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1. Introduction

1. Introduction

The field of high-energy physics is dedicated to the study of the fundamental compo-
nents of matter and the interactions between them. The Standard Model of Particle
Physics undoubtedly represents the broadest and most extensively tested theoretical
model of these phenomena, having demonstrated a resounding success in describing
the wealth of experimental data collected in high-energy collisions at particle accelera-
tors.

Accordingly, a principal focus in high-energy physics has been the determination of
Standard Model parameters from experimental data to a high degree of precision. In
particular, precision studies of Quantum Chromodynamics (QCD), the theory of the
strong interaction, have acquired greater importance in recent years, as an increasing
number of phenomenological studies rely on precise QCD predictions. Aside from the
masses of the quarks, the strong coupling constant 𝛼s, conventionally evaluated at the
scale of the Z-boson mass 𝑀Z, is the only free parameter of QCD, and is currently among
the least well known fundamental physical parameters.

Among the most promising experimental data from which the precision of 𝛼s(𝑀Z)
can be improved are measurements of jet production cross sections in hadron-induced
collisions. Of these, measurements of inclusive jet production remain among the most
precisely measured and well-understood observables.

The aim of this work is the development and implementation of a procedure for the
determination of the strong coupling constant 𝛼s(𝑀Z) from a combined dataset consist-
ing of measurements performed in ep, pp and pp̄ collisions at different scales.

The advantage of such a combined determination consists in the prospect of further
improving the precision on 𝛼s(𝑀Z) through the consideration of multiple datasets. In
contrast to approaches involving a simple statistical combination of individually ob-
tained estimates for 𝛼s(𝑀Z), performing a determination on the basis of combined data-
sets ensures a consistent treatment of the measurements and theory calculations, as well
as their uncertainties. In addition, this enables a detailed study of the compatibility of
measurements and theory calculations, which may be obscured in a simple statistical
combination.

In this work, such a procedure is developed and applied to datasets of inclusive jet
cross section measurements performed by the H1, DØ, and CMS experiments. For each
of these datasets, determinations of 𝛼s(𝑀Z) have been performed by the respective ex-
perimental collaborations. This provides an important starting point for the develop-
ment of a combined determination of 𝛼s(𝑀Z), as well as serving as a direct comparison
reference for its evaluation.

In the following chapters, the aspects relevant for these studies are presented. In chap-
ter 22, the theoretical foundations relevant for high-energy hadron collisions, as well as
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1. Introduction

for the measurement and theoretical calculations of inclusive jet cross sections are out-
lined. The subsequent chapter 33 gives an overview of techniques for the estimation of
theory parameters and their uncertainties. A review of the measurements and extrac-
tions of the strong coupling constant 𝛼s(𝑀Z) performed by the individual experimental
collaborations is provided in chapter 44.

Chapter 55 gives an overview of the software tools used for the implementation of the
𝛼s(𝑀Z) determination, as well as outlining a number of aspects regarding numerical
techniques. The development of the combined determination procedure and the results
obtained for 𝛼s(𝑀Z) are presented in chapter 66, along with a comparison to past 𝛼s(𝑀Z)
determinations. Finally, chapter 77 presents a summary of the main findings and explores
ways for further extending and refining the 𝛼s(𝑀Z) determination.
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2. Theoretical Foundations

2. Theoretical Foundations

In the Standard Model of Particle Physics, the strong interaction is the fundamental in-
teraction of color-charged elementary particles: quarks and gluons. It is distinguished
from the other interactions by a number of unique characteristics which make it both
interesting and challenging to study.

For instance, it is the only one of the four fundamental interactions for which the cou-
pling strength 𝛼s relates inversely to the energy scale of the interaction, giving rise to
phenomena such as color confinement and asymptotic freedom. Both of these phenomena
have far-reaching implications for the way strongly interacting systems manifest them-
selves in nature.

In this chapter, a brief overview of the Standard Model is given, with particular em-
phasis on the theory of the strong interaction. Furthermore, a number of aspects are
discussed regarding the derivation of observable quantities and how these relate to the
fundamental parameters of the theory.

2.1. The Standard Model of Particle Physics

The Standard Model of Particle Physics is a theory describing the properties and interac-
tions of fundamental particles. Within this framework, each of the known fundamental
particles is regarded as an excitation of a corresponding underlying quantum field, with
interactions between them resulting from the principle of local gauge invariance.

There are four known fundamental interactions (also called forces) in nature: the elec-
tromagnetic interaction, the strong and weak nuclear interactions, and gravity. Of these,
only the first three are described by the Standard Model.

The fundamental constituents of matter, the fermions, are particles with half-integer
spin, while the particles responsible for mediating the fundamental interactions are
called bosons and have integer spin. The Standard Model includes 12 types of fermi-
ons, which can be classified according to the interactions in which they participate. Of
these, only the quarks carry color-charge, thus making them the only strongly interacting
fermions. The remaining fermions are the leptons, which do not interact via the strong
interaction. An overview of the fundamental particles described by the Standard Model
can be seen in figure 2.12.1.

The dynamics of these fields can be described using the Lagrangian formalism. By
postulating an appropriate Lagrangian density ℒ, the Euler-Lagrange equations of mo-
tion may be derived. In particular, this approach allows the conservation laws charac-
terizing each of the fundamental interactions to be expressed as internal symmetries of
the Lagrangian.

3



2. Theoretical Foundations
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Figure 2.1.: Overview of the fundamental particles of the Standard Model. Fermions,
half-integer spin particles that make up matter, are further divided into the
color-charged quarks and the colorless leptons. Bosons have integer spin
and include the gauge bosons, which mediate the fundamental interactions,
and the Higgs boson. The gauge bosons of the strong interactions are called
gluons. Due to electroweak symmetry breaking, the gauge bosons of the
unbroken electromagnetic and weak interactions mix to form the carriers of
the unified electroweak interaction.

Mathematically, the Standard Model Lagrangian exhibits a number of such symme-
tries. For instance, it is invariant under local gauge SU(3) transformations, codifying the
conservation of color-charge in strong interactions. This is examined in more detail in
section 2.22.2.

Another feature of the Standard Model Lagrangian is invariance under SU(2)L×U(1)𝑌
transformations, which describe the unified electroweak interaction. Here, the subscript
L refers to the fact that SU(2) transformations only act on left-handed spinors, while the
subscript 𝑌 refers to weak hypercharge, the quantity conserved under the U(1) transfor-
mations.

However, the above SU(2)L×U(1)𝑌 symmetry is only exact if the corresponding gauge
fields are massless. Since three of the mediators of the electroweak interaction, the W
and Z bosons, have mass, the symmetry is said to be spontaneously broken.
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2. Theoretical Foundations

The Higgs mechanism allows for this symmetry to be recovered while also accom-
modating massive gauge bosons. By postulating an additional field 𝜙 with a non-zero
energy ground state which also transforms covariantly under SU(2) × U(1) transforma-
tions, the resulting couplings of the W and Z bosons to this field give rise to non-zero
mass terms in the Lagrangian. The photon, however, remains massless in the process,
and the remaining degree of freedom of the Higgs field manifests itself as the physical
Higgs boson. In a similar fashion, fermions also acquire mass by coupling to the Higgs
field.

2.2. Quantum Chromodynamics

Quantum Chromodynamics (or QCD, for short) is the quantum field theory of the strong
interaction. It formalizes the idea of color charge by introducing a Lagrangian which
is invariant under local SU(𝑁𝑐) gauge transformations, where 𝑁𝑐 = 3 is the number of
colors.

Mathematically, this makes QCD a non-abelian gauge theory, a property ultimately
responsible for most of the particularities of QCD. The Lagrangian is given by:

ℒQCD = ∑
𝑞

̄𝜓𝑞,𝑎 (i𝛾𝜇𝜕𝜇𝛿𝑎𝑏 − 𝑔s𝛾𝜇𝑡𝐶
𝑎𝑏𝒜𝐶

𝜇 − 𝑚𝑞𝛿𝑎𝑏) 𝜓𝑞,𝑏 − 1
4𝐹𝐴 𝜇𝜈𝐹𝐴

𝜇𝜈 (2.1)

Here, summation over repeated indices is implied. The quark fields for a particular
quark flavor 𝑞 have mass 𝑚𝑞 and are denoted 𝜓𝑞,𝑎, with the index 𝑎 referring to the quark
color and ranging from 1 to 𝑁𝑐 = 3. The fields 𝒜𝐶

𝜇 represent the gauge (gluon) fields,
with 𝐶 ranging from 1 to 𝑁𝑐

2 − 1 = 8, and 𝑡𝐴 are the eight generator matrices of the
Lie algebra 𝔰𝔲(3). The spinor algebra is handled by the Dirac matrices 𝛾𝜇, and 𝛿𝑎𝑏 is the
Kronecker delta.

The additional parameter 𝑔s is a dimensionless quantity called the coupling strength of
the interaction and is one of the free parameters of the theory, the other ones being the
quark masses 𝑚𝑞. This quantity expresses the magnitude of the interaction between the
different fundamental fields. In experimental high-energy physics, the term “coupling
strength” conventionally refers to a different quantity, 𝛼s, which is related to 𝑔s by:

𝛼s = 𝑔s
2

4𝜋 (2.2)

The field strength tensor 𝐹𝐴
𝜇𝜈 of the gluon field 𝒜𝐴 is given in analogy to Quantum

Electrodynamics by:

𝐹𝐴
𝜇𝜈 = 𝜕𝜇𝒜𝐴

𝜈 − 𝜕𝜈𝒜𝐴
𝜇 + 𝑔s 𝑓𝐴𝐵𝐶𝒜𝐵

𝜇𝒜𝐶
𝜈 (2.3)

However, since SU(3) is a non-abelian group, an extra contribution to the field
strength tensor appears, which is proportional to the coupling 𝑔𝑠. The numbers 𝑓𝐴𝐵𝐶
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2. Theoretical Foundations

are called the structure constants of 𝔰𝔲(3), and are given by the commutation relations
of the generators:

[𝑡𝐴, 𝑡𝐵] = i 𝑓𝐴𝐵𝐶 𝑡𝐶 (2.4)

Different terms in the Lagrangian correspond to different interactions between the
fields. Each of the quark spinor fields 𝜓𝑞 and ̄𝜓𝑞 couple to the gluon field 𝒜 with a
coupling strength of 𝑔s that is independent of the quark flavor. In addition, the third
term in the field tensor (2.32.3), which arose as a consequence of the gauge group being
non-abelian, leads to the self-coupling of the gluon field, giving rise to three and four-
gluon interactions (see figure 2.22.2 in the next section).

It is this coupling of the gluons to each other that ultimately gives rise to a phe-
nomenon called confinement, which implies that quarks cannot exist as free particles,
but are confined to bound states called hadrons. This can be intuitively explained by
the energy density of the gluon field between two quarks increasing as the quarks are
separated, causing quark-antiquark pairs to be created from the vacuum, forming new
hadrons.

Conversely, as the distance between two quarks tends toward zero, the strength of the
interaction between them decreases as well. Thus, quarks behave as nearly free particles
at low separation, a phenomenon called asymptotic freedom.

A more detailed explanation of how confinement and asymptotic freedom arise in the
context of renormalization is addressed in section 2.2.22.2.2. The following section discusses
how predictions for observable quantities are obtained in the framework of perturbative
QCD.

2.2.1. Perturbative QCD

The equations of motion resulting from the QCD Lagrangian (2.12.1) are a system of in-
homogeneous partial differential equations with no known analytic solution. Thus, the
computation of theoretical predictions for observable quantities is typically done in per-
turbation theory.

In this approach, observable quantities are expressed as a power series in the coupling
strength of the theory, 𝛼s, which is assumed to be sufficiently small for the series to con-
verge reasonably fast. Assuming 𝐹 is an observable quantity, its perturbative expansion
is given by:

𝐹 =
∞
∑
𝑖=0

𝑐𝑖 𝛼s
𝑖 (2.5)

Thus, calculating 𝐹 is equivalent to determining the individual expansion coefficients
𝑐𝑖 for each order in 𝛼s. Although this would require computing an infinite number of
coefficients in order to recover the exact quantity 𝐹, due to the original assumption of 𝛼s
being sufficiently small, truncating the perturbation series yields a reasonable approxi-
mation.

6



2. Theoretical Foundations

In particular, the scattering matrix elements relevant for predictions of scattering cross
sections in particle collisions (see section 2.32.3) are obtained in this way. In this case,
a finite number of contributions to the matrix elements may be derived from the La-
grangian for each order in 𝛼s, and computed separately.

These individual contributions may be represented schematically as Feynman dia-
grams, which also encode the necessary information for constructing the associated
mathematical expressions. Shown in figure 2.22.2, for instance, are the Feynman diagrams
contributing to quark and gluon scattering in leading-order QCD.

q g
Quark-Gluon Coupling Trilinear Gauge Coupling Quartic Gauge Coupling

q

g g

g

g

g

gg

Figure 2.2.: Leading-order Feynman diagrams for QCD, showing the quark-gluon cou-
pling and the two possible multi-gluon interactions.

In higher-order calculations, virtual particles also contribute to the matrix element. In
contrast to initial and final state particles, the virtual particle kinematics are not uniquely
determined, each requiring an additional integration over their phase space. Whenever
these virtual particles occur in loops, the matrix element calculation may become diver-
gent. The next section discusses how these divergences are treated.

2.2.2. The Running of the Strong Coupling

There are a finite number of Feynman diagrams contributing to a particular order in
𝛼s. However, evaluating the integrals corresponding to particular higher-order terms
involving loops may result in infinities. These are an artefact of the perturbative expan-
sion and cancel out when the perturbation series is evaluated to all orders. Thus, in
order to preserve the predictive power of fixed-order calculations, a meaningful way of
subtracting these infinities is required. This is called renormalization.

In order to characterize the divergences occurring in loop integrals, a technique called
dimensional regularization is used. This method introduces an additional dependence of
the prediction on a parameter 𝜇R, which has the dimension of mass. This parameter is
typically identified with the energy scale of the process being calculated.

Once this is done, renormalization can proceed by separating the divergent and fi-
nite parts of loop integrals in a systematic way. Thus, the offending infinities may be

7



2. Theoretical Foundations

subtracted from the divergent amplitudes, resulting in finite calculations to all orders.
A side-effect of this procedure, however, is that the model parameters become depen-
dent on the scale parameter 𝜇R. In particular, the coupling strength becomes scale-
dependent, assuming different values for different energy scales of the interaction. This
is called the running of the strong coupling:

𝛼s = 𝛼s(𝜇R) (2.6)

2.2.2.1. The Renormalization Group Equation

A natural consequence of (2.62.6) is that fixed-order predictions for observables also be-
come dependent on the scale 𝜇R. Since this parameter is a direct consequence of the
renormalization formalism, however, it must not affect the value of the full perturba-
tion series (2.52.5), evaluated to all orders.

Formally allowing an observable 𝐹 to depend on the renormalization scale 𝜇R in ad-
dition to its physical dependence on 𝛼s, this condition can be expressed by requiring the
total derivative of 𝐹 with respect to 𝜇R to vanish:

𝜇R
2 d

d𝜇R
2 𝐹(𝜇R, 𝛼s) = 𝜇R

2 𝜕
𝜕𝜇R

2 𝐹(𝜇R, 𝛼s) + 𝜇R
2 𝜕𝛼s

𝜇R
2

𝜕
𝜕𝛼s

𝐹(𝜇R, 𝛼s) = 0 (2.7)

The above expression is called the renormalization group equation (RGE), implying that
the underlying structure of scale transformations is that of a group. In addition to en-
forcing the invariance of observable quantities under changes in scale, equation (2.72.7)
also uniquely defines the necessary dependence of the coupling strength on the renor-
malization scale:

𝜇R
2 𝜕𝛼s

𝜕𝜇R
2 = 𝛽(𝛼s) (2.8)

In the above relation, 𝛽(𝛼s) does not depend explicitly on the renormalization scale,
and can be calculated by solving the RGE in (2.72.7). Typically, it is also expressed as a
perturbation series in 𝛼s:

𝛽(𝛼s) = −(𝑏0𝛼s
2 + 𝑏1𝛼s

3 + 𝑏2𝛼s
4 + …) (2.9)

Performing the calculation of 𝛽(𝛼s) reveals an overall negative sign, which has been
explicitly indicated in (2.92.9). Thus, the renormalized coupling 𝛼s(𝜇R) decreases as the
energy scale of the interaction increases, implying that, in the high-energy limit, QCD
behaves increasingly like a free theory. This is known as asymptotic freedom.

At low energies, the converse is true, and the QCD coupling becomes increasingly
large. One consequence of this is that, as the value of 𝛼s surpasses unity, the perturba-
tion series postulated in (2.52.5) diverges. Perturbative QCD calculations thus lose their
predictive power for low-energy systems, which require phenomenological models for
their description.

8



2. Theoretical Foundations

Physically, the significance of a large coupling is that quarks can never be found in
isolation. Were this the case, the energy density of the gauge field would increase suf-
ficiently to polarize the vacuum and create new quarks, forming bound hadrons. This
phenomenon is called confinement.
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Figure 2.3.: Sketch of the running of 𝛼s.

Since 𝛼s is a free parameter of QCD, its value, which is conventionally given at the
energy scale of the Z-boson mass 𝑀Z, must be determined by comparing theory predic-
tions of observables to experimental measurements. The next section outlines scattering
experiments typically performed in high-energy physics.

2.3. QCD in Hadronic Particle Collisions

Most experiments in particle physics are scattering experiments conducted at particle
colliders. By accelerating projectile particles to high center-of-mass energies and collid-
ing them together, they undergo an inelastic scattering process to produce a number of
final-state particles, the properties of which can then be measured in a detector.

The aim of these experiments is determining the empirical probability of the scattering
resulting in a specific final state. To this end, such measurements are repeated a large
number of times.

The probability of producing a certain configuration of particles in the final state is
dependent on the quantum field theoretic amplitude of that process and the kinematics
of the final state, as well as on experimental variables, such as the size, particle den-
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2. Theoretical Foundations

sity and overlap of the particle beams. In order for measured reaction rates to remain
comparable across experiments, they are normalized to the particle flux, also called the
luminosity 𝐿. This results in a measure of the interaction probability which is indepen-
dent of experimental parameters, the cross section 𝜎 :

𝜎 = d𝑁
d𝑡

1
𝐿 (2.10)

The name “cross section” is chosen in analogy to the related concept in classical scat-
tering theory, where the interaction rate is proportional to the cross sectional area of the
scattering bodies. It is conventionally measured in barn (b), a unit of area corresponding
to 10−28 m2.

Cross sections may be of different types, depending on the requirements placed on
the final state being considered. They are said to be inclusive if events with additional
collision products with respect to the considered final state are also included in the
measurement. Otherwise, cross sections are said to be exclusive.

In addition, cross sections may also be measured differentially with respect to quanti-
ties characterizing the final state. For instance, differential cross sections are often mea-
sured as a function of kinematic variables, such as transverse momentum 𝑝𝑇 , or purely
geometric ones, such as the detection angle.

Due to a large number of elementary scattering processes involving quarks and glu-
ons, QCD plays an important part in performing the calculation of cross section pre-
dictions for these processes. However, working in the framework of perturbative QCD
requires the coupling strength to be significantly less than unity. This translates to a re-
striction on the energy scale of the interactions for which cross sections can be calculated.
More precisely, perturbative QCD can only be used to compute high-energy scattering.

There are, however, a number of phenomena characterized by energy scales at which
QCD becomes non-perturbative. In this case, a phenomenological approach must be
taken. One such intrinsically non-perturbative phenomenon is the hadronization of
color-charged particles in the final state, which is addressed in section 2.3.22.3.2. Another
concerns the initial state of the scattering, which may consist partly or entirely of hadrons.
This requires a description of the hadron composition, which is outlined in section 2.3.12.3.1.

2.3.1. The Parton Model of Hadrons

Deep inelastic scattering experiments have revealed that protons are not fundamental,
point-like particles. Instead, they are made up of quarks and gluons, collectively called
partons. In the parton model, hadrons such as the proton are held together by the strong
interaction between the partons. These interactions are termed soft, since their char-
acteristic energy scale is comparatively low. Indeed, perturbative approaches fail in
describing hadron structure, since the assumption of a small coupling strength 𝛼s no
longer holds for these energies.

Thus, no complete model of high-energy proton scattering is available in perturba-
tive QCD. Nevertheless, it is possible to describe these processes using mixed models

10
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combining perturbative techniques with phenomenological models of the proton com-
position.

To this end, the calculation of these processes is factorized into two parts. The par-
ton scattering itself occurs at a sufficiently high energy to be calculated in perturbative
QCD, and is therefore termed hard. Conversely, the intrinsically soft proton structure
is described phenomenologically by postulating probability distributions for the parton
kinematics. In this section, this calculation technique is reviewed in the context of deep
inelastic electron-proton scattering.

2.3.1.1. Deep Inelastic Scattering

Historically, the first evidence of proton substructure came from a particular class of
experiments called deep inelastic scattering (DIS). By measuring the energy dependence
of the electron-proton scattering cross section, experimental data was shown to deviate
from predictions assuming point-like protons. Furthermore, protons were seen to disin-
tegrate at sufficiently high energies, forming hadronic final states. These observations
revealed protons to be bound states of strongly interacting particles.
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Figure 2.4.: (left) Kinematics of deep inelastic scattering. An electron and a proton with
four-momenta 𝑘 and 𝑝, respectively, interact by exchanging a particle with
four-momentum 𝑞. While the electron is simply scattered, the proton disin-
tegrates into a number of mainly hadronic particles, with a total invariant
mass 𝑀X. (right) Factorization of deep inelastic scattering. The electron scat-
ters off a parton carrying a fraction 𝑥 of the total proton momentum.

Electron-proton DIS processes (shown in figure 2.42.4, left) are characterized by three
quantities: the total energy √𝑠 of the system in the center-of-mass frame, the magni-
tude 𝑄2 = −𝑞2 of the four-momentum transferred between the two particles, and the
dimensionless Bjorken scaling variable 𝑥, defined as:

𝑥 = 𝑄2

2𝑝 ⋅ 𝑞 (2.11)

As can be seen from (2.112.11), this variable is manifestly Lorentz-invariant. It represents,
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in a sense, the degree to which the scattering is inelastic. At 𝑥 = 1, the proton remains
intact, scattering elastically off the electron. At 𝑥 ≪ 1, the proton disintegrates into a
final state with an invariant mass 𝑀X ≫ 𝑀p. This is deep inelastic scattering.

In the partonic view, the scattering occurs between the highly energetic electron and
one of the proton’s component partons (figure 2.42.4, right). At sufficiently high energies,
the Bjorken scaling variable 𝑥 is a good approximation of the fraction of the total proton
momentum carried by the participating parton.

Thus, the description of DIS processes can be seen as consisting of two parts, each with
a different characteristic energy scale: the hard scattering, which can be calculated in
perturbative QCD, and the soft proton structure, which must be described phenomeno-
logically.

To this end, an additional, arbitrary energy scale 𝜇F is introduced, called the factor-
ization scale. This quantity represents the energy threshold separating the soft and hard
energy regimes, allowing such processes to be factorized into two parts in a well-defined
manner. This technique necessarily introduces a dependence of the hard cross section
�̂� on the factorization scale 𝜇F, in addition to the renormalization scale dependence re-
sulting from perturbative QCD.

2.3.1.2. Parton Distribution Functions

The parton model aims to provide a phenomenological description of the kinematics of
hadron constituents. This is done by introducing probability distributions over 𝑥, the
fraction of proton momentum carried by the parton.

At an energy scale 𝜇F, the probability density of finding a parton with flavor 𝑗 car-
rying a fraction 𝑥 of the proton momentum is denoted 𝑓𝑗(𝑥, 𝜇F

2) and is called a parton
distribution function, or PDF, for short. This allows the DIS cross section to be written as
a convolution of the hard cross section �̂� and the PDF:

𝜎DIS = ∑
𝑗

∫ d𝑥 𝑓𝑗(𝑥, 𝜇F
2) × �̂�𝑗(𝑥𝑠, 𝜇R

2, 𝜇F
2) (2.12)

The 𝜇F dependence of observable quantities, as suggested by (2.122.12), must vanish in
the perturbative limit (2.52.5). Since a change in 𝜇F merely represents a redistribution of
contributions from the PDFs to the hard cross section, this requirement imposes a re-
striction of the way PDFs transform under a change of scale.

In leading-order QCD, this may be expressed as follows:

𝜇F
2 𝜕𝑓𝑖(𝑥, 𝜇F

2)
𝜕𝜇F

2 = ∑
𝑗

𝛼𝑠(𝜇F
2)

2𝜋 ∫
1

𝑥

d𝜉
𝜉 𝑃(1)

𝑖𝑗 (𝜉) 𝑓𝑖 (𝑥
𝜉 , 𝜇F

2) (2.13)

These are known as the leading-order QCD evolution equations, also called the
DGLAP evolution equations, named for the authors by whom they were first derived [11–
33]. Here, 𝑃(1)

𝑖𝑗 (𝜉) is the leading-order splitting function, which expresses the likelihood
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of a parton of flavor 𝑗 carrying a fraction 𝜉 of the proton momentum emitting a parton
of flavor 𝑖.

Thus, QCD provides the appropriate tools to describe the 𝜇F dependence of PDFs.
However, the probability distribution of 𝑥 itself is not predicted by the theory. Rather,
it must be determined by performing fits to experimental data. In this respect, DIS
scattering provides a direct handle on the PDFs through (2.122.12), although pure hadron
scattering cross sections (see section 2.3.1.32.3.1.3) may also be used for further constraining
these.

There are a number of different approaches to PDF determination, with a number
of groups specializing in determining so-called global PDF sets using data from mul-
tiple measurements. [44–1111] The obtained PDF sets are different in terms of the PDF
parametrization, the measurements entering the fit, the method of calculating theory
predictions, as well as other procedural details.

2.3.1.3. Generalization to Pure Hadronic Scattering

In DIS, the initial-state lepton reduces the expression for the cross section to a single
convolution between the PDF and the hard scattering. In hadron-hadron collisions, the
structure of both initial-state hadrons must be accounted for in the cross section, leading
to a double convolution.

Specifically, the cross section for the production of a final state X in proton-proton
collisions is given by: [1212]

𝜎(pp → X) = ∑
𝑖𝑗

∫ d𝑥1 d𝑥2 𝑓𝑖(𝑥1, 𝜇F
2) 𝑓𝑗(𝑥2, 𝜇F

2)×

�̂�𝑖𝑗→X(𝑥2𝑥1𝑠, 𝜇R
2, 𝜇F

2) (2.14)

Here, the hard process is the scattering of a parton of flavor 𝑖 from one of the incoming
protons off a parton of flavor 𝑗 from the other.

2.3.2. Jets

Color confinement dictates that free particles cannot have a net color charge. Conse-
quently, quarks and gluons in the final state of a hard scattering process undergo hadro-
nization and are detected as collimated streams of particles, called jets. Moreover, due
to the relatively high coupling strength of QCD with respect to the other interactions,
most hadron-induced processes result in jets.

Jet-related observables therefore provide a valuable experimental handle on QCD. In
particular, inclusive jet cross sections constitute a well-defined observable, both from
an experimental and a theoretical point of view. This makes them ideally suited for
estimating the free parameters of QCD by comparing measurement data to theory pre-
dictions.

Nevertheless, measurements and predictions of jet-related observables introduce new
challenges due to the high particle multiplicity typical of jet events, requiring robust jet
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reconstruction techniques. An essential part of this is the methods used for clustering
the final-state particles to jets, for which several methods exist. These are presented in
the following.

2.3.2.1. Jet Clustering Algorithms

Due to quark and gluon fragmentation and subsequent hadronization, the resulting jets
consist of a high number of particles, most of which are measured within the same re-
gion of the detector. Thus, an important task for measuring jet-related observables is
establishing a method of clustering these particles in order identify the jets and recon-
struct the final-state quark or gluon from which they originated. For this, a number of
algorithms exist, of which two broad categories are reviewed here.

Cone-based clustering algorithms focus on identifying the so-called stable cones in the
final-state geometry, which are each taken to correspond to one reconstructed jet. This
is typically done by iteratively restructuring an initial cone configuration based on the
kinematics of the particles detected within it until a stable configuration is reached. The
specifics of this process depend on the particular algorithm.

In contrast to cone-based algorithms, sequential clustering algorithms make no assump-
tion regarding the shape of the jets. Instead, these involve the definition of a distance
measure between reconstructed final-state particle four-momenta, based on geomet-
ric and kinematic variables. The algorithm then proceeds to combine pairs of four-
momenta with minimal separation according to the defined metric, repeating the pro-
cess until all remaining four-momenta meet a specific stopping criterion. The resulting
particle clusters are identified as jets.

Prominent examples of sequential clustering algorithms are the 𝑘𝑇 [1313], and anti-
𝑘𝑇 [1414] algorithms. These are also used for jet reconstruction in the H1 and CMS in-
clusive jet measurements discussed in chapter 44. Also discussed is the DØ inclusive jet
measurement, where jet reconstruction is done using a cone-based algorithm, which is
described in [1515].

2.3.3. Non-Perturbative Effects

Perturbation theory is a powerful tool for calculating hard scattering processes in QCD.
There are, however, additional processes occurring in hadron-induced scattering pro-
cesses which prove impossible or challenging to handle perturbatively.

In jet measurements, one such process is that of parton fragmentation and hadroni-
zation, which connects the partonic final state of the hard scattering with the particles
observed in the detector. Furthermore, additional contributions to the cross section may
appear as a result of interactions outside the hard scattering process, such as additional
hard and soft QCD interactions or multiple parton interactions.

A common approach to including these effects in data-theory comparisons and pa-
rameter estimations is the introduction of a number of multiplicative correction factors,
which are determined using Monte Carlo simulations and are applied to the fixed-order
theory predictions. Since the obtained factors highly depend on the specific method of
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derivation, an additional systematic uncertainty source is also typically introduced to
reflect this.
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3. Parameter Estimation

3. Parameter Estimation

While physical theories provide predictions for observable quantities, these typically
depend on a number of free parameters, for which the theories themselves make no pre-
diction. Rather, they must be inferred (or fitted) by comparing the theoretical predictions
for an observable quantity to experimental measurements.

Due to the intrinsic randomness of the measurement process, however, the inference
of theoretical parameters from data can only be performed using stochastic methods.
As a consequence, the estimates obtained for parameters in this way are subject to an
uncertainty, which must be quantified.

In this chapter, the maximum likelihood and least squares approaches to parameter esti-
mation and a number of its generalizations are discussed, and a number of categories of
experimental and theoretical uncertainties are identified. Finally, a number of methods
for obtaining estimates for parameters and their uncertainties are presented.

3.1. Experimental and Theoretical Uncertainties

The observable quantities central to high-energy physics are the scattering cross sections
for a wide array of elementary processes. These are experimentally determined at parti-
cle collider experiments by accelerating subatomic particles and colliding them at high
energies. The products of these collisions are measured in particle detectors.

Such measurements, however, are subject to a large number of effects which limit their
accuracy and precision. A large part of the experimental analysis, therefore, consists in
identifying these effects and estimating the magnitude of the associated uncertainties on
the measurements. Furthermore, uncertainties also arise in theoretical calculations of
cross sections. In this section, several types of uncertainties arising within these contexts
are presented and a number of stochastic methods allowing for their formal treatment
are introduced.

3.1.1. Statistical and Systematic Uncertainties

One type of uncertainty arises due to statistical fluctuations in measured quantities.
Since only a finite sample of measurements is used for determining cross sections ex-
perimentally, the resulting estimates acquire a statistical uncertainty, which decreases
with the number of measurements per sample. Since these estimates are derived from
event counts per time interval, the corresponding fluctuations are commonly modeled
using a Poisson probability distribution. For sufficiently small effects, a Gaussian distri-
bution can be substituted.
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Furthermore, owing to the complexity of the measuring apparatus, a multitude of sys-
tematic factors also affect the measurement. While the experimental setup can be finely
calibrated to reduces the size of these effects, they cannot be completely eliminated, re-
sulting in a systematic uncertainty on the measurement.

The origin and magnitude of systematic effects is highly dependent on the experimen-
tal setup and the particular measurement methodology. For instance, uncertainties on
cross section measurements at hadron colliders can be traced back to the uncertainties in
the determination of experimental parameters such as instantaneous luminosity, trigger
efficiencies, or the energy calibration and intercalibration of the different detector com-
ponents. For jet-related measurements in particular, this is supplemented by systematic
effects relating to jet resolution and jet energy calibration, as well as uncertainties arising
due to unfolding strategies.

Likewise, theory predictions for cross sections are also subject to the two types of
uncertainties outlined above. Statistical fluctuations of theory calculations arise due
to intrinsically random calculation techniques, such as Monte Carlo integration or the
modeling of particle decays as Markov processes, both being extensively used in high-
energy physics.

As with experimental measurements, theory predictions are also subject to system-
atic uncertainties. A prominent example are so-called “scale” uncertainties arising in
the context of fixed-order perturbative calculations. Due to the truncation of the per-
turbation series, the predictive power of fixed-order theory predictions is limited. In
the context of renormalization (see section 2.2.22.2.2), given the invariance of the complete
perturbative series for observables under a change in the renormalization scale 𝜇R, an
estimate for the magnitude of this effect is obtained by evaluating the dependence of
fixed-order predictions on 𝜇R. Similarly, the scale dependence arising from factorizing
hadronic scattering cross sections into the perturbative hard process and the soft hadron
composition expressed as PDFs (see section 2.3.12.3.1) gives rise to a similar systematic un-
certainty.

Naturally, the effects described above place limits on the ability of extracting precise
and accurate estimates of theory parameters from the measured data. These must be
taken into account by the estimation procedure. This is typically achieved by postulat-
ing a probabilistic model for the measurements, using statistical inference methods, as
described in the next section.

3.1.2. Stochastic Modeling of Uncertainties

An essential prerequisite for any parameter estimation procedure consists in establish-
ing a means of quantifying the uncertainties. For this purpose, observed and calculated
quantities are modeled stochastically as realizations of random variables drawn from
probability distributions. This allows both the quantities and the uncertainties to be ex-
pressed in terms of the parameters of these distributions. In the following, the standard
assumption of a Gaussian distribution for modeling these effects is presented, and a
number of implications for the resulting error model are discussed.

A standard approach to modeling the uncertainty of measured or calculated quanti-
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ties is based on the assumption of a Gaussian distribution, identifying the unobserved
“true” value of the quantity with the location parameter 𝜇, and the uncertainty with the
scale parameter 𝜎 . This can be expressed as:

𝑋 ∼ 𝒩(𝜇 = 𝑥0, 𝜎) (3.1)

Here, 𝑋 denotes the random variable representing the uncertain quantity, 𝒩 refers to
the Gaussian distribution, and 𝑥0 denotes the true value. In this model, the expecta-
tion value ⟨𝑋⟩ and the variance Var (𝑋) of the uncertain quantity coincide with the true
value and the square of the uncertainty, respectively. In the context of a finite statistical
sample of measurements, the parameters 𝜇 and 𝜎 of the above Gaussian distribution
can be estimated, respectively, as the mean and standard deviation of the sample. Con-
sequently, these parameters acquire a well-defined statistical interpretation.

Owing to the central limit theorem, this model is adequate for uncertainties resulting
from the contribution of several independent random effects. However, not all experi-
mental effects can be described in this way. For instance, statistical fluctuations in count-
ing experiments are best modeled by means of a Poisson distribution. For sufficiently
small effects, however, a Gaussian distribution remains a good approximation, and can
be substituted readily.

The above assumption is equivalent to modeling the random value 𝑋 as the sum of the
true value 𝑥0 and a random additive contribution drawn from a Gaussian distribution
with 𝜇 = 0:

𝑋 ∼ 𝑥0 + 𝒩(𝜇 = 0, 𝜎) (3.2)

This is of particular relevance when discussing uncertainties arising from random
multiplicative contributions. In this case, the expression obtained for the random quan-
tity 𝑋 results from applying the Gaussian hypothesis to a multiplicative factor. In order
to recover the true value 𝑥0 as the expectation ⟨𝑋⟩, the random factor is drawn from a
Gaussian distribution with 𝜇 = 1. The scale parameter 𝜎 corresponds to the uncertainty
of the factor, 𝜎∗, and thus to the relative uncertainty of the quantity 𝑋:

𝑋 ∼ 𝑥0 ⋅ 𝒩(𝜇 = 1, 𝜎 = 𝜎∗) (3.3)

In both the additive (3.23.2) and multiplicative (3.33.3) models, the distribution of the ad-
ditive and multiplicative factors is considered to be determined entirely by the experi-
mental circumstances, and thus the parameters 𝜇, 𝜎 and 𝜎∗ are generally not permitted
to depend on the true value 𝑥0.

It is worth noting that a prerequisite of some methods of parameter estimation con-
sists in the assumption of an additive Gaussian uncertainty model. This is, for instance,
the case with least squares estimation, which is described in the following section. Con-
sequently, multiplicative effects must be treated as additive.

One possibility of achieving this is to allow the scale parameter 𝜎 to change as a func-
tion of the estimated true value, and thus as a function of the theory parameters. Alter-
natively, the multiplicative relation in (3.33.3) may be turned into an additive one by ap-
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plying the logarithm. In order to recover the Gaussian distribution in the transformed
quantity, the Gaussian distribution in (3.33.3) is replaced by a log-normal distribution:

𝑋 ∼ 𝑥0 ⋅ ln 𝒩(𝜇 = 1, 𝜎 = 𝜎∗) (3.4)

Due to the similarity of the Gaussian and log-normal distributions for small values of
𝜎∗, this substitution is justified in cases for which the relative uncertainty is sufficiently
small.

Applying the logarithm then reduces the multiplicative measurement model to an
additive model involving the logarithm of the measured quantity:

ln 𝑋 ∼ ln 𝑥0 + 𝒩(ln 𝜇 = 0, 𝜎∗) (3.5)

Here, the second term on the right hand side refers to a normally distributed random
variable with scale parameter 𝜎∗, and results from applying the logarithm to the log-
normal distribution assumed for multiplicative uncertainties. The variance of this ex-
pression is Var (ln 𝑋) = 𝜎∗.

The stochastic models presented above, allow well-known statistical procedures for
parameter estimation to be applied. In the following, the maximum likelihood and related
least squares approaches to parameter estimation are presented.

3.2. Maximum Likelihood and Least Squares Estimation

The primary goal of parameter estimation lies in determining the theory parameter val-
ues for which the theory predictions best fit the measurement data. In practice, this
amounts to defining a quantity expressing the level of agreement between the data and
the theory predictions. Finding the best estimate for the theory parameters is then equiv-
alent to finding the parameter values for which this quantity attains its global extremum,
indicating a maximal level of agreement between the theory and the data.

Multiple ways of expressing the agreement between the data and the theory predic-
tions exist. One approach to establishing a unique definition consists of constructing
an expression for the probability of observing a particular outcome in measurements,
as a function of the theory parameters called the likelihood function. Accordingly, this
approach is called maximum likelihood parameter estimation.

In the following, as a starting point, an array m of 𝑁 measurements 𝑚𝑖 is considered.
The corresponding theory predictions 𝑡𝑖 are functions of the theory parameters a.

A prerequisite for the maximum likelihood method is postulating a probability dis-
tribution for the individual measurements. A standard choice, motivated by the central
limit theorem is that of a Gaussian distribution. By identifying the location parameter
𝜇 of the Gaussian distribution with the theory prediction and the scale parameter 𝜎
with the experimental uncertainty, the individual likelihood of each measurement can
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be expressed as:

𝐿𝑖(a) = 𝐿(𝑚𝑖 | 𝑡𝑖(a), 𝜎𝑖) = 1
√2𝜋𝜎𝑖

exp⎛⎜
⎝

−(𝑚𝑖 − 𝑡𝑖(a))2

2𝜎𝑖2
⎞⎟
⎠

(3.6)

When considering independent measurements, the likelihood of observing all mea-
surements simultaneously is the product of the likelihoods of observing the measure-
ments individually:

𝐿(a) = ∏
𝑖

𝐿𝑖(a) (3.7)

Best estimates for the theory parameters a are then obtained by finding the global maxi-
mum of the above expression. In general, this is a multidimensional optimization prob-
lem, and is handled using numerical techniques.

In the case of the Gaussian uncertainty model illustrated above, it is possible to define
an equivalent formulation of the maximum likelihood estimation procedure by deriving
an alternative expression to the likelihood function (3.73.7), which remains maximal when
evaluated at the best estimate for a.

One such alternative expression may be derived upon the realization that the expo-
nential map appearing in (3.63.6) is a monotonous function. Therefore, its extrema always
coincide with the extrema of its argument, meaning that it is sufficient to maximize the
logarithm of the likelihood function (3.73.7), or, more conventionally, to minimize the neg-
ative logarithm, multiplied by a factor of two for convenience. The quantity obtained
is:

−2 ln 𝐿 (a) = ∑
𝑖

(𝑚𝑖 − 𝑡𝑖(a)
𝜎𝑖

)
2

+ const. (3.8)

Here, the product of exponentials in (3.73.7) becomes a sum of their respective arguments,
and the constant normalization factors in (3.63.6) become additive constants, which have
no bearing on the minimization, and can thus be set to zero. The expression above is
then reduced to a sum of the squares of the differences between the measurements and
the theory predictions, normalized to the experimental uncertainty. This quantity is
called the least squares estimator and is commonly denoted 𝜒2:

𝜒2 = ∑
𝑖

(𝑚𝑖 − 𝑡𝑖(a)
𝜎𝑖

)
2

(3.9)

This notation is an indication that, being the sum of squares of normally distributed
quantities, the probability distribution of this quantity is the 𝜒2 distribution. This prob-
ability distribution is characterized by a single parameter, the number of degrees of freedom,
denoted “ndf”.

Assuming the Gaussian uncertainty model is correct, the least-squares estimator fol-
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lows a 𝜒2 distribution with ndf = 𝑁dat − 𝑁par, where 𝑁par is the number of free parame-
ters and 𝑁dat is the number of measurements. The value of the 𝜒2 quantity in the mini-
mum therefore enables an evaluation of the fit quality. This is conventionally expressed
in terms of the reduced 𝜒2 quantity, 𝜒2/ndf, which is expected to be approximately equal
to unity.

3.2.1. Generalizations and Refinements

Equation (3.93.9) can also be written in compact form by defining a residual vector
p = m − t(a) and a variance matrix V, a diagonal matrix containing the variances of
the measurements, which are equal to the squares of the uncertainties 𝜎𝑖:

𝜒2 = p⊤V−1p (3.10)

Since this quantity only involves simple linear algebra operations, it is more straightfor-
ward and efficient to compute than the full likelihood function. As a result, least-squares
estimation has found extensive use for determinations of physical parameters.

The main limitation of this procedure lies in the requirement that the measurements
be drawn from a Gaussian distribution. Owing to the central limit theorem, this is gener-
ally understood to be a satisfactory assumption for experimental uncertainties generated
by a large number of random additive effects on the measurements.

The correct treatment of uncertainties arising from multiplicative effects, however, re-
quires additional considerations. Furthermore, since a number of random effects may
affect a set of measurements in a correlated way, this must also be accounted for when
defining a 𝜒2 quantity.

One generalization of least squares estimation can be made for correlated uncertain-
ties. For any sequence x̃ of correlated random variables, a linear transformation B can
be found, such that the transformed variables x = Bx̃ are independent. Applying this
reasoning to the residual vectors p̃ for correlated measurements, leads to additional
matrix-valued factors in (3.103.10), which can be absorbed by the variance matrix:

𝜒2 = p⊤V−1p = p⊤̃B⊤V−1Bp̃ = p⊤̃ ~
V−1p̃ (3.11)

In the above expression, the matrix
~
V is the variance-covariance matrix of the measure-

ments, or simply the covariance matrix. Thus, correlated measurements can be handled
in least squares estimation by including the covariances of the measurements in (3.103.10).
Throughout this work, the tildes used above to refer to correlated quantities are omitted,
since this information is contained in the covariance matrix itself.

A further aspect concerns the incorporation of multiple uncertainty sources into the
uncertainty model, in particular the inclusion of uncertainties on the theory in the 𝜒2

definition. In this case, the total uncertainty on the residual vector p = m− t(a) results
from the cumulated uncertainties on the measurement and the theory predictions. If
these uncertainties are assumed to be Gaussian in nature, the linearity of variances al-
lows this to be handled by adding together the covariance matrices corresponding to
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the different uncertainty sources, thus constructing a total covariance matrix.
The above formulation models the uncertainty as arising from random additive contri-

butions drawn from a constant, Gaussian probability distribution. However, when con-
sidering multiplicative effects, which are inherently proportional to the quantity whose
uncertainty they describe, the distribution becomes non-Gaussian, and several of the
assumptions made above no longer hold exactly.

Rather, multiplicative effects on observables are best modeled in terms of the uncer-
tainty relative to the true value of the observable, which is assumed to be constant. One
possibility of handling these uncertainties is to allow the covariance matrix in (3.103.10) to
become a function of the minimization parameters.

An alternative approach involves modeling the effect of a multiplicative uncertainty
on measurements and theory predictions by means of a log-normal probability distri-
bution, with the scale parameter 𝜎∗ corresponding to the relative uncertainty of the
observed or calculated quantity. This is equivalent to postulating a Gaussian distribu-
tion for the logarithms of the original quantities (see section 3.1.23.1.2), thus allowing least
squares parameter estimation to be performed in the logarithmic domain. The 𝜒2 quan-
tity is redefined accordingly as:

𝜒2 = ∑
𝑖𝑗

(log
𝑚𝑖

𝑡𝑖(a)
) [Vrel

−1]
𝑖𝑗

⎛⎜
⎝

log
𝑚𝑗

𝑡𝑗(a)
⎞⎟
⎠

(3.12)

Here, the covariance matrix is computed using relative uncertainties, reflecting the scale
parameter 𝜎∗ of the log-normal distribution.

If the magnitude of uncertainties on a particular quantity are small with respect to the
value of the quantity, both the Gaussian and the log-normal approach yield comparable
estimates.

3.2.2. Fully Correlated Uncertainties

In the above sections, the treatment of correlations between measurements is approached
by the introduction of covariance matrices, which can be determined independently for
each contribution to the uncertainty and added together to form the total covariance
matrix appearing in the 𝜒2 quantity. For fully correlated contributions to the uncer-
tainty, the correlation coefficient between any two measurements is exactly equal to
unity. Mathematically, this is equivalent to assuming that the random fluctuation asso-
ciated with the uncertainty affects all measurements in equal measure.

An alternative to including this uncertainty in the covariance matrix consists in the
introduction of an additional so-called nuisance parameter 𝜀 representing the value of the
random fluctuation affecting all measurements.

In this case, the 𝜒2 can be expressed as:

𝜒2 = ∑
𝑖𝑗

(𝑚𝑖 − 𝑡𝑖(a) + 𝜀 ⋅ 𝜎𝑖) (V−1)𝑖𝑗 (𝑚𝑗 − 𝑡𝑗(a) + 𝜀 ⋅ 𝜎𝑗) + 𝜀2 (3.13)
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Here, the 𝜎𝑖 are the uncertainties of each point associated with the fully correlated fluctu-
ation. The final term is a reflection of the constraint placed on the parameter 𝜀, requiring
it to be drawn from a standard normal distribution.

Compared to the traditional approach using covariance matrices, the nuisance param-
eter approach has the advantage of allowing the magnitude of fully correlated effects to
be ascertained. The values obtained for the nuisance parameters after minimization are
expected to be distributed around zero with a variance of unity. A large deviation of a
particular nuisance parameter from zero may be considered symptomatic of a poor fit
quality.

3.3. Estimation of Uncertainties

The minimization of the 𝜒2 quantity with respect to the theory parameters a yields a
best estimate for the parameters, denoted here as ̂a. Due to the inherent uncertainty
of the measurements and theory predictions, expressed as a covariance matrix V, the
estimated parameters are also subject to an uncertainty. Taking into account parameter
correlations, this uncertainty can be expressed as a covariance matrix, which is denoted
Va. The vector �̂�a, composed of the square roots of the diagonal entries ofVa, is defined
as the uncertainty vector of the parameters.

Linear Error Propagation

A straightforward way of obtaining the matrix Va exists for problems for which the
theoretical model t(a) is a linear function of its parameters. For this, it can be shown that
the vector of parameter estimates â can be computed analytically as a linear function of
the measurements m. Thus, the covariance matrix V can be propagated through this
expression in order to obtain the parameter covariance matrix Va. This is termed linear
error propagation.

In practice, even linear problems are solved by minimizing the 𝜒2 quantity using nu-
meric methods. Thus, the parameter covariance Va is not calculated analytically, but
must be estimated numerically. A helpful consideration in this case is the fact that, for
linear problems, the 𝜒2 function (3.103.10) is a quadratic form over both the measurement
space and the parameter space.

Since taking the (matrix-valued) second derivative of the 𝜒2 quantity with respect to
the measurementsm yields a quantity equal to twice the inverse covariance matrixV−1,
the parameter covariance matrix is defined accordingly as half the inverse of the second
derivative of the 𝜒2 quantity with respect to the parameters. This is equivalent to the
analytic linear error propagation described above, but can be calculated numerically. This
is also called the Hessian method, in reference to the name given to the second derivative
matrix.
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𝝌𝟐 Profiling

For nonlinear problems, the error estimates obtained through the methods described
above are no longer reliable. Since for nonlinear models, the Gaussian assumption no
longer holds for the theory parameters, it is not sufficient to characterize the parame-
ter uncertainty by means of a covariance matrix. Instead, these uncertainties must be
provided as confidence intervals for the parameters.11

In the linear case, the confidence interval for an estimated parameter ̂𝑎 is uniquely
defined as the range of values within a distance corresponding to the parameter uncer-
tainty �̂�𝑎. This is suggested by the notation ̂𝑎 ± �̂�𝑎. For nonlinear problems, this interval
is no longer centered around the best estimate ̂𝑎, leading to asymmetric uncertainty es-
timates.

The notion corresponding to the confidence interval in terms of the multidimensional
parameter space is that of the confidence region. In the linear case, it can be shown that
this region corresponds to the ellipsoid centered around the best estimate ̂𝑎 with the
directions and lengths of the semi-axes given by the eigenvectors and eigenvalues of
the parameter covariance matrix, respectively. For nonlinear problems, the ellipsoid
becomes deformed.

However, in both the linear and nonlinear cases, this confidence region has the defin-
ing characteristic that the value of the 𝜒2 quantity at any point on its boundary corre-
sponds to an increase of 1 with respect to the 𝜒2 value at its center. This enables numeric
methods to be used for its determination.

In order to obtain confidence intervals for the parameters, a technique called profiling
is commonly employed. Since the confidence interval is characterized by a unit increase
in 𝜒2 with respect to the global minimum, the goal of this method is identifying the
variation of the parameter being profiled corresponding to this increase.

To this end, the 𝜒2 quantity is evaluated as a function of the parameter being pro-
filed, while performing a simultaneous minimization with respect to all other param-
eters. The values of the profiled parameter corresponding to a unit increase in 𝜒2 are
quoted as the confidence interval for the parameter. Accordingly, this method is also
called the “Δ𝜒2 = 1 prescription”.

In addition, parameter correlations may be determined by profiling two parameters
simultaneously. The shape of the resulting confidence region in two-dimensional pa-
rameter space is indicative of the parameter correlation.

Offset Method

A considerably simpler method for the estimation of parameter uncertainties consists in
applying a positive and negative offset to the measurements or theory predictions, the
absolute value of which corresponds to the uncertainty in the quantity, and performing
the 𝜒2 minimization again. The size of the spread observed in the best estimate for the
parameters is taken to be the parameter uncertainty.

1In this work, the term confidence interval always refers to the Gaussian one-sigma confidence interval.
This corresponds to a confidence level of approximately 68%.
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This method has the advantage that is it comparatively easy to implement and pro-
vides an approximate estimate of the impact of a particular uncertainty on the estimated
parameters. Unlike the previous methods, however, it provides no information about
the correlation of theory parameters.

Nevertheless, in situations where the uncertainty is generated by the dependence of
the measurement or of the theory on a particular external parameter which cannot be
varied continuously, the offset method remains the only viable alternative. One partic-
ular example of an uncertainty which is typically estimated using the offset method is
the uncertainty in fixed-order theoretical calculations resulting from the introduction
of an additional dependence on the renormalization and factorization scales. While it
is possible, in principle, for these to be varied, the resulting effect cannot be modeled
using a Gaussian distribution. The associated “scale uncertainty” is therefore defined
in terms of the effect of scale variations on the estimated parameters.

This uncertainty is conventionally derived in a so-called six-point scheme by applying
multiplicative “offsets” of 2, 1, and 1/2 to the renormalization and factorization scales
and repeating the 𝜒2 minimization. All combinations of factors are taken into account,
with the exception of the extreme cases where one scale is set at half the nominal scale
and the other is doubled (see, for example, [1616]). The maximal deviations from the
central result obtained for the nominal scales are quoted as the uncertainty.
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4. Past Extractions of 𝜶s(𝑴Z)
The main focus of this thesis lies in achieving an extraction of the strong coupling con-
stant 𝛼s(𝑀Z) from a combined set of inclusive jet cross section measurements. In recent
years, several such measurements have become available from various experimental col-
laborations at particle colliders such as HERA11, the Tevatron22, and the LHC33.

In this thesis, such a combined extraction of 𝛼s(𝑀Z) is approached using double differ-
ential measurements of the inclusive jet cross section from collider experiments at each
of the above facilities, namely H1 at HERA, DØ at the Tevatron, and CMS at the LHC.
Together, these measurements cover a large and complementary phase space, spanning
over three orders of magnitude in transverse jet momentum. This offers a promising
perspective for the study of QCD phenomenology.

A significant advantage of this choice of datasets for the combined extraction lies in
the availability of past determinations of the strong coupling constant 𝛼s(𝑀Z), which
have been performed by the collaborations themselves. The original
approaches serve as an important starting point in developing a common extraction pro-
cedure, as well as providing a direct means of comparing the methodology and results
of the combined extraction to the original references.

In this chapter, a number of general aspects relating to inclusive jet cross section mea-
surements, theory predictions, and the methodology of 𝛼s(𝑀Z) determinations are dis-
cussed, followed by a review of the measurements and 𝛼s(𝑀Z) determinations indicated
above.

4.1. Jet Measurements and 𝜶s(𝑴Z) Extractions at Hadron Colliders

Measurements of jet production cross sections in hadron-induced collisions at high ener-
gies provide an important experimental handle on phenomena governed by the strong
interaction. In particular, they allow probing the validity of QCD predictions over an
ample phase space, and contribute to a precise determination of fundamental QCD pa-
rameters such as the strong coupling constant 𝛼s(𝑀Z).

In this respect, inclusive jet production cross sections are among the simplest observ-
ables, and can be measured in a number of elementary scattering processes. In the fol-
lowing, a number of measurements of inclusive jet cross sections in ep, pp, and pp̄ scat-
tering performed by the H1, DØ and CMS collaborations, respectively, are presented.

1Hadron-Elektron-Ringanlage (“Hadron-Electron Ring Accelerator”), a particle collider at DESY (Deutsches
Elektronen-Synchrotron, “German Electron Synchrotron”) in Hamburg, Germany

2A particle collider at Fermilab in Batavia, IL, USA
3The Large Hadron Collider at CERN (European Organization for Nuclear Research) in Geneva, Switzerland
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4.1.1. Deep Inelastic Scattering at H1

One set of measurements of inclusive jet production in deep inelastic electron-proton
scattering (ep) is available from the H1 experimental collaboration at HERA, along with
a determination of 𝛼s(𝑀Z) from these data. [1717]

In deep inelastic ep scattering, jets are produced as a result of the interaction of color-
charged particles in the proton scattering off the electron. Since leptons do not carry
color charge, the hard scattering process is mediated by the exchange of a virtual elec-
troweak boson, and thus is not directly sensitive to the strong coupling constant 𝛼s at
leading order in perturbation theory. Higher-order contributions to this process, how-
ever, become sensitive to 𝛼s due to additional strong vertices in the corresponding Feyn-
man diagrams.

In the above reference, double differential inclusive jet production cross sections are
measured as a function of transverse jet momentum 𝑝T and the boson virtuality 𝑄2, at
a center-of-mass energy of √𝑠 = 319 GeV. The data consist of 24 measurements, corre-
sponding to different kinematic regions, with 𝑝T ranging from 7 GeV to 50 GeV and 𝑄2

ranging from 150 GeV2 to 15 000 GeV2.
Jet observables are reconstructed using both the 𝑘T and the anti-𝑘T jet algorithms with

a distance parameter of 𝑅 = 1, yielding two distinct measurements. These are fur-
ther processed using a regularized unfolding technique in order to correct for detector-
related effects.

In addition to statistical fluctuations resulting from the limited sample size, a number
of systematic experimental uncertainty sources are identified. One contribution to the
total experimental uncertainty is due to the reconstruction of the hadronic final state.
This uncertainty is subdivided into two separate contributions, one of which relates
to the reconstruction of jets from hadronic objects, and the other accounting for the
reconstruction of hadronic objects which are not clustered to jets.

For the reconstruction of the scattered lepton, uncertainties due to lepton identifica-
tion, as well as the measurement of lepton energy and scattering angle are estimated.

An additional uncertainty source is introduced in order to account for uncertainties of
the theoretical model. The magnitude of this effect is estimated by comparing the result
of performing the unfolding procedure on both data and pseudodata with migration
matrices obtained from different MC generators.

The normalization uncertainties resulting from the determination of the sample lu-
minosity, as well as detector, reconstruction and trigger efficiencies, are taken as fully
correlated across the entire measurement phase space. This also applies to the uncer-
tainty generated by the algorithm for noise suppression in the liquid argon calorimeter.

All experimental uncertainties are propagated through the unfolding procedure in
order to obtain uncertainty estimates for the unfolded measurements.

Theory predictions

Theory calculations of the inclusive jet cross section are performed at next-to-leading
order in perturbation theory. In order to enable a fast recomputation of the theory
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upon varying the value of 𝛼s(𝑀Z), the fastnlo software package is used in conjunction
with NLOJet++ (a detailed explanation of the fast calculation method is provided in sec-
tion 5.15.1). The calculations are evaluated at a factorization scale identical to the boson
virtuality 𝑄, while the renormalization scale is chosen as:

𝜇R = √𝑄2 + 𝑝T
2

2 (4.1)

Here, 𝑝T refers to the transverse momentum of the jet.
In order to account for hadronization effects, non-perturbative correction factors are

calculated and applied to the predictions obtained in perturbative QCD. An estimation
of hadronization effects is performed using the MC generators DJANGO [1818] and RAP-
GAP [1919], averaging the results obtained with the two generators for calculating the
correction factor. A further correction factor due to electroweak radiative effects is esti-
mated using the LEPTO event generator [2020].

The data are compared to the theory predictions obtained for a number of global
PDF sets, determined at NLO accuracy. These are the MSTW2008, CT10, NNPDF2.3,
HERAPDF1.5 and ABM11 PDF sets. In general, the data are shown to be described well
by the theory predictions obtained with all PDFs. Compared to the MSTW2008 and
CT10 PDF sets, calculations with HERAPDF1.5 and ABM11 are seen to be consistently
larger at low 𝑝T, while falling below the predictions obtained for the other PDF sets at
high transverse momenta.

Determination of 𝜶s(𝑴Z)

The value of the strong coupling constant 𝛼s(𝑀Z) is determined from the measurement
data using a least-squares estimation procedure. Determinations are
performed for both sets of data obtained using the 𝑘T and anti-𝑘T jet clustering algo-
rithms.

The central estimate for 𝛼s(𝑀Z) is obtained under consideration of the experimental
uncertainties only. A number of assumptions are made for the correlations of these
uncertainties. For statistical uncertainties, the full covariance matrix is derived. The
uncertainties due to the reconstruction of hadronic objects are considered to have a cor-
relation of 50% across all phase space regions, while normalization uncertainties are
considered to be fully correlated. In contrast, the model and lepton reconstruction un-
certainties are both considered to be uncorrelated across the different 𝑄2 bins, with the
former assumed to be 25% correlated across the 𝑝T bins, and the latter having a correla-
tion of 100%.

For the estimation of 𝛼s(𝑀Z), a 𝜒2 quantity to be minimized is defined under the
assumption of a log-normal distribution for the measurements (see section 3.1.23.1.2). In

28



4. Past Extractions of 𝛼s(𝑀Z)

the nuisance parameter formulation, this quantity is defined as:

𝜒2
H1 = p⊤(Vrel

−1)p +
𝑁sys

∑
𝑘

𝜀𝑘
2 (4.2)

Here, the matrix Vrel is the sum of the relative covariance matrices corresponding to all
experimental uncertainties, 𝜀𝑘 are the nuisance parameters representing fully correlated
systematic effects, and p represents the agreement between the data d and the theory
t, which is defined for each data point by means of the logarithm of the ratio of their
values:

𝑝𝑖 = ln
𝑚𝑖
𝑡𝑖

+
𝑁sys

∑
𝑘

𝐸𝑖(𝜀𝑘) (4.3)

In the above relation, the quantity 𝐸𝑖(𝜀𝑘) represents the contribution to the observed
measurement 𝑚𝑖 caused by a systematic contribution due to the nuisance parameter 𝜀𝑘.
To allow for asymmetric effects, this quantity is defined using a second-degree polyno-
mial interpolation of the uncertainties corresponding to the “up” and “down” variations
of the respective measurement:

𝐸𝑖(𝜀𝑘) = √ 𝑓 Cor
𝑘

⎛⎜⎜
⎝

𝛿𝑘, up
𝑚,𝑖 − 𝛿𝑘, down

𝑚,𝑖
2 𝜀𝑘 +

𝛿𝑘, up
𝑚,𝑖 + 𝛿𝑘, down

𝑚,𝑖
2 𝜀𝑘

2⎞⎟⎟
⎠

(4.4)

Here, 𝑓 Cor
𝑘 denotes the global correlation coefficient of the 𝑘-th uncertainty source. This

allows partially correlated uncertainties to be split into a fully correlated part, handled
via nuisance parameters, and an uncorrelated part, which is included in the covariance
matrix.

After performing the minimization, the experimental uncertainty on 𝛼s(𝑀Z) is es-
timated using linear uncertainty propagation. Uncertainties on the theory predictions
due to the PDFs are estimated using the uncertainties provided for the MSTW2008 NLO
PDF set, which uses the Hessian method outlined in [2121]. The resulting eigenvector vari-
ations are found to be sufficiently symmetric and linearly propagated to estimate the
PDF uncertainty on 𝛼s(𝑀Z).

Similarly, the uncertainty on 𝛼s(𝑀Z) resulting from applying non-perturbative cor-
rection factors accounting for hadronization, is also estimated by linearly propagating
the theoretical uncertainties of the theory predictions. These are estimated using the
SHERPA event generator [2222] with both the Lund string and the cluster hadronization
algorithms. Half the difference between the two resulting correction factors is taken to
be the prediction uncertainty.

The uncertainties due to missing higher orders in perturbation theory are estimated
separately for the cross section dependence on the renormalization and factorization
scales. For this purpose, the theory predictions are computed for a continuous variation
of each scale over an interval ranging from half the nominal scale to its double, taking the
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maximum difference to the theory for the nominal scale as the associated uncertainty.
The uncertainties on 𝛼s(𝑀Z) are then obtained through linear propagation, assuming
the scale dependence to be 50% correlated across all observable bins.

Finally, two additional uncertainty sources reflecting the choice of PDF set from among
the available global PDF sets, as well as the choice of a PDF for a particular value of
𝛼s(𝑀Z) within the PDF set, are estimated. This is achieved by performing additional
fits with different PDF sets, and PDFs corresponding to different values of 𝛼s(𝑀Z), re-
spectively. Half the difference between the resulting estimates for 𝛼s(𝑀Z) is quoted as
the respective uncertainty.

The main result quoted for 𝛼s(𝑀Z) is extracted from the measurements obtained using
the 𝑘T jet clustering algorithm. The central estimate for 𝛼s(𝑀Z) and the uncertainties
discussed above is given as:

𝛼s(𝑀Z)H1 = 0.1174 ± 0.0022 (exp) ± 0.0007 (PDF) ± 0.0010 (had)

± 0.0007 (PDF set) ± 0.0005 (PDF 𝛼s)

± 0.0048 (𝜇R) ± 0.0006 (𝜇F) (4.5)

An alternate estimate obtained from the anti-𝑘T data is found to be fully consistent with
the 𝑘T estimate.

4.1.2. Proton-Antiproton Scattering at DØ

At the Tevatron collider, measurements of inclusive jet production in pp̄ scattering have
been conducted. One such measurement, performed by the DØ experimental collabora-
tion, [2323] is reviewed here. In addition, a determination of the strong coupling constant
𝛼s(𝑀Z) from these measurements has been performed, [2424] which is also summarized
here.

In contrast to deep inelastic scattering, jet production in pp̄ scattering is sensitive to
𝛼s at leading order in perturbation theory. The data collected by the DØ collaboration
consist of double differential cross section measurements in transverse momentum 𝑝T
and jet rapidity 𝑦. The data points are organized into six bins of absolute jet rapidity
∣𝑦∣, ranging from 0.0 to 2.4, with a bin size of 0.4. For each absolute rapidity bin, the 𝑝T
binning varies, starting from transverse momenta of 50 GeV. Overall, the whole data set
comprises 110 data points.

For the reconstruction of jet objects, an iterative cone-based algorithm relying on mid-
point seeds, as described in [1515], is used, with the cone radius set to 𝑅 = 0.7. The
measured properties of the jets are corrected for a number of systematic effects, such as
the energy response of the detector. In addition, the effects of jet migration to neighbor-
ing bins on account of the finite detector resolution are estimated using a simulation of
the DØ detector, and corrected by applying correction factors in each bin.

Statistical uncertainties on the cross section are estimated for each bin and taken to be
uncorrelated. To account for experimental systematic effects, 24 uncertainty sources are
introduced, of which 23 are taken to be fully correlated, while the remaining uncertainty
source accounts for uncorrelated effects. The overall largest uncertainties are identified
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to be due to the electromagnetic and photon energy scales.
For evaluating the measurement data, theory predictions are computed at next-to-

leading order using the fastnlo framework in conjunction with the MRST2004 [2525] and
CTEQ6.5M [2626] PDF sets. Non-perturbative correction factors are applied to account for
hadronization and the underlying event. The corrected theory predictions are found to
be in good agreement with the measurements.

Theory predictions

A determination of the strong coupling constant 𝛼s(𝑀Z) from the above measurement
is performed in a subsequent publication. [2424] This is done following a least-squares
approach by iterative minimization of a 𝜒2 quantity.

For this purpose, theory predictions are computed in the fastnlo framework using
NLOJet++. Both the renormalization and factorization scales are identified with the
transverse jet momentum 𝑝T. The perturbative calculation is performed at next-to-leading
order in pQCD and supplemented by threshold corrections computed to two-loop ac-
curacy. [2727] In the following, this is referred to as “approximate next-to-next-to-leading
order” (aNNLO) calculation accuracy. The PDF set used is the global MSTW2008 NNLO
PDF set.

In addition, non-perturbative correction factors due to hadronization and the under-
lying event, as estimated in the original measurement publication, are applied to the
theory predictions.

In order to account for the implicit dependence of the resulting theory predictions
on the value of 𝛼s(𝑀Z) assumed when determining the PDFs, the calculations are per-
formed for each PDF in the 𝛼s series provided by the MSTW2008 NNLO PDF set. In
order to obtain a continuous dependency of the cross section prediction on 𝛼s(𝑀Z), the
discrete cross section points thus obtained are interpolated using cubic splines.

Furthermore, a number of uncertainties on the theory are estimated, which are all
taken as fully correlated across all data points. The uncertainties due to the PDFs are
calculated from the eigenvector variations provided for the MSTW2008 NNLO PDF set
using the Hessian approach. [2121] In addition, for each non-perturbative correction factor
applied to the perturbative calculation, an additional theory uncertainty corresponding
to half the applied factor is estimated. An uncertainty due to the choice of scale is not
estimated on the cross-section level.

Determination of 𝜶s(𝑴Z)

Since the above measurement is used in the MSTW2008 analysis to provide constraints
on the PDFs, a number of data points which have a significant impact on the PDF deter-
mination are excluded from the 𝛼s(𝑀Z) determination. The subset of the data used for
the extraction of 𝛼s(𝑀Z) thus contains only 22 of the original 110 data points.

In defining the 𝜒2 quantity, both experimental and theoretical uncertainties are taken
into account. Of these, all systematic uncertainties except one are taken to be fully corre-
lated across all data points and are included in the 𝜒2 definition as nuisance parameters.
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No correlations between different observable bins are assumed for the statistical uncer-
tainties.

While not explicitly documented in the publication, the exact mathematical expres-
sion for this quantity was kindly provided by the authors, and is given in (4.64.6).

𝜒2
DØ =

𝑁bins

∑
𝑖=1

[𝑚𝑖 − 𝑡𝑖 (1 + ∑𝑁theo
sys

𝑘=1 𝛿𝑖𝑘(𝛼𝑘)) (1 + ∑𝑁exp
sys

𝑗=1 𝛿𝑖𝑗(𝜀𝑗))
−1

]
2

𝜎𝑖, stat
2 + 𝜎𝑖, uncor

2

+
𝑁exp

sys

∑
𝑗=1

𝜀𝑗
2 +

𝑁theo
sys

∑
𝑘=1

𝛼𝑘
2 (4.6)

In the above relation, 𝑚𝑖 and 𝑡𝑖 refer to the measurement and theory prediction in
the 𝑖-th observable bin, and 𝜎𝑖, stat and 𝜎𝑖, uncor refer to the statistical and uncorrelated
systematic uncertainties. The theory prediction is weighted by factors resulting from
contributions of the fully correlated experimental and theoretical systematic uncertain-
ties. These are calculated as quadratic functions of the experimental and theoretical
nuisance parameters (𝜀𝑗 and 𝛼𝑘, respectively) by interpolating between the relative “up”
and “down” uncertainty estimates:

𝛿𝑖𝑗(𝜀𝑗) = ⎛⎜⎜
⎝

𝛿𝑗, up
𝑚,𝑖 − 𝛿𝑗, down

𝑚,𝑖
2 𝜀𝑗 +

𝛿𝑗, up
𝑚,𝑖 + 𝛿𝑗, down

𝑚,𝑖
2 𝜀𝑗

2⎞⎟⎟
⎠

(4.7)

A best estimate is extracted for 𝛼s(𝑀Z) by performing a minimization of the 𝜒2 quan-
tity (4.64.6), taking all experimental and theoretical uncertainties (except the scale uncer-
tainty) into account. The uncertainties on the 𝛼s(𝑀Z) estimate are estimated as one-
sigma confidence intervals derived using the Δ𝜒2 = 1 prescription.

In addition, the individual contributions to this uncertainty are estimated. These are
contributions due to uncorrelated and correlated experimental effects, as well as due to
non-perturbative, PDF and scale uncertainties. The latter are estimated by additional
fits performed with both the renormalization and factorization scales set to half and
double their nominal values. The differences of the resulting 𝛼s(𝑀Z) estimates to the
result obtained with the nominal scales are given as the scale uncertainty on 𝛼s(𝑀Z).
The exact method of estimation for the remaining contributions to the total uncertainty
is not documented in the publication.

The central estimate for 𝛼s(𝑀Z), as well as the uncertainty contributions, are deter-
mined at aNNLO using the method summarized above and are given as:

𝛼s(𝑀Z)DØ, aNNLO = 0.1161 ± 0.0001 (exp, uncor) +0.0034
−0.0033 (exp, cor)

+0.0010
−0.0016 (NP) +0.0011

−0.0012 (PDF) +0.0025
−0.0029 (scale) (4.8)

In addition, the result of a determination using the calculations performed at NLO
without the inclusion of threshold corrections, as well as NLO PDFs, is provided. For
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this result, only an estimate of the total uncertainty is quoted:

𝛼s(𝑀Z)DØ, NLO = 0.1202 +0.0053
−0.0024 (total) (4.9)

4.1.3. Proton-Proton Scattering at CMS

Inclusive jet production has also been measured in pp collisions at the LHC. In the fol-
lowing, one such measurement conducted by the CMS experimental collaboration at a
center of mass energy of 7 TeV [2828] is reviewed. These data have been used for a deter-
mination of the strong coupling constant by the CMS experimental collaboration. [2929]

During the 2011 run of the LHC, inclusive jet production cross sections have been
measured by the CMS experimental collaboration in pp collisions at a center-of-mass
energy of 7 TeV. The collected data consist of double differential inclusive jet cross sec-
tions, measured as a function of transverse jet momentum 𝑝T and jet rapidity 𝑦. The
measurement phase space is divided into five equally-sized bins of absolute jet rapidity
∣𝑦∣, ranging from 0.0 to 2.5. In each absolute rapidity bin, the 𝑝T phase space is subdi-
vided into a variable number of bins with a bin size proportional to the 𝑝T resolution,
starting at 𝑝T = 114 GeV. In total, the dataset consists of 133 data points.

The reconstruction of jet objects is performed using the anti-𝑘T jet algorithm with a
distance parameter of 𝑅 = 0.7, and involves a number of corrections due to systematic
effects, such as detector and reconstruction inefficiencies, or additional pp interactions.
In addition, the data are unfolded in order to account for event migration between bins
due to the detector resolution. The magnitude of the corrections, as well as the migra-
tion matrix used for the unfolding procedure, are obtained from Monte Carlo studies in
conjunction with simulations of the CMS detector.

A number of experimental uncertainties are estimated in order to account for statis-
tical fluctuations and systematic effects on the measurements. The dominant sources
of systematic uncertainty are identified to be due to the jet energy scale, the luminosity
and the resolution of jet 𝑝T. The jet energy scale uncertainty is described by means of 16
mutually uncorrelated contributions, each of which is taken to be fully correlated across
the entire measurement phase space.

The luminosity uncertainty on the measured cross section is estimated to be 2.2%,
equally affecting all observable bins. An additional uncertainty due to the unfolding
procedure is estimated to be of the order of 3–4%, and is assumed to be fully correlated
across all 𝑝T bins. Remaining uncorrelated systematic effects are accounted for by an
additional uncertainty of 1%.

Theory predictions

For the purpose of determining 𝛼s(𝑀Z), next-to-leading order calculations of the cross
section are performed with the fastnlo framework in conjunction with the NLOJet++
software package. The calculations are performed with the values for the renormaliza-
tion and factorization scales being identified with the transverse momentum of the indi-
vidual jets. Predictions are obtained for the ABM11, CT10, MSTW2008 and NNPDF2.1
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NLO PDF sets.
In addition, the calculations are corrected using non-perturbative factors in order to

account for multiple-parton interactions and hadronization effects. The correction fac-
tors are calculated using three separate calculation setups. One set of calculations is
performed with the POWHEG package, [3030] with matched parton showering and ha-
dronization performed with the Pythia 6 event generator. [3131] Another set of calcula-
tions is performed with Pythia 6 alone, and a third using Herwig++. [3232] The center of
the envelope given by all three calculations is chosen as the non-perturbative correction
factor. Furthermore, electroweak radiative effects are also accounted for by means of
correction factors. [3333]

Finally, the uncertainties on the theory are estimated. The uncertainty on the theory
resulting from the PDF determination is estimated for each PDF set and provided as a
covariance matrix. This is done both for PDF sets providing eigenvector variations, in
which case the Hessian method [2121] is used, as well as NNPDF2.1, which provides a
statistical ensemble of Monte Carlo replicas. In the latter case, these ensembles are used
to estimate the covariance matrix of the predictions directly. In addition, an uncertainty
is introduced due to the non-perturbative corrections. It is estimated as half the spread
between the three sets of theory calculations performed.

Determination of 𝜶s(𝑴Z)

An extraction of 𝛼s(𝑀Z) from the inclusive jet measurement is performed using an ap-
proach based on least-squares estimation. However, in contrast to the traditional pro-
cedure involving the direct iterative minimization of a 𝜒2 quantity with respect to the
theory parameter 𝛼s(𝑀Z), an method of estimation based on the calculation of the 𝜒2

quantity for a discrete number of 𝛼s(𝑀Z) points is employed.
This is done in order to account for the dependence of the PDFs used for the calcu-

lation on the value of 𝛼s(𝑀Z) assumed for their determination. Since the global PDFs
provided as part of an 𝛼s series are only available for discrete values of 𝛼s(𝑀Z), the 𝜒2

quantity is only evaluated at these points, using the corresponding PDF in the 𝛼s se-
ries for each evaluation. In order to obtain a continuous 𝜒2 function, a second-degree
polynomial is fitted to the resulting (𝛼s(𝑀Z), 𝜒2) points.

All experimental uncertainties, as well as PDF uncertainties, are considered in evalu-
ating the 𝜒2 quantity. However, a number of studies performed reveal the need of ad-
justing the correlation model presented in the original measurement publication. The
adjustment concerns the uncertainty correlations related to the single-particle response
jet energy corrections.

To determine an improved model for the correlation, the original assumption of a full
correlation of this uncertainty across all absolute rapidity bins is evaluated by perform-
ing separate determinations of 𝛼s(𝑀Z) in each individual bin, as well as for all bins with
different assumptions for the correlation in ∣𝑦∣. On account of the poor fit quality when
assuming a correlation of 100%, the correlation model is revised. For the 𝛼s(𝑀Z) deter-
mination, the single-particle response uncertainty is taken to be uncorrelated between
the barrel (∣𝑦∣ < 1.5) and endcap (1.5 ≤ ∣𝑦∣ < 2.5) detector regions, while continuing to
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exhibit correlations of 50% in the former region and 100% in the latter.
The definition of the 𝜒2 quantity is defined as:

𝜒2
CMS = (m − t)⊤ (V−1) (m − t) (4.10)

Here, m and t refer to the measurement and theory predictions, and the covariance
matrix V is the sum of the covariance matrices accounting for the statistical and uncor-
related systematic uncertainties, the luminosity uncertainty, the uncertainties due to the
jet energy scale and unfolding, as well as the PDF uncertainties.

Best estimates for 𝛼s(𝑀Z) are obtained by determining the minimum of the parabola
fitted to the 𝜒2 points for the different discrete 𝛼s(𝑀Z) points, while the total uncertainty
on 𝛼s(𝑀Z) due to experimental effects and PDFs is estimated as a confidence interval
by applying the Δ𝜒2 = 1 prescription. Separate estimates for the experimental and PDF
uncertainties on 𝛼s(𝑀Z) are obtained by repeating the estimation without the inclusion
of the PDF covariance matrix in (4.104.10). The resulting uncertainty estimate is taken to
be the experimental uncertainty on 𝛼s(𝑀Z), and an estimate for the PDF uncertainty
is obtained by subtracting the experimental uncertainty from the total uncertainty in
quadrature.

An additional uncertainty on 𝛼s(𝑀Z) due to non-perturbative effects is estimated by
repeating the extraction with a variation of the theory predictions corresponding to the
size of the non-perturbative uncertainty. The maximal deviation from the central esti-
mate for 𝛼s(𝑀Z) is taken as the uncertainty value.

Finally, the uncertainty due to the renormalization and factorization scales is esti-
mated in a similar fashion, following the conventional six-point variation of the scale
choices. An asymmetric uncertainty is derived from the maximal resulting upward and
downward variations in the estimate for 𝛼s(𝑀Z).

Extractions of 𝛼s(𝑀Z) are performed with the CT10, MSTW2008 and NNPDF2.1 NLO
PDF sets. No determination is performed with the ABM11 PDF set due to a significant
difference in shape seen for the theory predictions obtained with this PDF set compared
to both the measurement and the predictions derived using other PDF sets.

The final result of the extraction is quoted for the CT10 PDF set as:

𝛼s(𝑀Z)CMS = 0.1185 ± 0.0019 (exp) ± 0.0028 (PDF) ± 0.0004 (NP) +0.0053
−0.0024 (scale) (4.11)

4.2. Conclusion

In this chapter, a presentation of the inclusive jet cross section measurements and the
associated extractions of 𝛼s(𝑀Z) performed by the H1, DØ and CMS experimental col-
laborations is given.

A comparison of these measurements and 𝛼s(𝑀Z) determinations reveals a number
of significant differences. One difference concerns the experimental techniques used
for the measurement, as well as the estimation of the experimental uncertainties and
their correlations. In part, these differences are a natural consequence of the experi-
mental setup, which is unique to each individual experiment. A number of differences,
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however, such as the employed jet clustering algorithm, are due to choices made by the
experimental collaborations.

Furthermore, a number of differences can be observed concerning the theory calcula-
tions employed for the extractions of 𝛼s(𝑀Z), with the individual experimental collab-
orations making use of different software tools for performing pQCD calculations. The
identification and calculation of non-perturbative correction factors to the perturbative
QCD calculations is also performed differently in each approach.

Finally, among the largest differences between the determination of 𝛼s(𝑀Z) performed
by the different collaborations lies in the extraction methodology itself. The main dif-
ference here concerns the method of accounting for the implicit dependence of PDFs
on the value of 𝛼s(𝑀Z) assumed for their determination, for which each collaboration
takes a different approach. In addition, the treatment of uncertainties on the measure-
ment data, as well as the theory predictions, is observed to vary significantly between
the different approaches. This is also reflected in the definition of a 𝜒2 quantity, where
a different choice is made by each of the collaborations. Similarly, a number of differ-
ences can be identified concerning the estimation of uncertainties on the final estimate
of 𝛼s(𝑀Z) quoted by the collaborations.

In light of the differences in methodology outlined above, the need for developing
a unified procedure for the extraction of the strong coupling constant 𝛼s(𝑀Z) from a
combined dataset of the above measurements becomes clear. A discussion of several
aspects relevant for the development of such a method, as well as the resulting unified
extraction procedure, is provided in chapter 66.
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5. Software Tools

For the development and technical implementation of the 𝛼s(𝑀Z) determination, a num-
ber of software tools are employed. These provide the necessary functionality for com-
puting theory predictions for observables as a function of the theory parameters, as
well as access to statistical and other numerical routines used in parameter estimation.
In this section, the functionality of a number of these tools is reviewed.

An essential component in iterative determinations of 𝛼s(𝑀Z) is the fast calculation
of theory predictions as a function of QCD-related parameters. This is provided by the
fastnlo package. Also important in conjunction with 𝛼s(𝑀Z) extractions is the ability to
study the estimates obtained with several global PDFs. To this end, an interface provid-
ing standardized access to PDFs is required. This is provided by the LHAPDF 6 software
package.

Finally, the extraction procedure is implemented in Alpos, a C++ framework for data-
to-theory comparison and fitting. An overview of the functionality offered by Alpos is
provided in section section 5.35.3, with particular emphasis on determinations of 𝛼s(𝑀Z).

5.1. fastNLO

Cross section predictions for hadronic particle collisions involve a convolution of the
hard scattering cross section with the parton distribution functions (PDFs) of the collid-
ing hadrons (2.142.14). Whereas the PDFs are typically available as parametrized functions
of the momentum fraction 𝑥 and the energy scale 𝑄, the hard scattering cross section
must be calculated in perturbative QCD using Monte Carlo (MC) techniques.

This is generally a time-consuming process. For instance, fixed-order jet cross section
calculations performed at next-to-leading-order (NLO) accuracy with the MC cross sec-
tion integrator NLOJet++ [3434, 3535] require a computing time of several thousand CPU
hours on modern architectures. In the absence of optimization techniques to reduce the
calculation complexity, this limits the ability to further process these calculations.

The complexity of full NLO calculations is particularly prohibitive for iterative param-
eter estimation, which requires rapid recomputation of the theory predictions under a
variation of the theory parameters. The fastnlo package [3636] addresses this limitation,
providing a fast and accurate means of calculating fixed-order hadronic cross section
predictions beyond leading order, and thus allowing them to be used efficiently in stud-
ies of PDFs and the strong coupling constant. This section reviews the basic principle
of optimization used by fastnlo.
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5.1.1. Calculation Method

Computations of cross section predictions for hadronic processes involve a convolution
of the partonic perturbation coefficients and the parton distribution functions with re-
spect to the momentum fractions 𝑥1 and 𝑥2 of the participating partons. The convolution
appears as a double integral over the momentum fractions and can be evaluated using
Monte Carlo integration.

This calculation is particularly time-consuming due to the necessity of recalculating
the perturbative coefficients for randomly sampled 𝑥1 and 𝑥2. Furthermore, the convo-
lution result depends on the particular PDF set, meaning that it must be recomputed
whenever the PDF changes.

Nevertheless, since the integrand factorizes, it is possible to take advantage of this
for obtaining a PDF-independent representation of the convolution result. This section
discusses such an approach, implemented by the fastnlo package.

As a starting point, we consider the expression for a fixed order calculation of the
hadronic cross section:

𝜎pp =
𝑃

∑
𝑝=0

𝐾
∑
𝑘=1

𝛼s
𝑝(𝜇R) ∫ d𝑥1 d𝑥2 𝑐(𝑝)

𝑘 (𝑥1, 𝑥2, 𝜇R, 𝜇F) 𝐹𝑘(𝑥1, 𝑥2, 𝜇F) (5.1)

To maintain simplicity, we express the PDF dependence in terms of a finite number of 𝐾
linear combinations of parton flavors, which we denote 𝐹𝑘(𝑥1, 𝑥2, 𝜇F), with the index 𝑘
running from 1 to 𝐾. Additionally, we indicate the 𝛼s dependence and the perturbative
coefficients explicitly. There is one such coefficient 𝑐(𝑝)

𝑘 for each order 𝑝 in perturbation
theory, and each parton flavor combination 𝑘.

It can be seen from (5.15.1) that evaluating the convolution integral requires knowledge
of both the perturbative coefficient 𝑐(𝑝)

𝑘 and the PDFs 𝐹𝑘 at the time of computation. To
achieve a PDF-independent representation, fastnlo employs an interpolation procedure,
which is outlined below.

We first limit our discussion to factorizing the 𝑥-dependence of the PDFs. By evalu-
ating 𝑐(𝑝)

𝑘 (𝑥1, 𝑥2) and 𝐹𝑘(𝑥1, 𝑥2) on a lattice given by a fixed set of points {𝑥(𝑖)
1 } and {𝑥(𝑗)

2 },
the expression under the integral in (5.15.1) may be approximated as:

𝐹𝑘(𝑥1, 𝑥2) = ⎡⎢
⎣
∑
𝑖𝑗

𝐹𝑘(𝑥(𝑖)
1 , 𝑥(𝑗)

2 )⎤⎥
⎦

𝐼(𝑖)(𝑥1) 𝐼(𝑗)(𝑥2) (5.2)

Here, 𝐼(𝑖)(𝑥1) and 𝐼(𝑗)(𝑥2) denote the interpolation functions corresponding to the 𝑖-th
and 𝑗-th support points 𝑥(𝑖)

1 and 𝑥(𝑗)
2 , respectively. Also note that there remains an im-

plicit dependence on the renormalization and factorization scales, which we omit for
notational simplicity. As can be seen from (5.25.2), once the support points in 𝑥1 and 𝑥2
have been chosen, the expression in brackets is a constant which no longer depends on
the convolution variables 𝑥1 and 𝑥2. Thus, the convolution may be carried out indepen-
dently of the PDFs by performing the convolution integration in (5.15.1) for a chosen set of
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interpolation functions:

∫ d𝑥1 d𝑥2 𝑐(𝑝)
𝑘 (𝑥1, 𝑥2) 𝐹𝑘(𝑥1, 𝑥2) =

∑
𝑖𝑗

[∫ d𝑥1 d𝑥2 𝑐(𝑝)
𝑘 (𝑥1, 𝑥2) 𝐼(𝑖)(𝑥1) 𝐼(𝑗)(𝑥2)] 𝐹𝑘(𝑥(𝑖)

1 , 𝑥(𝑗)
2 ) (5.3)

In the above formula, the convolution has been reduced to a sum where the PDF
dependence has been factorized out from each term. The expression in brackets only
depends on the indices 𝑖, 𝑗, 𝑘 and the order 𝑝 in perturbation theory. Consequently, it
may be computed numerically via Monte Carlo integration without explicit knowledge
of the PDFs and stored in lookup tables for fast access.

The above reasoning may be extended to include the renormalization and factoriza-
tion scales by also evaluating the relevant quantities at fixed values of 𝜇R and 𝜇F and
performing an interpolation in each. Denoting the additional dimensions of the lookup
table by the indices 𝑟 and 𝑓 , respectively, we obtain an analog of the expression in brack-
ets in (5.35.3):

�̃�(𝑝)
𝑖𝑗𝑟𝑓 (𝜇R, 𝜇F) = ∫ d𝑥1 d𝑥2 𝑐(𝑝)

𝑘 (𝑥1, 𝑥2, 𝜇R, 𝜇F) 𝐼(𝑖)(𝑥1) 𝐼(𝑗)(𝑥2) 𝐼(𝑟)(𝜇R) 𝐼(𝑓 )(𝜇F) (5.4)

The quantity defined above encodes all the relevant information for calculating the
final cross section at arbitrary scales within the interpolation region, with the exception
of the PDF and 𝛼s-dependent parts of the calculation. These are reintroduced by appro-
priate sums over the interpolation indices in order to obtain the final cross section:

𝜎pp(𝜇R, 𝜇F) =
𝑃

∑
𝑝=0

∑
𝑖𝑗𝑟𝑓

�̃�(𝑝)
𝑖𝑗𝑟𝑓 (𝜇R, 𝜇F) 𝛼s

𝑝(𝜇R
(𝑟)) 𝐹𝑘(𝑥(𝑖)

1 , 𝑥(𝑗)
2 , 𝜇R

(𝑟), 𝜇F
(𝑓 )) (5.5)

An advantage of this procedure is the factorization of the calculation into a part which
depends on the PDFs and 𝛼s, and a universal part, which only depends on the chosen
interpolation functions and coefficients.

Thus, a fastnlo table may be used for rapid recomputation of theory predictions under
a change or variations of 𝛼s, the PDFs and the renormalization and factorization scales.
This allows these dependencies to be studied in data-theory comparisons and parameter
estimation procedures. Such fastnlo tables have been computed and are available for
all measurements discussed in this work.

Naturally, as with any interpolation method, the cross section predictions performed
with fastnlo are only an approximation of the full calculations. As such, the question
of accuracy arises. For an appropriately chosen number of points for the 𝑥 and 𝜇R,F
interpolations, the difference between the full calculation and the results obtained by
the interpolation method is below 0.1%. [3636]
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5.2. LHAPDF

Parton distribution functions indicate the probability density of a parton carrying a frac-
tion 𝑥 of the total hadron momentum at a particular factorization scale 𝜇F. Whereas the
𝜇F dependency can be derived from the DGLAP evolution equations (2.132.13), the 𝑥 depen-
dency needs to be parametrized. This allows PDFs to be uniquely represented by their
respective parameters.

However, since PDFs can be parametrized in a number of different ways, this rep-
resentation is not unique and may be chosen freely, subject to a number of reasonable
restrictions, such as requiring the parton density to approach zero near the elastic thresh-
old at 𝑥 = 1.

In addition to employing different parametrizations, groups specializing in the de-
termination of PDFs also make different choices regarding the experimental data con-
sidered for the fits, as well as applying different fitting procedures and conventions for
representing the resulting uncertainties. Possible insights may be gained from compar-
ing different global PDF sets, marking the need for standardized interfaces for accessing
PDFs.

One such interface is LHAPDF 6, [3737] a C++ library providing access to a large number
of PDFs, as well as implementing several routines for performing PDF-related tasks,
such as the estimation of PDF uncertainties.

5.3. The Alpos Data-to-Theory Comparison and Fitting Framework

Alpos [3838] is a C++ software package providing a wide range of functionality for per-
forming data-to-theory comparisons and parameter estimation. Among the main fea-
tures of Alpos are an object-oriented and modular structure, the availability of interfaces
to a large number of theory tools, as well as the implementation of fast numerical tech-
niques, complemented by appropriate caching strategies in order to increase efficiency.

A core aspect specifically addressed by Alpos is the management of the dependen-
cies between the parameters entering different theory calculations in an efficient and
consistent manner. In addition, Alpos allows fine-grained control over the definition
of an uncertainty model for the measurements and theory predictions, as well offering
multiple definitions for 𝜒2 quantities to be used for parameter estimation.

In the following, an overview of the structure of the Alpos package is provided, with
particular emphasis placed on the implementation of 𝛼s(𝑀Z) determinations within this
framework.

5.3.1. Package Structure

The main purpose of Alpos is to provide the necessary functionality for the comparison
of measurement data to theory predictions, as well as the estimation of theory parame-
ters. Consequently, a core feature of Alpos are the specialized data structures necessary
for representing the measurement data and the corresponding theory predictions. In
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order to enable the evaluation of theory computations as a function of physical and
technical parameters, a number of interfaces to external packages are implemented.

In Alpos, an object-oriented approach is taken. The different components relevant
for data-to-theory comparisons are represented by specialized objects. For instance, the
individual theory parameters are represented by objects storing their current value as a
data member and providing methods for obtaining, modifying and updating this value.

Objects representing the theory calculations provide methods for computing and stor-
ing the predicted values for the corresponding measurements as a function of the cur-
rent values of the theory parameters. Furthermore, objects representing the measure-
ment datasets store both the measurement values and associated metadata, such as the
phase space covered by the observable bins.

A representation of the measurement and theory uncertainties is provided by dedi-
cated objects, stored as data members of the objects to which they refer. These objects
provide access to various representations of uncertainties, such as absolute and relative
binwise uncertainties, or covariance and correlation matrices.

In Alpos, the central tool for workflow specification is the task. Each task imple-
ments a particular workflow element, such as the statistical analysis of the data-theory
agreement, or the estimation of theory parameters from measurements using the least-
squares method. The implementation of complex analysis procedures can thus be real-
ized as a series of tasks.

User input is provided in the form of so-called steering files, which contain the nec-
essary specifications required to run an analysis. Information regarding the measure-
ment datasets and theory calculations, as well as the tasks to be executed, is provided
by means of this file.

By making extensive use of class inheritance, a high degree of flexibility in working
with these objects is achieved. In addition, the implementation of well-known design
patterns, such as caching, lazy evaluation, and the observer pattern for notifying dependent
objects of changes, contribute to computational efficiency and consistency.

Finally, the modular design of Alpos promotes extensibility, enabling further func-
tionality to be implemented, such as new tasks or additional interfaces to external theory
programs. An overview of the class hierarchy of Alpos is shown in figure 5.15.1.

5.3.2. Determination of 𝜶s(𝑴Z) in Alpos

Alpos provides all the necessary components for performing determinations of the strong
coupling constant 𝛼s(𝑀Z) from measurement data. Furthermore, it allows a high degree
of control over the essential elements of such a determination.

A central element consists of the measurement data itself. In Alpos, these data are
provided as static datafiles containing the measurements in a plain text tabular format.
The data table contains one row per observable bin and at lease An arbitrary number of
additional columns can be specified for providing phase space information, as well as
binwise uncertainties and multiplicative correction factors.

In addition, the datafiles contain a representation of the uncertainty model. For this,
a number of uncertainty sources can be specified in a plain text tabular format. The

41



5. Software Tools
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Figure 5.1.: Dependency structure of Alpos classes. The nodes shown in yellow each
represent a collection of classes representing theory interfaces, 𝜒2 defini-
tions, or Alpos tasks and task results. For each category of objects, a public
interface is defined in the abstract parent class, allowing advanced users to
implement additional functionality.

uncertainty is provided either as a reference to a particular column in the data table,
indicating the magnitude of the uncertainty in a particular bin, or by directly specify-
ing a number as the uncertainty in all observable bins. Asymmetric uncertainties are
specified by providing two columns (or numbers), indicating the “up” and “down” un-
certainties.

To provide additional information about the desired treatment of the uncertainties
during parameter estimation, each uncertainty source is marked using a series of flags.
These are used to distinguish uncertainties on the measurement from theory uncertain-
ties, and statistical uncertainties from systematic ones. Additive and multiplicative un-
certainty sources may also be specified in this way. In addition, bin-to-bin correlations
for the different uncertainty sources can be specified by providing either a global corre-
lation coefficient or a correlation matrix.

A further highlight of Alpos is the incorporation of interfaces to different programs for
computing theory predictions. In this work, the theory calculations for inclusive jet cross
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sections are provided by means of fastnlo interpolation tables. These are specific to each
dataset and can be loaded in Alpos for providing the corresponding theory predictions
as a function of 𝛼s(𝑀Z). PDFs are also provided in Alpos by an interface to LHAPDF 6
and an interface to the CRunDec [3939] package exists for the evolution of 𝛼s to different
energy scales.

The final prerequisite for a determination of 𝛼s(𝑀Z) consists in establishing a defini-
tion of the 𝜒2 quantity to be minimized. Several 𝜒2 definitions are available in Alpos.
The minimization with respect to 𝛼s(𝑀Z) is performed numerically using the function
minimizer MINUIT from the data analysis framework ROOT [4040].
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6. Extraction of 𝜶s(𝑴Z) from the Combined
Datasets

As described in chapter 44, extractions of the strong coupling constant 𝛼s(𝑀Z) from in-
clusive jet measurements have been performed by several experimental collaborations,
each using a characteristic extraction method. The main focus of this work is the deter-
mination of the strong coupling constant from inclusive jet measurements performed at
multiple experiments.

Naturally, this type of extraction requires a consistent treatment of the measurement
data, the corresponding theory predictions, and the different uncertainty models, in
order to develop a unified fitting procedure. This enables the datasets to be compared
on an equal footing and more precise estimates for 𝛼s(𝑀Z) to be obtained.

In this work, such an extraction of the strong coupling constant is performed using
the Alpos framework presented in section 5.35.3. As a means of verifying the functionality
of Alpos in the context of determinations of 𝛼s, a first aim is implementing the analyses
outlined in chapter 44 within this framework. This is presented in section 6.16.1.

Having reproduced the original analyses, the next step towards a combined extrac-
tion of 𝛼s(𝑀Z) is the definition of a unified fitting procedure which can be applied to
all datasets. This includes choosing a suitable definition of a 𝜒2-like quantity for de-
scribing the data-theory agreement. For this purpose, it is important both to establish
a consistent, robust manner of treating various systematic uncertainties, and to provide
an exact specification of the necessary components entering the calculation of theory
predictions. This procedure is presented in detail in section 6.26.2.

Subsequently, the unified fitting procedure is applied to the original datasets individ-
ually, and the results are compared to the respective original fitting procedures (sec-
tion 6.36.3). This comparison is useful for understanding the strengths and weaknesses of
each method, as it applies to the problem at hand.

Finally, the unified fitting procedure is applied to the combined dataset consisting
of measurements from all three experiments, yielding the final value of 𝛼s(𝑀Z) (sec-
tion 6.46.4).

6.1. Reproduction of Past Determinations of 𝜶s(𝑴Z)
In chapter 44, past determinations of 𝛼s(𝑀Z) by the H1, DØ and CMS collaborations have
been reviewed. Each of these extractions employs a unique fitting procedure, which is
described in the respective publications. Since the object of this work is a combined
extraction of 𝛼s(𝑀Z) in Alpos, a sensible first step is the reproduction of previous fit
results within this framework. This serves as an important initial cross-check, ensuring
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an understanding of the original datasets and fitting procedures, and as a demonstration
of the functionality range and flexibility of Alpos for performing 𝛼s(𝑀Z) extractions.

For this purpose, the main focus lies in reproducing the central estimate for 𝛼s(𝑀Z)
quoted by each collaboration, as well as the associated experimental uncertainty. On
account of the extractions exhibiting significant procedural differences in the estimation
of other contributions to the total uncertainty on 𝛼s(𝑀Z), these are not estimated in the
reproduction.

In the H1 fitting procedure, the central estimate for 𝛼s(𝑀Z) is obtained by iterative
minimization of the 𝜒2 quantity defined by taking only experimental errors into account.
The DØ collaboration also performs an iterative 𝜒2 minimization. However, in contrast
to H1, the 𝜒2 definition for estimating the central value of 𝛼s(𝑀Z) also includes PDF
uncertainties and uncertainties due to non-perturbative corrections. The experimental
contributions to the resulting total uncertainties are obtained by performing additional
fits, as described in section 4.14.1.

The extraction performed by CMS obtains estimates for 𝛼s(𝑀Z) by evaluating the 𝜒2

quantity for a discrete number of 𝛼s(𝑀Z) points and fitting a second-degree polynomial
(see section 4.1.34.1.3). The central value of 𝛼s(𝑀Z) is given by the location of the function
minimum, and the uncertainty is evaluated according to the Δ𝜒2 = 1 prescription, as
described in section 3.33.3.

The three methods outlined can be implemented in Alpos and reproduce the original
estimates for 𝛼s(𝑀Z) exactly (up to rounding). A summary of the original estimates
and the corresponding reproductions with Alpos can be found in table 6.16.1, and a visual
representation of these results is shown in figure 6.16.1.

For the DØ analysis, both 𝛼s(𝑀Z) extractions performed at NLO and at aNNLO ac-
curacy are reproduced. Whereas central values and total uncertainties are provided in
the publication, a detailed documentation of the various uncertainty components is only
available for the aNNLO determination. Thus, the experimental uncertainties estimated
with Alpos can only be compared to the original publication values for the aNNLO ex-
traction.

The reproduced experimental uncertainties also correspond to the originally quoted
estimates in almost all cases. A slight discrepancy can be seen for the reproduction of
the DØ experimental uncertainty, which could be explained by numerical effects. Addi-
tionally, since the exact method of estimating the individual uncertainty contributions
is not elaborated upon in the original publication, a slight procedural difference may
be responsible for the discrepancy. Nevertheless, the exact reproduction of the central
value is a strong indication of a correct reproduction.

Overall, the ability to implement different fit methodologies in Alpos, as well as the
ability to reproduce published results, demonstrate the flexibility and suitability of the
framework for determinations of 𝛼s(𝑀Z) in general.
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Alpos reproduction
Original publication
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Figure 6.1.: Reproduction of past determinations of 𝛼s(𝑀Z) by the H1, DØ and CMS
collaborations with Alpos. The obtained values for 𝛼s(𝑀Z) are shown here
with error bars corresponding to the experimental uncertainty. The results
obtained with Alpos are identical to those from the original publications.
Also shown is the world average for 𝛼s quoted in [1212].

6.2. Unified Fitting Procedure

The fitting procedures outlined in chapter 44 and in the preceding section differ signif-
icantly. Thus, in order to perform a determination of 𝛼s(𝑀Z) taking into account all
datasets simultaneously, a new, unified fitting procedure must be developed.

One main point of difference among the original fitting procedures is the handling of
the theory predictions. In order to ensure a consistent treatment of the theory, the order
in perturbation theory for all calculations performed in the unified fitting procedure is
required to be the same for each dataset. In this analysis, the calculations are performed
at next-to-leading order accuracy.

Furthermore, the original procedures differ in their treatment of PDFs. The main dif-
ference lies in handling the dependence of PDFs on the strong coupling constant 𝛼s(𝑀Z).
Since PDFs play an important part in the calculation of the theory predictions used in
determinations of 𝛼s(𝑀Z), accounting for this dependence is a crucial part of ensuring
an accurate and consistent treatment of the theory.

Another necessity of the unified fitting procedure is the establishment of an uncer-
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Central value Experimental uncertainty

𝛼s(𝑀Z) ±⟨value⟩ (symmetric)
⟨down⟩ ⟨up⟩ (asymmetric)

H1 Publication 0.1174 ±0.0022
Alpos 0.11739 ±0.00223

DØ
(aNNLO)

Publication 0.1161 −0.0033 +0.0034
Alpos 0.11608 −0.00353† +0.00338

CMS Publication 0.1185 ±0.0019
Alpos 0.11847 ±0.00194

Table 6.1.: Comparison of the original fit results and the Alpos reproduction. Alpos re-
sults are given to a higher numerical precision in order to illustrate the impact
of rounding. Overall, both central values and experimental uncertainties ob-
tained with Alpos are in good numerical agreement with the original pub-
lication values. The slight discrepancy seen for the DØ asymmetric ‘down’
uncertainty (†) may be due to numerical effects.

tainty model for the measurements and the theory predictions. This aspect, as well as
its implications for the definition of a 𝜒2 quantity, are also discussed.

Finally, the uncertainty on the final estimate obtained for 𝛼s(𝑀Z) is estimated and the
individual contributions to this uncertainty are quantified.

6.2.1. Implicit Dependence of PDFs on 𝜶s(𝑴Z)
Apart from the strong coupling constant 𝛼s(𝑀Z), PDFs are a central component in the-
oretical calculations of jet cross sections. Since PDFs are determined by fitting theory
predictions to experimental data, the value of 𝛼s(𝑀Z) used for the theoretical calcula-
tions must either be determined alongside the PDF parameters, or remain fixed to a
particular value during the PDF fit. Thus, each PDF determined in this manner has
an associated value of 𝛼s(𝑀Z). In the following, this dependence is referred to as the
implicit dependence of PDFs on 𝛼s(𝑀Z).

For this reason, the value of 𝛼s(𝑀Z) is provided for each PDF set in addition to the
PDF parameters. Furthermore, global PDF fitting groups typically provide an entire
series of PDFs fitted for a number of discrete values of 𝛼s(𝑀Z). These PDF 𝛼s series may
be used to account for the implicit 𝛼s(𝑀Z) dependence of the PDFs in additional studies.

This is of particular importance for 𝛼s(𝑀Z) determinations from jet cross section mea-
surements, as the corresponding theory calculations require PDFs as an input. Conse-
quently, both the theoretical dependence of the cross section on 𝛼s(𝑀Z) and the implicit
dependence of the PDFs on 𝛼s(𝑀Z) must be taken into account.

In the least-squares approach (section 3.23.2), the theory predictions are evaluated se-
quentially at multiple values of 𝛼s(𝑀Z), until the minimum of the 𝜒2 quantity is found.
In addition, theory predictions also depend on the PDF set, meaning that there is an
additional, implicit dependence on the value of 𝛼s(𝑀Z) associated with the PDF, which
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is not a priori required to coincide with the value of 𝛼s(𝑀Z) at which the theory is being
evaluated. In order to maintain a clear notational distinction between these two quanti-
ties, they are denoted 𝛼s(𝑀Z)PDF and 𝛼s(𝑀Z)eval, respectively.

It is worth noting here that the implicit dependence of the theory on 𝛼s(𝑀Z)PDF is a
side-effect of the PDF fitting procedure. In addition, due to 𝛼s(𝑀Z) and the PDF param-
eters typically exhibiting a high degree of correlation in these fits, there is no guarantee
that the dependence of PDFs on 𝛼s(𝑀Z), as observed in these fits, can be directly identi-
fied with the theoretical QCD dependence, as postulated in the DGLAP evolution equa-
tions (2.132.13), since additional effects stemming from the PDF fitting procedure may also
contribute. As a result, careful consideration of the theoretical implications is necessary
when using the PDFs in an 𝛼s series for determinations of 𝛼s(𝑀Z).

A further aspect worth noting is the fact that PDFs are only available for several
discrete values of 𝛼s(𝑀Z). This poses a challenge for least-squares determinations of
𝛼s(𝑀Z), since a fundamental requirement in this case is for the 𝜒2 quantity to be a con-
tinuous function of the fit parameters.

These issues are approached in 𝛼s(𝑀Z) determinations by the H1, DØ and CMS col-
laborations in different ways.

Discussion of the H1, DØ and CMS Approaches

Each of the past determinations of 𝛼s(𝑀Z) outlined in chapter 44 handles the issues out-
lined above in different ways. The H1 method does not account for the cross section
dependence on 𝛼s(𝑀Z)PDF during the 𝜒2 minimization. Instead, all fits are performed
with PDFs for which the value of 𝛼s(𝑀Z) has been fixed at 0.118. The implicit depen-
dence on 𝛼s(𝑀Z)PDF is assumed to introduce an additional uncertainty on the final value
for 𝛼s(𝑀Z), which is estimated by repeating the minimization using neighboring PDFs
in the 𝛼s series (section 4.1.14.1.1). This is referred to in the following as the “fixed PDF”
method.

In contrast, the DØ collaboration chooses an interpolation-based method. In this ap-
proach, cross section predictions are calculated for each observable bin using all PDFs in
an 𝛼s series. Thus, a discrete set of cross section points is obtained, for which 𝛼s(𝑀Z)eval
is set to be equal to 𝛼s(𝑀Z)PDF. A continuous function for the cross section in each bin
is obtained by interpolating these values using cubic splines. This is referred to as the
“PDF interpolation” method.

Finally, in the CMS approach, rather than interpolating on the cross section level, the
𝜒2 quantity is evaluated for all values of 𝛼s(𝑀Z)PDF. The resulting points are shown
to lie approximately on a parabola by performing a second-degree polynomial fit. The
resulting curve is identified as a good approximation of the 𝜒2 near the minimum, al-
lowing a best estimate and uncertainties for 𝛼s(𝑀Z) to be extracted. In the following,
this is referred to as the “𝜒2 fit” method.

Each of the methods mentioned above have specific advantages and disadvantages.
In the “fixed PDF” method, the choice of a particular value of 𝛼s(𝑀Z) may introduce
a bias on the resulting estimate for 𝛼s(𝑀Z) towards this value. This bias is covered by
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the additional “PDF 𝛼s” uncertainty, which, however, needs to be estimated using ad-
ditional techniques.

The “PDF interpolation” approach has the advantage of including the implicit cross
section dependence on 𝛼s(𝑀Z)PDF in the cross section predictions. A drawback of this
method is the assumption that the implicit cross section dependence on 𝛼s(𝑀Z)PDF is a
good approximation of the theoretical cross section dependence on 𝛼s(𝑀Z), as described
by perturbation theory and the DGLAP evolution equations (2.132.13). However, this is not
necessarily the case, since additional effects introduced via the PDF fitting procedure
are not considered.

In addition, the “PDF interpolation” method has limited applicability in conjunction
with PDF sets derived using Monte Carlo techniques, such as NNPDF. For these, each
PDF in the 𝛼s series is obtained by averaging over an ensemble of replicas. Since the
number of replicas per ensemble is finite, the PDFs are subject to a natural statistical
variation, which is also reflected in the theory predictions. An interpolation would treat
these fluctuations as physically meaningful, causing predictions to become unreliable.

In the “𝜒2 fit” method, no interpolation is done. Instead, the 𝜒2 quantity is calculated
for each value of 𝛼s(𝑀Z)PDF, and a parabola is fitted to the resulting points. The main
benefit of this method consists in avoiding some of the issues which arise due to interpo-
lation: since 𝛼s(𝑀Z)PDF is constant for every point, systematic effects stemming from the
PDF fit procedure no longer determine the cross section dependence on 𝛼s(𝑀Z), which
instead results directly from the NLO calculation.

A significant disadvantage, however, are the limited possibilities of examining the
uncertainties. One limitation concerns possible asymmetries exhibited by the discrete
𝜒2 points. Since the uncertainty of the 𝛼s(𝑀Z) estimate is calculated from the neces-
sarily parabolic 𝜒2 function resulting from the fit (see section 3.33.3), it is symmetric by
construction. Thus, these asymmetries, if present, are not reflected in the uncertainty
estimates.

Furthermore, the chosen 𝜒2 definition does not treat the fully correlated systematic
uncertainties by means of nuisance parameters. For a detailed examination of these
effects, a reformulation of the 𝜒2 quantity is required.

Another aspect is that, in this method, the final fit to the 𝜒2 points is performed with-
out establishing an uncertainty model for the 𝜒2 values themselves. Thus, it is not possi-
ble to investigate the quality of this fit in terms of the deviations of individual 𝜒2 points
from the fitted parabola. In particular situations, these deviations become large relative
to the mean 𝜒2 value. This is observed in the case of NNPDF, due to the statistical varia-
tions outlined above, which are also reflected in the 𝜒2. In the absence of an appropriate
uncertainty model for the 𝜒2 quantity, these variations lower the fit quality substantially
and may be responsible for a bias of the final estimate for 𝛼s(𝑀Z) and its uncertainties.

In light of the issues discussed above, the possibilities of performing a detailed study
of uncertainties are found to be limited in the “𝜒2 fit” method, in comparison to the other
two methods, which rely on the iterative minimization of the 𝜒2 quantity. Consequently,
the “𝜒2 fit” approach is not explored further for the purpose of defining a unified fitting
procedure.

In order to elucidate the implications of choosing either of the remaining two methods
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for handling the implicit 𝛼s(𝑀Z) dependence of the PDFs, a comparison study of the
cross section dependence on 𝛼s(𝑀Z) is performed. This is outlined in the following
section.

Cross Section Dependence on 𝜶s(𝑴Z)

In the preceding section, the “fixed PDF” and “PDF interpolation” methods of account-
ing for the implicit dependence of PDFs on 𝛼s(𝑀Z) are presented. The latter approach is
based on the assumption that the cross section as a function of 𝛼s(𝑀Z)PDF, as calculated
for discrete 𝛼s(𝑀Z) points using the PDFs in an 𝛼s series, is a good approximation of the
theoretical cross section dependence on 𝛼s(𝑀Z), as described by the theory.

As a rough indicator of the quality of this approximation, a comparison of the cross
section predictions computed with the “fixed PDF” and “PDF interpolation” methods is
performed. Since the dominant, leading-order contribution to the cross section for inclu-
sive jet production in hadron-hadron collisions is quadratic in
𝛼s(𝑀Z), this dependence is expected to be seen for the corresponding theory predic-
tions for both methods.

In figure 6.26.2, the two methods are compared. Shown are the double-differential in-
clusive jet cross section predictions for the CMS dataset for two observable bins and
several PDF sets. Whereas the curves for the “fixed PDF” method follow the expected
theoretical dependence of inclusive jet cross sections on 𝛼s(𝑀Z), the “PDF interpolation”
method yields a different dependence. An expanded set of such plots, showing this de-
pendence for four data points of the CMS dataset situated in four different kinematic
regions, is available in appendix AA.

This effect is particularly striking at high transverse momenta and outer rapidities,
where the uncertainties become large and data available for constraining the PDFs are
scarce. For instance, predictions obtained with the MSTW2008 PDF set for the observ-
able bin with transverse momenta ranging from 638 to 686 GeV and absolute rapidities
between 2 and 2.5 show a near-insensitivity to the PDF 𝛼s(𝑀Z), even showing a slight
downwards trend at low values of 𝛼s(𝑀Z). This is most probably caused by the limited
constraining power of the data in this phase space region. In particular, since the gluon
PDF at low 𝑥 cannot be constrained sufficiently by the jet measurements included in the
MSTW2008 PDF determination, this correlation remains high, potentially leading to a
nearly full compensation of 𝛼s(𝑀Z) by the PDF gluon parameters.

Overall, however, the most significant differences between the “fixed PDF” and “PDF
interpolation” methods occur for kinematic regions where experimental and theoretical
uncertainties are relatively large. Consequently, the choice of method is not expected to
have a large impact on the fit results.

For the unified fitting procedure, the implicit 𝛼s(𝑀Z) dependence of PDFs is accounted
for via the “fixed PDF” approach. Alternate estimations are also performed using the
“PDF interpolation” method and compared to the “fixed PDF” method. The resulting
estimates of 𝛼s(𝑀Z) do not show significant differences between the two methods. An
overview of results obtained with the alternative method is given in appendix BB.
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Figure 6.2.: Comparison of the CMS inclusive jet cross section dependence on 𝛼s(𝑀Z)
for the “fixed PDF” and “PDF interpolation” methods, shown here for the
MSTW2008, CT10 and NNPDF2.3 PDF sets (all NLO). In the “fixed PDF”
method, cross sections are calculated using the PDF of the 𝛼s series with
𝛼s(𝑀Z) = 0.118. In the “PDF Interpolation” method, cross sections are cal-
culated by interpolating between the predictions obtained with each PDF
of the 𝛼s series using cubic splines. Whereas at low 𝑝T and central rapidi-
ties (left column), only a slight difference can be observed, the effect is much
more pronounced at high 𝑝T and outer rapidities (right column). The statisti-
cal variation inherent to NNPDF (bottom row) causes significant deviations
between the methods, particularly in the extrapolation region.
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6.2.2. Uncertainty Model and Definition of a 𝝌𝟐 Quantity

A next step towards a unified fitting procedure consists in establishing a model for exper-
imental and theoretical uncertainties. On the basis of this model, a 𝜒2 quantity measur-
ing the level of agreement between the data and the theory predictions may be defined
in terms of the theory parameters. In this section, a number of theoretical and practical
aspects regarding the choice of an uncertainty model are discussed, and a 𝜒2 definition
for the unified fitting procedure is chosen.

For all datasets, the uncertainties on the cross section measurements are dominated by
systematic effects, which are predominantly multiplicative in nature. Accordingly, the
measurements are modeled as stochastic variables drawn from a log-normal probability
distribution. This is equivalent to modeling the logarithms of the measurements as be-
ing drawn from a Gaussian distribution, allowing the least-squares approach described
in chapter 3.23.2 to be used.

Furthermore, since the log-normal distribution converges towards a Gaussian dis-
tribution for small variances, additive effects of sufficiently small magnitude may be
treated as multiplicative without introducing a significant bias. For this reason, Poisson
uncertainties on measurements due to statistical fluctuations, which are mostly small
compared to the systematic uncertainties, are also described reasonably well in this man-
ner. Conversely, a fully additive treatment of multiplicative systematics would result in
a larger bias.

A number of systematic effects contributing to the uncertainty on the theory may also
be treated as multiplicative. This applies, for instance, to the uncertainty due to non-
perturbative correction factors, which are multiplicative by construction. Furthermore,
the uncertainties on the PDFs, as provided by the PDF fitting group, are also taken as
multiplicative

This is justified since PDFs or linear combinations thereof appear as multiplicative
factors in the theoretical expressions describing inclusive jet cross sections (2.122.12), (2.142.14),
as well as in the fast interpolation performed with fastnlo (5.55.5).

The remaining systematic effects consist primarily of procedural uncertainties arising
from the necessity to choose from a particular set of available PDF sets or PDFs fitted
at different values of 𝛼s(𝑀Z). Since no meaningful assumption can be made regarding
the probability distribution of these effects, they are not included in the 𝜒2 definition,
but are estimated using additional techniques. The same is true for uncertainties due to
missing higher orders in the perturbative calculation. As described in section 3.33.3, these
can be estimated by performing the fit at additional values of the renormalization and
factorization scales. The resulting uncertainty estimate on 𝛼s(𝑀Z) is referred to as the
“scale” uncertainty.

In light of the above points, the 𝜒2 quantity for the unified estimation procedure may
thus be defined as:

𝜒2
Unif = p⊤(V(exp)

rel + V(PDF)
rel + V(NP)

rel )
−1
p (6.1)
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The residuals p are defined as:

𝑝𝑖 = ln
𝑚𝑖
𝑡𝑖

(6.2)

The above definition is analogous to that used by the H1 collaboration (section 4.1.14.1.1). In
contrast to the H1 definition, however, the covariance matrices for PDF and non-pertur-
bative (NP) uncertainties are included in the definition.

For the actual estimation procedure, an equivalent formulation of the above expres-
sion in terms of nuisance parameters is used. This is constructed analogously to (4.24.2),
(4.34.3), and (4.44.4), with one nuisance parameter being introduced to account for each fully
correlated systematic effect. In particular, PDF uncertainties obtained via the “Hessian”
method from LHAPDF 6 are assumed to be fully correlated for each eigenvector varia-
tion, thus introducing one nuisance parameter per eigenvector.

A significant advantage of this 𝜒2 quantity is the use of the covariance matrix calcu-
lated from relative uncertainties. Since these do not change for multiplicative uncertain-
ties, the total covariance matrix only needs to be calculated and inverted once before
the fit procedure. Furthermore, any nonlinearities introduced by parameter-dependent
covariance matrices are avoided.

6.2.3. Extraction of 𝜶s(𝑴Z) and Uncertainty Estimation

A final aspect of the unified fitting procedure is the extraction of 𝛼s(𝑀Z) and the es-
timation of uncertainties. A best estimate for 𝛼s(𝑀Z) is obtained in the least-squares
approach by iteratively minimizing the 𝜒2 quantity (6.16.1) with respect to 𝛼s(𝑀Z).

Primarily, the estimation of uncertainties on this estimate is performed by performing
a profile scan of the 𝜒2 near the minimum, as described in section 3.33.3. The one-sigma
confidence interval on 𝛼s(𝑀Z) corresponding to a unit increase in 𝜒2 is quoted as the
uncertainty.

Since the 𝜒2 definition includes experimental, non-perturbative, and Hessian PDF un-
certainties, the uncertainty on 𝛼s(𝑀Z) extracted in this way is further broken down into
its individual contributions by successively removing the covariance matrices for the
PDF and non-perturbative uncertainties, and repeating the minimization and error esti-
mation. The uncertainty for each individual effect is obtained by subtracting (in quadra-
ture) the uncertainty estimates obtained with and without the respective contributions
to the total covariance matrix. Experimental uncertainties are estimated by including
only the experimental covariance matrix in the 𝜒2 definition.

In addition to the uncertainties included in the 𝜒2 definition, two additional proce-
dural uncertainties are estimated, in order to remain conservative. Since these are not
derived from the behavior of the 𝜒2 quantity at the minimum, they cannot be interpreted
as confidence intervals, but give only an approximate indication of the magnitude of the
associated effects.

First, due to the availability of multiple global PDF sets with different methods used
for their determination, the final estimate of 𝛼s(𝑀Z) is expected to show a degree of
variation depending on which PDF set is used. In order to account for this, a PDF set
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uncertainty is estimated by performing the determination with several different PDF
sets.

Calculations for the ABM11 and HERAPDF2.0 PDF sets do not describe the data as
well as the other PDF sets examined, confirming the observations made in past determi-
nations of 𝛼s(𝑀Z) (see section 4.14.1). Thus, estimates of 𝛼s(𝑀Z) derived from these PDF
sets are not considered in the estimation of this uncertainty. Estimations of 𝛼s(𝑀Z) are
performed with the MSTW2008, MMHT2014, CT10 and CT14 PDF sets, taking the max-
imal variations away from the central estimate for 𝛼s(𝑀Z) to represent an additional,
asymmetric PDF set uncertainty. The central value is quoted for the MMHT2014 PDF
set.

In the “fixed PDF” method, the necessity of choosing one PDF from those available in
an 𝛼s series arises. For the central estimate of 𝛼s(𝑀Z), the PDF set with 𝛼s(𝑀Z) = 0.118
is chosen. In order to account for the possible bias resulting from this choice, an associ-
ated uncertainty is estimated by repeating the determination using PDFs with a value for
𝛼s(𝑀Z) of 0.116 and 0.120 for the “down” and “up” variations, respectively. The result-
ing variations with respect to the central value are quoted as an additional, asymmetric
PDF 𝛼s uncertainty. For PDF 𝛼s series lacking these values, the PDFs corresponding to
the next largest available variation away from 𝛼s(𝑀Z) = 0.118 are used.

6.3. Fit to the Individual Datasets Using the Unified Fit Procedure

The unified fitting procedure described above can now be applied separately to the in-
dividual datasets. In order to gauge the impact of the fitting procedure itself on the
resulting estimates, these are compared to the original publication results.

A comparison of the results obtained with the fitting methods used in the original
publications and the unified fitting procedure is presented in table 6.26.2. In terms of the
central estimates of 𝛼s(𝑀Z) and the experimental uncertainties, a good general agree-
ment between the two methods can be seen for all datasets, with all observed changes
in the central estimate being covered by the experimental uncertainty. For the DØ NLO
fit, only a total uncertainty is published, which covers both experimental and theoretical
uncertainties. Thus, a direct comparison of experimental uncertainties is not possible in
this case.

Due to the changes in fitting methodology, such as the use of a different error model
for measurements and theory predictions, small overall differences between the values
obtained with the unified fitting procedure and the publication values are expected.
This is consistent with the observed values, with the estimates for the H1 dataset being
more similar for both methods, whereas the DØ and CMS results show larger differ-
ences.

In order to ascertain the fit quality, the value of the 𝜒2 quantity at the minimum is
compared to the number of degrees of freedom. As shown in table 6.26.2, this figure is
close to unity for all fits, indicating a good fit quality.

In conclusion, the unified fitting procedure is found to be applicable for a determina-
tion of 𝛼s(𝑀Z) from each of the individual datasets, producing results which are com-
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Central value Experimental PDF set
𝛼s(𝑀Z) uncertainty (NLO)

H1 Publication 0.1174 ±0.0022 MSTW2008Unified Procedure 0.1170 ±0.0022
↪ 𝜒2/ndf ≈ 24/23 = 1.04

DØ
(NLO)

Publication 0.1203 (breakdown not published) MSTW2008Unified Procedure 0.1238 ±0.0050
↪ 𝜒2/ndf ≈ 17/21 = 0.81

CMS Publication 0.1185 ±0.0019 CT10Unified Procedure 0.1177 ±0.0023
↪ 𝜒2/ndf ≈ 107/132 = 0.81

Table 6.2.: Comparison of results obtained with the unified fitting procedure and the
original publication results. Shown are estimates for 𝛼s(𝑀Z) and the exper-
imental uncertainty extracted from each of the three datasets. In obtaining
the results using the unified procedure the same PDF set used by the origi-
nal publications for their main estimate is used. A good agreement can be
seen between the original quotes and the results obtained using the unified
procedure, with all observed differences being covered by the experimental
uncertainties. Also shown are the reduced 𝜒2 values for fits performed with
the unified procedure, all of which are close to unity, indicating a good fit
quality.

patible with past 𝛼s(𝑀Z) determinations. Consequently, all three datasets may be used
simultaneously in conjunction with the unified fitting procedure in order to obtain a
more precise estimate for 𝛼s(𝑀Z).

6.4. Fit to the Combined Datasets

One important issue when more than one dataset is included in a parameter estimation
procedure is identifying and establishing the degree of correlation between the individ-
ual measurements and between the theory predictions calculated for each dataset.

In this approach, since the measurements have been conducted by experiments at
three different colliders, no correlations are assumed to exist between the experimental
measurements across datasets.

In contrast, theory predictions require a more differentiated treatment. For instance,
since the calculation of non-perturbative corrections is specialized to each of the individ-
ual experiments, and different methods of estimating the corresponding uncertainties
are used by the collaborations, it is reasonable to assume these to be largely uncorre-
lated across datasets. Thus, the nuisance parameters introduced to account for non-
perturbative effects only relate to the individual datasets.

For Hessian PDF uncertainties, however, this is not the case, as the nuisance param-
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eters introduced per PDF eigenvector variation simultaneously affect all cross section
predictions across the datasets. Thus, each of the Hessian PDF uncertainties associated
with the PDF eigenvector variations is taken to be fully correlated across datasets and is
assigned a nuisance parameter.

In estimating the procedural PDF and scale uncertainties, the variation of the central
estimate resulting from a variation of the underlying effect is considered. These uncer-
tainties are therefore correlated between the datasets by construction.

After establishing the correlation model for the datasets, the extraction of 𝛼s(𝑀Z) can
be performed for the combined datasets. An overview of the resulting estimates for
𝛼s(𝑀Z) and the different uncertainty contributions can be seen in table 6.36.3 and figure 6.36.3,
along with the extractions from the individual datasets. The final estimate for 𝛼s(𝑀Z)
obtained is:

𝛼s(𝑀Z) = 0.1172 +0.0015
−0.0015 (exp) +0.0009

−0.0009 (PDF, MMHT) +0.0005
−0.0005 (NP)

+0.0011
−0.0004 (PDF set) +0.0007

−0.0003 (PDF 𝛼s) +0.0057
−0.0042 (scale) (6.3)

Central value Uncertainties (scaled by a factor of 103)
𝛼s(𝑀Z) (exp) (PDF) (NP) (PDF set) (PDF 𝛼s) (scale)

H1 0.1168 +2.2
−2.2

+0.7
−0.7

+0.9
−0.9

+0.3
−0.0

+1.0
−0.4

+5.9
−4.7

↪ 𝜒2/ndf ≈ 23/23 = 1.00
DØ (NLO) 0.1240 +5.1

−4.9
+1.9
−1.8

+3.3
−3.1

+1.0
−0.3

+0.0
−0.4

+9.7
−4.8

↪ 𝜒2/ndf ≈ 17/21 = 0.81
CMS 0.1154 +2.2

−2.1
+1.9
−1.8

+0.1
−0.1

+2.3
−0.8

+0.5
−0.2

+5.9
−3.1

↪ 𝜒2/ndf ≈ 110/132 = 0.83

[H1, DØ, CMS] 0.1172 +1.5
−1.5

+0.9
−0.9

+0.5
−0.5

+1.1
−0.4

+0.7
−0.3

+5.7
−4.2

↪ 𝜒2/ndf ≈ 152/178 = 0.85

Table 6.3.: Results obtained with the unified fitting procedure from fits to each individ-
ual dataset and to the combined datasets. Shown are the central estimates
for 𝛼s(𝑀Z), as well as the individual contributions to the total uncertainty,
obtained for the MMHT2014 PDF set (NLO) using the “fixed PDF” method.

The results obtained for the combined datasets are compatible with the results of the
individual fits. The uncertainties extracted from the behavior of the 𝜒2 quantity in the
minimum (experimental, PDF and non-perturbative uncertainties) are approximately
symmetric in all cases. Thus, no significant indication for a potential inadequacy of the
chosen uncertainty models for the measurements and the theory predictions is observed.
The remaining uncertainties are asymmetric by construction.

Overall, the extraction of 𝛼s(𝑀Z) from the combined datasets exhibits a reduced ex-
perimental uncertainty with respect to each of the individual fits. Furthermore, some
reduction of the Hessian PDF and non-perturbative uncertainties is also observed. The
largest uncertainty contribution by far remains the scale uncertainty, which reaches ap-
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proximately 5% of the central value. This uncertainty is expected to be reduced for ex-
tractions performed with theory predictions calculated at next-to-next-to-leading order
accuracy, which have recently become available [4141].

6.5. Conclusion

In this chapter, the development and evaluation of techniques for the determination of
𝛼s(𝑀Z) from multiple sets of inclusive jet measurements have been presented. These
techniques have been implemented in the Alpos package at next-to-leading order accu-
racy and the obtained results have been evaluated.

After successfully reproducing results from past determinations of 𝛼s(𝑀Z) with the
Alpos framework, a unified procedure for the extraction of a best estimate for 𝛼s(𝑀Z)
and the detailed estimation of uncertainties has been developed under consideration of
several theoretical and technical aspects.

An application of this procedure to the individual datasets yields results which are
compatible with those obtained from past determinations and show a good level of
agreement among themselves and with the world average value of 𝛼s(𝑀Z).

Applying these techniques in a determination using all datasets simultaneously yields
an estimate of 𝛼s(𝑀Z) with a reduced experimental uncertainty. The largest uncertainty
contribution, however, stems from missing higher orders in perturbation theory. A fur-
ther improvement in the determination accuracy is expected for next-to-next-to-leading
order accuracy.

57



6. Extraction of 𝛼s(𝑀Z) from the Combined Datasets

0.110 0.115 0.120 0.125 0.130
αs(MZ)

CMS
(NLO)

DØ
(NLO)

H1
(NLO)

CMS
(NLO)

DØ
(NLO)

H1
(NLO)

[CMS, DØ, H1][CMS, DØ, H1]
PDF: MMHT2014

Method: Fixed PDF

Experimental uncertainty
Total uncertainty
Combination
World Average (PDG 2015)

Figure 6.3.: Extractions of 𝛼s(𝑀Z) from the individual and combined datasets using the
unified fitting procedure. Shown are the central results obtained for 𝛼s(𝑀Z),
as well as the experimental and total uncertainties. To avoid overshadowing
the other uncertainties, the dominant scale uncertainty is not included in the
total uncertainty shown. The value of 𝛼s(𝑀Z) is in good agreement with the
individual estimates and the world average.
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7. Summary and Outlook

In this thesis, a method for the determination of the strong coupling constant 𝛼s(𝑀Z)
from measurements of inclusive jet production cross sections performed at multiple ex-
periments has been developed. To this end, 𝛼s(𝑀Z) extractions from inclusive jet cross
section measurements at the H1, DØ, and CMS experiments, as performed by the re-
spective collaborations, have been analyzed and compared in terms of experimental
and theoretical considerations, as well as the results obtained for 𝛼s(𝑀Z).

The original procedures, as well as the procedure established in this work, have been
implemented in the Alpos framework, a recently developed public software package
for data-to-theory comparisons and parameter estimation, to which significant contri-
butions have been made as part of this thesis. The originally published estimates for
𝛼s(𝑀Z) are reproduced within this framework.

Estimates for 𝛼s(𝑀Z) are then obtained with the developed extraction procedure, both
for the individual datasets and for the combined dataset.s The results are found to be in
agreement with the originally published estimates, as well as with each other and with
the current world average value for 𝛼s(𝑀Z). In addition, a reduction of the experimental
uncertainty is observed for the combined extraction, which yields the following result
for the strong coupling constant:

𝛼s(𝑀Z) = 0.1172 +0.0015
−0.0015 (exp) +0.0009

−0.0009 (PDF, MMHT) +0.0005
−0.0005 (NP)

+0.0011
−0.0004 (PDF set) +0.0007

−0.0003 (PDF 𝛼s) +0.0057
−0.0042 (scale)

The uncertainty due to missing higher orders in perturbative calculations remains
the dominant contribution to the total uncertainty at approximately 5% of the reference
value.

The focus of this work consists in performing a simultaneous determination of the
strong coupling constant from a number of well-documented measurements of inclusive
jet production cross sections, for which associated extractions of 𝛼s(𝑀Z) were available.

Several possibilities for further expanding the scope of this analysis can be identi-
fied. One means of achieving this consists in making use of a larger phase space than
the original determinations by revising the exclusion criteria for individual data points.
Similarly, an advantage can be gained from incorporating measurements of jet cross sec-
tion ratios or, in the case of ep scattering, jet observables normalized to neutral current
DIS cross sections. As both types of measurements benefit from a reduced systematic
uncertainty, this will be reflected in the final estimate for 𝛼s(𝑀Z).

Furthermore, in light of the availability of further measurements concerning jet ob-
servables from multiple experimental collaborations, these can also be included in a
combined determination. An additional aspect to consider here are the experimental
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correlations between experiments at the same accelerator facility.
A further aspect concerns the determination of non-perturbative corrections to the

theory calculations. Deriving these and the corresponding uncertainties in a consistent
manner represents a further step toward a fully harmonized combined determination
procedure.

In addition, a central point in the 𝛼s(𝑀Z) determination procedure concerns the im-
plicit dependence of PDFs on the value of 𝛼s(𝑀Z) assumed for their determination. The
need for taking this into account can be eliminated by performing a simultaneous deter-
mination of 𝛼s(𝑀Z) and the PDFs.

Last, but not least, the combined determination of 𝛼s(𝑀Z) in this work has been car-
ried out using perturbative QCD calculations performed at next-to-leading order accu-
racy. As next-to-next-to-leading order calculations become available, the accuracy of
the 𝛼s(𝑀Z) determination can be further improved.
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Appendix A. Dependence of Inclusive Jet
Cross Sections on 𝜶s(𝑴Z)

In chapter 66, two methods of accounting for the implicit dependence of PDFs on 𝛼s(𝑀Z)
are described: the “fixed PDF” and “PDF interpolation” methods. Each method leads
to a different dependence of the cross section predictions on 𝛼s(𝑀Z).

In the following, this difference is illustrated for predictions obtained with different
PDF sets using a selection of four phase space points from the CMS dataset.
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Figure A.1.: Dependence of the differential inclusive jet cross section for the CMS data-
set at central rapidities. Shown above are the dependences calculated for
the MSTW2008, CT10 and NNPDF2.3 (NLO) PDF sets at low 𝑝T (left column)
and medium 𝑝T (right column).
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Figure A.2.: Dependence of the differential inclusive jet cross section for the CMS data-
set at central rapidities. Shown above are the dependences calculated for
the MMHT2014, CT14 and NNPDF3.0 (NLO) PDF sets at low 𝑝T (left col-
umn) and medium 𝑝T (right column).
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Figure A.3.: Dependence of the differential inclusive jet cross section for the CMS data-
set at outer rapidities. Shown above are the dependences calculated for the
MSTW2008, CT10 and NNPDF2.3 (NLO) PDF sets at low 𝑝T (left column)
and medium 𝑝T (right column).
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Figure A.4.: Dependence of the differential inclusive jet cross section for the CMS data-
set at outer rapidities. Shown above are the dependences calculated for the
MMHT2014, CT14 and NNPDF3.0 (NLO) PDF sets at low 𝑝T (left column)
and medium 𝑝T (right column).
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Appendix B. Results with the “PDF
Interpolation” Method

In performing the extraction of 𝛼s(𝑀Z) in chapter 66, two methods of accounting for
the implicit dependence of PDFs on 𝛼s(𝑀Z) are explored. As a result of theoretical
considerations (see section 6.2.16.2.1), the “fixed PDF” method is chosen as the main method
for obtaining estimates for 𝛼s(𝑀Z) in this analysis. Alternate estimates, which have been
obtained using the “PDF interpolation” method, are provided in table B.1B.1.

Central value Uncertainties (scaled by a factor of 103)
𝛼s(𝑀Z) (exp) (PDF) (NP) (PDF set) (scale)

H1 0.1167 +2.8
−2.6

+0.5
−0.6

+0.9
−0.7

+0.6
−0.1

+4.7
−4.9

↪ 𝜒2/ndf ≈ 23/23 = 1.00
DØ (NLO) 0.1214 +3.9

−4.7
+1.6
−1.6 – † +1.1

−0.0
‡ +6.0

−3.6
↪ 𝜒2/ndf ≈ 17/21 = 0.81

CMS 0.1144 +2.3
−2.3

+2.1
−2.0 – † +3.5

−0.0
‡ +9.5

−2.9
↪ 𝜒2/ndf ≈ 109/132 = 0.83

[H1, DØ, CMS] 0.1167 +1.5
−1.8

+1.5
−0.6

+0.3
−0.4

+1.7
−0.3

+7.3
−4.5

↪ 𝜒2/ndf ≈ 152/178 = 0.85

Table B.1.: Results obtained with the unified fitting procedure from fits to each indi-
vidual dataset and to the combined datasets using the “PDF interpolation”
method. Shown are the central estimates for 𝛼s(𝑀Z), as well as the indi-
vidual contributions to the total uncertainty, obtained for the MMHT2014
PDF set (NLO). In a number of cases (†), individual uncertainties could not
be estimated by subtraction in quadrature due to the overall uncertainty de-
creasing upon inclusion of these uncertainties in the 𝜒2 definition. The PDF
set uncertainties are calculated as the maximal spread of the best estimates
obtained with the MSTW2008, MMHT2014, CT10 and CT14 (NLO) PDF sets.
This procedure leads to the estimation of these uncertainties as zero (‡) if the
value of 𝛼s(𝑀Z) obtained with the MMHT2014 PDF set is an extreme value.
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