were falsely matched to
a previous event due to a shift in timing.

The second largest category of uncertainties are the normalization uncertainties. They are
applied directly on the yield of each affected process via sampling of an additional term
instead of the shape of the histogram.

• Luminosity uncertainty: These uncertainties are applied per year and are usually
around 2.5%. They are introduced for simulated processes.

• Electron, muon and tau ID efficiency: The efficiency of reconstructing and
identifying the leptons.

• Trigger efficiencies: As explained in the previous section, the preselection of events
for data and simulation is done via triggers. Those triggers are also subject to a
systematic uncertainty which has to be accounted for.

• Background and fake factor normalization uncertainties: The background
normalization uncertainties vary between 4− 6% depending on the background and
mostly account for the uncertainty in the cross section of the associated process. The
fake factor normalization uncertainty stems from the substraction of the contribution
of processes with real τ ’s in the final state in the application region.

• l→ τ fake rate: The uncertainty associated with the misclassification of leptons as
τ ’s.

The last category are the uncertainties in the signal theory. They can have effects on both
the yield and the shape. The theory uncertainties include:

• Cross section and branching ratio uncertainties: Uncertainties due to incom-
plete knowledge of the particle density functions (PDF) as well as the normalization
and factorization scale. This directly affects the expectation for the cross section and
branching ratio.
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Figure 2.10.: Overview of the presented analysis. From the raw data, selected events are
chosen based in criteria. Those selected events are then classified by NNs into signal and
background processes. The histograms of those processes are then used in a statistical
inference to extract the final results.

2.4. Multi-variate analysis based sensitivity enhancement

This section discusses the MVA-based strategy to analyse the SM Higgs boson decay into
two taus. As already mentioned, the undetectable neutrinos that are part of the tau
decay and the reconstruction of the tau leptons make the analysis of this decay channel
non-trivial. MVA-based strategies are therefore used for the enhancement of the signal
purity. The analysis uses data acquired by the CMS detector during 2016, 2017 and 2018
at a center of mass energy of

√
s = 13TeV. For the selection of the data, a combination of

selection criteria are applied to reduce the impact of the background processes described in
section 2.3.2. They consist of requirements on electrons, muons, and hadronically decaying
tau leptons, such as a minimal distance to the primary interaction point (vertex) for the
reconstructed tracks. Additionally, combinations of reconstructed signals at trigger level
(cross-triggers) are exploited to further increase the signal acceptance. The event selection
is performed in the same way as for [25] to ensure comparable results. A complete list of
triggers used for the data acquisition can be found in [23]. The selection is applied to the
recorded as well as the simulated data.
In the next step of the analysis, NNs are trained for the four final states of the di-tau
system measured in the detector. The task of the NN is to separate background from signal.
The output of the NN is then used to create histograms for further analysis.
After filling the histograms, systematic uncertainties can be applied to the histograms as
discussed in section 2.3.3. The statistical inference is then based on the histograms in form
of binned likelihood fits and hypothesis tests. This is discussed in section 2.4.2. A sketch
of the analysis work flow can be seen in figure 2.10.

2.4.1. Classification of processes with NNs

The classification of each event into one of the processes mentioned above is done by a
multi-classification NN. The architecture of the NN was chosen to be a feed-forward NN:
Two hidden layers with 200 nodes each and hyperbolic tangent activation functions serve
as the basis. The last activation function is a softmax activation function for process
categorization. For the training, the chosen loss function is a categorical cross entropy
function:

LCE = −
N∑
n=1

∑
i

pi log (yi) (2.2)
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where N is the batch size – meaning the number of events processed before the weights are
updated –, pi is the target and yi is the output given by the network. Backpropagation
is performed using the adaptive momentum estimation (ADAM) optimizer [26] with a
learning rate of 10−4. The ADAM optimizer calculates a learning rate for each parameter
individually depending on the previous gradient of the function. The global learning rate
10−4 hereby serves as a maximum learning rate for the backpropagation. The weights
are initialized using the Glorot initialization technique [27]. In order to minimize effects
caused by overtraining, two regularization techniques are used simultaneously: Firstly, L2
regularization is applied [28]. This adds a penalty term to the loss function which reduces
weights that are too large and allows smaller weights to have a larger influence on the
classification. Secondly, the dropout technique is used in which a random number of nodes
for each training step are deactivated to artificially decrease the size of the NN [28]. This
guarantees a better generalization of the NN. Since the recorded data does not have any
labels and to avoid bias in the NN, simulated data was used to train them. To simulate
the fact that certain physics processes are much more likely to appear in the recorded data
than others due to different cross section, each event was additionally weighted with a
factor corresponding to the associated cross section of the event relative to each other. The
weight was applied to the loss function to scale the loss according to the event weight wn:

LCE, weighted = −
N∑
n=1

wn
∑
i

pi log (yi) (2.3)

As certain cross sections and especially the cross section of signal events are relatively
small compared to other processes, this makes the training dataset highly imbalanced. One
could theoretically add a larger number of events for the processes which have a smaller
cross section (and therefore weight). This, however, would cause another caveat: With a
different number of events for each process it could happen that the NN trains mostly on
the events which are most prevalent in the dataset. To mitigate this effect, a new method
was introduced when creating a batch for a training step: The batches were created in such
a way that from all classes the same number of events would be present in each batch. This
way it can be guaranteed that all classes are fairly represented in the training and thus
recognized by the NN. The number of samples per class is chosen to be 30. Additionally,
the weights wn of each event for a given output class within each batch are summed up
and the inverse of the sum is applied to all events of this output class as a class weight
wc. This guarantees that categories with generally small event weights are also taken into
account by the NN. The input variables of the NN are a mix of high-level inputs such
as the fully reconstructed mass of the di-tau system [29] and low-level inputs such as the
transverse momentum of a particle in the final state. In section 3.2, a method is described
to effectively select those variables which have a high impact on the NN output. Before
the variables are applied to the NN, a preprocessing algorithm is used to scale the range of
the variables onto the acceptance range of the activation functions. The formula used is
(x− µ)/σ with a mean µ and standard deviation σ for each variable in the dataset. This
guarantees that the values are all within [0, 1]. Missing values are set to −10. This way,
they cannot be confused by the NN with non-missing values. The training is monitored
with an independent validation set of simulation. The training is stopped if the loss on
the validation set did not improve within 50 epochs. An epoch was defined to be 1000
backpropagation steps.
As a softmax function is used in the final layer of the NN, signal and background processes
are split into multiple independent output classes. The softmax activation function can
be interpreted as the probability of an event belonging to a certain output class [28]. The
highest output score for each event is then used to classify each event and fill histograms
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based on the value of the given output score. Taking only the highest score is a necessary
requirement to prevent events from being double counted in the statistical inference of the
signal. A more in-depth explanation of NNs and especially the NNs used in the analysis
are given in [30].

It should be noted that – in the current form of the analysis – the systematic uncertainties
described in 2.3.3 are only applied after the NN was trained. This does not directly
introduce an error, because the NN itself does not introduce a systematic uncertainty
itself and simply propagates the existing ones. In general the NN can simply be seen as
a function that combines all the lower-level input variables to higher-level variables. Of
course this only applies if the training of the NN is done before the actual analysis and the
NN is frozen afterwards. This is further discussed in [30].

While the NN does not introduce any new systematic uncertainties into the analysis, it
is also not aware of any already existing ones. The NN is solely trained on the nominal
data. Depending on the value and influence of the systematic uncertainties, this could
have negative effects on the classification of the NN. If, for example, the most significant
variable for the NN is a variable that indeed does have a strong separating power in the
absence of systematic uncertainties, it could be thinkable that exactly this variable on
which the NN heavily relies also has a very high systematic uncertainty. This would lead to
a large amount of falsely classified events of the NN if the systematic uncertainty is then
applied to the actual analysis. In contrast, an NN that is aware of systematic uncertainties
can reduce the danger of using unreliable variables for the classification. In section 4, an
already known technique is shown to reduce the dependence of an NN on variables with
systematic uncertainties. Afterwards a novel technique is introduced to achieve the same
reduction and this new technique is applied to an example of high energy physics.

2.4.2. Statistical inference

After filling the histograms for each potential signal and background process with the
output of the NN, the statistical inference is performed on those histograms in form of
binned likelihoods fits and in form of a hypothesis test where the hypothesis that a signal
is present in the data (signal+background hypothesis) is tested against the hypothesis that
only background events were measured (background-only hypothesis). In general, such
tests can be done by comparing the likelihood functions Ls+b and Lb of each corresponding
hypothesis against each other. The likelihood functions are constructed using Poisson
distributions P:

Ls+b =
N∏
i

P(di|si + bi)
ni∏
j

si · Sij + bi ·Bij
si + bi

(2.4)

Lb =
N∏
i

P(di|bi)
ni∏
j

bi ·Bij
bi

(2.5)

where N is the number of independent measurements, d an observation, s and b are
expectations of signal and background respectively and n are the number of events in
the data. S and B are probabilities to find a given event in a certain bin for signal and
background.
As we are interested in whether the observed Higgs boson is the predicted SM Higgs boson,
it is much more practical to measure the deviation of the observed signal with respect to
the expectation given by theoretical predictions. Given the measured cross section σ and
the predicted cross section σSM, a signal strength modifier µ can be defined as
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µ = σ

σSM
(2.6)

This signal strength modifier is used to scale the signal s in equation 2.4:

s→ µs (2.7)

Systematic uncertainties are introduced in form of nuisance parameters θ = {θk}. The
log-normal probabilities on one hand modify the yield of either signal or background directly
through an additional term:

bi → bi · f(θi, σi, x) =


bi√

2πxσi
e−(ln(x)−θi)2/σ2

i x > 0,
0 x ≤ 0

(2.8)

where θi is the best fit value for the yield with uncertainty σi. The same can be applied to
the signal expectation si. Sampling is done by evaluating the test statistic with a randomly
chosen x. Shape uncertainties on the other hand are applied via a morphing algorithm
which alters the shape of the histograms of the NN [31]. Applying both µ and θ, the
likelihood can be written as:

Ls+b = L(d|µ,θ) =
N∏
i

P(di|µ · si(θ) + bi(θ))
ni∏
j

si · Sij + bi ·Bij
si + bi

(2.9)

Lb = L(d|0,θ) =
N∏
i

P(di|bi(θ))
ni∏
j

bi ·Bij
bi

. (2.10)

The likelihood is now dependent on the signal strength modifier µ and θ. In fact, the
actual values of θ are of no particular concern to the final result as long as the value can
be considered reasonable. Thus, a test statistic focused on the actual parameter of interest
(POI) µ is used. This test statistic corresponds to a profile likelihood ratio, defined as

qµ = −2 ln L(d|µ, θ̂µ)
L(d|µ̂, θ̂)

, 0 ≤ µ̂ ≤ µ. (2.11)

where θ̂µ is the estimate of θ which maximizes L for a given µ and µ̂ and θ̂ are the best fit
values for each parameter when both parameters are fitted at the same time. The boundary
conditions enforce a one-sided boundary, excluding negative signal strength modifiers.
Equation 2.11 can be scanned for different values of µ. Lower values for qµ corresponds to
a better agreement of the signal+background hypothesis with the observation. An example
for a profile likelihood scan can be seen in figure 2.11. The minimum of the resulting
function is the best estimate for the signal strength modifier µbest.
In addition to the best estimate for µ, the profile likelihood scan is also used to derive
a statistical statement in form of a p-value p at which the null hypothesis (meaning the
background-only hypothesis) can be discarded. The p-value denotes the probability at
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Figure 2.11.: Example of a profile likelihood scan. µbest is the value for µ for which
q = 0 while the upper and lower bound of µbest in the 68% confidence interval can be
calculated from the difference between µbest and both µ68’s. The intersection of the
parabola with the y-axis is z2 from which the p-value can be calculated.

which the observation occurs given the background-only hypothesis. It is calculated by
integrating the probability density function (PDF) f(qµ|µ, θ̂µ) of the test statistics from
minus infinity to the observed q value:

pb =
∫ qobs

−∞
f(qµ|µ, θ̂µ)dq (2.12)

If the p-value is smaller than a predetermined critical value of α, the background-only
hypothesis is excluded with a confidence level of 1− α. The p-value is usually expressed in
terms of quantiles of a normalized Gaussian distribution in units of σ. It is convention to
claim an observation if the confidence level is above 5σ, which means that the likelihood of
the observation occurring given the background-only hypothesis is less than 2.87× 10−7.
In the limit of large statistics, the test statistic q follows a χ2 distribution [32]. In this case,
the p-value can be determined by evaluating the test statistic at µ = 0:

qµ=0 = z2 (2.13)

The result z is evaluated in quantiles of a normalized Gaussian distribution. The square
root of a value of e.g. z2 ≈ 4.2 as shown in figure 2.11 is thus equivalent to pb ≈ 2.05σ.
Again, an observation can be claimed if the significance is above 5σ.





3. Input variables for multi-variate
analyses

A crucial component in the analysis strategy explained in section 2.4.2 is the NN that
separates signal from background events. The samples used to train the NN contain a
multitude of potential input variables [30]. Simulated data was used for the training of
the NN. Section 3.1 gives an explanation why simply using all variables contained in the
dataset might not be desirable and why the correct selection of input variables is critical
for an effective classification of the data. Section 3.2 will then propose a method to reduce
the number of input variables (pruning) based on Taylor coefficients [1] and section 3.3
shows the results of the pruning and the comparison of the signal strength constraints w.r.t.
an unpruned set of input variables. The last section 3.4 will show an additional method
that could only be used due to the previous pruning efforts.

3.1. Reason for pruning

Simulation describes the data in the best possible way. Nevertheless it cannot be guaranteed
that the simulation perfectly captures all features in data. It is also possible that the
simulation has additional features that are not present in data which might introduce
bias to the analysis. These caveats are further amplified in the presence of systematic
uncertainties as the simulation not only has to capture all features of the nominal dataset,
but also all features that might be present in systematic variations. As such it is necessary
to validate all input variables used for the classification of signal and background and
confirm that simulation and data are in congruency. An established way to quantify the
agreement between simulation and data is the saturated goodness of fit (GoF) test [34].
The saturated GoF test is comparable to the χ2 test [30]. In fact, the only - but very
important - difference between the χ2 test and the saturated GoF test is the normalization,
which provides a meaningful scale of the resulting test statistic. The strongest point of the
saturated GoF test is its ability to consider all systematic and statistical uncertainties by
bootstrapping from the distributions of the systematic shifts. As described in section 2.3.3
there are many systematic uncertainties to be considered for the test and it is essential
to take those into account. In order to make a statistical statement, a p-value can be
extracted from the GoF test, which in this case is the probability that the observed data
can be explained by the model prediction. With this p-value, a threshold can be defined
and variables below the defined threshold can either be discarded or an effort can be made
to improve the description of the variable in simulation to bring it closer to the data. An
example of a 1D and 2D GoF test can be seen in figure 3.1 and 3.2.

If GoF tests are used to verify the input variables, the problem of a large number of input
variables becomes apparent: Using 30 input variables per year and final state would already
result in 360 1D tests without taking correlations between the variables into account. A
large number of those 30 input variables might imply correlations to each other as e.g.

19
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Figure 3.1.: Shown are the results of the one-dimensional GoF test for the input variables
of an NN used in a previous H → ττ analysis [33]. The red line shows the threshold for
the p-value for which input variables were previously dropped. Only variables greater
than this value were considered as inputs for the NN.

for the reconstructed mass of the visible components and the fully-reconstructed di-tau
mass. The simulation also has to capture such correlations. Thus, it would be reasonable
to at least consider the two-dimensional GoF test as well. For N input variables, the
number of GoF tests needed to quantify all correlations between all variables corresponds to
(N2−N)/2 tests. With 30 input variables, 3 separate years of data taking and 4 final states
per year, this would result in 5220 GoF tests for N = 2, resulting in a huge computational
effort. This is amplified by the fact that every time the modeling of the data is improved,
the GoF tests have to be redone. This example makes it also clear that GoF tests for even
higher orders would take an unreasonable amount of time and are therefore not considered.
With this, there are three main reasons to reduce the number of input variables for the NN:

• Having a smaller number of input variables from the beginning greatly reduces the
amount of computational effort needed to verify the input variables.

• If a variable, which is fully correlated to another variable, is added to the input space
of the NN, the convergence of the training of the NN might become less stable while
the efficiency of the NN will not improve.

• Additional variables increase the chance of having a variable in the input space which
might still have slight misdescriptions in simulation which the GoF test did not
capture. While this effect might be low for a single variable, this effect can add up
with the addition of more variables.

An additional and important reason for the pruning of the input variables to the NN was



3.2. Method of pruning 21

Figure 3.2.: Shown are the results of the two-dimensional GoF test for the input variables
of an NN for the µτ final state used in a previous H → ττ analysis [33]. If the p-value of
a variable is below a threshold as indicated by the red color of the corresponding box, the
variable was dropped from the analysis.

the unification of the variable sets per year and eventually per final state. For the analysis
of H → ττ events, 3 years of data were provided: 2016, 2017 and 2018. Each year has its
own separated set of data. In the previous analysis [33], a NN was trained for each year
with only the data from this year and a set of input variables mostly unique to this year.
While this makes sense considering the results of the GoF tests for those years and from a
pure machine learning point of view, choosing a different variable set for each year lacks
motivation by physics. In general, the most significant variables to separate signal from
background should not be dependent on the year from which the data was taken. While we
do expect differences between each year, mostly due to changes in triggers, detector quality
and luminosity, we would not expect a significant change of variables. Thus, the pruning
of the input variables was used as a chance to unify the set of input variables across all
years, which is not only more appropriate for a physics analysis but also further reduces
the complexity of the task. In addition, it allows to train a single NN per channel across
all years as later described in section 3.4.

3.2. Method of pruning

As described in the previous section, most input variables are correlated across each other.
Those higher order correlations between input variables turn the pruning of variables
non-trivial. A deceptively simple approach would be to test every combination of variables
to find the combination of variables with a good result on the analysis objective while
simultaneously having a relatively low number of variables. This approach is unfeasible
in a reasonable amount of time due to the large amount of possible combination of input
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variables. Instead of testing every possible combination of input variables, Taylor coefficients
are used as described in [1]. The NN function can be approximated using a Taylor expansion
in its input variables. The resulting Taylor coefficients are indicators of the importance of
a variable for the NN, as larger values correspond to larger contributions to the overall
output value. The actual value of the Taylor coefficient for an input variable depends on
the output class. For each output class a different Taylor coefficient can be calculated. For
each final state and output class, a ranking of Taylor coefficients was produced from a
network that was trained on all 29 input variables available at the time. The ranking implies
that the input variable with the highest coefficient as a single variable has the highest
influence on the output of the NN. In general, the Taylor coefficients can be extended into
k-dimensions, were k is the number of possible correlations between input variables [1]. In
this pruning method, only the first dimension was considered, and no correlations between
input variables were taken into account for the importance ranking. As it would be unclear
which variables to add if a correlation has a large Taylor coefficient, a simple ranking could
not be made when higher dimensions would have been considered as well. In this sense, the
ranking should only be considered an approximation and not a definite rank of importance.
The output classes for an NN of a final state are the signal processes for stage 0 binning and
combinations of background processes given in section 2.4. The number of output classes
for each NN of a final state varies between 5 and 8 according to the number of background
processes considered for this final state. With a total of four final states, 28 of the Taylor
rankings were produced. For each of those, the following training procedure was started:

1. Starting with the most significant variable in the ranking, the NN was trained until
convergence.

2. The trained NN was tested on an independent test set.

3. Afterwards the next highest ranking variable was added to the NN.

4. The first 3 steps are repeated until all variables of the ranking have been added
successively.

With a total of 29 input variables per final state and a two fold training, between 290 and
464 NNs were produced and tested for each final state.

To compare the impact of adding a variable, the number of true positive Tp, false positive
Fp and false negative Fn predictions as well as the efficiency ε, purity ρ and the F1 score
given by equation 3.1 were calculated after each training and plotted in sequence for each
added input variable.

ε = Tp
Tp + Fn

ρ = Tp
Tp + Fp

F1 = 2 · ρ · ε
ρ+ ε

,

(3.1)

Each event in the calculation of the efficiency and purity was weighted by its event weight
and a class weight to address the different cross sections of each corresponding process.
In figure 3.3 one such graph is shown for the output class qqh and the µτh final state.
From this graph the most important variables can be determined by finding the point of
saturation for a given output class. In this example it can be concluded that the first
12 variables are most important for the output class qqh and all subsequent variables do
not add to the separation between background and signal. While the F1-scores for each
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Figure 3.3.: F1 score in sequence of the added input variables. The ranking for the µτh
final state and output class qqh is shown. Here the line for qqh (solid orange) is most
important. One can see that the F1 score has converged after 12 variables have been
added. Adding more variables does not seem to improve the classification for qqh any
further.

other output class are also shown, no conclusion can be drawn for those output classes
as the ranking of the Taylor coefficients were made from the NN function corresponding
to the qqh output class. For each class the F1-score has been evaluated separately. This
procedure of finding the saturation point can now be repeated for all output classes. In
general, a perfect classifications of the background classes are of no particular interest as
long as the signal classes, denoted by ggh (production of Higgs boson via gluon fusion) and
qqh (production of Higgs boson via VBF) respectively, do not suffer from miss-classified
background processes.
Therefore the graphs of the signal classes are the focus for the pruning. By evaluating those
F1-score graphs, preliminary sets of variables have been determined that have been further
processed by evaluating the confusionen matrices at certain points in the graphs. In the
example shown, there is almost no improvement e.g. between the input variables mjj and
jdeta (the physics meaning of each variables is explained in table 3.1). To determine the
usefulness of adding those variables to the NN, the confusion matrices of the networks at
those points are compared with each other. Only if an improvement for the signal classes
can be seen in the confusion matrices (e.g. lower migration from background classes to the
signal classes), the variable is considered for the final set of variables. In case of ambiguous
behaviour of an NN, e.g. a variable was determined to be useful in the first, but not in the
second fold, the graphs of the background class were also considered when choosing the
variables.
After this third step, two sets of variables were defined for each final state: A core set
containing the most influencial variables and an extended set that can be used to gain
further improvement with the disadvantages described in section 3.1.

Evaluation of the pruning

In a first evaluation of the pruning, the confusion matrices of this pruned set were compared
to the confusion matrices of the full set of variables. If the confusion matrices were almost
the same, e.g. a difference of ≤ 0.03 for all categories, the signal strength constraints for
stage 0 binning and inclusive binning were calculated as the final step of the procedure.
The signal strength constraints of the NN with pruned variables and the NN containing all
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Figure 3.4.: The matrix shows the difference in efficiency per class for a pruned set of
variables containing 11 variables and the full set of variables containing 29 variables for
the µτ final state in 2017. A negative score indicates a loss in efficiency while a positive
score indicates a better efficiency. The difference is no more than 0.02 for all classes
and 0.00 in most cases. Nevertheless a difference in signal strength constraints could be
measured, indicating that confusion matrices are not a completely reliable indicator for
signal strength constraints.

possible variables were compared with each other. The pruning was considered successful if
both the upper and lower bound of the signal strength constraints for the inclusive binning
were within 10 % of the previous constraints containing all possible variables in the 68 %
confidence interval (CI).

It should be noted that both confusion matrices and F1 scores are no clear indicator of
the final signal strength constraint which also depends on the form of the NN distribution.
An example for this in the µτ final state with data taken from 2017 can be seen in figure
3.4. The confusion matrix shows the difference between the pruned set of variables and the
reference NN containing 29 variables. The difference is clearly no more than ±0.02 for all
categories. The pruned NN is sometimes even better then the reference NN. Nevertheless
the signal strength constraints calculated are 8 % worse for the pruned set of variables
as seen in table 3.3. The final signal strength constraints are described in the form of a
binned profile likelihood fit. The likelihood for each bin is calculated separately, meaning
that having highly pure bins is more important than just reaching a certain threshold for
the classification, i.e. having a higher output value than all other classes. Figure 3.5 shows
the post fit distribution for both NNs for one output class. It is clearly visible that the
distribution of the full set of variables is sightly shifted towards higher NN scores. The
NN has a higher number of events for very high NN scores, thus producing more pure
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(a) Pruned set (b) Full set

Figure 3.5.: The two graphs show the post fit distribution for the µτh final state for
2018, for the ggh 0-jet signal category. The fit is done using an Asimov dataset. The
left plot was made using an NN containing 11 variables and the right plot used an NN
containing 29 variables. The number of bins for each plot is chosen algorithmically to
guarantee a minimum amount of events in each bin. The plot with the full set of variables
has a higher number of events for NN scores > 0.6, which results in an additional bin
being used for the calculation of the signal strength constraints. This difference leads to
a better signal strength constraint.

bins, which tightens the signal strength constraints in return. While the signal strength
constraints are the best indicator whether the performance of the pruned NN is comparable
to the reference NN, calculating the signal strength constraints for all NNs produced during
the pruning procedure explained above would take an unreasonable amount of time. For
this reason, the signal strength constraints could only be used as a final indicator and not
as the main metric for this pruning method.

3.3. Result of pruning and validation

As mentioned previously, there are 3 datasets for each year which needed to be pruned.
The pruning described in section 3.2 was first performed on data from 2017. The complete
set of input variables available for the training can be found in table 3.1. After the pruning
method was applied to 2017, for each final state, a core and extended set of variables was
defined. After further examination, the defined set of variables was approximately the
same for all but the eµ channel. As variables such as the transverse visible mass or the
transverse momentum are general indicators of a Higgs boson decay and should not depend
on the ττ final state, it is to be expected to have a large overlap of variables across final
states. Thus the variable sets for the µτh, eτh and τhτh final states were synchronized to
obtain a homogeneous set if input variables across years and final states. This was done at
the cost of only adding one or two variables per final state in order to achieve a consistent
set across all final states but eµ. The eµ final state takes a slightly larger set of variables
to achieve comparable results with the full set of variables. Because of that, no extended
set was defined for this final state. The complete pruned set of variables for all final states
can be found in table 3.2. As the initial goal of the pruning was to align the number of
variables used per year, the core set and extended set derived from the 2017 data has been
applied to the 2018 and 2016 datasets. The results were again compared to the signal
strength constraints given by a full set of variables. As the signal strength constraints for
the core set based on inclusive binning was within 10 % of the signal strength constraints
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Table 3.1.: Shown are all variables that were considered with identifier and description.
The right hand side shows which of those variables were used in the previous analysis
for the year 2017 (2016). The 1 in an identifier always refers to the leading lepton or
jet, while the 2 is the subleading lepton or jet. pZetaMissViss and mTdileptonMET are
explained in more detail in [35]. The variables used in the Matrix Element Likelihood
Analysis (MELA) are explained in more detail in [36, 37, 38].

Identifier Description Variable Selection
µτh eτh τhτh eµ

pt_1 Lepton transverse momentum —(X) —(—) X(X) —(X)
pt_2 X(X) X(X) —(X) —(X)
jpt_1 Jet transverse momentum X(X) X(X) —(X) X(X)
jpt_2 X(X) X(X) X(X) X(X)
bpt_1 b-jet transverse momentum X(X) X(X) X(X) —(—)
bpt_2 X(X) X(X) X(—) —(—)
njets Number of jets X(X) X(X) X(—) X(X)
nbtag Number of b-tags X(X) X(X) X(X) —(—)
m_sv Fully reconstructed mass of

the di-tau system [29]
X(X) X(X) X(X) X(X)

ptvis Visible transverse momentum —(X) X(X) —(X) X(X)
pt_tt Ditau transverse momentum X(X) X(X) X(X) X(X)
mjj Mass of dijet system X(X) X(X) X(X) X(X)

jdeta Difference in pseudorapidity
for dijet system

X(X) X(X) X(X) X(X)

m_vis Reconstructed mass of the
visible di-tau system

—(X) —(X) X(X) X(X)

dijetpt Transverse momentum of
dijet system

X(X) X(X) X(X) X(X)

met Missing transverse energy —(X) X(X) —(X) X(—)
eta_1 Pseudo rapidity of the lepton

or jet
—(—) —(—) —(—) —(X)

eta_2 —(—) —(—) —(—) —(X)
pt_ttjj Ditau transverse momentum

of jets
—(—) —(—) —(—) X(—)

pZetaMissViss eµ specific variable —(—) —(—) —(—) X(X)
mTdileptonMET eµ specific variable —(—) —(—) —(—) X(X)

eta_sv SVFit pseudo rapidity —(—) —(—) —(—) —(—)
ME_costheta1 MELA specific variable —(—) —(—) —(—) —(—)
ME_costheta2 MELA specific variable —(—) —(—) —(—) —(—)

ME_phi MELA specific variable —(—) —(—) —(—) —(—)
ME_phi1 MELA specific variable —(—) —(—) —(—) —(—)
ME_q2v1 MELA specific variable —(—) —(—) —(—) —(—)
ME_q2v2 MELA specific variable —(—) —(—) —(—) —(—)

ME_costhetastar MELA specific variable —(—) —(—) —(—) —(—)
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Table 3.2.: Proposed variables to be used for the years 2016, 2017, and 2018. The core
set is denoted by checkmarks (X) and can be considered obligatory. The extended set is
denoted by an "e" and can be used in addition to the core set. The variables are in no
particular order

Identifier Description Variable Selection
µτh eτh τhτh eµ

pt_1 Lepton transverse momentum X X X X
pt_2 X X X X
jpt_1 Jet transverse momentum X X X X
njets Number of jets X X X X
nbtag Number of b-tags X X X X
m_sv SVFit mass X X X X
ptvis Visible transverse momentum X X X X
mjj Mass of dijet system X X X X

jdeta Difference in pseudorapidity for dijet system X X X X
m_vis Visible mass X X X X

dijetpt Transverse momentum of dijet system X X X X
ME_q2v1 MELA specific variable e e e X
ME_q2v2 MELA specific variable e e e X
jpt_2 Jet transverse momentum e e e X
pt_tt Ditau transverse momentum e e e —
eta_1 Pseudo rapidity — — — X

mTdileptonMET eµ specific variable — — — X
bpt_1 b-jet transverse momentum — — — X
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Table 3.3.: Relative comparison of signal strength constraints s based on inclusive
binning for the core set c and extended set e given in table 3.2 w.r.t. the full set f given
in table 3.1. The signal strength constraints were calculated using an Asimov dataset.
The comparison was calculated using the formula sf/sc,e − 1.

2016
Channel Relative comparison in %

Core Extended
upper bound lower bound upper bound lower bound

Combined 0.07 0.08 0.04 0.04
µτh 0.10 0.09 0.05 0.05
eτh 0.10 0.10 0.05 0.05
τhτh 0.02 0.03 0.02 0.02
eµ 0.05 0.04 0.05 0.04

2017
Channel Relative comparison in %

Core Extended
upper bound lower bound upper bound lower bound

Combined 0.06 0.06 0.04 0.04
µτh 0.08 0.08 0.04 0.04
eτh 0.07 0.07 0.06 0.05
τhτh 0.04 0.03 0.03 0.03
eµ 0.08 0.08 0.04 0.04

2018
Channel Relative comparison in %

Core Extended
upper bound lower bound upper bound lower bound

Combined 0.06 0.06 −0.02 −0.01
µτh 0.06 0.06 0.00 0.00
eτh 0.09 0.09 −0.04 −0.01
τhτh 0.03 0.03 0.03 0.03
eµ 0.02 0.03 0.00 0.01

of the full set of input variables, the core and extended set of variables from 2017 could
be used for the datasets of 2016 and 2018 as well. The exhaustive method described in
section 3.2 was therefore not applied to the datasets of 2016 and 2018.
In summary, a consistent set of variables has been formulated across all years and most final
states with eµ as an exception. The number of variables is reduced from 30 to 11/16 ("core
set"/"extended set") variables. The number of two-dimensional GoF tests was reduced from
5220 for 30 variables to 1260 (1440) for the extended set for the µτh, eτh and τhτh (eµ)
final states, substantially reducing the complexity of the two-dimensional GoF test while
maintaining a good constraint on the signal strength and unifying the years in terms of
input variables.

A comparison of the Asimov signal strength constraints calculated using MC simulation
can be seen in table 3.3. The relative change of the signal strength constraints upper and
lower bound are given by the right-hand columns. A positive percentage corresponds to a
deterioration while a negative percentage corresponds to an improvement of the core set
w.r.t. the set containing 29 variables. All results are comparable within 10 % while the
combined limit never has a larger difference than 0.08 %. A small gain in signal strength
constraints can be seen when using the extended set, especially in the constraints of the
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Table 3.4.: Relative comparison of signal strength constraints s calculated using Asimov
datasets. Shown is the comparison between NNs i trained individually on the years
(standard) and an NN c trained on all years simultaneously (conditional). Both networks
were trained on the core set of variables. The comparison was calculated using the formula
si/sc − 1.

2016
Channel Relative comparison in %

upper bound lower bound
Combined −0.06 −0.06
µτh −0.04 −0.04
eτh −0.07 −0.08
τhτh −0.03 −0.03
eµ −0.12 −0.13

2017
Channel Relative comparison in %

upper bound lower bound
Combined −0.02 −0.02
µτh −0.02 −0.02
eτh −0.01 −0.02
τhτh −0.01 −0.01
eµ −0.01 −0.01

2018
Channel Relative comparison in %

upper bound lower bound
Combined 0.00 0.00
µτh 0.00 0.00
eτh 0.04 0.03
τhτh 0.00 0.00
eµ 0.00 0.00

µτh and eτh final states and for the 2018 dataset in general.

3.4. Conditional networks with aligned input variables

As the input variables and output classes of the NN are now the same for all years per
final state, the only difference between the NNs are the datasets used for training. One
could simply combine all datasets and train the NN on this combined dataset without any
distinction between the years. In reality, the datasets are not entirely consistent across
all years, e.g., different triggers were applied for the data selection, the luminosity of the
datasets differ or the detector conditions changed between the years. A full list of selection
criteria for all datasets can be found in [23]. Therefore a variable has been introduced to
distinguish between the datasets of each year. This switch has been directly implemented
into the NN in form of an additional era variable. The era variable acts as an identifier
from which year a given event of a dataset is obtained from. There are two potential ways of
implementing this era variable. In the continuous case, a single era variable is used which
will directly get the integer value of the year, e.g. "2017" or – when re-labeling – a value
between 0 and 2. The problem with this implementation is that era is a discrete variable.
By feeding it to the NN as a continuous variable, it is implied to the NN that there might
be values in between the given years such as "2016.67". While this could arguably make
sense for other integer valued variables such as the number of b-tagged jets, this does not
represent the reality for the era variable. Furthermore, the continuous case might imply a
ranking to the NN, e.g. having an era value of 2 might be more signal-like than having
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Table 3.5.: Shown is the comparison between NNs i trained individually on the years
and an NN r trained on all years simultaneously but signal classes were additionally
randomized in two different ways. "Randomization" refers to using all available signal
classes but randomizing the era variable for each of them. "No 2016" means that all
signal event classes of 2016 were removed and the eras of the remaining signal classes
were randomized (including 2016 as an era). The comparison was calculated using the
formula si/sr − 1.

2016
Channel Relative comparison in %

Randomization No 2016
upper bound lower bound upper bound lower bound

Combined −0.07 −0.07 −0.09 −0.10
µτh −0.05 −0.06 −0.08 −0.08
eτh −0.10 −0.11 −0.16 −0.17
τhτh −0.04 −0.05 −0.06 −0.07
eµ −0.12 −0.14 −0.13 −0.14

2017
Channel Relative comparison in %

Randomization No 2016
upper bound lower bound upper bound lower bound

Combined −0.02 −0.02 −0.06 −0.06
µτh −0.01 −0.02 −0.04 −0.05
eτh −0.01 −0.01 −0.10 −0.10
τhτh −0.03 −0.03 −0.04 −0.04
eµ −0.01 −0.02 −0.08 −0.08

2018
Channel Relative comparison in %

Randomization No 2016
upper bound lower bound upper bound lower bound

Combined 0.01 0.01 −0.01 −0.01
µτh 0.01 0.00 −0.01 −0.02
eτh 0.04 0.03 −0.02 −0.03
τhτh 0.02 0.01 0.00 0.00
eµ 0.01 0.02 −0.06 −0.06
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an era value of 0. Another way of implementing this switch is by using so-called one-hot
encoding. With one-hot encoding, each category of the discrete variable gets its own input
variable that is either 0 or 1, depending on whether the event belongs to this category
or not. In the case of eras, there are 3 additional input variables, each representing one
era. Only one of this variables will be 1 while the others will be 0 for each event of the
combined dataset. A study on different techniques used to encode categorical data can be
found in [39]. After training, the signal strength constraints were calculated for each year
independently using the era variables provided by the NN to differentiate between each
year. A comparison between the combined conditional network and the networks trained
on each year separately can be seen in table 3.4. The constraints on the signal strength
improved by 13 % in the eµ final state of 2016 and in general across the 2016 and 2017
datasets, while being comparable within 5 % for the 2018 dataset. The additional and
well described amount of signal data from the 2018 dataset improves the constraints of
especially the 2016 samples which suffered from an insufficient amount of signal samples
in this training run. This also indicates that the datasets of each year are very close to
each other and can be used to improve the signal strength constraints on other years. In
addition to this improvement, the added benefit of easier control due to having only a
single network and the physics motivation behind it, the unification of the training are well
taken into account.

Recovering signal by randomization

Taking the improvement of one dataset via another dataset of a different year to the extreme,
an additional technique can be implemented when combining the datasets: In case there is
no or an insufficient amount of signal samples available for a given year, the NN can be
trained to supplement the missing information of this year by using information provided
by datasets of other years. This way, the NN can recover the signal of the missing year. By
randomizing the era variables of the signal category for each year, the NN can be deprived
of the information to which year a signal event belongs to, thus it is forced to generalize the
signal categories while still maintaining the specializiation for the background categories.
In table 3.5 this technique was used to recover the signal of 2016 data, which - as mentioned
already - suffered from an insufficient amount of signal samples. Two cases were studied in
this regard:
First, all samples that were available for the signal classes of 2016 were used alongside
the signal events of 2017 and 2018 and the era information was shuffled. The second
example was made to be an extreme case: All signal events of 2016 were removed from
the training dataset while the background samples of 2016 were kept. As explained in
section 2.4.1, in order to mitigate the imbalance of the training samples, the NN uses a
balanced batch approach in which each batch has the same number of events for each
class. This balanced batch approach was extended for the training of the conditional
neural network to include the years. Each batch contains the same number of samples
for each class and year, effectively tripling the amount of events per batch compared to a
network trained on a single year. The number of steps per epoch was tripled as well to
ensure a good convergence. Removing the signal events from a year would cause the overall
number of signal events to drop per batch which might introduce a bias in the NN training.
To compensate the overall loss of signal samples per batch, each batch got an additional
amount of 2017 and 2018 signal events to compensate the missing 2016 samples. Table 3.5
shows the result of the training on randomized eras for the signal events. It can be clearly
seen that the signal strength constraints based on an inclusive binning for the 2016 data
improves compared to signal strength constraints of NNs trained on all years separately
without randomization. Completely removing the signal samples of 2016 even further
improves the signal strength constraints for 2016 by up to 17 % in the eτh final state. This
improvement is, however, unexpected. The signal strength constraints are even better than
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the signal strength constraints calculated without randomization as seen in table 3.4 which
should not be the case as there was less data used overall for the training and especially
less data from 2016 which should describe the signal samples for this year the best even
though the overall amount of signal samples is low. This indicates that the improvements
are caused by artifacts in the dataset, e.g. the tau identifier is not as well described in 2016
as in 2017 or 2018. This could lead to an underestimation of the background in 2016 as
this background was not randomized and would use the tau identifier of 2016 while the
signal samples would use the better tau identifier of 2017 or 2018. The signal would be
easier to separate from background due to this artifact in the dataset causing the signal
strength constraints to be tighter.
While this techniques can be useful in future scenarios, they were not used for the current
H → ττ analysis [23]. It should be clear that the improvement in the signal strength
constraints comes vastly from an insufficient amount of data or from data that is not
described very well. As such, the focus should be on improving the amount and the
description of data available for the analysis instead of bypassing the problem altogether
with this randomization technique which could lead to wrong interpretations of the results.
However, it was shown that this technique can recover signal events in the classification of
an NN for a year with insufficient amount of data.



4. Systematic uncertainties in Neural
Networks

As shown in the previous sections, NNs are well suited for data analyses in high energy
physics. Besides the H → ττ analysis explained in section 2.4, another example for the
usage of NNs on data acquired in physics experiments is the classification of particle
jets induced by heavy flavor quarks [40, 41]. Neural networks are capable of identifying
non-trivial correlations among input variables even to higher orders turning them very
robust and efficient in classification tasks. In fact it can be shown that in the absence
of any systematic uncertainties, neural networks are a maximum likelihood estimator
(MLE), as shown in appendix A. In reality though, all physics measurements are subject
to systematic uncertainties. Systematic uncertainties usually manifest themselves in form
of a shift ∆i of the input variables xi. Training a neural network on a dataset that is
unaware of any systematic variation can lead to an overestimation of the predictive power of
certain input variables that may suffer from large systematic uncertainties. This can have a
negative impact on the statistical inference that will later be done on the NN output f(x) if
systematic uncertainties are applied. Furthermore, certain input variables might be poorly
modeled by the simulation. Systematic uncertainties for a given input variable xi can also
be underestimated or overestimated causing a too optimistic or too conservative evaluation
of the data. Lastly, uncertainties that are dependent on other parameters xj , j 6= i can
be unknown or not fully understood. An example for this is the correlation between the
uncertainties of two input variables. All of this implies that a method of training is desired
that is robust against systematic variations of input variables. The goal of the training of
the neural network should be to not only give correct predictions for a given input, but also
propagate systematic uncertainties from the input space x = {xi} to the NN output f(x)
in order to achieve consistent and robust results in a high-energy physics analysis. The first
paragraph gives a brief introduction of potential ways to implement systematic uncertainties
in neural networks while the second section explains an already known approach of using
an adversarial network to propagate systematic uncertainties through a NN. The third
section will then introduce a novel approach on this topic by adding an additional term to
the loss function in order to introduce systematic variations into the NN function.

4.1. Implementation of systematic uncertainties in the NN

In general there are two ways of applying systematic uncertainties to the input space x:
Firstly, for any given systematic uncertainty ∆, one could simply add each set of variables
x + ∆ = {xi + ∆i} to the training set. While this is the easiest and clearest approach,
its feasibility is dependent on computation capacities and storage due to a large number
of events and systematic uncertainties. High energy physics usually uses event numbers
beyond 106 while also having a large number of systematic uncertainties as seen in section
2.3.3. A training dataset containing all shifted events would most likely use several terabyte
of disc space for a single dataset and year. The time for training and evaluation of the
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Figure 4.1.: Output of a NN trained with a dataset containing nominal data as well as
data with systematic uncertainties. The dataset is visualized in figure 4.4. The bands
around the background indicate the variation in output of the NN caused by the systematic
variation of the input variables.

NN would also increase with each systematic uncertainty added to the training dataset,
greatly increasing the computational effort to generate one NN for classification. In fact,
many systematic uncertainties in the H → ττ analysis are kept as statistical weights that
are applied on histogram level only after the NN output score has already been calculated
using the nominal value of the data. This way only the weights of a systematic uncertainty
have to be stored alongside the event. Application and storage is much more efficient this
way. This approach of applying weights to each event for systematic uncertainties will be
called re-weighting in the following.

In machine learning the task of implementing systematic uncertainties falls into the broader
theme of domain adaption techniques [42, 43]. The goal of domain adaption techniques
is usually to find a representation of the data that is independent of the domain. A
simple approach of domain adaption sometimes used in high energy physics for domain
adaption is to train the classifier simply on data sets containing nominal as well as data,
that were shifted according to the systematic uncertainties. As previously mentioned,
this leads to a higher storage space needed. While this classifier certainly should perform
better on test data containing systematic uncertainties, it can not be guaranteed that the
resulting classifier is really robust against systematic shifts. An example of a classifier
trained on nominal data as well as shifted data can be seen in figure 4.1. Furthermore,
this is highly dependent on the assumption that the generated datasets containing the
systematic variation are representative of the data on which the actual classification is later
performed on. In physics the datasets are often produced by MC simulation and several
plausible values for the systematic uncertainty can be found which means that there can
be a disagreement between the shifted simulation given to the NN and the systematic
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(a) fLf (setup 1) (b) fLc with λ = 50 (setup 2)

Figure 4.2.: The left graph shows the NN output for the NN trained without an
adversarial network to decorrelate the systematic uncertainties (setup 1). The right graph
shows the NN output for the NN trained with an adversarial network (setup 2). The
uncertainty band caused by the systematic variations of the input data are much smaller
than for the NN trained without an adversary. On the other hand, the predictive power
of the NN has decreased due to the decorrelation against one input variable.

uncertainty actually contained in the data that will later be classified by the NN. With
this in mind, an approach to completely or partially remove the information of a variable
that has systematic variations would be favored. This removal of information will be called
decorrelation in the following.

4.2. Decorrelation through adversarial neural networks

One such approach is trying to decorrelate certain input variables that are known to be
affected by a systematic uncertainty using a secondary NN called "adversary" as proposed
by [44]. Adversary NNs are – as the name implies – usually made to be in direct conflict
with the main classifier network. This conflict can be used to make a classifier more robust
by obliterating the information of certain variables with systematic uncertainties. Adversary
NNs were first popularized by [45].

The general architecture of this approach can be seen in figure 4.3. The dataset for this task
is defined with two input variables x1 and x2 and two classes called signal and background.
A visualization of the dataset is given in figure 4.4. To introduce a systematic variation, x2
of the background data is varied by ±1. This way, three background datasets and one signal
dataset are produced. This dataset X has labels Y ∈ [0, 1] according to whether an event
belongs to background (0) or signal (1). Additionally, a variable Z ∈ [0, 1] is introduced
to distinguish between input events with systematic uncertainties (1) and nominal data
(0). The result of training the classifier without an adversary (setup 1) and testing the
robustness against systematic uncertainties can be seen in figure 4.2 (left). The large
bands imply a large difference between the classification score of the nominal data and
the classification score of data with systematic uncertainty. It is clearly visible that data
that received a down shift tend to be miss-classified as signal due to its more signal-like
nature as expected giving the data used for the analysis. The highest discrepancy between
nominal, up- and down variation can be seen in the first bin to the left. After the classifier
finished training, its output fLf

(x) is given as inputs to the second NN. The adversarial
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Figure 4.3.: The input variables X and Y are put into a classification NN. The output
value of this NN is then taken as an input for the adversarial NN. The adversarial
NN determines whether the output of the classification NN was from an event with a
systematic variation or from a nominal event. The loss functions of the classification NN
and the adversarial NN are then combined as seen in equation 4.1. The higher the loss
Lr of the adversary NN is, the less it can successfully determine whether an event had a
systematic variation or not and the lower the combined loss function Lc will become. As
only the weights of the classification NN can be adjusted in this step, those weights are
adjusted in such a way to make the output indistinguishable for the adversary NN, thus
making it more robust against systematic variations.

Table 4.1.: Summary of the hyper-parameters of the NN architecture used for classifica-
tion for all tasks described in chapter 4.

Number of hidden layers 2
Number of nodes per hidden layer 200
Activation functions of the hidden layers Rectified linear unit (ReLU)
Optimizer algorithm ADAM (learning rate = 10−3) [46]
Validation split 50%
Weight initialization Glorot (uniform) [47]

NN then tries to distinguish whether a given event has been shifted or not using the
additional information of Z. In this phase the weights of the classifier are frozen and only
the adversary is able to train. Afterwards, the weights of the adversary network are frozen
and only the classifier can be trained again. After this initial training of both NNs, the
loss functions of both classifier and adversary are combined to a single loss function

Lc = Lf − λ · Lr. (4.1)

Subtracting the loss function of the adversary from the classifier ensures the proper
behavior: The larger the loss of the adversary, the better the combined loss function will be.
A large adversary loss means that the adversary is unable to distinguish between events with
or without systematic uncertainties. The frozen weights of the adversary guarantee that
the classifier has to change to reduce the accuracy of the adversary, turning the classifier
more robust. For this example, the architecture of the classifier can be seen in table 4.1.
The architecture of the adversarial NN uses 64 hidden nodes and softmax activation in the
output layer, but is the same otherwise. Pre-training of the classification NN was done for
20 epochs and a batch size of 1000. The adversarial NN was also pre-trained for 20 epochs
with a batch size of 128 [44]. The combined training consisted of 1000 gradient steps with
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Figure 4.4.: Signal and background data are obtained from two-dimensional Gaussian
distributions. The signal data is centered around ( 0 0 ) with a coveriance matrix of( 1 −0.5
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. The nominal background distribution is centered around ( 1 1 ) with a covari-
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is shifted with ±1 to simulate a systematic uncertainty

a batch size of 128. Before each gradient step of the combined loss function, the adversarial
NN was trained for 1 epoch to ensure that the classification by the adversarial NN is not
overpowered too quickly by the change in the classification NN. The single gradient step of
the combined lossed combined with the training of the adversarial NN for one epoch will
be called a combined epoch in this context.
The evolution of the validation loss functions Lr, Lf and Lc can be seen in figure 4.5. A
histogram of the output of the classifier after training on the combined loss function Lc
(setup 2) can be seen in figure 4.2 (right). It can be seen that there is almost no distinction
by the classification NN between up and down variation as indicated by the much smaller
uncertainties bands. As the used data set is only two-dimensional, the boundaries for
the output scores of the classification NN can be visualized as seen in figure 4.6. Such a
visualization will be called decision surface in the following. Comparing setup 1 and setup
2, one can see that the decision surface of the latter is tilted and x2, the variable which
has the systematic uncertainty, is no longer taken into account for the prediction. The
NN effectively obliterates any information of this input variable. This can also be seen by
monitoring the evolution of the Taylor coefficients [1] of the NN output function fLc(x).
Shown in figure 4.7 are the Taylor coefficients as a function of the combined epochs during
the training of setup 2. It can be seen that the Taylor coefficient tx1 and tx2, corresponding
to the input variables x1 and x2, start at approximately the same value before the combined
training is executed. During the training, the value of tx2 constantly decreases until reaching
approximately 0.05 while tx1 actually increases to a value of approximately 0.23. From the
given dataset, this is the behavior expected for the Taylor coefficients: The importance
of x2 slowly decreases as the information provided by the variable is successively ignored
while more emphasis is put on x1 by the classification NN. Additionally, the coefficient
tx1x1, which is the self-correlation of the x1 variable, sharply rises in importance during the
training before decreasing again to approximately the same value as before. This behavior
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Figure 4.5.: The blue graph shows the loss of the classifier. The loss rises as the
classification power of the classifier is reduced in order to decorrelate against the systematic
uncertainties. The loss goes down later on as the classifier focuses more on the predictive
power of x1. The green graph shows the loss of the adversary which rises according to
the model. The red graph is the combined loss.

is reflected in the loss function of Lf seen in figure 4.5 where the loss term of Lf peaks at
approximately the same time tx1x1 peaks. The advantage of this approach is its flexibility.
In general the adversarial NN is not restricted to be a classifier as shown in this example,
but it can also be any kind of neural network or machine learning technique that quantifies
its success in form of a loss function (e.g. a Gaussian Mixture Model was used by [44]). It
can also decorrelate against continuous shifts and is applicable to examples of high energy
physics. Despite of the loss in general predictive power, which is a result of depriving
the NN of the information of the unreliable input variable, it could even be shown that
in some cases the over all results where better due to the more robust classification of
the NN [44]. Nevertheless, this approach comes with its own set of limitations: Firstly,
having the optimal NN function after training is not a certainty since reaching the global
minimum of the loss function is never guaranteed due to the nature of the back propagation
algorithm. Thus, using one NN already results in a fine-tuning process of the corresponding
hyper-parameters such as learning rate and regularization terms in order to achieve the
best possible output for a given input space. In this approach, a second NN with an
additional set of hyper-parameters is added on top of the first NN. Combining both with a
hyper-parameter λ, which requires further fine-tuning, results in a training process which
can be complicated to fine-tune due to the large amount of hyper-parameters present in the
overall architecture. Both loss functions must be kept in a balance, otherwise one NN will
simply dominate the overall result of Lc. Especially for the number of data and systematic
uncertainties used in high energy physics, this challenge would not be easy to overcome.
Secondly, the nature of the combined network does not allow the systematic uncertainties
to be passed in the form of weights to the neural network. The input variables must be
given to the architecture in form of separate datasets, which again could lead to storage
and computation problems. Over all, while showing good results on the examples, the
method of using adversarial networks might not be universally applicable to high energy
physics.
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(a) fLf (b) fLc with λ = 50

Figure 4.6.: The left graph shows the decision surface for a classifier trained without an
adversary. The boundary is clearly tilted to take both x1 and x2 for the decision into
account. The down-shifted background clearly reaches into the signal-like region. In
the right-hand graph the decision surface is tilted. Now x2 is mostly ignored in the NN
decision and the output is almost exclusively based on the value of x1.

4.3. Decorrelation with the addition of a penalty term

Given that an additional NN introduces a fine-tuning problem, a solution would be to
incorporate the systematic uncertainties directly into the loss function. If decorrelation
can be considered a technique to make the NN aware of certain input variables being
subject to systematic variations, then a natural formulation of the loss function in form
of a penalty term comes to mind. Penalizing the loss function is an established way of
achieving a regularization of the output. In the same way it should be possible to penalize
an otherwise optimal loss function in order to decorrelate against certain input variables
that are considered. An optimal loss function in the absence of systematic variations
(meaning only statistical uncertainties are considered) for classification task is, for example,
the CE loss function as an NN trained on CE is the MLE for the given problem (see
appendix A). In general, the goal should be that f(x) is insensitive to shifts of the input
variables. Measuring a difference of outputs is already a well-established loss function
called mean squared error. In addition, instead of only using shifted input variables, it is
possible to use re-weighting to apply systematic uncertainties with this new penalty term.
As the weights are applied on a histogram level, f(x) is transformed into a histogram with
counts per bin Nk(f(x)) where k is the corresponding bin. After producing the histogram,
the weights can be applied to produce the shifted counts per bin Nk(f(x + ∆)). Taking
inspiration from the mathematical formulation of the mean squared error, the penalty term
can then be formulated as

Λ(x,∆) = 1
nk

∑
k

(Nk(f(x))−Nk(f(x + ∆))
Nk(f(x))

)2
, (4.2)

where nk is the total number of bins. The total loss function can be written as

LΛ = L′ + λΛ(x,∆) (4.3)

where λ and the number of bins nk are hyper-parameters that need to be fine-tuned. L′
can be any loss function for classification. In this example, L′ refers to the CE loss function.
If the count per bin for shifted values has a large difference to the nominal values, Λ will
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Figure 4.7.: Shown are the first and second order Taylor coefficients of the NN output
function fLc

for λ = 50. As expected, the Taylor coefficient for x2 decreases during the
training while the importance of x1 slightly increases.

be large and LΛ will receive an increased value. On the other hand, bin counts close to
each other will result in a low penalty term. In consequence, a minimization of the loss
function should lead to the desired effect of decorrelation of input variables with systematic
uncertainties. The classifier should become more robust in the presence of systematic
uncertainties. As the penalty term deprives the NN of additional information usually
provided by the input variable we decorrelate against, fLΛ(x) is expected to have a slightly
diminished classification power compared to fL′(x).

While we did get additional hyper-parameters with λ and nk that need to be fine-tuned,
the total number of hyper-parameters compared to equation 4.1 is significantly reduced
since an additional NN is not required. The penalty term Λ can in principle be extended
to include multiple systematic uncertainties. By simply adding penalty terms, each with
their own λm where m is the number of uncorrelated systematic uncertainties, one can
decorrelate against many systematic uncertainties at the same time.

Although this formulation is very intuitive from a theoretical point of view, the imple-
mentation poses some technical challenges. Producing a histogram from f(x) can be
mathematically formulated as

Mk = θ(f(x)− a) · θ(f(x) + b) , (4.4)

where ak and bk are the bin edges of bin k and θ is the Heaviside theta function. As all
NNs learn via backpropagation, the complete function from the final loss function to the
weights of the NN must be differentiable. The derivative of the Heaviside theta function is
zero and undefined at the edges though and as such can not be directly used to bin the
NN output. Instead, a filter function is used which approximates the value of each event
corresponding to a bin. A Gaussian function Gk(x), which is normalized to max(Gk(x)) = 1,
has been chosen as such a filter function. Taking the mean of the Gaussian as the center
and the standard deviation as the half-width of bin k, an event with a value f(x) that is
exactly in the center of bin k will get a value of 1, while an event further away will receive
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Figure 4.8.: The left graph shows the NN output for a NN trained on cross-entropy and
data without systematic uncertainties. The right graph shows the NN output for a NN
trained with a penalty term. The bands around the background distribution indicate the
effect of the variations on f(x). The bands are clearly reduced for a NN trained with a
penalty term.

a value close to 0. Approximating each bin with such a Gaussian filter gives over all a
reasonable approximation of the total count per bin. The approximation can be written as

Nk(f(x)) =
∑
b

Gk(f(x)) , (4.5)

where b are the samples in a training batch. Due to boundary effects on the edges of the
defined histogram range, the total number of counts per batch Ntot(f(x)) can slightly vary
between batches.

4.3.1. Decorrelation of a simple pseudo-experiment with one uncertainty

Testing this loss function on the same pseudo dataset that is used for the adversarial NN
setup given in figure 4.4, this approach can be illustrated and compared to the decorrelation
effect of the adversarial setup described in section 4.2. Like in section 4.2, the NN used for
classification is a simple feed-forward NN. The architecture can again be seen in table 4.1.
As the goal is to create a histogram with the output of a training batch, the batch size
was chosen sufficiently large with 103. For L′ the normal binary cross entropy was used.
The two new hyper-parameters were chosen to be λ = 20 with nk = 10 equidistant bins
in the range [0, 1]. The optimal values for those parameters has to be found by manual
optimization. The chosen values demonstrate the decorrelation against x2 with Λ while
still maintaining a reasonable classification with L′. The training was stopped if the loss
value on the validation dataset did not improve within 10 epochs and the NN with the
best value was chosen for testing.

Using 5× 104 events for training and 105 events for testing, the shape of fLΛ(x) can be
seen in figure 4.8. This shapes can now be directly compared to figure 4.2 of the adversarial
approach. The expectation was that the penalty term achieves the same reduction in up-
and down-variation of the background as the adversarial approach. The figures seem to
indicate that fLΛ(x) has even lower variations of the background than fLc(x). In both
cases the separation of background and signal events is less pronounced as for fL′ . To see
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Figure 4.9.: The decision surfaces are strikingly similar to figure 4.6.

whether Λ reduces the impact of x2 on fLΛ(x) as well, Taylor coefficients were plotted
for different values of λ after convergence as seen in figure 4.10. As expected, the values
for tx1 and tx2 are approximately the same for λ = 0. The value of tx2 decreases with
a higher value of λ while the importance of x1 increases first up until λ = 3 and then
slowly decreases as well. tx1x1 shows the same behavior as for fLc(x). For lower values of
λ it rapidly increases peaking at λ = 3 and then rapidly decreases again. At the chosen
value of λ = 20, the Taylor coefficient of tx1 is more than double the value of tx2 and tx1x1.
That the Taylor coefficients show a similar behavior as functions of values of λ for LΛ as
they did as functions of combined epochs and a fixed λ for Lc indicates that the value of
the Taylor coefficients with an adversary setup is dependent on the number of combined
epochs trained. A higher number of combined epochs in the adversarial setup correlates
to a higher value for λ in the penalty term setup. The NN for the adversary setup slowly
converges towards λ = 50. This is also reflected in the fact that the Taylor coefficients
are converged after 500 epochs and stay approximately the same. The Taylor coefficients
for fLΛ(x) fluctuate much less than for fLc(x) because the Taylor coefficients are only
calculated after full convergence of the NN when a particular value of λ is reached.
The similarity of both approaches can further be seen when comparing the decision surfaces
in figure 4.9 and figure 4.6. In both approaches the decision plane is tilted in such a way
that x2 is mostly unimportant for f(x) especially between the critical range of [0, 1] for
x1. The decision surface of fLc(x) shows some additional nuances towards more signal-like
region for values of x1 < 0 and x2 < 2 where the decision surface is less symmetrical to
x1. This indicates that not all information of x2 is disregarded by the approach in this
region. fLΛ(x) does also show a slight asymmetrical decision surface for lower values of x1
and x2 but to a much lesser extent than fLc(x). Furthermore, fLc(x) has lower values for
the more background-like region of x1 > 1 then fLΛ(x) indicating a greater confidence in
classifying those values as background. This is reflected in the shapes of both outputs as
the first bins (from the left) are more populated for fLc(x) than for fLΛ(x).

4.3.2. Decorrelation of a simple pseudo-experiment with two uncertain-
ties

To test the behavior of the penalty term for multiple uncertainties, a second dataset was
created. It was established in the first example that decorrelation against an input variable
completely or partially removes the information provided by this variable. As a consequence,
simply applying a systematic variation to x1 of the previous dataset and decorrelating
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Figure 4.10.: Shown are the first and second order Taylor coefficients of the NN output
function fLΛ for different values of λ. As expected, the Taylor coefficient for x2 decreases
for higher values of λ while the importance of x1 slightly increases.

against this systematic variation as well would deprive the NN of all information that
would be given by the two input variables. To mitigate this, a third input variable x3 was
introduced in the dataset that does not have a systematic variation while x1 and x2 now are
both shifted. The datasets were produced using three-dimensional Gaussian distributions.
The parameters for the signal distributions are

µS =

0
0
0

 (4.6)

σS =

1 0 0
0 1 0
0 0 1

 (4.7)

And for the background distributions:

µB =

1± 1
1± 1

1

 (4.8)

σB =

1 0 0
0 1 0
0 0 1

 (4.9)

where µi and σi are the means and covariance matrices respectively. A two-dimensional
representation of the data can be seen in figure 4.11. It should be noted that the datasets
for background and signal events, as well as the datasets for each systematic variation are
generated independently from each other and are statistically independent.
The architecture of the NN is the same as in section 4.3.1 and section 4.2 to guarantee
comparable results. Each uncertainty was treated with a separate penalty term which was
added to the CE loss function L′. This way the decorrelation against the input variables
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Figure 4.11.: Two-dimensional representation of the used dataset. The datasets are
created using three-dimensional Gaussian distributions. Variables x1 and x2 have an
uncertainty on their mean of ±1 while the variable x3 does not have an uncertainty.

was done independently for each systematic variation. The results for fLΛ(x) and fL′(x)
can be seen in figure 4.12. It can indeed be seen that the uncertainty bands are reduced
for fLΛ(x). In contrast to figure 4.8 though, there is still some systematic variation left,
especially in the highly populated bins around 0.2. This can be attributed to the fact
that the loss function is balancing classification and the values of two separate penalty
terms to achieve the best result, which is a compromise between classification of events
and decorrelation of the two systematic variations. A higher value of λ might reduce the
uncertainty bands even more at the cost of a further reduced separation power.

From the produced dataset, the expectation would be that the NN now mostly disregards
the information provided by x1 and x2 to separate the data and focuses mostly on the
information of x3. This assumption can again be verified by looking at the evolution of
the Taylor coefficients as a function of different values of λ as seen in figure 4.13. At a
value of λ = 0, the first order Taylor coefficients for all variables are approximately the
same. Confirming the assumption made above, the Taylor coefficients of x1 and x2 then
decrease slowly with an increasing value of λ. The Taylor coefficient for x3, on the other
hand, increases until around λ = 5 before slowly decreasing as well. The maximum could
be an indicator that this value of λ is optimal in terms of a balance between the separation
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Figure 4.12.: Both histograms show the output distribution when both systematic
variations are applied at the same time. The uncertainty bands for fLΛ(x) are largely
reduced in comparison to fL′(x). On the other hand, more events are closer to a value of
0.5 for fLΛ(x), indicating a less clear classification decision of the NN.

power and the decorrelation against the systematic uncertainties. Again, the value of this
Taylor coefficient stays well above the values of the other Taylor coefficients, marking it as
the most important value for the classification. The second order Taylor coefficients tx3x3
rises as well, reminiscent of the rise of tx2x2 in figure 4.10 before peaking at around λ = 3
and then slowly decreasing.

As the variables are not correlated to each other and the datasets are statistically inde-
pendent, the decision surfaces can again be plotted by projecting the three-dimensional
space onto a two-dimensional plane. The projection is done by taking the average of all
output scores along one axis. The decision surfaces for fLΛ(x) can be seen in figure 4.14.
Similar to the example with one systematic variations, the x1 − x3 and x2 − x3 decision
planes (top row) are now tilted and symmetrical to the x3 axis. Both decision surfaces
are again showing that the information of x1 and x2 are almost completely obliterated. A
more nuanced look into the information that is still provided by x1 and x2 is the x1 − x2
decision plane. As expected, most scores are around 0.5 for x3 > 0 indicating that the
NN could not clearly classify those events to either background or signal based on the
information provided by x1 and x2. In fact the surface shape indicates that, for most
values, the sensitivity of the NN for this particular plane is based solely on higher order
correlations between variables instead of the first order information. As σS and σB are
both unity matrices, there is no correlation to be expected between variables. The low
scores for the second-order Taylor coefficients does indeed confirm this result. Nevertheless,
the diagonal from upper left to lower right corner could be considered more background-like
and the diagonal from lower left to upper right more signal-like, albeit all the scores are
very close to 0.5 as already mentioned. Only in the lower-left corner at values of x1 < −1
and x2 < −1 is the first order information of x1 and x2 not completely obliterated and can
be used by the NN to classify events as signal-like.

4.3.3. Decorrelation of a high energy physics example

The toy example illustrates the decorrelating power of the penalty term. A more realistic
dataset is the Higgs boson machine learning challenge released by the ATLAS collabo-
ration [48]. This dataset consists of H → ττ signal processes and background processes
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Figure 4.13.: Shown are the first and second order Taylor coefficients of the NN output
function fLΛ for different values of λ for two systematic variations. As expected, the
Taylor coefficients for x1 and x2 are decreasing with increasing λ while the importance of
x3 is rising with a maximum of at λ = 5 and clearly staying above the other values.

obscuring the signal. The original challenge is to separate signal from background using any
machine learning technique. The data is a simplified synthetic set from simulated collisions
of high-energy proton beams as they are used at the CERN LHC. Since the task at hand
was to only separate signal from background, systematic uncertainties were originally not
part of the dataset. The dataset consists of a training set with 250000 events and a test
set of 550000 events. Each event has 30 input variables, the exact physical meanings can
be seen in [48]. Additionally each event has a weight associated with it. Those weights
are not the same as used for the re-weighting later on. They are associated with the cross
section of each process and event and must be applied in addition to the weights that are
used to apply the systematic variations in the penalty term. All input variables will be
used for this example.

In order to introduce a systematic uncertainty into the set of variables, the transverse
momentum of the reconstructed hadronic τ decay pτt is shifted by a small amount. The
uncertainty is chosen to be ±3 % in accordance with the actual measurements [49]. The
uncertainty on the transverse momentum comes from the finite resolution of the detectors
measuring the energy. As pτt has a requirement of pτt > 20GeV for all events in the dataset,
simply applying a shift of ±3 % to the data set causes migration effects on the edges of
the distribution of the input variables. Events from regions that are higher than 20GeV
can freely migrate downwards while no events can migrate upwards. Therefore, the pτt
requirement is raised to pτt > 22GeV. With this requirement, events can migrate upwards
as well as downwards. This solution introduces a caveat though: As the shift is based on a
percentage and the variation is dominated by migration effects at the lower pτt boundary,
the down variation of the uncertainty has a lower total amount of events than the nominal
case while the up variation has a higher total amount. In other words: Changing the lower
boundary requirement for the pτt introduces an additional normalization uncertainty that
needs to be taken into account later on. This normalization uncertainty is amplified for
the background due to the steeply falling distribution as seen in figure 4.15 (upper left).
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Figure 4.14.: The decision surfaces projected onto a two-dimensional plane for two
systematic variations in x1 and x2 respectively. Especially the x1 − x2 plane indicates
that most information of those variables are not considered for the decision of the NN.

The effect of the normalization uncertainty can be seen in the ratio to nominal. The ratio
is approximately constant for lower pτt values indicating that the uncertainty introduced
by shifting pτt is dominated by the normalization uncertainty. The distribution of signal
events (upper right) does not show a constant ratio and can therefore be considered to be
dominated by the shape uncertainty.

As with the simple pseudo-experiment example, the systematic uncertainty is applied on
histogram level via statistical weights instead of resampling the signal and background
datasets completely. By construction, re-weighting conserves all correlations across variables
in the input space. This means that the uncertainty introduced only to pτt is propagated to
other input variables that are correlated to pτt . Thus, all distributions that are correlated
to pτt will be subject to a systematic variation as desired. An example for correlated input
variables are the missing transverse momentum and the invariant di-τ mass [48]. Both can
be seen in figure 4.15 (lower row). The weights for each event can be calculated from the
histograms given in figure 4.15 (upper row). It should be noted that the introduction of a
fixed uncertainty of ±3 % is of course a simplified case of a systematic uncertainty since in
data from an actual physics measurement, intermediate values are normally also realized
and given.

For the training, the normalization uncertainty is not considered. By construction, the
penalty term of the loss function cannot reduce the effect of a normalization uncertainty on
the NN output. In principle, the normalization uncertainty could be expressed as a weight
and an additional penalty term could be constructed that could be used to decorrelate
against this uncertainty. However, the weight of the normalization uncertainty would apply
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Figure 4.15.: The upper row shows the distribution of the transverse momentum pτt for
background (upper left) and signal (upper right). The variations introduced by weights
are also shown in this plots. The ratio of the up and down-shifted histograms w.r.t. the
nominal histogram is given in the lower panels of the graphs. The lower row shows the
impact of the reweighting on other variables that are correlated to pτt and thus are also
affected by the systematic shifts of pτt .

to all events within background and signal with the exact same value. It can therefore
be considered a global constant. This is a crucial difference to the application of the
weights of the systematic uncertainty: Those weights were calculated per bin, thus each
bin has a different weight. Applying the same weight to all events would result in a
gradient of the penalty term that would shift all NN weights of all events in the exact
same direction. As a result, no information would be gained by the NN and the penalty
loss would not be reduced, effectively rendering the whole term without a function. Thus,
normalization uncertainties cannot be reduced with this NN architecture. Instead, the
normalization parameters for signal events s and background events b are calculated from
the training dataset and the histograms constructed for each batch are divided by the
calculated normalization parameters to effectively obscure any normalization uncertainty
from the NN while training. The normalization parameters calculated from the training
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Figure 4.16.: The left graph shows the NN output for a NN trained on cross entropy and
data without systematic uncertainties. The right graph shows the NN output for a NN
trained with a penalty term. The bands around the background distribution indicate the
systematic uncertainties which are a combination of normalization and shape uncertainty.
The bands are enlarged by a factor of 5 for better visibility. The normalization parameters
can be seen in equation 4.12. The bands are reduced for a NN trained with a penalty
term. The ratio plots beneath the histograms give the ratio per bin between histograms
with applied shape uncertainty and nominal histograms. The normalization uncertainty
was not considered in the ratio plots. The ratios of fLΛ are overall closer to a value of 1
as expected.

dataset are:

Ns,up = 1.02
Ns,down = 0.98
Nb,up = 1.07

Nb,down = 0.93

(4.10)

For each normalization uncertainty, a penalty term is formulated in the form of

Λ(x,∆) = 1
nk

∑
k

(Nk(f(x))−Nk,shape(f(x + ∆))
Nk(f(x))

)2

Nk,shape(f(x + ∆)) = Nk(f(x + ∆))/NNorm,

(4.11)

where NNorm is a the corresponding normalization parameter given in equation 4.10. This
way, the training solely focuses on reducing the shape uncertainty introduced by the shift
of pτt and there is no residual value of the penalty term caused by the normalization
uncertainty.

The architecture of the NN is the same as used in the simple pseudo-experiment described
in section 4.3.1. The hyper-parameters for the loss function are λ = 1000 and nk = 20. λ is
chosen to be large as the shape uncertainty is quite low and consequently the values of Λ are
easily overshadowed by the value of L′. The bins are chosen to be equidistant in the range
[0, 1] and the batch size is 103. The training was stopped after 50 epochs if the validation
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Figure 4.17.: Shown are the first order Taylor coefficients for the high energy physics
example for NNs with λ = 1000 and λ = 0. The Taylor coefficients were only calculated
once after a NN finished training. A different focus on variables can be seen for fLΛ

compared to fL′ with most variables having lower Taylor coefficients for fLΛ .

loss value did not improve in this time frame to avoid overfitting the NN. Afterwards,
the network was tested on the test set for independent results. The histograms of the NN
output with all systematic shifts are shown in figure 4.16. To make the small uncertainty
shift more visible, the shifted histograms are divided by the normalization parameters
calculated on the test dataset. The corresponding ratios of the shifted histograms and the
nominal histograms are shown in the lower half of the figure. The normalization parameters
for the test dataset are:

Ns,up = 1.02
Ns,down = 0.98
Nb,up = 1.07

Nb,down = 0.93

(4.12)

As the uncertainty shift of ±3 % is rather small, the effect of decorrelation is less visible in
comparison to the pseudo-experiment histograms in figure 4.8. Nevertheless one can see a
reduction of the dependence of fLΛ(x) on the systematic variations of pτT especially in the
ratio plots. The normalization uncertainty can be seen in form of a constant value for up
and down shift independent of the bin. The effect of this uncertainty is more pronounced
in the background category due to a higher number of events at the pτt threshold. The
graph also indicates that the normalization uncertainty is in fact more dominant than the
shape uncertainty which is reduced by the penalty term for higher values of λ.

To get a better understanding of the variables used by the NN for the classification, Taylor
coefficients are again calculated. The Taylor coefficients for fLΛ(x) and fL′(x) for all
variable used during training can be seen in figure 4.17. As expected, the invariant mass
DER_mass_vis of the hadronic τ and the lepton is one of the most important variables
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Figure 4.18.: Shown is the evolution of the first order Taylor coefficients for different
values of λ. The variables shown are only a selection of all variables. The Taylor coefficients
were only calculated once after a NN finished training. The Taylor coefficients decrease
as a function of λ for most variables with noteworthy exemptions like DER_mass_MMC.

and the importance is only slightly lower for fLΛ(x). The importance of DER_mass_MMC,
which is the estimated mass mH of the Higgs boson candidate, was already high for fL′(x)
but increases further for fLΛ(x). The variable is affected by the shift of pτt as seen in
figure 4.15, but the shape uncertainty mostly affects the signal events while the background
events are mostly affected by the normalization uncertainty. A potential reason for the
increase in importance is that there are more events in the background distribution than the
signal distribution, thus the background distribution has a higher impact on the training
(this will be also shown later on). Therefore, variables with background distributions
like DER_mass_MMC become more important for the classification. The transverse mass
DER_mass_transverse_met_lep between the missing transverse energy and the lepton also
increases slightly for potentially the same reason. The R separation between the hadronic
tau and the lepton DER_deltar_tau_lep stays approximately the same indicating that
the importance of the variable is not influenced by the penalty term. The importance of
most other variables decreases, with some dropping a significant amount. The evolution of
the Taylor coefficients 〈t〉 as a function of different values of λ for a selection of variables
is shown in figure 4.18. The Taylor coefficients for pτt steadily decreases as a function
of λ, though 〈t〉 for this variable was never high to begin with. On the other hand, the
transverse momentum plt of the second lepton slightly rises in importance with increasing
λ before slowly decreasing like pτt for λ > 100 and even dropping below pτt for λ = 1000.
The strongest decline in importance can be seen for the pseudorapidity ηjet of the leading
jet. This variable is considered to be as important as variables associated with masses
for λ = 0, but starts to slowly decline for λ > 50 before completely dropping off and
converging to 0 for values of λ > 275. Confirming the previous assessment, the values of
DER_mass_transverse_met_lep and DER_deltar_tau_lep indeed stay approximately the
same for all values of λ with DER_mass_transverse_met_lep only gaining importance for
values of λ > 500. Overall the importance of variables seems to shift towards mass terms
that are less affected by the uncertainty in the background distributions while variables
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Figure 4.19.: Shown is the calculated signal strength µ and the uncertainties ∆µ
associated with it. As µ was calculated using an Asimov dataset, the value is always µ = 1
and the important test statistics are the calculated constraints ∆µ on the signal strength.
The combined uncertainty is splitted into statistical uncertainty, shape uncertainty and
normalization uncertainty too see the reduction in the shape uncertainty.

associated with features of jets or transverse momentums generally lose importance. It
should be noted that this is not a unique result and the interpretation is therefore not
universally applicable.

As a final comparison, the statistical inference process described in section 2.4.2 is applied
to the histograms given in figure 4.16. As previously discussed, when constructing a profiled
likelihood fit, systematic uncertainties can be accounted for with nuisance parameters
θ = {θi}. Usually every known systematic uncertainty ∆i is incorporated by one nuisance
parameter θi. As this will be a simple hypothesis test where the signal hypothesis will
be tested against a null hypothesis, only a single parameter of interest µ representing the
signal strength is needed. To calculate the uncertainty ∆µ/µ on µ, an Asimov dataset,
where data is replaced by simulation, was used. This fixes the signal strength to µ = 1
and the uncertainty simplifies to ∆µ. Fitting the profiled likelihood with a single nuisance
parameter θ and splitting the uncertainty into a statistical part ∆µstat and a systematic
part ∆µsys, the results for fL′ for the 68% CI are ∆µstat = ±0.28 and ∆µsys =+0.11

−0.08. The
calculated uncertainties for fLΛ , on the other hand, are ∆µstat = ±0.43 and ∆µsys = ±0.19.
While this might look like it is contradicting the previous findings as we would expect
the systematic uncertainty to decrease while the statistical uncertainty increases, it is not
completely unexpected if we take the previous discussion about normalization uncertainties
into account. As already discussed, the normalization uncertainty introduced by raising
the pτt boundary is dominant in the background classes. Since background classes are
a majority in every bin of the distribution, e.g. with more than 65 thousand counts in
the first bin from the left, this normalization uncertainty becomes overall the dominant
uncertainty. As the penalty term cannot reduce the effects of normalization uncertainties,
the constraint of the nuisance parameters is dominated by the normalization uncertainty
and we cannot expect to find a large difference in systematic uncertainty between fL′ and
fLΛ if only a single nuisance parameter is used for both uncertainties.
Instead we split the uncertainty into two independent nuisance parameters one for the
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(a) fLΛ with λ = 100
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(b) fLΛ with λ = 1000

Figure 4.20.: Comparison of two shapes trained with a different values of λ. Both signal
ratios fluctuate in the first and last bin. However in the background ratio, only the left
graph shows fluctuations, especially in the last 8 bins.

normalization uncertainty θnorm and one for the shape uncertainty θshape. Additionally, the
influence of λ on the uncertainties is investigated by plotting µ as a function of λ. When
splitting the nuisance parameters we would now expect the normalization parameter to
stay approximately the same for both fL′ and fLΛ while θshape should decrease for higher
values of λ. It should be noted though that splitting this uncertainties into two completely
independent nuisance parameters is not fully correct as both uncertainties are correlated
and thus not independent from each other. With this caveat in mind, the results can be
seen in figure 4.19. Splitting the uncertainties does indeed meet the expectations as the
shape uncertainty decreases steadily for increasing values of λ until it completely vanishes
for λ = 1000. The statistical uncertainty on the other hand increases as a function of λ.
This indicates that the systematic uncertainty is statistics driven when training with a
penalty term. This is the desired effect of the penalty term as statistical uncertainties can
be reduced by using more statistics while systematic uncertainties are irreducible by data
alone. On the other hand, the normalization uncertainty increases for higher values of λ as
well becoming the dominant systematic uncertainty for λ > 50. It should be noted that
the value of λ has no influence on the normalization parameters given in equation 4.12.
The increase of the normalization uncertainty can be attributed to the change in shape
due to the decorrelation by the penalty term. Comparing the shapes seen in figure 4.16,
the distribution of both signal and background are less steep showing that the NN is less
powerful in the separation between background and signal events. Especially the first few
and last few bins show a notable difference. Those bins are usually highly pure bins as an
event needs the highest score possible to be selected for this bin. A reduction of purity
in those bins could lead to a stronger correlation of systematic uncertainties to the signal
strength. The correlation to the signal strength for the normalization uncertainty does
indeed increase from ρ = 0.26 for λ = 0 to ρ = 0.34 for λ = 1000. The correlation of the
shape uncertainty on the other hand decreases from ρ = 0.61 for λ = 0 to ρ = 0.00 for
λ = 1000, again showing the decorrelation power of the penalty term.

Another point which can be proven now is the assumption that the constraint on the
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signal strength is dominated by the background distribution. For this, the ratios of shifted
histogram and nominal histogram for signal and background are compared for λ = 100 and
λ = 1000 in figure 4.20. There is a difference between the shape of the shifted histogram
and the nominal histogram in the first and last bin of the signal ratio for both graphs.
This indicates that the large difference in shape uncertainty between the two values of
λ, as seen in figure 4.19, cannot or only partially be attributed to the uncertainty of the
signal shape. On the other hand, only the background ratio of the left graph has some bins
where nominal and shifted histograms do not have the same amount of data. The right
graph in contrast has almost perfect agreement between nominal and shifted histogram.
The difference between the right graph and the left graph is most apparent in the last 8
bins from the left. Decorrelating the uncertainty of the last 8 bins from all other bins, we
find that the correlation of all the other bins to the signal is only ρ = 0.05 combined, while
the correlation of the last 8 bins is ρ = 0.33 combined. Furthermore, the correlation for
the last bin – which also showed a discrepancy for the signal ratio – is only 0.02 and lower
than the second to last or third to last bin. This indicates that the background ratio is
indeed the dominant part for the calculation of the signal strength constraints.
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This thesis consists of two parts that both investigate the importance and reliability of
input variables to NNs.
In the first part of the thesis, the input variables used for the current MVA-based H → ττ
analysis are investigated and reduced to a set of input variables with high impacts on the
classification of the data. The pruning is based on the importance of each input variable,
which was calculated using Taylor coefficients. The F1-scores, efficiencies and purities of
each NN were used to determine after which variable the classification of the NN does not
improve anymore. It was shown that using the F1-score and confusion matrices as metrics
gives reliable results for an effective pruning of the input variables. For each final state, a
core set and extended set of variables were defined, reducing the number of variables from
29 to 11 and 16 respectively. The NNs trained on the core set and extended set of variables
given in table 3.2 achieve similar results to the reference NN as seen in table 3.3.
Furthermore, the input variables of the core and extended set were aligned across all years
and most final states. This was used to train NNs with a combined dataset of all years
for each final state, which reduces the number of NNs needed for classification from 12
to 4. The discrete input variable era was used to discern to which year a given event
belongs to. The classification achieved by those NNs is comparable to the NNs trained
on separated datasets. The synchronization of variables gives the possibility to introduce
another technique to the training of the NNs: By randomizing the era variable of the
signal events for each year, the NNs could be deprived of the information from which year
a signal event was coming from. This was used to recover the signal from years where no
data of signal events were available. It was shown that the signal strength constraints of
the NNs trained with this randomization technique were again comparable to the reference
NNs.
While the pruning technique presented here can be applied to most datasets, the results
of the pruning are specific to the dataset used for this thesis. A dataset with a different
event selection might have a different importance ranking for the input variables and thus
a different core and extended set. This caveat should be taken into consideration when
applying the results of this thesis to any datasets with different event selection. Furthermore,
it was shown that the improvement in signal strength constraints for the randomization
techniques must be caused by artifacts in the data. When using conditional NNs, an effort
should be made that there are no artifacts in the dataset of one year that is not present in
the dataset of other years as those artifacts might lead to an over- or underestimation of
the final result of the analysis, which could cause a bias under the wrong circumstances.

In the second part of the thesis, two techniques are presented that implement prior knowledge
of systematic uncertainties directly into the NN training. The first technique leverages
adversarial NNs to decorrelate the output of the NN against input variables affected by
systematic variations. It is shown in figure 4.2 that the setup with an adversarial NN does
indeed reduce the dependency of the NN output on systematic variations. Taylor coefficients
are used to visualize the reduction of importance of the input variable affected by systematic
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uncertainties. However, due to the complexity and limitations of these adversarial NNs,
they cannot be universally used in high-energy physics analyses to incorporate systematic
variations in NNs.
The second technique is a novel strategy to implement the systematic variations. In this
technique, systematic variations are introduced in the training of the NN via a penalty term
of the loss function. The usage of a penalty term instead of an additional NN reduces the
complexity of the task to only a few additional hyper-parameters. Additionally, the penalty
term allows the inscription of systematic variations via statistical weights. The technique
was demonstrated on the same pseudo-experiments used for the first technique and the
results for the shape of the histograms and the Taylor coefficients are very similar. This
technique also allows to incorporate multiple systematic variations by adding a penalty term
to the loss function for each uncorrelated systematic uncertainty. This was demonstrated
by enhancing the pseudo-experiment with an additional variable and introducing a second
systematic uncertainty to the dataset. The shape and Taylor coefficients again show a
reduction of the dependency of the NN output on the systematic variations of the input
variables. Lastly, the new technique was tested on a high-energy physics example in form
of the Higgs boson machine learning challenge released by the ATLAS collaboration [48].
In this more complex example, the technique again successfully reduces the impact of the
systematic uncertainty, which affects multiple input variables this time, on the NN output
as seen in figure 4.19. The results show that systematic uncertainties are converted into
statistical uncertainties. As systematic uncertainties play a dominant role in measurements
of high-energy physics, it is of increasing interest in this field that the output of an NN is
less prone to systematic uncertainties.
While this technique does indeed produce a more robust NN, it also reduces the ability
of the NN to separate background and signal events. It was shown that the decorrelation
against input variables obliterates most information of this input variable for the NN.
Fine-tuning the hyper-parameter λ can limit the amount of information obliterated by
the penalty term, but the decorrelation against the systematic uncertainty will also be
limited. To improve this behavior, a loss function would be needed, which adjusts the
level of reliability given to an input variable without human input. The loss function
would need to find a balance between the systematic uncertainties and separating power of
an input variable. This could be achieved e.g. by a loss function which is based on the
likelihood-based analysis of the NN output shown in section 2.4.2.



Appendix

A. On the relation between the maximum likelihood estimate and the
cross entropy for neural networks

A.1. Maximum likelihood estimator

The likelihood function for the outcome of a statistical sample of length N is given by
the product of the probabilities Pj(x|θ) to make the individual observations {j : x} with
x = {xi} for a given parameterset θ = {θk} of the hypothesized model:

L(θ) =
N∏
j=0

Pj(x|θ) (A.1)

The maximum likelihood principle defines the best estimators θ̂ = {θ̂j} of θ (MLE) as
those parameters that maximize L(θ). To find an extreme value of L(θ), the derivatives of
Eq. (A.1) with respect of the parameters θ have to be calculated. Since L(θ) can become
very small for large sample lengths N its handling is usually facilitated using the logarithm
of L(θ). Due to the properties of the logarithmic derivative

d
dx
(
ln
(
f(x)

))
= 1
f(x)

d
dxf(x) (A.2)

the MLE based on the logarithmic likelihood is equivalent to the MLE based on the
likelihood itself. In practice the logarithmic likelihood function is moreover often multiplied
by a factor −1, turning the maximum into a minimum. The negative logarithmic likelihood
function (NLL) finally is defined as:

L = − ln (L(θ)) (A.3)

The MLE is always efficient and consistent [50, 51].

A.2. Maximum Likelihood function for a neural network

For illustrative purposes only we give the functional form of the neural network (NN)
output. For this purpose, and without loss of generality, we use a simple NN with a single
hidden layer h = {hk}, with nodes k, to be used for binary classification with a single
output ŷ. The output function for this NN can be written as
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ŷ = O
(

m∑
k=0

hk(xi, θik, θbk) θ′k + θ′b

)

hk = H
(

n∑
i=0

xiθik + θbk

)
,

(A.4)

where H and O are the activation functions of the hidden and output layer, respectively, m
is the number of nodes of the hidden layer and n the number of inputs xi. The parameters
{θi,bk} and {θ′k,b} correspond to the trainable parameters of the hidden and output layer,
respectively. In the following we require O to be the sigmoid function with values between
0 and 1, indicating the degree of belief for associating a single observation with inputs x to
a given ground truth class, without knowing this truth. We thus interpret Eq. (A.4) for
the value of ŷ as a model for the probability

P (x|θ) = ŷ with: θ = {θi,bk} ∪ {θ′k,b} , (A.5)

to associate an observation with inputs x to a given ground truth class. To generalize this
probability interpretation to all possible observations irrespective of their ground truth we
introduce the prior probability

y =


1 event in class

0 else,
(A.6)

which is 1 if the sample belongs to the class in consideration and 0 if it belongs to the
complement class. In this way the probability of Eq. (A.5) can be rewritten as:

P (x|θ) = ŷy(1− ŷ)1−y =


ŷ event in class

1− ŷ else.
(A.7)

The dependency of P (x|θ) on x and θ is given by the definition of ŷ in Equation (A.4).
For N independent observations j Equation (A.7) expands to

L(θ) =
N∏
j=0

Pj(x|θ)

=
N∏
j=0

ŷj
yj (1− ŷj)1−yj

L(θ) = −
N∑
j=0

(
yj ln(ŷj) + (1− yj) ln(1− ŷj)

)
,

(A.8)
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which can be interpreted as the likelihood function to observe a given permutation of
observations j being associated to the given class or its complement class in a sample
of length N . In this interpretation the parameters θ defined in Equation (A.5) can be
identified as the adjustable parameters of a likelihood model equivalent to the parameters
θ of the hypothesized model assumed for Equation (A.1). The binary cross entropy (CE)
for the true distribution of a given parameter y and a probability distribution P (x|θ) is
defined as

H(y, P (x|θ)) = −
N∑
j=0

yj ln (P (x|θ)) + (1− yj) ln (1− P (x|θ)) (A.9)

Comparing Eq. (A.9) to Eq. (A.8) one can see that both equations are identical. So
minimizing the CE w.r.t. θ is equivalent with finding the MLE of the specific likelihood
model described above. A more complete and general mathematical description can be
found in Ref. [28]. The arguments outlined above can be extended to multi-classification
problems based on the softmax activation function for the output layer.

A.3. Caveats

In the above discussion of the equivalence of the CE and the MLE estimate the following
points should not be omitted:

• In the interpretation given above the CE corresponds to the likelihood for a permuta-
tion of observations j being associated to a given class or its complement class in a
sample of length N , without further uncertainties.

• While Eqs. (A.8) and (A.9) are equivalent, this is strictly only true within the bound-
ary conditions and interpretation given above. The CE, which has its origin from
information theory, cannot be related to a statistical likelihood function, in general.

• The probability interpretation for ŷ in the sense of a degree of belief associated to
the observation x relies on a strictly Bayesian probability interpretation. In the
frequentist approach and the example given above a single sample is either associated
to the given class or to its complement. A probability assignment P (x|θ) to an
observation different from 0 or 1 makes no sense. Also since the NN is deterministic
the same set of inputs x will always lead to the same value of ŷ, with a probability of
1.

B. Optimization of the NN on a likelihood-based analysis

The results of the NN with additional penalty term as introduced in section 4.3 does not
necessarily indicate whether the NN performs better in the statistical inference of its output
compared to a NN trained without consolidation of systematic uncertainties. As can be
seen in figure 4.19, the reduction of the systematic uncertainty introduces a larger statistical
and normalization uncertainty and does not lead to a better overall constraint of the signal
strength constraints. In general the objective of the loss function of NNs do not necessarily
coincide with the goal of the actual physical analysis described in section 2.4.2. In figure
B.1 (top row), a rough description of the HEP analysis in its current implementation for
the H → ττ analysis is given. As one can see, the objective of the loss function of the NN
is separated by an additional step from the actual end result. The end results is usually
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(a) Current end-to-end analysis.

(b) New end-to-end approach.

Figure B.1.: The top graph shows the current implementation of the H → ττ analysis.
There is a clear disconnect between the objective function of the NN and the general
objective of the analysis. While correlated, certain analysis tools are not considered when
minimizing the NN loss. The bottom graph shows the potential new approach of the
analysis. The complete analysis will be used in the NN loss function and the physics
objective will be directly used to optimize the weights of the NN.

defined by the significance or signal strength with the best fit values and constraints, which
takes all systematic uncertainties into account or uses additional cuts and binning option
to further enhance and improve the results. Optimally, we would want to include those
systematic uncertainties and binning options already in the NN training to achieve the
best fit results on a given dataset.

The main loss function for NN classification tasks is the CE loss function. In a binary
classification task, the cross entropy is defined as

H(y, P (x|θ)) = −
N∑
j=0

yj ln (P (x|θ)) + (1− yj) ln (1− P (x|θ)) . (B.1)

with P (x|θ) as the NN output and yj the true label for the given event. This objective
function separates the two classes to the left or right side of a histogram maximizing the
efficiency. While this is indeed an MLE as seen in appendix A, it is not necessarily what
the statistical inference cares about in the end, e.g. the binned profiled log likelihood does
not care about the exact orientation of the distributions in the histogram. In other words:
It is of no particular interest what the histogram looks like as longs as the significance in
the end is the highest given the data. This leads to an obvious solution: One could take the
significance of the end results as the final result for the loss function and propagate the error
all the way to the NN output. This way, the NN loss function would be directly related to the
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Figure B.2.: The binning is done according to equation B.3. Extending this formula for
10 bins results in the combined gradient shown above.

end objective of the statistical inference and the weights of the NN are directly optimized for
maximization of the significance. This solution brings another advantage: The significance
in HEP physics is often calculated using a profiled log likelihood scan as described in
section 2.4.2. As the implementation of systematic uncertainties in the statistical inference
of binned profiled log likelihood are well understood and an accepted practice in HEP, if
this approach is used as a loss function for the NN, systematic uncertainties are naturally
included in the NN. The end result would be an NN that is specialized to complete the
criteria of a physics analysis. The general approach can be seen in figure B.1.

For the actual statistical inference, the NN output needs to be binned again. Of course
one could simply take the approach with the Gaussian filters again explained in section
4.3. As mentioned though, those Gaussian filters only approximate the actual bin count.
This was not necessarily a problem in the previous task of decorrelation, but as the goal is
now to make a precise measurement, a binning approach which is not an approximation
would be more appropriate to use. As previously explained, equation 4.4 does not have a
well-defined gradient and can not be differentiated for back propagation. While this is true
from a mathematical point of view, practically this can simply be by-passed by injecting a
custom derivative of the Heaviside theta function in the code. It is possible to simply assign
the function a derivative which will be used in back propagation. A reasonable derivative
for a the binning function is already known: The differentiation of the Gaussian filters did
exactly what was expected of them. Taking the derivative of the Gaussian distributions
used in section 4.3 and using this derivative for equation 4.4, a completely differentiable
NN function can be formulated. The definition for the binning function is

Mk = θ(f(x)− a) · θ(f(x) + b) (B.2)

M′k = −Gk(f(x)) · f(x)−m
ϕ2 , (B.3)

where m is the center and ϕ the half-width of the bin k. An example of the resulting
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combined derivative with 10 bins can be seen in figure B.2. In the combined gradient,
values close to the center of the bin are pushed more towards the center by this gradient
while values close to the edge of the bin are pushed away from the center. On the edges of
the distribution, large gradient hills have formed due to the combination of all residual
positive or negative values from all other Gaussian gradients used and due to the absence
of terms to the left or right of those peaks that would lower their values. The exact form of
the gradient does not matter as long as the gradient assigns a different gradient to events
in one bin to allow events to be passed from one bin to another. The peaks on the edges
are also beneficial in this case as they push the overall distribution more to the center and
thus limiting edge effects that can disrupt the training process, e.g. when all events are
pushed into a single bin at the edge. After binning the values into nk bins, the systematic
uncertainties can again be applied via reweighting to get an up- and down-shifted histogram.
This systematic uncertainties σ can then directly be applied in the following.

For simplicity sake, the approach is described on a binary classification task with a signal
s and a background b. As described in section 2.4.2, the statistical analysis is done by
introducing the signal strength modifier µ = σ

σSM
. The signal strength modifier shifts the

signal expectation s. For s = 0 we get the background-only hypothesis and for s = 1 the
background plus signal hypothesis. Using Poisson distributions P, the likelihood can be
formulated as

L(data|µ, θ) =
N∏
i

P(datai|µ · si + bi + θ · σi) (B.4)

where σi are the systematic uncertainties as mentioned above. The systematic uncertainties
increase or decrease the amount of background seen. The test statistic we want to calculate
can than be formulated as

qµ = −2 ln
(
L(data|µ, θ̂µ)
L(data|µ̂, θ̂)

)
0 ≤ µ̂ < µ . (B.5)

µ̂ and θ̂ are the global best fit parameters, while θ̂µ is the θ which maximizes L for a given
µ. If Wilk’s theorem [32] holds true, which means there is a very large sample size N , the
significance z in quantiles of a normalized Gaussian distribution can then be calculated by
calculating qµ at µ = 0:

z = √qµ=0 =

√√√√−2 ln
(

Poisson(data|b+ θ̂µ · σ)
Poisson(data|µ̂ · s+ b+ θ̂ · σ)

)
. (B.6)

Maximizing this significance as the loss function (for technical reasons a minus sign is
added to minimize the loss function), the physics objective would be directly optimized.
From a technical point of view, one would have to calculate both global fit parameters µ̂
and θ̂ as well as θ̂µ and the ratio of them to calculate a single significance and gradient step.
This is not only computationally expensive even for a single nuisance parameter θ but also
leads to a highly complex loss function which changes its topology according to the new
best fit parameters. While finding a global minimum cannot be guaranteed for any gradient
descent optimization, even finding a local minimum turns out to be a complicated and
unstable task in such an environment due to the changing topology of the loss function.
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A less computational intense and complex version of this loss function was first proposed
by [52]. The first difference to the test statistic defined in B.5 is that an Asimov dataset is
used instead of actual observed data. This is a quite common occurence in high energy
physics as usually data is only used after the statistical model is finalized. This way any
bias due to model fine-tuning can be avoided. In an Asimov dataset or in the Asimov
likelihood LA, the data is replaced by the nominal expectation s+ b measured from the
NN output:

LA(s+ b|µ, θ) =
N∏
i

P(si + bi|µ · si + bi + θ · σi) (B.7)

This formulation automatically fixes the minimum of q at µ = 1. In fact, only the
minimization of a variable is of interest and the actual value of this variable is not important
for the minimization task. Therefore, the denominator of B.5 is no longer needed, as this
denominator becomes constant for an Asimov likelihood. The best global fit parameters
will always be µ̂ = 1 and θ̂ = 0. As a constant term will simply be eliminated in the back
propagation, it is no longer needed. Furthermore, the valuable Fisher information matrix
I(µ, θ) can now be obtained by calculating B.7 at µ = 1, taking the negativ logarithmic
expression of this and computing the Hessian matrix with regards to all nuisance parameters
µ and θ:

I(µ, θ) = ∂2

∂µ∂θ
(− lnLA(s+ b|µ, θ)) (B.8)

In case of only one nuisance parameter θ, this is a simple 2× 2 matrix. If θ̂ and µ̂ is now
assumed to be unbiased estimators of the values of both nuisance parameters (which is
given by construction, see [52]), we can apply the Cramér-Rao lower bound [32] to the
covariance matrix and the inverse of the Fisher information matrix:

cov(µ, θ̂) ≥ I(µ, θ)−1 (B.9)

This means that the inverse of the computational easily calculated Fisher information
matrix I−1 gives a accurate approximation of the expected variance of each term as well
as the correlations between the nuisance parameters. In fact the diagonal elements of the
inverse Fisher information matrix I−1

k,k, which are the expected variances, can now be used
to optimize the NN on any given optimization goal for all nuisance parameters. Of course
the most logical diagonal element to pick for a physics analysis is the I−1

µµ element, which
directly correlates to the measured significance. This element corresponds to the curvature
of the parabola which is normally calculated by scanning equation B.5 for different values
of µ and fit a parabola on those values. This again only holds true in the limit of large
sample sizes N . An example for the similar results of a parabola centered on µ = 1 with
curvature I−1

µµ and a parabola fitted by scanning µ can be seen in figure B.3. As is typical
when using an Asimov dataset, instead of the significance, the constraints on the signal
strength for the 68 % CI are calculated by taking the value of µ at q = 1. Both upper and
lower limits can be calculated this way. The lower the constraints, the better the separation
of the data with regards to the systematic uncertainties. As we do not scan q anymore, we
can simply take the value of µ for the parabola seen in figure B.3 at q = 1, which will give
us a good approximation on the real constraints. All in all, the final loss function L will be
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Figure B.3.: The graph shows the points and fitted parable given by a normal profiled
log likelihood fit. The different values are calculated by injecting different values for µ
into equation B.5. The blue dotted line is the parable one gets by calculating the inverse
Fisher-matrix and taking the diagonal element of µ as the curvature for a parable.

L =
√
I−1
µµ . (B.10)

Minimizing this value instead of equation B.6 results in a much more stable and less
computational intensive training than before while still approximating the actual physical
objective in a reasonable manner.

The architecture of the neural network is again kept simple and is largely identical to the
NN described in section 4.3.1. However, a closer look at the NN output has to be taken: As
the NN outputs has to be binned in a certain range, the activation function of the output
layer should already map the output values to the accepted range. The simplest solution
would be the sigmoid activation functions which outputs values between [0, 1]. A caveat of
this choice is the derivative of the sigmoid function. As seen in figure B.4 (a), the derivative
has large values near x = 0 and values close to 0 otherwise. For binary classification tasks
where the distributions are sorted either to the left or the right hand side, this behavior
is welcome as it aids this process by giving values close to 0.5 a higher value for the back
propagation. In this case though, the shape of the distributions do not matter. In fact,
the NN is not given any information on how to sort between signal and background. The
NN could potentially choose any bin for the signal and any other bin for the background.
This also includes the bins in the middle. Since the sigmoid activation encourages higher
changes for value around 0.5, while suppressing changes of values near 0 and 1, the natural
sorting of the loss function might get biased by the sigmoid activation function. If we take
this one step further, a more natural choice for the loss function would be a combination of
a sigmoid function and a simple linear function:
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Figure B.4.: Comparison between sigmoid activation, linear activation and equation
B.11. Also shown are the derivatives of each activation function.

f(x) =


0 x < −1
x − 1 < x < 1
1 x > 1

(B.11)

f ′(x) =


0 x < −1
1 − 1 < x < 1
0 x > 1

(B.12)

This activation function shown in figure B.11 (c) is not biased for any value inside its
defined range [−1, 1]. The range of this activation function can be decided on based on the
expected output values of the last NN layer. Taking this even further, one could simply
take a linear activation function with no boundaries. This would mean that any value
would be produced by the NN and the produced histogram of the loss function would have
to take this into account. A simple solution to this problem would be to define over- and
underflow bins for this histogram. Over- and underflow bins are also commonly used in
analysis packages like ROOT to catch values outside of the defined range of the analysis.
In other words: Using over- and underflow bins would be closer to the usual analysis
routine done for the statistical inference described in section 2.4.2. All of the activation
functions described here can be used to solve this problem, but for simplicity sake the
sigmoid function was used for this analysis.
Additionally, it was found that the initialization of the weights of the NN can have a great
impact on the over all performance of the training. In particular it was found that certain
initializations, depending on the random seed used, can have their output values all in a
range that would result in – for example – only zero values from the sigmoid activation
functions. While this is not a problem for a normal CE loss, for the caculation of the
loss L the output values would all be sorted into the same bin. This would result in a
non-invertible Fisher information matrix I and thus the training would fail on the very first
step as no gradient for back propagation can be formulated. To by-pass this problem and
ensure that all weight initialization seeds result in approximately the same starting point
for all NNs, a preliminary training was implemented. This preliminary training trains the
NN on the CE loss function for 1000 steps. This way it can be ensured that the output
values of the NN are all distributed over the complete range of [0, 1]. After 1000 steps the
loss function will then be simply switched to L.
The simple dataset already used in section 4.2 and 4.3.1 is used again here to test this
end-to-end implementation. In addition to the shifts, an imbalance of signal and background
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Figure B.5.: The graph shows the results of the statistical inference when directly
applied to the distributions of the dataset given by figure 4.4. This results can be used to
quantify the results of the new loss L.

samples is introduced to the dataset to further enhance the complexity of the task and
bring it closer to an actual physical measurement. The expectation of the signal samples is
set to 100, while the expectation of the background samples is set to 1000. To compare the
results of the statistical inference of the CE loss and the new loss L to a fixed point, first a
statistical inference is performed on the dataset without the usage of an NN. As the exact
distributions used for creating the datasets are known, one can simply use the probability
density functions (PDF) to get the probability for signal and background events for any bin
in a finely binned two-dimensional histogram by integrating the PDFs over the bin edges.
For this study, 50× 50 bins for the statistical inference of the two-dimensional histogram
are used. Afterwards the 2500 bins are flattened to get a one dimensional histogram. Using
2500 bins for a binned profiled log likelihood fit is close to using an unbinned profiled
log likelihood fit which theoretically would result in the best fit values. The result of the
statistical inference of this histogram should therefore be a well-defined reference point on
which to measure the success of the training of the NN. The results of this comparison test
are shown in figure B.5.
Afterwards, the NN is trained with the new loss function L. The number of bins is chosen
to be nk = 10 and to be equidistant in the range [0, 1]. The resulting histogram of the
NN output can be seen in figure B.6 (left). Other than the penalty term of section 4.3,
this loss function does not necessarily reduce the uncertainty bands of the background
distribution, which is to be expected considering that the loss L does not have any indicator
to decorrelate against the shifted backgrounds. It can also be seen that the peak of the
signal and background distribution is chosen rather arbitrarily by the NN. As long as they
are not in the same bin, the actual distant between the distributions does not matter. This
is again the behavior we would expect as the distant of the bins does not matter for the
calculation of the signal strength constraints as long as the distributions are separated. In
general, the distributions of signal and background are kept close to each other by the NN.
A reason for this might be that exchanging events between the two distributions is easier
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this way and thus only small changes of the weights are needed to further minimize the
constraints. The signal strength constraints calculated by using the statistical inference
framework from the H → ττ analysis is shown in figure B.6 (right). Comparing this to
the signal strength constraints given in figure B.5 one can clearly see that the results are
comparable. The small difference in constraints can be attributed to the number of bins
nk = 10 used for training. A higher number of bins is computational more expensive, but
leads to a better constraint. This can be seen in figure B.6 (bottom row). Figure B.7 shows
the signal strength constraints for a NN trained with CE loss and the nominal dataset. One
can see that the constraints are getting worse compared to figure B.6 and figure B.5. The
new end-to-end training can thus be considered superior for this simple pseudo-experiment.

As already discussed, the cross entropy finds the MLE for a given problem if there are no
systematic uncertainties present in the dataset. This case will be called "statistics only" in
the following. As a MLE is both consistent and efficient, the MLE usually can be seen as
the best possible estimator for a given problem. On the other hand, the statistical inference
loss L should also find the MLE for a given problem simply by construction. To test
this hypothesis, the signal strength constraints of cross entropy and L are compared in a
statistics only case. Using the dataset from above but removing all systematic uncertainties,
both loss functions are compared. As shown in figure B.8, we indeed find that L and CE
have comparable signal strength constraints. Of course the histograms produced by both
loss functions are widely different. This illustrates that there is no unique solution to this
problem and the solution depends on the choice of the loss function.
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(a) Histogram of NN output for 10 bins. (b) Calculated constraints using statistical infer-
ence.

(c) Histogram of NN output for 50 bins. (d) Calculated constraints using statistical infer-
ence.

Figure B.6.: The left plots show the NN output for the loss function L for 10 and 50
bins. The distributions show a clear separation between signal and background. Up and
down variation are still visible in contrast to figure 4.8. The right plots show the signal
strength constraints calculated using statistical inference on the histogram given on the
left side. The constraints are comparable to the constraints given in figure B.5. One
can see a slight improvement of signal strength constraints with a higher number of bins
(bottom row).
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(a) Histogram of NN output using cross-entropy. (b) Calculated constraints using statistical infer-
ence.

Figure B.7.: The left plot shows the NN output for the CE loss function. The right
graph shows the statistical inference done on the histogram given on the left side. The
signal strength constraints are worse than the constraints given in figure B.6 and figure
B.5.

(a) End-to-end training (b) Cross-entropy training

Figure B.8.: Both signal strength constraints given in the graphs show comparable
results for nk = 10 bins. Both NN find the MLE for this case, even though their solutions
can be entirely different.
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C. Input variables selection plots
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Figure C.9.: F1 score of the ggh output class (marked as the solid line) and the eµ
final state as function of the input variables for two independent trainings and Taylor
coefficient rankings.
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Figure C.10.: F1 score of the qqh output class (marked as the solid line) and the eµ
final state as function of the input variables for two independent trainings and Taylor
coefficient rankings.
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Figure C.11.: F1 score of the ggh output class (marked as the solid line) and the eτh
final state as function of the input variables for two independent trainings and Taylor
coefficient rankings.
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Figure C.12.: F1 score of the qqh output class (marked as the solid line) and the eτh
final state as function of the input variables for two independent trainings and Taylor
coefficient rankings.
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Figure C.13.: F1 score of the ggh output class (marked as the solid line) and the µτh
final state as function of the input variables for two independent trainings and Taylor
coefficient rankings.
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Figure C.14.: F1 score of the qqh output class (marked as the solid line) and the µτh
final state as function of the input variables for two independent trainings and Taylor
coefficient rankings.
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Figure C.15.: F1 score of the ggh output class (marked as the solid line) and the τhτh
final state as function of the input variables for two independent trainings and Taylor
coefficient rankings.
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Figure C.16.: F1 score of the qqh output class (marked as the solid line) and the τhτh
final state as function of the input variables for two independent trainings and Taylor
coefficient rankings.
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