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1 Introduction

The B factories like the KEKB accelerator in Japan, which houses the Belle experiment, focus
on the investigation of B mesons. They consist of a b̄ quark and either a u, d, c or s quark
or their respective antiparticles. B mesons are of special interest to the particle physics
community as their mean lifetime of 1.6 × 10−12 s is relatively long as compared to other
heavy mesons. Due to this longevity the chance of measuring for example time dependent
CP violation in an experimental setup increases. Besides, B mesons are quite heavy and thus
feature many rare decay products that are also studied at Belle.
At B factories, B mesons are produced in collisions of an electron e− and its antiparticle e+:

e+e− → Υ (4S)→ BB̄, (1.1)

where the Υ (4S) resonance denotes an excited state consisting of a bb̄ quark pair.

While B mesons have been studied since the 1980s to learn about, e.g., CP violation, the
general idea of symmetry breaking in weak interaction physics has already been around since
the 1950s. Until then physics was thought to be invariant under discrete transformations,
e.g., of charge (C → −C), parity (~P → −~P ) or time (t → −t).
The first experimental evidence for symmetry breaking in weak interactions emerged in the
τ-θ-puzzle. In the 1940s two mesons named τ and θ were known. These particles decay into
two different states with different parity. Back then the conservation of parity was assumed to
hold and consequently the initial states should be of different parity and thus distinguishable
. However, in 1956 Lee and Yang published their results on these decays which presented τ
and θ to be exactly the same particle as lifetime and mass were obviously the same [LY56].
Explaining this result required the breaking of parity in weak interactions.
In 1964, Cronin and Fitch discovered CP violation in the kaon system (pair of u or d and s
quark) [Chr+64]. An attempt to explain CP violation in the kaon system was put forward by
Kobayashi and Maskawa in 1973 [KM73] continuing the studies of Cabbibo [Cab63] (known
as CKM theory). In 2008, they received the Nobel Prize for theorizing symmetry breaking
which predicts at least three generations of quarks.
In 2001, the Belle experiment was first to observe CP violation outside the kaon system and
thereby confirmed the CKM theory of flavour mixing. Today, at KEKB the Belle II experiment
is being prepared and built to perform further high precision measurements. These could
help to understand the insufficiency of CP violation in explaining the baryon asymmetry in
our universe that is linked to the imbalance of matter and anti-matter.
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CHAPTER 1. INTRODUCTION

Continuum Suppression

This thesis focuses on the procedure of continuum suppression, that will be outlined briefly
now. A more detailed explaination will be given in Chapter 2.
Simultaneously to the production of e+e− → Υ (4S) in interest, the alternative production of
light quark pairs (e+e− → qq̄ (q ∈ {u, d, s, c})) is observed. The latter process is often referred
to as continuum. The cross section of qq̄ production is approximately three times lager than
that of Υ (4S) production. As a consequence, the separation of background events, which be-
long to the continuum, from signal events (e+e− → BB̄) is necessary to perform any analysis
focusing on B mesons. Thus, a multivariate classification is applied to separate signal events
from background events.

In this thesis a multivariate tool named NeuroBayes is examined. Among other tools it is
used for continuum suppression at the Belle experiment. NeuroBayes is a sophisticated im-
plementation of a neural network that can perform classification tasks. Although this thesis
focuses on NeuroBayes, many results will be generalizable and can be adapted to other neu-
ral network packages.
NeuroBayes is steered by a large number of settings that will be presented and studied in
this thesis. Especially, this thesis will give advice on setting up a NeuroBayes network for
continuum suppression and save the user time working out the optimal settings. Further-
more, this thesis will compare different layouts of neural networks (staged vs. unstaged) and
give advice on when to use each of them.
The description of the network output distribution, especially with analytic functions, proves
to be difficult due to peaks and cliffs that often appear in it. Thus, this thesis will especially
elaborate on network settings that generate smooth output distributions.

In the following chapter, the need for continuum suppression is motivated and characteristic
variables used in this thesis are introduced. The third chapter describes the multivariate
techniques applied to suppress continuum with neural networks and gives an overview of
the NeuroBayes package. Chapter four contains the results of the study of various networks
settings. Here NeuroBayes parameters as well as network layouts employed for training are
discussed. Furthermore, the reader will be presented with a guide to setting up a NeuroBayes
network to perform continuum suppression. At last, the outputs of different network layouts
will be compared by fitting the individual distributions obtained.
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2 Continuum Suppression in B
Physics

This chapter will motivate the need for continuum suppression. First of all, the necessity of
continuum suppression is discussed and followed by an introduction to the variables used
in continuum suppression.
In many Belle group analyses neural networks have been utilized for continuum suppression.
Their utilization is described at the end of this chapter.

2.1 Event Shapes at B Factories
At B factories which operate on the Υ (4S) resonance two processes compete. In an e+e−

collision either the Υ (4S) can be produced which decays almost exclusively into B mesons,
or a pair of quarks (qq̄ (q ∈ {u, d, s, c})) can be produced. Only events of the first type are in
the focus of the B factories. In fact, the cross section of qq̄ events, which we refer to as back-
ground, is three times larger than the one of the process e+e− → Υ (4S) under consideration.
So the vast majority of events are continuum background. The quarks produced in the e+e−-
annihilation can decay into lighter hadrons and thus create a large background. The large
amount of continuum background is illustrated in Figure 2.1.
At Belle a dedicated off-resonance data-taking slightly below the Υ (4S)-peak at approxi-
mately 60 MeV center-of-mass energy is performed in order to analyize background more
closely [Bev+14].

To separate between signal and background events the shape of every event in the detec-
tor has to be analysed.
Continuum background events originating from light quark pairs are generated in a back-
to-back way in the center-of-mass frame. Consequently, their kinetic energy almost matches
the accelerator energy. The hadrons produced in the related fragmentation possess only a
small transverse momentum. This leads to a spatially confined, jet-like structure.
On the contrary, the BB̄ events, which are referred to as signal, have a spherical shape. Due
to the mass of the BB̄ pair almost corresponding to the beam energy, the pseudoscalar B
mesons are generated almost at rest in the center-of-momentum frame. Their decay products
feature a spin 0 which results in an isotropic distribution. An illustration of the different
event shapes can be found in figure 2.2.
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CHAPTER 2. CONTINUUM SUPPRESSION IN B PHYSICS
7. Introduction
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Figure 7.1. The e+e� to hadrons cross section in the ⌥(1S) - ⌥(4S) region. The orange
dashed line marks the kinematic threshold for the production of a BB̄ pair.
(source: [Bes+93])

example above we can measure the branching ratio by counting all events, in which we found a
fully reconstructed B meson but nothing else. In the following, the fully reconstructed B meson
is called the tag-side BTag and the remaining B meson is called the signal-side BSig candidate.
An illustration of this can be seen in figure 7.2. The aim of the full reconstruction tool is to
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Figure 7.2. An illustration of the tag-side (purple) and an exemplary B ! ⌧⌫ decay as the
signal-side (green).

reconstruct the BTag candidate. How this can be done will be explained in the following sections.

40

Figure 2.1: Illustration of e+e− to hadrons cross section in the region of Υ (1S) to
Υ (4S). The continuum (light green) and Υ (4S) resonance (purple) are highlighted.
The orange dotted line marks the production threshold for B mesons. Taken from
[Neu11], based on [BS93].

2.2 Characteristic Variables
To describe the different types of events, discriminating variables measuring for example
sphericity or kinematic distributions in an event are introduced. It can already be concluded
that in BB̄ events the angular distributions of the participating B mesons are uncorrelated
with respect to the momentum direction while the decay products in continuum events have
a noticeable correlation.
Information on the phase-space distribution of decay particles is obtained in a number of
different ways. The continuum suppression process is therefore based on two stages. First of
all, a kinematic selection is performed. Afterwards, a further background rejection is ensured
by exploiting differences in the angular distributions of continuum and signal events. The
variables and techniques presented are in reference to the ones used at Belle.

2.2.1 Thrust

A collection of N particle momenta ~pi (i = 1, ..., N ) is obtained from the detector output. The
thrust axis ~T is defined as the axis that maximizes the following expression.

T = max(~T ) = max

∑︀
i

⃒⃒⃒⃒
~pi · ~T

⃒⃒⃒⃒
∑︀
i

⃒⃒⃒
~pi

⃒⃒⃒ . (2.1)

The concept of thrust was established in the 1980s and originally introduced to quantify
jet-energies in high energy physics.
However, thrust T is commonly not used on its own but rather the related variable |cosθThrust|,
where θThrust denotes the angle between the thrust axis of the momenta of the B candidate
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2.2. CHARACTERISTIC VARIABLES

4 Analysis Methods and Tools

4.5 Continuum Suppression

4.5.1 Event Shapes

The major background in this analysis originates from e+e≠ æ qq̄ (q œ {u, d, s, c})
processes. The quark pairs produced in the e+e≠-annihilation fragment into light
hadrons and give rise to the dominant source of background, referred to as continuum
background.

In these continuum events, the light quark pairs are created back-to-back in the center-
of-mass frame and their kinetic energy corresponds almost to the accelerator energy.
The hadrons produced in the fragmentation have only small momentum perpendicular
to the quark flight direction, thus resulting in a jet-like and spatially confined structure.
This is in contrast to BB events from e+e≠ æ �(4S) æ BB processes. The mass of the
BB meson pair corresponds almost to the beam energy, therefore it is created nearly
at rest in the center-of-mass frame. The pseudoscalar B mesons have spin 0 and thus
their decay products have no preferred direction, resulting in an isotropic distribution
of spherical shape. The event shapes for continuum and BB events are illustrated in
Figure 4.5.

Figure 4.5: Illustration of the event shapes for continuum (left) and BB (right) events.
Light quark pairs in continuum events are produced back-to-back and give
rise to a more jet-like structure, whereas BB events have a spherical shape.
Taken from Reference [64].

Di�erent quantities can be used to characterize the event shape and describe the
event topology. Below the quantities used in this analysis are described in detail.
They are further combined in an artificial neural network to construct a more powerful
discriminant, which is used in the analysis and described in Section 4.5.2.

42

Figure 2.2: Illustration of event shapes. In continuum events (left) light quark pairs
are produced back-to-back resulting in a jet-like event shape. BB̄ events (right)
exhibit a spherical shape due to their decay products being spin 0 particles. Taken
from [R1̈2].

and the thrust axis of the remaining particles in the event (referred to as “rest-of-event”, or
ROE).
In BB̄ events |cosθThrust| is expected to exhibit a uniform distribution as the B candidate is
produced almost at rest in the Υ (4S) rest frame and thus their decay particles are isotropi-
cally distributed. In contrast to that, in qq̄ events the particle momenta are aligned with the
direction of the jets in the event and the ROE and B candidate are collimated and strongly
directional. Consequently, the distribution of |cosθThrust| peaks at large values near 1.

2.2.2 Fox-Wolfram Moments

Fox-Wolfram moments were introduced in 1978 to yield another useful parameterization of
phase-space momentum and energy flow. The k-th Fox-Wolfram moments are defined as

Hk =
∑︁
ij

⃒⃒⃒
~pi

⃒⃒⃒ ⃒⃒⃒
~pjPk(cosθij )

⃒⃒⃒
E2
vis

(2.2)

where Pk is the k-th Legendre polynomial, θij denotes the opening angle between the i-th
and j-th particle, ~pi and ~pj is the momentum of the i-th and j-th final state particle and Evis

denotes the sum of measured energy in an event. The normalized Fox-Wolfram moment Rk
is defined as

Rk =
Hk
H0
. (2.3)

In continuum events with two jets the modified Fox-Wolfram moments Rk show values close
to zero (one) if k is odd (even). Spherical BB̄ events tend to show rather different values.
As a refinement of the Fox-Wolfram moments the Belle collaboration introduced another
generation of moments, often referred to as Super-Fox-Wolfram moments and an even fur-
ther development referred to as Kakuno-Super-Fox-Wolfram moments (KSFW). There are
17 different KSFW which are grouped into Rsok , Rook and Rssk [Bev+14]. The sum in equation

5



CHAPTER 2. CONTINUUM SUPPRESSION IN B PHYSICS

2.2 is either run over the final-state particles of the reconstructed B candidate denoted by su-
perscript “s” or over the remaining final-state particles in the events denoted by superscript
“o”.
The moments Rsok and Rook are used to discriminate between continuum and background
events, while Rssk is excluded due to correlations with other variables. The Rsok are constructed
in such a way that the missing momentum of an event is treated as an additional particle.
Accordingly, the moment is composed of three parts: charged particle part, neutral particle
part and missing particle part. Precise definitions of the different moments can be found at
[Bev+14, p.114f].

2.2.3 B-Meson Flight Direction

In case a spin-1 Υ (4S) decays into two spin 0 Bmesons the distribution of the polar angle θB

between the reconstructed momentum of the B candidate in the Υ (4S) reference-frame and
the beam axis follows sin2θB = 1 − cos2θB. In random combinations of tracks from contin-
uum events the expected distribution of θB is uniform. Thus, the variable |cosθB| allows to
discriminate between signal B events and B candidates from continuum background. Figure
2.3 features a typical distribution of cosθB used in the examination of this thesis.

)Bθcos(
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Figure 2.3: Example of distribution of cos(θB) used in this thesis with background
(red) following an almost uniform distribution and signal (blue) following a 1 −
cos2(θB) distribution.

2.2.4 CLEO Cones

CLEO cones have been introduced by the CLEO Collaboration in 1996 as an addtional set of
discriminant variables [Asn+96]. The cones are distributed in steps of 10° and measure the
momentum flow into concentric areas around the thrust axis of a reconstructed B candidate.
Figure 2.4 illustrates the concept of CLEO cones.
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2.3. CONTINUUM SUPPRESSION WITH NEURAL NETWORKS
111

h+

h,-

Figure 9.3.1. A graphical illustration of the CLEO Fisher
discriminant, from (Asner et al., 1996). The h+, h0� arrows
indicate the momenta of the two charged hadronic tracks in
a B0 ! h+h0� candidate; the momentum of ROE particles
within each cone (the first three cones around its thrust axis
being drawn in the figure) are summed and combined to give
the Fisher discriminant.

and of the ROE, to further reject backgrounds through
additional requirements on the selection, and/or as inputs
to a maximum-likelihood fit (see Chapter 11 for the de-
scription of maximum-likelihood fits) at later stages in the
analysis.

Figure 9.4.1 illustrates two typical variables used in the
first step. A simple requirement on the number of charged
tracks per event can provide highly e�cient background
suppression. Also, in this first step, a simple requirement
on the normalized second Fox-Wolfram moment ratio R2

is applied; a loose cut on the value of R2 has negligible
impact on signal, while e�ciently removing a substantial
fraction of diphoton or dilepton backgrounds. In this first
step, typical BABAR analyses also combine information
both from the decay particles of the B meson candidate
and from the ROE, and use them to achieve additional
background rejection. For example, Figure 9.4.2 shows the
distributions of |cos ✓S|, both for signal (from simulated
B decays) and for continuum events (from sidebands on
data, by requiring mES to be in the 5.20 � 5.26 GeV/c2

range). A simple per-event requirement on the value of
| cos ✓S| is applied to define the final analysis sample.

An important advantage of variables based on the ROE
is that for the signal B decays, their correlation is small
or negligible with the variables built out of the B candi-
date observables. Therefore it is appropriate to construct
a joint likelihood function from the product of their p.d.f.s
to use in a fit.

9.4.1 Linear discriminants

For typical BABAR analyses, several combinations of vari-
ables from the ROE are built, and combined in multi-
variate discriminants. A general description of linear dis-
criminants in the optimization of the analyses is given in
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Figure 9.4.1. Two examples of global variables, used as a first
step in background suppression in most BABAR analyses of B
decays. The top plot shows the number of charged tracks per
event for various processes; the bottom plot is the distribution
of the normalized second Fox-Wolfram moment ratio R2, for
various processes. The figures are from a BABAR Thesis (Ra-
hatlou, 2002).

Chapter 4. Many of these discriminants use the so-called
“monomials” Ln, defined as

Ln =
X

i2ROE

pi ⇥ |cos ✓i|n , (9.4.1)

where pi is the momentum (computed in the ⌥ (4S) ref-
erence frame) of particle i belonging to the ROE, and ✓i

is the angle between its momentum and the thrust axis of
the B candidate. Dedicated studies concluded that the L0

Figure 2.4: Concept of CLEO cones. h+ and h
′− denote the momenta of two charged

hadronic tracks in a B0 → h+h
′− event candidate. The momenta of the ROE parti-

cles in each cone are summed to construct the discriminant variable. Taken from
[Bev+14, p.111].

2.3 Continuum Suppression with Neural Networks
Having introduced a set of discriminating variables, techniques to realize the continuum
suppression have to be found. The most widely used approach for continuum suppression at
B factories combines event shape variables such as KSFW or CLEO cones in one discriminat-
ing variable, often in a Fisher discriminant attaining values from 0 (for continuum events)
to 1 (for BB̄ events). This approach and a comparison to neural networks can be found at
[Pri13, p.43].
However, some of the latest analyses made use of neural networks (NN) for classification
[R1̈2, p.44]. One of the main advantages of neural networks is their capability to not only
handle linear but also non-linear complex correlations between input variables. The men-
tioned Fisher discriminant can only take into account linear correlations among the input
variables.
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3 Multivariate Classification
Techniques

In this chapter the fundamentals of the multivariate classification techniques used in this
thesis are explained. Multivariate classification refers to determining the class a multidimen-
sional tuple belongs to. For example, recognizing letters in handwriting is a classification
task. From knowing certain parameters of a letter (symmetry, proportions, etc.) the letter
can be classified.
The first part of the chapter gives an overview of data preprocessing, as this is an important
prerequisite to any analysis and utilized in the NeuroBayes package. Secondly, the general
concept of neural networks and training algorithms are explained.
Thirdly, the functioning of the NeuroBayes package as a special application of neural net-
works is explained in further detail.

3.1 Data Preprocessing
An important part of any multivariate analysis, for example in a neural network, is the
preparation of the data set. In this regard, data quality is an important aspect. Data quality
is defined by the qualification of a given data set for the intended use. Factors contributing
to data quality include accuracy, completeness, consistency and interpretability. In any real-
world application incomplete or inconsistent data sets occur frequently, for example due to
missing input or discrepancies in category labels. Data Preprocessing tries to counteract the
negative consequences entailed by the mentioned factors.
The most important components of data preprocessing are:

• Data cleaning: “Cleaning” data by filling in missing values or smoothing noisy data,
removing outliers and resolving inconsistencies. As the quality of the input to any
multivariate analysis technique directly corresponds to the output results, this step is
of high importance. Many techniques are not robust if fed with missing data and thus
will produce unreliable output. However, neural networks have proven to be quite
robust in handling missing inputs.

• Data reduction: The aim of data reduction is to limit the data set to a (modified) sub-
set representing the original data set. Data reduction is essential to reduce computing
time or to make a data set useable at all. Important techniques in this area include
dimensionality reduction and numerosity reduction.

9



CHAPTER 3. MULTIVARIATE CLASSIFICATION TECHNIQUES

Dimensionality reduction aims to transform a data set to a subset of lower dimension.
An important technique in this context is principial component analysis. Numerosity
reduction replaces the data with fewer representative values. Parametric methods as-
sign parameters to a data set which are stored instead of the whole data set itself.
Nonparametric methods store reduced representations of the data, e.g. histograms or
clusters.

• Data transformation: In data transformation, the data are transformed to be more
suitable for a data mining algorithm. Typical procedures include smoothing data to
remove noise or normalization. Normalizing aims to give all attributes an equal weight.
In the context of neural networks it is often favourable to scale the data to a small
range, e.g. from 0.0 to 1.0. Normalized inputs will speed up the learning phase of a
network significantly.

3.2 Neural Networks
The field of neural networks (NN) was initially launched by psychologists and neurobiolo-
gists in search for a computational analog of neurons. By today, this discipline is rather led
by computer and data scientists.
A neural network is a set of connected input and output nodes. Each connection is asigned
a weight, which is adjusted during the process of network training. Network training is per-
formed using a set of random training data which are fed to the network and learned by
it.

3.2.1 Multilayer Feed-Forward Neural Networks

Multilayer feed-forward neural networks consist of an input layer, a number of hidden lay-
ers, and an output layer. Within each layer an empirically determined number of units (also
referred to as nodes) are located. The number of nodes of the input layer usually corresponds
to the dimension of the n-tuples fed to the network. Sometimes a slightly higher number of
nodes is used to address the so-called bias that will be explained later. Because the number
of hidden layer nodes in a neural network can assume any integer value greater than zero,
neural networks can theoretically approximate any function. However, the more complex a
network the potentially higher becomes the chance of overtraining.
A model is said to be overfitted (or overtrained in case of NN) if it does not describe the
underlying relations in the data, but rather random statistical fluctuations. Opposed to over-
training, a model not capable of describing a set of data due to lack of sophistication may
be referred to as underfitted. More detailed explanations for the overtraining /-fitting phe-
nomenon can be found at [Bis06, Chp.1].
The inputs to the network pass through the neurons of the network and are weighted in
every network step, depending on the arbitrary number of hidden layers. In this context, the
term feed-forward refers to the flow of information in the network topology, which propa-
gates information in a forward direction from input to output layer. Eventually, the weighted
outputs of the hidden layer are used as input to the output layer. The output layer returns a
value or a set of values according to a nonlinear activation function determining the classifi-

10



3.2. NEURAL NETWORKS

cation. An example of a multilayer feed-forward NN is illustrated in Figure 3.1.
The nomenclature of neural networks denotes a network consisting of an input layer, one
hidden layer and an output layer as a two-layer NN. The input layer is not counted in the
number of layers as it only passes the input tuples to the hidden layers. If all nodes in suc-
ceeding layers are connected, a network is referred to as fully connected.

HAN 16-ch09-393-442-9780123814791 2011/6/1 3:22 Page 399 #7
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1

1j

2j

2

Figure 9.2 Multilayer feed-forward neural network.

Each layer is made up of units. The inputs to the network correspond to the attributes
measured for each training tuple. The inputs are fed simultaneously into the units
making up the input layer. These inputs pass through the input layer and are then
weighted and fed simultaneously to a second layer of “neuronlike” units, known as a
hidden layer. The outputs of the hidden layer units can be input to another hidden
layer, and so on. The number of hidden layers is arbitrary, although in practice, usually
only one is used. The weighted outputs of the last hidden layer are input to units making
up the output layer, which emits the network’s prediction for given tuples.

The units in the input layer are called input units. The units in the hidden layers and
output layer are sometimes referred to as neurodes, due to their symbolic biological
basis, or as output units. The multilayer neural network shown in Figure 9.2 has two
layers of output units. Therefore, we say that it is a two-layer neural network. (The
input layer is not counted because it serves only to pass the input values to the next
layer.) Similarly, a network containing two hidden layers is called a three-layer neural
network, and so on. It is a feed-forward network since none of the weights cycles back
to an input unit or to a previous layer’s output unit. It is fully connected in that each
unit provides input to each unit in the next forward layer.

Each output unit takes, as input, a weighted sum of the outputs from units in the
previous layer (see Figure 9.4 later). It applies a nonlinear (activation) function to the
weighted input. Multilayer feed-forward neural networks are able to model the class pre-
diction as a nonlinear combination of the inputs. From a statistical point of view, they
perform nonlinear regression. Multilayer feed-forward networks, given enough hidden
units and enough training samples, can closely approximate any function.

Figure 3.1: Illustration of a multilayer feed-forward neural network. Inputs are
denoted by xi (i = 1, ..., n), connection weights by wij and outputs by Oi. Taken
from [HKP12, p.399]

.

3.2.2 Backpropagation

Backpropagation is a widely used regime to train a network using a set of training tuples.
With backpropagation applied tuples are processed iteratively through the feed-forward
network and the corresponding network output, its prediction of classification, is compared
to the known target of each tuple. By the comparison of predicted value to target value the
adjustment of the network weights is ensured in such a way that the prediction error is
minimized. In this regard, error denotes the deviation of network prediction from the actual
target value. The type of error or loss function used has to be determined empirically. Next,
an algorithm for minimization of the network error has to be chosen. The minimization
algorithm is then run until the connection weights converge. As the direction of weight
modification is “backward” by comparing output to target, this type of training is referred
to as backpropagation.
The training process consists of two repeated steps and is completed by a terminating con-
dition. After initializing the network weights with small randomly chosen numbers, e.g.
ranging from −1.0 to 1.0 the following steps are performed repeatedly for each tuple:

1. Propagate training tuple: After inputting the tuple to the first layer it is passed with-
out change to the second layer. There, the weighted sum of all inputs to a node in the
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hidden or output layer is computed depending on the weights along the individual
connections. For a given unit j the net input is determined by

Ij =
∑︁
i

wij · Oi + θj , (3.1)

where the sum is taken over the i units in the previous layer, wij denotes the weights
of the connections between node i to node j and Oi is the output of node i. A bias θj
of the unit is added which acts as a threshold to control the activity of the node. The
net input is then set into the activation function of the node. Activation functions are
normally logistic or sigmoid functions. An example of a nonlinear activation function
is

Oj =
1

1 + e−Ij
, (3.2)

which maps the input onto the range from 0 to 1. This procedure is performed for all
units in hidden layers and finally for the output layer, which determines the network’s
prediction.

2. Error Backpropagation: To find the set of weights which lead to minimal network
errors a gradient descent algorithm is applied. The error of a unit j is defined as

Errj = Oj(1 − Oj )(Tj − Oj ), (3.3)

where Oj is the network output and Tj the target value of a given tuple. Equation 3.3
is derived by taking the derivative of Equation 3.2 and multiplying by the deviation of
network output from target value Tj − Oj . The errors of units in hidden layers have to
be calculated recursively depending on the errors of the following layers. In order to
update the weights, a shift ∆wij for each weight ij is determined by

∆wij = lErrjOi (3.4)

and hence the updated weight is given by wij ′ = wij + ∆wij . In equation 3.4 l denotes
the learning rate of the network attaining values between 0.0 and 1.0. The learning
rate is a helpful parameter if the backpropagation algorithm with its gradient descent
method is stuck in a local minimum. On the one hand a too small learning rate can
cause the training to be very slowly and thus inefficient, on the other hand a too large
learning rate can involve oscillations between different solutions resulting in inade-
quate solutions.
Besides, the biases need to be updated during backpropagation. The updated bias θj

′

is given by
θj
′ = θj + lErrj , (3.5)

where l again denotes the learning rate.

Depending on the choice of the user, the weight and bias update can either be performed
after every tuple (case updating) or a number of tuples has been fed to the network or after
the whole set of tuples has been presented to the network (epoch updating). In the latter case
weight and bias increments ∆wij , ∆θi are stored in a special variable and used to update the
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weights and biases after the specified amount of data has been fed to the network.
To terminate the training a terminating condition has to be defined. For example, if the
changes in the weights ∆wij become smaller than a specified threshold the training is ter-
minated. A second approach seeks to minimize the percentage of tuples misclassified in a
previous training with the same data set.
Depending on the backpropagation algorithm, the number of iterations needed for the net-
work to be terminated can range from few to many. As the computational efficiency in terms
of time required to train a network with w weights and K tuples behaves like O(w · K)
[HKP12, p.404], techniques to speed up network training are highly desirable. Thus, some
algorithms perform network pruning which removes links between units with least contribu-
tion to the network if this does not significantly decrease the classification efficiency. While
this technique may help to lower computation time, it is even more useful to extract rules
from the network and therefore increases the interpretability of the network output.

3.3 The NeuroBayes Package
The NeuroBayes neural network package is designed as a two-layer (input, hidden and output
layer) feed-forward neural network that is trained using a backpropagation regime. The
network is connected to an automatic preprocessing unit.
NeuroBayes essentially consists of two parts:

• The NeuroBayes Teacher which performs the network training based on a set of train-
ing data provided by the user. The Teacher also performs the user-requested prepro-
cessing. During the training process the complex relations between the variables are
learned while simultaneously evaluating the significance of each network weight and
unit. Eventually, connections or units are removed from the network based on their
statistical significance (pruning). This ensures that the network topology is kept as
simple as possible.

• The NeuroBayes Expertise is the output of the NeuroBayes Teacher and effectively a
trained neural network which can be applied to unseen data.

NeuroBayes provides an analysis file for each training containing a number of plots about
the performance of the network as a whole and the contribution of individual variables to
the network.
In the following paragraphs, the core concepts applied in the NeuroBayes package are pre-
sented. The parameteres used to steer NeuroBayes are introduced in Chapter 4.2. A detailed
reference of NeuroBayes parameters can be found at [Phi12].

Preprocessing

The first step in analysing a multivariate data set in NeuroBayes is called preprocessing. It
is automatically performed by the algorithm but determined by user-specific settings. The
major goal of the NeuroBayes preprocessing is to find the optimal starting point for the
training process, especially a set of initial weights. The preprocessing options available can
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either be applied to all input variables (global preprocessing) or to individual variables.
The global and individual preprocessing can consist of two steps [Phi12, p.27]. First, input
variables are equalized which means transforming an arbitrary input distribution to a flat
distribution using a nonlinear transformation function. The possible second step is to trans-
form the flattened distribution to a Gaussian with mean zero and σ = 1. Then the correlation
of the individual variables to the target is calculated. Here certain variables with significance
lower than a user specified threshold are eliminated [FK06, p.3].
The global preprocessing is encoded in a sequence of three integers PRE = kij. The param-
eter k set the required level of significance for a variable to be taken into the training. The
parametter i is used to determine whether, the variables are de-correlated, normalised and
rotated before training. With j the type of transformation applied to the variables (no trans-
formation, flattening, Gaussian) can be specified. A detailed description of the interesting
options of kij used in this thesis is given in Chapter 4.2.1.
For individual variable preprocessing the user can choose from a range of options for vari-
able transformation. The chosen option is encoded in a preprocessing flag of the form
PreproFlag=ij. The individual preprocessing flags used in this thesis are explained in Chap-
ter 4.2.2.
A complete description of all available combinations for global and individual preprocessing
flags is given in [Phi12, p.27f].

Bayesian Statistics in NeuroBayes

In Bayesian statistics a priori knowledge is incorporated. A conditional probability of event B
to be observed on the condition that event A has already been observed is defined as P (B|A).
The Bayes’ Theorem states that

P (A|B) =
P (B|A) P (A)

P (B)
. (3.6)

If A is interpreted as theory and B as data, P (data|theory) is the probability for the evidence
P (data) to be described by a theory. P (theory) is called a Bayesian prior as it denominates
the probability of a theory to hold in certain circumstances. Thus, Bayesian statistics can be
very helpful to reject unphysical predictions.

Regularisation

Another important building block of NeuroBayes are its regularisation schemes. Regulari-
sation seeks to minimize the risk of overtraining and to enhance the generalisability of the
network. Therefore, different techniques - depending on user choice - constantly evaluate
the statistical relevance of all network connections and entire nodes.
If the significance of a node or connection to the network as a whole falls below certain
thresholds, it is removed from the network. This ensures that the minimal network topology
is achieved and, consequently, the network is less sensitive to random fluctuations [FK06,
p.3].
The different regularisation options the user can define in NeuroBayes are presented in
Chapter 4.2.1.
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4 Study of Continuum
Suppression

This chapter is the core of this thesis and is of interest if a NeuroBayes network shall be set
up. It contains many observations of irregularities and cures if possible.
Firstly, the setup of the study is described. The code package which is run for every contin-
uum suppression is illustrated. Secondly, the Monte-Carlo samples used in this study are
introduced. Thridly, the output of each training, called analysis, is to be outlined. Fourthly, a
qualitative analysis of useful NeuroBayes parameterisations is performed. Special attention
is paid to groups of variables and their importance to the network as a whole. Besides causes
for irregularities are identified and explained. Lastly, a quantitative analysis of a number of
network outputs is performed by fitting the different network outputs. Also, different neural
network layouts will be compared.

4.1 Overall Setup of the Study

4.1.1 Structure and Functionality

During the analysis in this chapter, many neural networks will be trained and examined.
Thus, it is necessary to set up an efficient envoirnment for the network training and perfor-
mance evaluation.
On the one hand, networks will be trained using only the variables outlined in Chapter
2. This will be referred to as unstaged network training. On the other hand, networks can
be trained using the output distributions of previously trained networks as input variables
which will be referred to as staged network training.
The unstaged networks are trained using distributions generated by reconstructed Monte
Carlo data of BB̄ and continuum events. A set of signal distributions is trained against a set
of background distributions each generated by Monte Carlo simulation. A more detailed
description of the utilized training data is given in Chapter 4.1.2.
An example of a staged neural network training is illustrated in Figure 4.1. The network
layout shown there can be organized into two stages:

1. Pre-Stage Networks: CLEO cones and Kakuno-Super-Fox-Wolfram (KSFW) moments
are processed individually and a net is trained for each of the variables.
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CHAPTER 4. STUDY OF CONTINUUM SUPPRESSION

2. Final Stage Network: A final network is fed with the outputs of the individual net-
works from the previous stage (CLEO-cones, KSFW) and the distributions of cos(θB).

The network layout depicted in Figure 4.1 is according to [R1̈2] and has also been used
in [Pri13]. In this study the performance using a staged network layout is compared to an
unstaged network which utilizes all variables at once (see Chp. 4.3).
In this thesis all neural networks are realised using the NeuroBayes package introduced
in Chapter 3.3. To steer NeuroBayes the source code written by Michael Prim during his
PhD studies is used [Pri13]. On the one hand, the source code handles the initialization of
the NeuroBayes Teacher with the chosen set of parameters, on the other hand it creates a
number of outputs to evaluate the network performance after the training in NeuroBayes
has finished. Furthermore, the source code allows to run a NeuroBayes Expertise.
The code structure is illustrated in Figure 4.2. At the heart of the programe is the Continuum

Suppression.cc file. This file contains the list of networks to be trained. Besides, it is respon-
sible for the output of a number of plots (purity vs. efficiency, purity vs. network output,
network output, transformed network output.)

Final-Stage 
NN

Pre-Stage 
NNs

Cleo-Cones NN KS-Fox-Wolfram NN 

Output 
 CLEO-Cones Output KSFW

cos(✓B)

Final NN Output

Unification NN

Figure 4.1: Flowchart of a typical neural network layout, used for example in [R1̈2].
The outputs of two individual NN for CLEO-cones and KSFW are combined with
cos(θB) and processed in a unifying network. The Final NN Output is then used as
an expertise to be run on experimental data.

The networks requested by the ContinuumSuppression.cc code consist of a list of variables in-
corporated in the network and the settings used to steer NeuroBayes. The CSBase Method.cc

contains all relevant functionality of the networks, e.g., running trainings, retrieving values).
As this thesis aims at studying a large number of NeuroBayes options and it is essential to
set up an efficient workflow, that one the one hand allows to change NeuroBayes settings
easily and on the other hand supports the analysis of the neural network classification out-
put. Thus, the source code mentioned are modified and extended. JSON files are introduced
to handle all the NeuroBayes related settings. The JSON files are saved with an individual
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timestamp. The library of JSON files can later be searched for special setups or tags. Espe-
cially, by searching the JSON library for special setups, the user can generate own analysis
files. Therefore, source code is added to visualise the performance of the trained NeuroBayes
networks. The contents of the analysis file specially generated for this thesis are outlined
in Chapter 4.1.3. Furthermore, a tool is developed to evaluate the output shape by fitting a
particular set of analytic functions.

C
on

tin
uu

m
Su

pp
re

ss
io

n.
cc

N
eu

ro
B

ay
es

N
et

w
or

ks

N
et

w
or

ks
 to

 b
e 

tra
in

ed
: 

N
et

 1
, N

et
 2

, …
, N

et
 i

Ti
m

es
ta

m
p

Pa
ra

m
et

er
iz

at
io

ns
 fo

r 
N

eu
ro

B
ay

es

Req
ue

st 
Netw

or
ks

use
d f

or 
all

 ou
tpu

ts

Va
ria

bl
es

Va
ria

bl
es

 fr
om

 M
on

te
-C

ar
lo

: 
K

SF
W

 
C

le
o-

C
on

es
 

co
s(

th
et

a)
 

…

(O
ut

pu
t o

f p
re

vi
ou

s s
ta

ge
 

N
et

w
or

ks
)

JS
O

N
 N

et
 1

 
JS

O
N

 N
et

 2
 

…
 

JS
O

N
 N

et
 i

C
SB

as
eM

et
ho

d.
h

C
on

ta
in

s N
N

 fu
nc

tio
na

lit
y:

 
ru

n 
tra

in
in

g,
 lo

ad
 JS

O
N

, e
tc

.

In
he

rit
 fr

om

N
et

w
or

k 
la

yo
ut

s, 
va

ria
bl

es
 / 

da
ta

, 
pa

ra
m

et
er

iz
at

io
ns

Tr
ai

ne
d 

N
et

s, 
A

na
ly

si
s F

ile
s

O
ut

pu
ts

: 
•

JS
O

N
 N

et
 1

 - 
i 

•
an

al
ys

is
.p

s 
•

pl
ot

s (
pu

rit
y 

vs
. e

ffi
ci

en
cy

, 
ne

tw
or

k 
ou

tp
ut

, e
tc

.) 
•

co
rr

el
at

io
n 

fil
e 

Figure 4.2: Illustration of the programme structure used during the study of con-
tinuum suppression. At the heart of the programme the ContinuumSuppression.cc

handles all steering. Depending on the setup, it requests the networks with their set-
tings and ingredients. All networks inherit their functionality from CSBaseMethod.h.
A timestamp is used to identify the outputs of each training.
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CHAPTER 4. STUDY OF CONTINUUM SUPPRESSION

4.1.2 Monte-Carlo Samples of B events

For the examinations in this thesis, two independent Monte-Carlo samples have been used.
The first sample is created by reconstructing both B mesons, focusing on B+B− events. The
one B is reconstructed from the decay

B→ τν. (4.1)

Reconstructing this decay becomes possible when the second B decay is reconstructed as the
ν cannot be detected. In this sample, the second B is reconstructed from the semi-leptonic
decays

B+ → D̄0`+νl , (4.2)

B+ → D̄∗`+νl (4.3)

(` =
{︀
e, µ

}︀
) and their charge conjugates. These decays have a relatively large branching ratio

(cumulated branching fraction of B = (15.29 ± 0.44) %) and are called tag side decays, while
the B decays in Equation 4.1 are referred to as signal side.
The second sample reconstructs the B mesons from D mesons and charged pions while
focusing only on one of the B mesons. This becomes possible as all particles in interest can
be detected in contrast to the ν in Equation 4.1. A dominant decay in this regime is

B0 → D−π+π+π− (4.4)

and the respective charge conjugate with a branching fraction of B = (6.4 ± 0.7) 10−3. This
sample features larger statistics and thus, is used primarily. The first sample described above
has been used for confirmatory purposes.

4.1.3 Analysis files

In Subsection 4.1.1 the analysis file and its components were already mentioned briefly. Here,
the components and their relationship are described in more detail.
An example of the analysis file is depicted in Figure 4.3. It consists of four plots illustrating
the performance of the network and a caption containing information on the chosen settings
and tags.
The most important plot is shown in the top left-hand corner. Here the distribution of net-

work output is shown (often only referred to as network output). The frequency of appear-
ances of signal or background events over network output is plotted. Often not the network
output itself is taken into account, but a transformed distribution that is expected to exhibit
Gaussian like shapes and can therefore be fitted with a sum of Gaussian functions [Pri13].
In the top right-hand side of Figure 4.3 the original distribution has been transformed with

n′out = log
(︃
nout − ncut

1 − nout

)︃
, (4.5)
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Figure 0.3: Date: 16-32-02, 2014-06-26; "pre": "612", "loss": "ENTROPY",
"sample": "2", "rtrain": "1.0", "shape": "DIA", "epoch": "100", "tag": "csnb-
set4", "iterations": "300", "learndiag": "1", "reg": "REG", Gini = 53.2, Ginimax
= 61.0

Figure 4.3: Example of the analysis file which is used to examine a network training.
The essential run parameterisations can be found in the caption. In the top left-
hand plot the distribution of network output is shown with background (black) and
signal (red) being presented. In the top right-hand plot a transformed distribution
is shown. In the bottom left-hand plot the purity over network output is depicted.
In the bottom right-hand plot the purity vs. efficiency is shown.

where nout denotes the original and n′out the transformed network output. A cut is introduced
by ncut to reject background lower than a certain threshold determined by the value of the
cut. The cut can be especially useful if either background or signal vanishes for low or
high network outputs. This often leads to peaks, cliffs and other irregularities in the output
distribution. However, the user should keep in mind that cutting involves losing information
and thus results in a decline in efficiency.
In the bottom left-hand corner of Figure 4.3 the purity vs. network output is calculated.
Purity is to be understood as signal purity and describes the ratio of signal to the sum of
signal and background in a bin. It is defined as

P =
NS (nout > ncut)

NS (nout > ncut) + NB (nout > ncut)
, (4.6)
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where NS,B denotes the total amount of singal / background and nout the network output.
Thus, NS (nout > cut) is the number of signal events after a cut on the network outputs has
been applied.
The error bars in the purity plot are calculated with Gaussian error propagation. The error
of entries per bin is estimated by

√
n where n ∈ N is the number of entries in a bin according

to Poisson statistics.
The diagonal can be used if the purity increases linearly and thus if a probabilistic interpre-
tation of the network output is possible.
In the bottom right-hand corner of the analysis file the efficiency over purity is plotted. Effi-
ciency is to be understood as the amount of correctly classified signal events. For example
an efficiency of 90 % means nine out of ten signal events have been classified as such by the
network. Signal efficiency is formally defined as

ε =
NS (nout > cut)

NS
, (4.7)

where the nomenclature is analogous to Equation 4.6.
In the caption of each analysis file the Gini coefficient for signal efficiency vs. overall effi-
ciency is shown. The Gini coefficient can be adduced to quantify the unequal distribution of
two observables, for example signal and background. This is illustrated in Figure 4.4. Here,
the Gini coefficient can be associated with the ratio

L
M + L

(4.8)

where the nomenclature from Figure 4.4 is used. The figure shows that the Gini increases
if the unequal distribution of signal efficiency and overall efficiency increases. Thus, higher
values of the Gini coefficient are connected to a higher separation efficiency. If signal effi-
ciency and overall efficiency were equally distributed, this would mean no separation was
possible.
The Gini coefficient is often used to break down the quality of a training to just one number.
It further enables the user to compare different parameterisations. Nevertheless, a high Gini
is not necessarily connected to a flat and smooth shape of the network output which is re-
quired for fitting the output. So it is often up to the user to choose between smooth shapes
and high degrees of signal / background separation. Besides, the Gini coefficient is only
comparable for different trainings on the same sample as its value depends on the individual
ratio of signal to background of the sample.

4.2 Qualitative Analysis
In this section the relevant discoveries made while studying the behaviour of NeuroBayes
with different parameterisations are presented. More than 600 trainings were performed
and analysed. First, to demonstrate the effect of certain global NeuroBayes parameters, an
unstaged network is examined. Focusing on an unstaged network reduces the complexity for
a start and helps to understand the effect of the parameters tested. Secondly, a staged network
is utilized to study individual variable preprocessing. In this part two major causes for
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Figure 4.4: Illustration of the Gini coefficient. Depicted is the signal efficiency
versus overall efficiency. The area between the equal distribution and the Lorenz
curve is denote by L. The area between the tangent to the Lorenz curve at zero and
the Lorenz curve is denoted by M. The tangent is determined by the amount of
signal in the sample and indicates perfect separation, while the equal distribution
indicates no separation.

irregularities will be put forward. Additionally, a guide to setting up an effective NeuroBayes
network is presented.

4.2.1 Global Parameter Analysis

Due to the abundance of possible combinations of parameters the thesis only focuses on
the most relevant ones. By systematically experimenting with different NeuroBayes options,
three global parameters have proven to be of special interest. Apart from the individual
preprocessing flags, which are studied later, the parameters SHAPE, REG and PRE have proven
their relevance.

Network Setup

The mentioned parameters are studied while the remaining parameters are kept constant.
For this part of the study an unstaged network using the whole set of variables is set up.
The data are taken from the sample which reconstructs one D meson and charged π mesons.
This sample is chosen for its higher statistics.
The number of nodes in the input layer is chosen to be one greater than the number of
variables fed to the network to account for the bias node. The number of nodes in the hidden
layer is chosen to be two greater than the number of variables. The number of nodes in the
hidden layer solely depends on the choice of the user (see Chapter 3.2). The greater the
number of nodes the potentionally more complex the model describing the data. However,
simultaneously the chance of overtraining rises. Overtraining has been explained briefly in
Section 3.3. If the number of nodes is chosen too small, the network does not perform a
reliable classification as the model generated will not be sufficient to fit the data.
As the task performed by the network is a binary classification, the output layer consists
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of only one node. The output node achieves values ranging from -1 to 1. Values close to
-1 denote high probabilities for background events, while values close to 1 denote high
probabilities for signal events.
The NeuroBayes parameters are chosen as follows or left at default if not stated otherwise:

• RTRAIN: This parameter controlls the amount of input which is used for training. Thus,
this option can be used to train the network on a part of a sample, say 80%, while
using the remaining part for evaluating the expertise. Especially, this parameter may
and will be used to check for signs of overtraining. Here RTRAIN was set to 1.0 , which
means the whole sample was used as there was no sign of overtraining.

• EPOCH: With this parameter the interval of weight update can be adjusted. In this thesis
weight updates were performed every 100 samples. EPOCH is a useful option if computa-
tion time is a critical issue. The choice of EPOCH in this thesis has proven to be efficient
for both computation time and separation quality.

• ITER: The maximum number of iterations, meaning the number of times all training
patterns are presented to the network, is set to 300. In most trainings during this thesis
only a handful of iterations were actually necessary (∼ 20) to minimize the network
error and, consequently, end the training process. Thus, a number of maximum 300
iterations is surely sufficient.

• LOSS: As a loss function the ENTROPY option is chosen, as it allows for a probabilistic
interpretation of the results. This is a standard setting.

• LEARNDIAG: If not stated otherwise, this is set to 1 in order to force the purity over
network output onto the diagonal. If this plot is not distributed along the diagonal, a
probabilistic interpretation of the network output is not possible.

The remaining parameters will be varied during the course of investigation. Their setup is
outlined where necessary.

REG

With this parameter the user can control the type of regularisation that is performed globally
when a network is trained. The aim of regularisation has been outlined in Chapter 3.3. The
possible options are:

• OFF: No regularisation is performed during the training.

• REG: A Bayesian regularisation scheme is applied, dividing weights into three different
classes (weight of bias node in input layer, weights of remaining input nodes, weights
of connections from hidden to output layer).

• ARD: Automatic Relevance Detection equips all input nodes with their own regularisation
constants independent of each other.
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• ASR: Automatic Shape Regularisation equips all output nodes with their own regularisa-
tion constants independent of each other.

• ALL: Combines ARD and ASR.

To examine the behaviour under variation of the REG parameter, the SHAPE parameter is set
to DIA. DIA will later prove to be a good choice if smooth outputs are required. The different
choices for SHAPE are compared in the next section.
The effect of different options of REG is relatively small in this study and mostly influences the
shapes of the network output. No distinction can be made regarding the Gini coefficient of
the related trainings. Besides, all available options are tested for overtraining (using RTRAIN

= 0.8), but have not shown such effects.
As the setting REG = “REG” leads to relatively smooth transformed network outputs and is a
standard NeuroBayes setting, this study will stick to this option. The transformed network
output when using the option REG for regularisation is shown in Figure 4.5. This plot shows
noticeable peaks and cliffs which are partially related to the distributions of the individual
variables. Addressing this behaviour requires the knowledge of individual preprocessing
flags, which are presented in Section 4.2.2. As the network trained with REG = “REG” seems
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Figure 4.5: Transformed distribution of an unstaged network training using all vari-
ables. The peaks and cliffs are partially consequences of the behaviour of individual
variables (see Chapter 4.2.2). The configuration is: PRE = 612, SHAPE = “DIA”, REG =
“REG”, cut = −1 and Gini = 52.9 / Ginimax = 61.0.

to be robust, when validated using RTRAIN, all future trainings will be performed using this
option. Furthermore, high Gini coefficients compared to all other options for REG are achieved
when this option is used.

PRE

The parameter PRE is not only influencing the shape of the outputs, but also has an effect on
separation quality measured by the Gini coefficient. This parameter has already been briefly
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introduced in Chapter 3.3, but the different options will be explained and examined here.
With the parameter PRE the steering of the preprocessing is accomplished. It is encoded in
an integer sequence kij. The different integers will be introduced successively.
The first integer k can range from 1 to 9 and determines the required significance of a
variable to be considered in the training. Almost all trainings have been performed at k =
6, equivalent to 3σ . With the increasing value of k, corresponding to a higher required
significance of the variables taken into the network, the separation quality in terms of Gini
does not decrease signficantly as one might expect. Therefore, variables pruned away by
higher values of k seem to have little to no impact on the Gini.
While the network seems to be robust with respect to the Gini coefficient when k is varied,
an impact on the output shape can be noticed. Figure 4.6 depicts the transformed output for
a high and a low value of k.
In this study k is chosen to k = 6. On the one hand this ensures that the detrimental effect
on the output shape is relatively small, on the other hand the chance of overtraining is kept
to a minimum as only variables with high signficance are used to train the net.
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(a) With k = 1 ≡ 0.5σ
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Figure 4.6: Illustration of transformed network output with different choice of
required variable significance in PRE = kij. The parameter k (k = 1, ..., 9) sets the
required significance for a variable to be taken into the training to k · σ2 . The Gini
coefficient stays the same for both trainings, but omitting variables with lower
added significance has a noticeable impact on the output shapes. The remaining
parameters are set to: PRE = k12, SHAPE = “DIA”, REG = “REG”, cut = −1 , RTRAIN= 1.0.

In the encoding kij, the integer i (i = 0, ..., 3) determines if the variables are de-correlated,
normalised or rotated before training. In the case of classification, i = 3 can directly be ruled
out as it is not a possible option in this mode. The remaining options for i are:

• i = 0: The input variables are fed untouched to the net, no de-correlation is performed.

• i = 1: The input variables are de-correlated and normalised prior to the training.

• i = 2: The input variables are de-correlated and all linear dependence on target is
rotated to the first new input variable (Principal Component Analysis).
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4.2. QUALITATIVE ANALYSIS

The integer j sets the type of transformation applied on the input variables:

• j = 0: No preprocessing is performed.

• j = 1: The distributions of input variables are flattened.

• j = 2: The distributions of input variables are transformed to a Gaussian distribution.

Now, specific combinations of i and j are examined. First, unreasonable choices will be ex-
cluded.
Choosing i or j zero often results in output distributions with purities not even closely
distributed along the diagonal and thus is not recommended. The user should check the dis-
tribution of purity in every training done, as only a distribution along the diagonal permits
a probabilistic interpretation. In Appendix C the analysis files for different settings of PRE
are presented. Nevertheless, if a probabilistic interpretation is not necessary, the user may
still make use of an option which does not lead to a diagonal distribution of the purity.
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(a) With PRE = 612
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(b) With PRE = 622 (boosted)

Figure 4.7: Illustration of transformed network output for the most commonly
chosen settings of PRE. Due to forcing the purity on the diagonal in the purity vs.
network output plot, peaks and cliffs can appear in the output. The remaining
parameters are set to: SHAPE = “DIA”, REG = “REG”, cut = −1 , RTRAIN= 1.0.

Having excluded the unreasonable settings for PRE, the findings in this study suggest using
either 612, 622 or 611 as with these settings the purity is distributed along the diagonal and
the outputs have Gaussian shapes.
If 622 is chosen, a boosted training is performed. Boosting refers to performing a second
training which uses higher weights for misclassified data and basically is a process of read-
justing the connection weights. In the case of boosted trainings the NeuroBayes analysis file
contains many plots showing pre- and post-boost results. In Figure 4.7 the network output
of a boosted and an unboosted network are compared. For the sample analysed, the effect
of boosting is a by about 2% higher Gini coefficient. Although, boosting might increase the
Gini, the boosted network could be more likely to show signs of overtraining. However, the
sample used in this study does not show a noticeable effect of overtraining. Apart from the
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Gini, this sample shows that boosting might reduce the smoothness of the output. In 4.7b
this effect can be observed on the left-hand slope of the background distribution.

A very interesting result is gained when training the network with PRE = 621. Figure 4.8
shows the transformed network output and purity vs. network output plot. This training
hints, a almost perfect Gaussian shape can be achieved if the purity is not distributed on
the diagonal and follows an “s” shape. When the purity is forced further on the diagonal,
this can result in peaks, cliffs and other irregularities (see Chapter 4.2.2). The fundamental
difference between this setting (621) and the other studied settings 612 and 622 is the type of
input transformation. The option 621 flattens the distributions, while 612 and 622 perform
a Gaussian transformation of the input.
The use of the option 621 is not recommended since the purity is not distributed along the
diagonal. The option 621 will be useful later to demonstrate the cause of certain irregularities
in the transformed network output.
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Figure 4.8: Training results with PRE = 621. The sigmoid-like shape of purity 4.8b is
connected to a Gaussian distribution in the transformed output 4.8a. The remaining
parameters are set to: SHAPE = “DIA”, REG = “REG”, cut = −1 , RTRAIN= 1.0.

SHAPE

The SHAPE parameter controls the behaviour of direct connections from input to output layer
and has a significant impact on the shape of the network outputs. The different options are:

• OFF: No connections between input and output layer are established.

• DIAG: A spline fit is applied to the output of the output nodes. The fit is required to
distribute the purity versus network output along the diagonal after preprocessing and
before training.

• DIA: This option is a specialization of DIAG. The technique applied matches DIAG with
the exception that a smoother spline fit is performed.
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• TOTL: Establishes direct connections between input and output layer in order to describe
a linear density estimation.

• INCL: Direct connections between input and output layer are established to describe
the inclusive distribution. This option is mainly used for shape-reconstruction and is
not used in the investigations for this thesis.

• MARGINAL: Utilizes a binomial marginal sum method as input to the network. This
setting cannot be used in this thesis as it only works for problems with uncorrelated,
univariate data.

The two most commonly chosen options are “DIA” and “DIAG”. Both options apply a spline fit
to the result of the output node and ensure that purity versus network output is distributed
along the diagonal. The main difference between the two options is the kind of fit applied.
From comparing the plot of the mentioned fit for the two possibilites in the NeuroBayes
analysis file (Appendix B), the user notices that DIA applies a smoother fit to the output
node, which results generally in a smoother network output. Both options have almost equal
Gini coefficients, while the “DIAG” option tends to show slightly better Ginis on the sample
studied.
Figure 4.9 shows the distinguishable outputs of trainings performed with the “DIAG” as well
as the “DIA” option. The output using “DIAG” contains many wiggles and peaks. Thus, it will
not be reasonable to fit the outputs generated using this option. If fitting the outputs is of
interest, “DIA” certainly proves to be the better choice.
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(b) With SHAPE = “DIAG”

Figure 4.9: Illustration of the options “DIAG” and “DIA” for the SHAPE parame-
ter. “DIAG” shows a characteristic wiggly and peaky shape, which has been found
throughout the study in various combinations and network layouts. The remaining
parameters are set to: PRE = 612, REG = “REG”, cut = −1 , RTRAIN= 1.0.

In addition to the two options for SHAPE presented, the study found the options “TOT” and
“INCL” (which is orginally recommended for shape-reconstruction) to perform even smoother
fits than “DIA” in almost every training. With these options connections between input and
output layer are established (detailed explanation [Phi12, p.42]). Their purity is distributed
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along the diagonal in the purity vs. network output plot. Therefore, a probabilistic interpre-
tation is possible. Besides, there is no sign of overtraining when using RTRAIN = 0.8 for both
options. To sum it up, this study does not find any evidence contradicting the usage of the
“TOT” or “INCL” option. Figure 4.10 depicts the transformed network output and purity versus
network output for SHAPE = “TOT”. Nevertheless, the user should make sure the LEARNDIAG

option is on, when using these two options for SHAPE as they do not directly force the pu-
rity vs. network output distribution on the diagonal. In general, no signficant difference of
separation quality in terms of Gini is found for the different options of SHAPE.
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(b) Purity versus network output

Figure 4.10: Illustration of SHAPE = “TOT”. With this setting a smooth, Gaussian
output is received and the purity is distributed along the diagonal. The remaining
parameters are set to: PRE = 612, REG = “REG”, cut = −1 , RTRAIN= 1.0.

4.2.2 Individual Parameter Analysis

In this chapter the consequences of different individual variable preprocessing flags will
be highlighted. The use of individual preprocessing flags is necessary if peaks and cliffs
still appear in the network output after setting the global preprocessing parameters. Before,
however, the contribution of individual variables to the network output will be assessed.

Relevance of Individual Variables

In this part of the individual parameter analysis the unstaged network setup explained in
Section 4.2.1 is used. The global parameters are set to: SHAPE = “DIA”, PRE = 612 and REG =
“REG”. The relevance of individual variables is now analised by gradually excluding groups
of variables.
There are two main groups of variables this study focuses on: CLEO cones and Fox-Wolfram
moments (charged, missing, neutral, etc.). A list of variables can be found in Appendix A.
First, the loss in Gini coefficient when excluding special groups of variables is measured.
Removing the whole set of Fox-Wolfram moments (CLEO cones) reduces the Gini coefficient
by about 16% (2%) on the sample studied. Broken down to different groups of Fox-Wolfram
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moments, the highest decline (∼6%) of the Gini coefficient is noticed if neutral Fox-Wolfram
moments (see Appendix A) are excluded. The single variable with the most influence is r2

which is a special Fox-Wolfram moment.
With regard to CLEO cones the sample shows the higher the order (angle) of a CLEO cone
the less the added significance. This means CLEO cones describing small angles (see Figure
2.4) tend to be of higher importance to the net.
Apart from the loss in Gini coefficient, the effect of excluding groups from the network train-
ing on the shape of the network output has been studied.
The group of Fox-Wolfram moments with highest importance for the output shape is k0hooX

(see Appendix A), where X = 1, ..., 4. These Fox-Wolfram moments are often denoted by Roo

[Bev+14] and are calculated from two ROE particles. Figure 4.11 shows the consequence of
excluding this group of variables. The highest peak in the background distribution noticed
in Figure 4.11 can be a result of variables containing δ-functions with low purities, that rise
in importance if the k0hooX Fox-Wolfram moments are excluded. The causes of peaks like
this will be discussed in Section 4.2.2.
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Figure 4.11: Transformed network output if k0hooX (X = 1, ..., 4) are excluded from
training. Excluding this group of variables has the greatest visible consequence for
the network shape, while the loss in separation quality in terms of Gini (0.37%) is
comparatively small. The configuration is: PRE = 612, SHAPE = “DIA”, REG = “REG”,
cut = −1. Performance: Gini = 52.7 / Ginimax = 61.0.

Besides, attention should be paid to the visualized correlation matrix of the variables from
the NeuroBayes analysis file. It can help to get a quick overview of the relations of the
variables. Figure 4.12 shows the correlation matrix taken from the NeuroBayes analysis
containing all variables observed in this study. In general, the correlation of Fox-Wolfram
moments appears to be noticeably higher than the correlation of CLEO cones.
Simultaneously, the relative proportion of Fox-Wolfram moments among the variables with
highest signficance added to the network, has been larger than the proportion of CLEO cones
in almost all trainings performed. Nevertheless, no direct connection of this effect to the gen-
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erally higher correlations of Fox-Wolfram moments can be established.
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Figure 4.12: Correlation matrix of all input variables used in this study. The vari-
ables 2 to 21 refer to the CLEO cones, while 22 to 41 refer to the Fox-Wolfram mo-
ments. In the first variable the correlation of a variable to the target is shown. Gen-
erally, the correlation of CLEO cones seems to be lower than the correlation of Fox-
Wolfram moments. Interestingly, the second (ct_bb) and 22nd variable (cm_costh)
have no or very low correlation to other variables.

All tests presented above have been repeated using SHAPE = “TOT”. With this setting no differ-
ence in the output distributions could be noticed if single variables or groups of variables are
excluded. Thus, “TOT” not only leads to smooth outputs (see Figure 4.10), but is also robust
if special groups of variables like Cleo-cones or Fox-Wolfram moments are excluded from
the training.

Individual Preprocessing Flags

In contrast to the global preprocessing flags presented before, individual variable prepro-
cessing flags are used to adjust the preprocessing for individual variables.
The individual variable preprocessing flag consists of two integers ij. There is a high number
of different possible options for ij, which are listed in [Phi12, p.29f].
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The options used in this study are i = 1, 3, 9 and j = 2, 4. The digit j defines the transforma-
tion a variable is subjected to:

• j = 2: Transforms variable to a Gaussian distribution.

• j = 4: Uses result of regularised fit to mean values of target to transform variable.

The digit i can be used to modify the action defined by j. Especially, it is useful to determine
the way NeuroBayes works with missing input. Missing input denoted by the value -999
which has to be set beforehand can be modelled with δ-functions. The different options of i
used are:

• i = 1: Use mean target and flatten the variables distribution. δ-functions will not be
considered.

• i = 3: Use mean target and flatten the variables distribution. δ-functions are used and
left untouched during transformation.

• i = 9: Use mean target and flatten the variables distribution. δ-functions are used
and set to zero during the transformation process defined by j, while the remaining
distribution is transformed to have mean zero and unit width.

Studying individual variable preprocessing flags works best with a staged network like the
one illustrated in Figure 4.1 as the user gains an additional level of control as compared to a
network utilizing all variables simultaneously.
In general, the settings applied in final stage networks (see Figure 4.1 are more influential on
the overall output distribution than settings in pre-stage networks. Thus, it is very important
to find a beneficial set of individual preprocessing flags for the unification network shown in
Figure 4.1. Nevertheless, the user has to adjust settings of lower-stage networks if individual
variables are believed to have a negative impact on the output distribution.
The individual networks are set up like the network in Section 4.2.1 if not stated otherwise.
Only the individual variable preprocessing flags are varied in this part of the analysis. The
“flagged” CLEO cones (see Appendix A) are ignored as they only add few significance to the
network.

Causes of Irregularities To set up the individual preprocessing flags it has been useful to
first search for regularly appearing irregularities like cliffs and peaks in the network outputs
and to research their causes. During the examination of various network outputs two main
irregularities have been established:

• Constraining the purity plot to the diagonal when fitting the output can lead to irregu-
larities in the tails of the distributions of signal and background. From Figure 4.8 it can
be deduced that forcing purity onto the diagonal can have an effect on the signal at high
and background at low network outputs. Especially, if the transformed network output
shows symmetric effects, this can be a consequence of constraining the purity to the
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diagonal. This problem cannot be adressed by adjusting individual preprocessing flags,
but by changing global parameters. Figure 4.13 illustrates a symmetric irregularity.

• If the user decides to model missing input (denoted by value -999) with δ-functions,
this can lead to sharp peaks in the output. Peaks are encouraged, if the δ-functions
have relatively high or low purity. Low purites in δ-peaks may be influential on the
distribution of the background and vice versa. In this case it is useful to first exclude
the variable with highest or lowest purity in the δ-function. If the irregularity (peak) is
reduced, the user can focus on adjusting the individual preprocessing flag of this vari-
able or decide to eliminate the variable completely. This procedure should be repeated
if other individual variables are believed to cause irregularities. Nevertheless, the user
should always keep in mind that smooth outputs are not necessarily connected to high
separation quality.
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Figure 4.13: Transformed network output of a staged network showing a symmetric
irregularity at the left slope of background and right slope of signal. Symmetric
irregularities cannot be adressed with individual preprocessing flags as they are
caused by the global preprocessing. The configuration is: PRE = 612, SHAPE = “DIA”,
REG = “REG”, cut = −1. Performance: Gini = 52.5 / Ginimax = 61.0.

Setting up Individual Preprocessing Flags Based on the two major causes of irregulari-
ties several recommendations can be made. First of all, the network output will generally be
smoother if the inputs are smooth. Thus, it proves to be beneficial if a variable can either be
transformed to a Gaussian shape (e.g. flags ij = 12 & ij = 92) or if the purity distribution
of the variable using the fit to the mean values of target transformation (e.g. flags ij = 34 &
ij = 94) is relatively smooth (see Figure 4.14) and shows no peaks or wiggles at especially
high or low purities. Figure 4.15 illustrates the two different Gaussian transformations of
the network input (ij = 12 & ij = 92) for the variable k0hso03. In many instances peaks in
the network output are reduced when variables containing single peaks at especially low or
high network inputs, like shown in Figure 4.15a, are either excluded from the training or the
individual preprocessing flag ij is adjusted. Figure 4.15b shows an example of a variable’s
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Figure 4.14: Example of the purity versus bin plot from the NeuroBayes analysis
file wit ij = 34.

network input with beneficial effect for the overall network output. If peaks appear within
in the Gaussian distribution and not outside like in Figure 4.15a, the overall network output
has proven to be smoother. If a variable does not contain any δ-functions there is no differ-
ence between ij = 12 and ij = 92.
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(a) With Individual Preprocessing Flag ij = 12
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(b) With Individual Preprocessing Flag ij = 92

Figure 4.15: Illustration of different treatment of missing input for the variable
k0hso03. The study suggests peaks in tails of network input distributions can have
a noticeable impact on the network output which then shows peaks or cliffs itself.
The peak to the left of the Gaussian in Figure 4.15a is an example for preprocessing
with a negative consequence for the overall network, whereas the bottom figure
illustrates a better network input although peaks appear within in the Gaussian
distribution.
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Ideal network setup on sample studied When examining different options for the indi-
vidual preprocessing flags, the user should start at the highest level network and proceed to
lower level networks like motivated above.
Here, in the unification network (see Figure 4.1) four variables are processed. Based on
the general remarks made above, the study found the following preprocessing flags to be
beneficial:

• CSNBKSFW: 34

• CSNBCC: 34

• r2: 12

• abs(cm_costh): 12

The Gaussian transformation (12) works very well on r2 and abs(cm_costh). For the Fox-
Wolfram moments and CLEO cones the option ij = 34 has proven to be best. The use of the
option ij = 94 would make no difference as there are no missing inputs in these variables.
Figures 4.16 illustrate the network inputs of the four variables to the unification network
with the settings introduced above.

If a beneficial setting for the unification network has been found, the user can proceeded
with the lower stage networks. Apart from the variable ct_bb (see Appendix A) the CLEO
cones are not suited for Gaussian transformation and should rather be processed with the
preprocessing flag ij = 94 (if missing input exists) or ij = 34. The variable ct_bb has a very
good Gaussian shape after transformation with ij = 92. However, the impact on the overall
network output is unfavourable and thus, it should be processed like the remaining CLEO
cones. The Fox-Wolfram moments should be processed with ij = 94. With this option most
of the variables attain a shape like CSNBKSFW in Figure 4.16b. With a Gaussian transformation
(92) shapes like the one in Figure 4.15a appear and thus, a detrimental effect on the overall
network output is noticed.
The network output shape with the settings explained above is depicted in Figure 4.17a. Fig-
ure 4.17b depicts the network output with a cut applied at -0.8. Cutting at this value removes
the cliff on the left slope of background and thus, yields an almost Gaussian distribution of
background.

4.3 Quantitative Analysis
The previous sections have examined qualitative effects of various combinations of network
parameterisations. The following section is dedicated to exploring a functional description
of the transformed network output. As explained in Chapter 4.1.3 the transformed network
output is expected to exhibit a Gaussian shape. Thus, a combination of Gaussian functions
will be fitted to the transformed network outputs. The reduced χ2 of the fits will be used as
an indication of goodness of the fit.

34



4.3. QUANTITATIVE ANALYSIS

  Phi-T  
 Teacher·NeuroBayes

 Input node 5 : csnbcc 
PrePro:  34
only this 254.71
corr. to others 78.70%

2nd most important
added signi. 72.28
signi. loss 56.01

0 0.2 0.4 0.6 0.8 1

ev
en

ts

0
200
400
600
800

1000
1200
1400
1600

        flat

 -0.99
 -0.962
 -0.957
 -0.943679
 -0.929
 -0.913
 -0.897
 -0.884
 -0.873
 -0.862
 -0.849
 -0.834
 -0.817
 -0.798853
 -0.779
 -0.758
 -0.736
 -0.712
 -0.686
 -0.655
 -0.623
 -0.586706
 -0.547
 -0.504
 -0.459
 -0.411
 -0.36
 -0.305
 -0.245
 -0.181
 -0.115
 -0.0483
 0.0194
 0.0883
 0.1575047
 0.2264064
 0.293826
 0.3596419
 0.4220725
 0.4782403
 0.5322672
 0.5816748
 0.6291462
 0.6729112
 0.7162752
 0.7575968
 0.7976896
 0.8357475
 0.8742815
 0.9026259
 0.945274

bin #
10 20 30 40 50 60 70 80 90 100

pu
rit

y

0
0.2
0.4
0.6
0.8

1
1.2   spline fit

final netinput-3 -2 -1 0 1 2 3

ev
en

ts

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

background
Underflow       0
Overflow        0

background
Underflow       0
Overflow        0

final netinput-3 -2 -1 0 1 2 3

ev
en

ts

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

background
Underflow       0
Overflow        0

signal
Underflow       0
Overflow        0

       final

signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

si
gn

al
 p

ur
ity

0

0.2

0.4

0.6

0.8

1

  separation

signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

si
gn

al
 p

ur
ity

0

0.2

0.4

0.6

0.8

1

  separation

(a) CSNBCC with ij = 34
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(b) CSNBKSFW with ij = 34
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(c) r2 with ij = 12
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(d) abs(cm_costh) with ij = 12

Figure 4.16: Illustration of different unification network input variables with op-
timal individual preprocessing flag using the sample that reconstructs B mesons
from D and pions.

Fit Setup

The binned, transformed network output for background and signal is fitted with a combina-
tion of a bifurcated Gaussian and an ordinary Gaussian. The fitting procedure is performed
in RooFit using a maximum likelihood fit. Having achieved a suitable description of back-
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Figure 4.17: Illustration of the final transformed network output with cuts applied
at different values of untransformed network output. The settings are: PRE = 612,
REG = “REG”, SHAPE = “DIA”

ground and signal each, the superposition of background and signal distribution is fitted
with a weighted sum of the estimated density functions. The fit performed has the following
structure

S = cSPS + cBPB, (4.9)

where PS and PB denote the fixed probability density functions (PDF) for signal and back-
ground and ci with i = {S, B} are coeffiencts to be determined through the fit. Here, the
coefficients are normalised to 1, so the coefficients represent the relative proportion of signal
and background. Later, an extended fit will be performed where the coefficients denote the
absolute amount of signal and background. For each fit the reduced χ2 is calculated. The
χ2 test is applied to determine whether a deviation of the data from a given description (fit)
occurs by chance. It assumes the errors in the data have a Gaussian distribution. The reduced
χ2 has an expectation value of 1.

Fit Performance on different Network Layouts

The fit described above is performed on four representatively chosen network outputs. The
networks have each been set up using the best practices established in the qualitative analy-
sis Chapter 4.2.
On the one hand two settings for the parameter SHAPE will be compared (“DIA” & “TOT”).
These two options have proven to entail the smoothest outputs. On the other hand a staged
network is compared to an unstaged network. The remaining parameters in all trainings
have been set to: REG = “REG”, PRE = 612, RTRAIN = 1.0 and LEARNDIAG = 1. The individual
preprocessing flags have been set to values outlined in Section 4.2.2 that have proven to lead
to smooth transformed network outputs. All networks are trained using the sample that re-
constructs B mesons from a D and pions. The results obtained by fitting the PDFs described
in the previous section are summarized in Table 4.1. Although, the reduced χ2 are quite
the overall distributions are well described by the fits. The high χ2 can be explained by the
peaks and cliffs presented in Chapter 4.2, which cannot be described by the set of functions
used in this thesis. Nevertheless, the fits describe the overall structure of the distributions
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Table 4.1: Results of χ2 for different network layouts and options of SHAPE using
the whole sample for fitting signal and background as well as the superposition.

Network
Layout

Shape red. χ2

Signal
red. χ2

Background
red. χ2

Sum

Staged DIA 31.45 21.53 44.63
Staged TOT 71.61 71.57 61.62
Unstaged DIA 17.14 30.96 42.04
Unstaged TOT 2.27 3.35 3.79

well.
As for these fits, the whole sample was used to fit both signal and background as well as
superposition, these fits will have to be verified later to rule out overfitting. However, the χ2

results can be used as an indicator for the smoothness of different network setups.
By far the best description of the network output is obtained for the unstaged training using
SHAPE = “TOT”, while the staged network with SHAPE = “TOT” shows the worst χ2. In addition
to the remarks concerning unstaged and staged networks in previous chapters, it can now
be assumed that unstaged networks not only tend to show smoother outputs but can also be
fitted better. The fitted PDFs for the mentioned network are depicted in Figure 4.18.

Extended Fits The indications by the χ2 for the different network setups are validated by
performing extended fits. Therefore, the PDF from Equation 4.9 is adjusted. The coefficients
ci are not normalised to 1, but left to be determined completely by the fit. Thus, their values
should resemble the number of entries of signal and background in the sample fitted.
Superposition samples are constructed that consist of different proportions of signal and
background. From the fit the coefficients ci are obtained and compared to the de facto amount
of signal and background events in the sample tested. If the fit performs well, the estimation
of signal and background entries should agree with the actual number of entries within the
parameter errors from the fit.
The PDFs PS and PB from Equation 4.9 are estimated using the remaining entries after con-
structing the sample mentioned above.

Results The examination shows only the fit to the output of the unstaged network with
SHAPE = “TOT” leads to valid results for the coefficients for various signal ratios and confirms
the indication given by the χ2 above. The number of entries of signal and background in
the constructed sample does not deviate significantly from the numbers of entries estimated
by the fit. The fits for different signal ratios for the unstaged network with SHAPE = “TOT”
are shown in Figure 4.20. In second place comes the unstaged network with SHAPE = “DIA”
(Appendix D, Figure D.1). Only for signal ratios of 100% the fit estimations for signal and
background entries deviated signficantly from the de facto number of entries.
The staged networks with SHAPE = “TOT” and SHAPE = “DIA” performed worst in this test.
Especially, for signal ratios of 30% and 80% the deviations of data from the fit have been
signficantly large. Nevertheless, this does not mean those networks are badly trained. Their
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(a) Fit of signal distribution.

Transformed Network Output
-8 -6 -4 -2 0 2 4 6 8

E
ve

nt
s 

/ (
 0

.2
 )

0

500

1000

1500

2000

2500

3000

3500

4000

-8 -6 -4 -2 0 2 4 6 8

P
ul

ls

-4

-2

0

2

4

(b) Fit of background distribution.
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(c) Fit of superposition distrubtion.

Figure 4.18: Illustration of the fitted network output and their respective pull his-
tograms for an unstaged network with SHAPE = “TOT”. Here the whole sample was
used to fit signal and background as well as their superposition. The χ2 results of
all fits are summarized in Table 4.1

Gini coefficients are as high as the Gini of the best performing unstaged networks or even
better. This study, only suggests smooth outputs are more likely to be obtained from un-
staged networks. In Figure 4.19 the fitted value of signal entries in the samples constructed
is plotted over the true value.
The fits for the staged network setups show distinctly higher reduced χ2 and thus, the out-
puts of these networks are not suitable to be fitted with the analytic function that was put
forward in this analysis. Interestingly however, the fits for the staged networks in Appendix
D seem to perform better on smaller signal ratios.
Most of the findings presented above could also be confirmed on the much smaller sample
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(a) Unstaged network, SHAPE = “TOT”.
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(b) Unstaged network, SHAPE = “DIA”.
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(c) Staged network, SHAPE = “TOT”.
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(d) Staged network, SHAPE = “DIA”.

Figure 4.19: Plot of fitted value of signal entries over true value of signal entries for
different network types.

that reconstructs both B mesons described in Chapter 4.1.2. For the smaller sample it has
proven useful to fix the mean of the additional Gaussian function for the signal and back-
ground fits to the mean of the bifurcated Gaussian. Otherwise, the additional Gaussian often
described random fluctuations in the tails of the network output.
In summary, using an unstaged network in contrast to staged networks in previous analyses,
for example in [Pri13] and [R1̈2], is advantageous if smooth outputs are required, but only
if SHAPE is set to “TOT”. Due to the very wiggly and peaky output of SHAPE = “DIAG” (see Fig-
ure 4.9b) this option has not been presented here. Fitting these outputs does not lead to a
satisfying result.

39



CHAPTER 4. STUDY OF CONTINUUM SUPPRESSION

Transformed Network Output
-8 -6 -4 -2 0 2 4 6 8

E
ve

nt
s 

/ (
 0

.2
 )

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

-8 -6 -4 -2 0 2 4 6 8

P
ul

ls

-4

-2

0

2

4

(a) Signal ratio 0%, χ2 = 2.5.
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(b) Signal ratio 10%, χ2 = 2.2.
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(c) Signal ratio 30%, χ2 = 2.3.
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(d) Signal ratio 50%, χ2 = 2.0.
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(e) Signal ratio 80%, χ2 = 2.3.
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(f) Signal ratio 100%, χ2 = 1.5.

Figure 4.20: Fits of superposition of signal and background for different signal pro-
portions in the sample for an unstaged network with SHAPE = “TOT”. The reduced χ2

of the fits are stated. The dotted curves represent the signal (red) and background
(black) from which the superpositon is composed.
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5 Conclusion

In this study a multivariate technique for continuum suppression was successfully evaluated.
Over 600 NeuroBayes classifications were analysed and direct connections between a large
number of possible settings and their consequences on the classification were established.
Many options were examined with respect to both separation efficiency and output shape
and thus, this thesis will support future analyses to perform well-balanced multivariate clas-
sifications.
The possible settings were successfully studied on a global level as well as for individual
variables. Furthermore, the relevance of certain groups of variables was examined.
Global preprocessing options and their influence on Gini coefficients and shape of the net-
work output distributions was studied. To receive almost Gaussian transformed network
outputs, this study suggests the use of the options DIA and TOT for the SHAPE parameter in
NeuroBayes. The option DIAG used in previous analyses features equal separation quality,
but is advised against if smooth network outputs are required.
The tests showed that the Gini coefficient is almost independent from the required level of
significance of the variables. Nevertheless, smooth outputs will become more unlikely if the
required level of significance is increased.
With respect to individual variables, Fox-Wolfram moments appear to be the most important
group of variables. Especially, excluding a special group of Fox-Wolfram moments made up
of two ROE particles showed to be very detrimental for the shape of the output distribution.
For individual variable preprocessing a guide has been put forward (see Chapter 4.2.2) to
help the user to set up an efficient continuum suppression. In this context, two main causes
for irregularities in the network output distributions have been identified and linked to the
shape of the input distribution of certain variables.
In the last part of this study, the results from previous chapters were gathered to set up
four networks with especially smooth output distributions. Here, unstaged networks were
compared to staged networks. The network output distributions were fitted with a combi-
nation of a bifurcated Gaussian and an ordinary Gaussian. The study suggests, the outputs
of unstaged networks tend to be smoother than the outputs of staged networks. Staged net-
work outputs cannot or only badly be described with the set of analytic functions mentioned
above.
In Appendix F a condensed step by step guide to set up a NeuroBayes network is presented
that summarizes the results gained in this study.
Further studies on the topic of this thesis should examine individual variables more closely
as the influence of individual variables on the output shape can be high. In addition to
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CHAPTER 5. CONCLUSION

that, it would surely be helpful to evaluate the neural networks used, in the context of rule
extraction, e.g. to link certain network input distributions to the connected output shapes.
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Appendix

A List of Variables
The variables used in this study modelled by Monte-Carlo are:

• Cleo-cones: cc_0, cc_1, ..., cc_8

• Cleo-cones flags: The eight “flagged” Cleo-cones are derived from the Cleo-cones and
are a binary representation of the Cleo-cones. See the CSBaseMethod.h script (function:
SetValueToDelta) for precise definition.

• cm_costh: Angle between momentum of reconstructed B candidate and beam axis

• ct_bo: Angle between thrust axis and rest of event.

• ct_bb: Angle between thrust axis and beam axis.

• Fox-Wolfram moments:

– k0hso00 - k0hso04: Charged momentum components

– k0hso10, k0hso12, k0hso14: Neutral momentum components

– k0hso20, k0hso22, k0hso24: Missing momentum components

– k0hoo0 - k0hoo4: components from ROE

– k0mm2: Missing mass

– k0et: Transverse momentum of B candidate

– r2: Ratio of second to zeroth Fox-Wolfram moments
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APPENDIX

B DIA versus DIAG network output
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Figure B.1: NeuroBayes fit of output node distribution using SHAPE = “DIA”
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B. DIA VERSUS DIAG NETWORK OUTPUT
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Figure B.2: NeuroBayes fit of output node distribution using SHAPE = “DIAG”
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APPENDIX

C Effects of PRE

Network Output
-1 -0.5 0 0.5 1

E
n

tr
ie

s

0

20

40

60

80

100

310×

Signal

Background

Transformed Network Output
0 0.2 0.4 0.6 0.8 1

E
n

tr
ie

s

0

20

40

60

80

100

310×

Signal

Background

Network Output
-1 -0.5 0 0.5 1

P
u

ri
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CSNB_ALLINExt

Purity (%)
0 20 40 60 80 100

E
ff

ic
ie

n
cy

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

NB ALLINExt

Figure C.1: Date: 13-04-06, 2014-08-06; "pre": "601", "loss": "ENTROPY", "sample":
"2", "rtrain": "0.8", "shape": "DIA", "cut": "-1", "epoch": "100", "tag": "PREtest", "itera-
tions": "300", "learndiag": "1", "reg": "OFF", "preproflags": "as original", Gini = 52.9,
Ginimax = 61.0
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C. EFFECTS OF PRE
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Figure C.2: Date: 12-57-51, 2014-08-06; "pre": "620", "loss": "ENTROPY", "sample":
"2", "rtrain": "0.8", "shape": "DIA", "cut": "-1", "epoch": "100", "tag": "PREtest", "itera-
tions": "300", "learndiag": "1", "reg": "OFF", "preproflags": "as original", Gini = 53.7/
52.8 final-preboost, Ginimax = 61.0
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Figure C.3: Date: 11-01-06, 2014-08-06; "pre": "612", "loss": "ENTROPY", "sample":
"2", "rtrain": "0.8", "shape": "DIA", "cut": "-1", "epoch": "100", "tag": "PREtest", "itera-
tions": "300", "learndiag": "1", "reg": "OFF", "preproflags": "as original", Gini = 52.9,
Ginimax = 61.0
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Network Output
-1 -0.5 0 0.5 1

E
n

tr
ie

s

0

20

40

60

80

100

310×

Signal

Background

Transformed Network Output
0 0.2 0.4 0.6 0.8 1

E
n

tr
ie

s

0

20

40

60

80

100

310×

Signal

Background

Network Output
-1 -0.5 0 0.5 1

P
u

ri
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CSNB_ALLINExt

Purity (%)
0 20 40 60 80 100

E
ff

ic
ie

n
cy

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

NB ALLINExt

Figure C.4: Date: 13-14-10, 2014-08-06; "pre": "602", "loss": "ENTROPY", "sample":
"2", "rtrain": "0.8", "shape": "DIA", "cut": "-1", "epoch": "100", "tag": "PREtest", "itera-
tions": "300", "learndiag": "1", "reg": "OFF", "preproflags": "as original", Gini = 52.9,
Ginimax = 61.0
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Figure C.5: Date: 11-29-09, 2014-08-06; "pre": "611", "loss": "ENTROPY", "sample":
"2", "rtrain": "0.8", "shape": "DIA", "cut": "-1", "epoch": "100", "tag": "PREtest", "itera-
tions": "300", "learndiag": "1", "reg": "OFF", "preproflags": "as original", Gini = 52.9,
Ginimax = 61.0
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Figure C.6: Date: 11-07-36, 2014-08-06; "pre": "622", "loss": "ENTROPY", "sample":
"2", "rtrain": "0.8", "shape": "DIA", "cut": "-1", "epoch": "100", "tag": "PREtest", "itera-
tions": "300", "learndiag": "1", "reg": "OFF", "preproflags": "as original", Gini = 52.7/
52.8 final-preboost, Ginimax = 61.0
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Figure C.7: Date: 11-09-32, 2014-08-06; "pre": "621", "loss": "ENTROPY", "sample":
"2", "rtrain": "0.8", "shape": "DIA", "cut": "-1", "epoch": "100", "tag": "PREtest", "itera-
tions": "300", "learndiag": "1", "reg": "OFF", "preproflags": "as original", Gini = 53.7/
52.8 final-preboost, Ginimax = 61.0
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C. EFFECTS OF PRE
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Figure C.8: Date: 11-30-01, 2014-08-06; "pre": "610", "loss": "ENTROPY", "sample":
"2", "rtrain": "0.8", "shape": "DIA", "cut": "-1", "epoch": "100", "tag": "PREtest", "itera-
tions": "300", "learndiag": "1", "reg": "OFF", "preproflags": "as original", Gini = 52.9,
Ginimax = 61.0

53



APPENDIX

D Fit of Network Outputs

54



D. FIT OF NETWORK OUTPUTS
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(a) Signal ratio 0%, χ2 = 12.2.
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(b) Signal ratio 10%, χ2 = 14.4.
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(c) Signal ratio 30%, χ2 = 14.2.
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(d) Signal ratio 50%, χ2 = 14.5.
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(e) Signal ratio 80%, χ2 = 14.7.
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(f) Signal ratio 100%, χ2 = 8.5.

Figure D.1: Fits of superposition of signal and background for different signal pro-
portions in the sample for an unstaged network with SHAPE = “DIA”. The reduced
χ2 is stated. The dotted curves represent the signal (red) and background (black)
from which the superpositon is composed.
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(a) Signal ratio 0%, χ2 = 9.0.
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(b) Signal ratio 10%, χ2 = 6.7.
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(c) Signal ratio 30%, χ2 = 8.6.
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(d) Signal ratio 50%, χ2 = 9.0.
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(e) Signal ratio 80%, χ2 = 17.9.
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(f) Signal ratio 100%, χ2 = 20.0.

Figure D.2: Fits of superposition of signal and background for different signal pro-
portions in the sample for an staged network with SHAPE = “TOT”. The reduced χ2 is
stated. The dotted curves represent the signal (red) and background (black) from
which the superpositon is composed.
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(a) Signal ratio 0%, χ2 = 10.4.
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(b) Signal ratio 10%, χ2 = 12.4.
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(c) Signal ratio 30%, χ2 = 15.5.
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(d) Signal ratio 50%, χ2 = 14.0.
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(e) Signal ratio 80%, χ2 = 15.0.
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(f) Signal ratio 100%, χ2 = 11.1.

Figure D.3: Fits of superposition of signal and background for different signal pro-
portions in the sample for a staged network with SHAPE = “DIA”. The reduced χ2 is
stated. The dotted curves represent the signal (red) and background (black) from
which the superpositon is composed.
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APPENDIX

E Summary of NeuroBayes Settings
In this chapter the NeuroBayes settings that are useful for continuum suppression or a binary
classification task in general are presented in a condensed way.

E.1 Global Settings

There are a number of parameters that control the basic training procedure. These parame-
ters are:

• RTRAIN: This parameter controls the amount of input which is used for training. Thus,
this option can be used to train the network on a part of a sample, say 80%, while using
the remaining part for evaluating the expertise. Possible values for RTRAIN range from
0 to 1. Especially, this parameter can be used to check for signs of overtraining.

• EPOCH: With this parameter the interval of weight update can be adjusted. EPOCH is a
useful option if computation time is a critical issue. The default setting for EPOCH is
200.

• ITER: The maximum number of iterations, meaning the number of times all training
patterns are presented to the network, is set by this parameter. However, if the network
error is minimized before the number of iterations set has ellapsed, the training is
ended automatically. The default is 100 iterations.

• LOSS: With this parameter the type of loss function used during network training is set.
The three possible options are ENTROPY, QUADRATIC and COMBINED. The default setting
ENTROPY will be an efficient choice in many applications and allows a probabilistic
interpretation of the network output distributions. Only with ENTROPY the network
error has a physical meaning.

• LEARNDIAG: With this parameter the user can add a term to the loss function corre-
sponding to the deviation of the signal purity plot from the diagonal and thus force
the network on the diagonal. The possible options are 1 (on) and 0 (off).

PRE

The global preprocessing flag consists of three integers kij and controls the type of prepro-
cessing performed.
The integer k attains values from 1 to 9 and sets the required level of significance for a vari-
able to be taken into the neural network training. The level of significance is computed by
k · σ2 . The parameter k should be chosen empirically.
In the encoding kij, the integer i (i = 0, ..., 3) determines if the variables are de-correlated,
normalised or rotated before training. In the case of classification, i = 3 can directly be ruled
out as it is not a possible option in this mode. The remaining options for i are:

• i = 0: The input variables are fed untouched to the net, no de-correlation is performed.

• i = 1: The input variables are de-correlated and normalised prior to the training.
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• i = 2: The input variables are de-correlated and all linear dependence on target is
rotated to the first new input variable (Principal Component Analysis).

The integer j sets the type of transformation applied to the input variables:

• j = 0: No preprocessing is performed.

• j = 1: The distributions of input variables are flattened.

• j = 2: The distributions of input variables are transformed to a Gaussian distribution.

The two most usefull options for kij in continuum suppression are k12 and k22. With both
preprocessing flags the distributions of the input variables are transformed to a Gaussian.
However, the main difference is the type of training performed.
With k22 a booosted training is performed. Boosting refers to performing a second training
which uses higher weights for misclassified data and basically is a process of readjusting the
connection weights. In the case of boosted trainings the NeuroBayes analysis file contains
many plots showing pre- and post-boost results. Note, boosted trainings have higher chances
of overtraining and should be evaluated by using RTRAIN.

REG

With this parameter the user can control the type of regularisation that is performed globally
when a network is trained. The aim of regularisation has been outlined in Chapter 3.3. The
possible options are:

• OFF: No regularisation is performed during the training.

• REG: A Bayesian regularisation scheme is applied, dividing weights into three different
classes (weight of bias node in input layer, weights of remaining input nodes, weights
of connections from hidden to output layer). This option is the standard setting.

• ARD: Automatic Relevance Detection equips all input nodes with their own regularisation
constants independent of each other.

• ASR: Automatic Shape Regularisation equips all output nodes with their own regularisa-
tion constants independent of each other.

• ALL: Combines ARD and ASR.

For most trainings the option REG will be an efficient choice and lead to networks with high
separation efficiency.

SHAPE

The SHAPE parameter controls the behaviour of direct connections from input to output layer.
The different options are:
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• OFF: No connections between input and output layer are established.

• DIAG: A spline fit is applied to the output of the output nodes. The fit is required to
distribute the purity versus network output along the diagonal after preprocessing and
before training.

• DIA: This option is a specialization of DIAG. The technique applied matches DIAG with
the exception that a smoother spline fit is performed.

• TOT: Establishes direct connections between input and output layer in order to describe
a linear density estimation.

• INCL: Direct connections between input and output layer are established to describe
the inclusive distribution. This option is mainly used for shape-reconstruction and is
not used in the investigations for this thesis.

• MARGINAL: Utilizes a binomial marginal sum method as input to the network. This
setting cannot be used in this thesis as it only works for problems with uncorrelated,
univariate data.

The study suggests the use of DIA and preferably TOT, if smooth output distributions are
required. The highest separation efficiency is achieved with DIAG. However, the output dis-
tributions with this option are very unsmooth.

E.2 Individual Variable Settings

Preprocessing cannot only be performed globally, but on individual variable level. This
enables the user to treat input variables differently.
The individual variable preprocessing flag consists of two integers ij. The options used in
this study are i = 1, 3, 9 and j = 2, 4. The digit j defines the transformation a variable is
subjected to:

• j = 2: Transforms variable to a Gaussian distribution.

• j = 4: Uses result of regularised fit to mean values of target to transform variable.

The digit i can be used to modify the action defined by j. Especially, it is useful to determine
the way NeuroBayes works with missing input. Missing input denoted by the value -999
which has to be set beforehand can be modelled with δ-functions. The different options of i
used are:

• i = 1: Use mean target and flatten the variables distribution. δ-functions will not be
considered.

• i = 3: Use mean target and flatten the variables distribution. δ-functions are used and
left untouched during transformation.
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• i = 9: Use mean target and flatten the variables distribution. δ-functions are used
and set to zero during the transformation process defined by j, while the remaining
distribution is transformed to have mean zero and unit width.

In general, the user has to decide if a Gaussian transformation is applied (j = 2) or if the
target is used for transformation (j = 4). The choice of i then solely depends on the treatment
of δ-functions which may be in the input variables distribution if input is missing.
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F Continuum Suppression Recipe
To give the user a quick introduction to the use of NeuroBayes for continuum suppression,
the results presented throughout the thesis are gathered here and condensed to a few simple
setup steps. The recommendations that are made, have been established using two samples
(see Section 4.1.2) and thus do not assert to be absolute.
The following options are set globally and are a good point to start from: REG = “REG”, PRE =
612, LOSS = “ENTROPY”, LEARNDIAG = 0. For the cut which was introduced in Chapter 4.1.3 it
is useful to start with the default of -1. If the user is satisfied with all other settings the cut
value can be adjusted to get rid of peaks and cliffs. Now a step by step procedure is given to
set up the network:

1. Start with setting up an unstaged network which takes all the variables which shall
be trained. Use SHAPE = “TOT”. The individual preprocessing flags which are a good
starting point are outlined in Chapter 4.2.2. Then train the net.

2. Check if the purity of the network trained is distributed along the diagonal. If not try
using LEARNDIAG = 1 to force purity onto the diagonal.

3. Use RTRAIN, which can assume values between zero and one, to check the net for signs of
overtraining. Alternatively, use a second sample to test the expertise for overtraining.

4. If the trained network seems to be overtrained, try using the SHAPE = “DIA” option and
LEARNDIAG = 0.

5. As soon as you feel comfortable with the network, you may try using a staged network
and elaborate on the individual variable preprocessing flags.
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