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1. Introduction

In order to further our understanding of particle physics, experiments at high energy and
high precision are necessary. The required energies can be achieved by particle colliders,
where complex detector systems measure the results of the collision. To test theories, it
is often essential to know the properties of particles created at collider experiments. It is
impossible to directly measure the quantities of interest. Instead one has to reconstruct
the particles based on a multitude of signals in the detector systems. Naturally the best
results can be achieved by combining the measurements of all subsystems together. This
is commonly done by so-called particle-flow algorithms, which combine the signals of all
detector subsystems and reconstruct the particles.
Modern particle physics experiments generate large amounts of data, which are difficult to
analyse. Machine learning is a promising field in the extraction of relevant information from
large datasets. By training a model to interpret the measured detector hits, one can predict
the particles causing the detected showers and their properties. Such a reconstruction
could complement or replace current particle-flow algorithms in future experiments. In
order to properly train a model, one needs excellent simulations with the ground truth of
the particle properties. After sufficient training a neural network is able to reconstruct the
particles, which caused the measured showers, and their properties.
Different machine learning techniques have found application in high energy physics early
on as described in Ref [1]. Machine learning methods already support detector subsystems
in hit reconstruction [2] and track finding [3] or help to identify particles [4][5]. They
are also used in the event selection, both as trigger [6] and in final analysis [7]. Even
cutting-edge experiments like the Higgs boson discovery make use of machine learning to
identify photons and flavour-tag jets [8].
Nevertheless it is important to properly test new machine learning approaches on simulated
datasets first. This way the strengths and weaknesses of different methods can be found
and the performances can be evaluated in detail, based on the plethora of information
available in the simulation.
One promising approach to machine learning is the so-called object condensation approach
[9], where the information is aggregated into multiple points by clustering the vertices that
belong to the same object together.
Previous studies already investigated the performance of different machine learning algo-
rithms on a dataset simulated by the COCOA-package [10][11]. The paper Ref [10] looked
into three algorithms: a modified object condensation (OC) method, a transformer set
prediction network with slot attention (TSPN-SA), and a novel hypergraph architecture
(HGPflow). All the models were evaluated based on efficiency and fake rate, classification
purity, particle angular and momentum resolution, and jet metrics. The comparisons
favoured the newly introduced HGPflow algorithm. It even outperformed a traditional
particle-flow method in the reconstruction on jet level. COCOA was developed for studies
of machine learning algorithms and allows the simulation of a simplified calorimeter system.
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2 Bachelor Thesis: Applying the Object Condensation approach to the COCOA-dataset

While a modified object condensation algorithm was already part of the investigation, this
thesis still focuses on a object condensation method, which is closer to the original object
condensation paper. An existing pipeline is adapted and optimised for the training of a
model on the COCOA-dataset. A new machine learning model is trained to reconstruct
particles and their properties from the simulated detector signals and its performance is
evaluated. By removing bad events from the training, the previous results are improved
upon.

This thesis is structured as follows: Firstly there will be a short summary on the theoretical
background in physics needed for this application in chapter 2, followed by an introduction
into machine learning and an overview of GravNet and the object condensation method
in chapter 3. Next in chapter 4 the dataset used for this thesis is described. Chapter
5 summarises the experimental investigations. Finally in chapter 6 the results will be
evaluated and a conclusion is reached in the last chapter 7.



2. Physical Background

In the following sections a basic overview of the Standard Model and collider experiments
based on Ref [12] [13] [14] is provided. Additionally the particle-flow algorithm at use at
the CMS and ATLAS experiments are explained based on Ref [15][16] and the anti-kT jet
clustering algorithm [17] is introduced.

2.1. The Standard Model of Particle Physics

While there are still some phenomena left to be understood, the Standard Model is our
currently best description of reality. The Standard Model is a quantum field theory and
describes all known elementary particles as well as their interaction with all fundamental
forces except gravity. An overview of the particles and their properties is shown in Figure
2.1. The particles are separated into fermions or bosons based on their spin.

The twelve fermions are divided into quarks and leptons. Only quarks carry a colour charge
and therefore interact through the strong force. The six quarks are grouped into three
generations, with each generation containing one particle with an electric charge of 2

3 and
one with an electric charge of −1

3 . The mass of the particles increases in later generations.
The particles are called up (u) and down (d) in the first generation, charm (c) and strange
(s) in the second generation, and top (t) and bottom (b) in the third generation.

Of the six leptons three carry a negative unit electric charge: the electron (e−), the muon
(µ−) and the tau (τ−). The tau is the heaviest charged lepton, and the electron the lightest.
The other three leptons are called neutrinos and only interact via the weak interaction
since the electric and colour charges are both zero. They are each grouped with another
charged lepton into a lepton family. Neutrinos are assumed to be massless in the Standard
Model, although multiple observations like neutrino oscillations suggest that they have a
small, non-zero mass, which could lead to interesting physics beyond the Standard Model
[19].

All charged particles have an antiparticle with opposite physical charges. The antiparticle
of the electron is called the positron (e+) and has an positive electric charge.

The fundamental forces are described by the exchange of gauge-bosons. The massless gluon
(g) can carry colour-charges and is the force-carrying particle of the strong interaction. The
unified electro-weak-interaction is mediated by the photon, (γ), the Z-boson (Z0) and the
W-bosons (W ±). Of these three, only the photon is massless and only the W-boson carries
a charge of plus or minus one.

Lastly the massive Higgs boson (H), which results from the mechanism, that gives particles
mass, is a scalar spin zero particle. It was discovered in 2012 at the Large Hadron collider
(LHC)[20].

Quarks can create colour neutral bound states called hadrons. A hadron consisting of
a quark and an antiquark is a meson and a hadron made up of three (anti)quarks is a

3



4 Bachelor Thesis: Applying the Object Condensation approach to the COCOA-dataset

Figure 2.1.: Overview of the particles in the Standard Model. The mass, electric charge
and spin of each particle is noted in the top left of each box. [18]

(anti)baryon. The lightest baryon is the proton, consisting of two up-quarks and one
down-quark (uud), and the lightest meson is the positively charged pion (π+) consisting of
an up-quark and an anti-down-quark (ud̄). Most particles can decay via the fundamental
interactions into stable particles.

Although only the electron, the proton, the photon and the neutrinos are stable, some
other particles with long decay times also exist long enough to interact with matter. The
energy deposited in matter by a charged particle due to ionisation can be described via the
Bethe-Bloch equation. Additionally very light charged particles like the electron lose most
of their energy above a certain critical energy by emitting bremsstrahlung: the radiation of
a photon in the electrostatic field of a nucleus. Since high energy photons can undergo pair
production, and create an e−e+-pair, which in turn emit photons via bremsstrahlung, a
cascade of electrons, positrons and photons is produced in these electromagnetic showers.
Hadrons are too heavy to be significantly impacted by bremsstrahlung, but instead can
undergo strong interaction with the nuclei of the material, resulting in highly variable
hadronic showers with many possible complex end states.

2.2. Collider Experiments

Many recent physical breakthroughs were achieved by collider experiments at particle
accelerators, since in order to probe the Standard Model and search for new physics,
experiments with extremely high precision at high energies are necessary. Charged particles
can be accelerated and shot at a stationary target or collided with another beam of
accelerated particles. The advantage of a beam collider is that higher centre-of-mass
energies can be achieved.

The particles which are produced by these collisions are measured by complex detector
systems. Even new physics models, often have mechanism in which the novel particles decay
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Figure 2.2.: Transverse slice of the CMS detector. The beam line is on the very left. It
is surrounded by the tracker, the ECAL and the HCAL. The superconducting solenoid,
which creates the strong inner magnetic field is drawn in the middle. Lastly the muon
chambers on the outside of the detector are represented on the right. Additionally the
paths of different particles are drawn on the detector slice. Adapted from Ref [21]

into known Standard Model particles, allowing a reconstruction based on the detection of
traditional particles. The experiments consist of multiple subsystems, like tracking systems,
electronic calorimeters (ECAL), hadronic calorimeters (HCAL) and muon chambers. A
transverse slice of the CMS detector is shown in Figure 2.2 as an example. Since some
interesting interactions are very rare, a high frequency of collisions is necessary. One beam
crossing can create many interactions, leading to dense environments with many particles,
which need to be identified and reconstructed to test new theories. In order to best utilise
all the available information, one has to combine the measurements of all subsystems.

Interesting quantities include the energy and transverse momentum pT of each particle.
Often one also wants to know what type of particle is created by the collision. The position
inside a collider detector is measured in angular coordinates by the azimuthal angle ϕ and
the pseudorapidity η, which describes the angle relative to the beam axis.

Since initial particles created by a collision might decay quickly into secondary particles,
particles travelling in the same direction are sometimes grouped together into jets. De-
pending on the experiment, one might be less interested in the metrics of the individual
particles, which reach the detector, but instead might want to investigate the jet properties,
to find out more about the initial particles.

The following sections quickly introduce the typical subsystems in a detector at a collider
experiment.

2.2.1. Tracking

In order to measure the momenta of charged particles, the inner region of most particle
detectors is filled with a strong magnetic field, which forces these particles onto a curved
track. The track is commonly measured by layers of sensors with low material budget, for
example silicon. When an energetic particle passes through a correctly doped and biased
semiconductor, it creates electron-hole pairs and a small electric current can be measured.
With multiple layers of high granularity detectors, one can connect the points where a
particle was measured and approximate the curvature of the track. From this curvature,
the momentum of the particle can be calculated. Gaseous detectors, in which the incoming



6 Bachelor Thesis: Applying the Object Condensation approach to the COCOA-dataset

particles ionise a gas, leading to localised ions and electrons with can be measured, like
multi-wire proportional chambers, micropattern gaseous detectors, or drift chambers can
also be used to measure the tracks of a particles.

Some particles lose very little energy in matter, if they have the right energy. Since muons
created at the LHC are such minimum ionising particles, and interact very little with
matter, they are not stopped in the calorimeters. Therefore special muon detectors are
used behind the calorimeters to still measure and identify the muons.

2.2.2. Calorimeter

In order to measure the energy of the particles in a collision, calorimeters are used. Since
electromagnetic showers have a shorter lateral profile than hadronic showers a composite
calorimeter is used in most experiments. It consists of an inner ECAL and an outer HCAL.

Calorimeters are commonly made from organic scintillators. The molecules in the scin-
tillators are raised into excited states by the deposited energy and emit light, when they
decay back to their ground-state. By measuring the intensity of the emitted light with
photomultipliers, one can measure the deposited energy.

Another method to detect the energy is to build calorimeters with heavy liquid noble
gasses. Incoming radiation can ionise the material, leading to a measurable electric current
proportional to the incoming energy. The anode and cathode for measuring the current
inside the detector function as absorber and can help to induce showers in the calorimeter.

ECALs induce electromagnetic showers and absorb the energy of electrons or photons.
The stopping power is described by the radiation length X0, which is defined as the mean
penetration depth at which a high energy electron lost 1

e of its energy.

Since hadrons travel a relatively long distance between interactions, characterised by the
nuclear interaction length λint, HCALs have to be large. In order to reduce the size, a
heterogeneous structure is often used. The calorimeter consists of alternating layers of
dense absorber material, in which showers are created, and active material, where the
energies are sampled. While the energy resolution is naturally worse, it is often an effective
measure to save space and money.

Calorimeters have to be large enough to contain the particle showers, common orders
of magnitude are 25 X0 for an ECAL and 11 λint for a HCAL. Space and cost efficient
detectors use materials with short X0 and λint. In a composite calorimeter, the ECAL
should ideally have a high λint, so that most hadrons only interact in the HCAL. This can
be achieved by materials with a high atomic number Z.

2.2.3. Particle Flow

The measurements of the individual detector subsystems have to be combined to reconstruct
each particle. This can be done by so-called particle-flow algorithms.

In the first step of the current global particle-flow algorithm in use at the CMS experiment,
which reconstructs all particles in an event simultaneously, physics objects are built from
the subsystems. This includes tracks, energy clusters in the ECAL and HCAL, and muon
signatures. Topological clusters are created by connecting neighbouring calorimeter cells
with deposited energy higher than a certain threshold value.

Additionally, cells are selected as seeds, if the deposited energy is higher than all their
neighbouring cells. The measured energy of each cluster has to be calibrated since not all
of the energy of a particle can be measured. If there is just one seed in a cluster, all the
measured energy in the cluster is assigned to it. If multiple seeds share the same cluster, the
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energy of the other cells are distributed between all the seeds. In both cases the position is
determined by energy-weighted averages in an iterative procedure.

Lastly the physics objects in close spatial proximity are linked together and the connected
blocks are interpreted. Since muons have the cleanest signature tracks and energy clusters
in close proximity to the track in the muon chambers are assigned to muons. Next isolated
ECAL clusters are assigned to electrons or photons depending on whether they are linked
to a track. Clusters in the HCAL are assigned to neutral and charged hadrons depending
on the existence of a linked track.

Opposed to the described global algorithm, the particle-flow algorithm in use at ATLAS
reconstructs the particles in multiple steps. First charged particles, which leave clear
signatures in the tracker, are linked to close clusters in the calorimeters. The energy
measured by the tracker is then subtracted from the calorimeters, leaving only the energy
deposited by neutral particles. Now photons and neutral hadrons can be reconstructed
from the energy left in the ECAL and HCAL.

There are many more particle-flow approaches for the reconstruction [22][23].

2.2.4. Anti-kt jet clustering algorithm

Often it is interesting to cluster individual particles together and investigate the properties
of the resulting jets. A popular jet clustering algorithm is the anti-kt jet clustering algorithm.
It clusters particles according to the following distances based on the transverse momentum
pT , the difference in position ∆R2 = ∆η2 + ∆ϕ2 between particles and a parameter Rparam,
which controls the effective size of the created jet cones:

dij = min(p−2
T i , p−2

T j )
∆R2

ij

Rparam
(2.1)

diB = p−2
T (2.2)

After calculating all distances, the minimum distance is determined. If the smallest distance
is dij between two particles, they are clustered into a single pseudo-jet. If the distance to
the beam diB is the smallest, the particle i is declared as a jet and removed from the list.
This process is repeated until there are no particles left.

Since particles with low pT (soft), will cluster to particles with high pT (hard), before hard
particles are clustered among themselves, soft radiation does not modify the shape of the
jet. Nevertheless the algorithm remains flexible to the introduction of hard radiation.

Since future experiments like the high luminosity LHC [24], will create large amounts of
new data with huge pile-up, it is necessary to rethink the reconstruction approach. A
promising approach to handle the new data is via machine learning.





3. Machine Learning

Machine Learning (ML) is a complex field, that has received a lot of attention in the last
years. In the following sections an introduction into machine learning sourced from Ref
[25] [26] is presented and an explanation of GravNet based on Ref [27] and the object
condensation approach adapted from Ref [9] is given.

3.1. Basics of Machine Learning

Artificial neural networks are inspired by the way human brains work. The human brain
consists of a lot of neurons, which are connected with synapses. The strength of these
connections determines whether a neuron activates when its neighbours activate. Crucially
the strength of the synaptic connections changes based on external stimuli, enabling the
brain to learn an optimal configuration, to achieve certain tasks.

Similarly, artificial neural networks consist of interconnected layers, which compute an
output based on their inputs, which can come from another layer, and a set of weights. By
optimising the weights for each layer, complex functions can be modelled.

A multilayer neural network consists of an input layer, an output layer and a number of
hidden layers in the middle. A common architecture is a multilayer perceptron (MLP),
a fully connected feed-forward network, meaning that the whole output of a layer is
connected to the input of the sequentially next layer. A representation of a fully connected
neural network with one hidden layer is shown in Figure 3.1. The different inputs for the
network are called features. Mathematically a fully connected feed-forward network can be
represented as a combination of tensors. A single layer k consists of an activation function
Φk and a set of weights represented by a matrix W k. The input xk, which is a vector, is
transformed into the output vector yk as follows

yk = Φk(W kxk) (3.1)

The output is taken as the input for the next layer: xk+1 = yk, until the information arrives
at the output layer.

It is essential to add a non-linear activation function to the outputs of the layers, since
otherwise the model could be reduced to a simple linear combination of the inputs regardless
of the depth. Popular activation functions, which can be applied element wise, include
the sigmoid, the hyperbolic tangents (tanh) and the rectified linear unit (ReLU). The
ReLU, which has a sharp bent at zero, is sometimes replaced by the exponential linear unit
(ELU), which slowly decreases for negative values. The sigmoid and hyperbolic tangents
have the advantage, that the result will be constrained between zero or minus one and one
respectively. This helps the network keep the weights contained. A similar benefit is also
achieved by preprocessing the input to normalise all features.

Most machine learning goals can be formulated as a loss optimisation problem. The loss
is a function, which takes the output of the model and assigns it a value of how good

9
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Figure 3.1.: Visual representation of a fully connected neural network consisting of an
input layer, a single hidden layer and an output layer. [28]

it is. In a supervised learning, where the ideal outputs are known, this can simply be
understood as the absolute difference between the prediction of the model and the true
value of the sample. By computing the gradient of the loss with respect to the weights,
and implementing a gradient descent algorithm, one can slowly change the weights of each
layer to minimise the loss.

Since directly deriving an analytical expression of the gradient for each weight is impractical,
backpropagation is used. Firstly in the forward phase, the input is passed though the
network until an output is predicted. After calculating the loss, the gradient of the loss
with respect to the weights of each layer is calculated numerically in the backward phase.
It is called backwards phase, because the gradients are calculated in the reverse order
compared to the information flow in the forward phase. By cleverly using the chain rule,
one can significantly simplify the necessary calculations. Lastly the weights are adjusted in
the negative direction of the gradient.

W k
new = W k

old − α
∂L

∂W k
old

(3.2)

The learning rate, which controls the step-size of the optimisation, is denoted as α.

In order to iteratively improve the set of weights, one needs a large set of training data.
After enough training, the model can predict the correct output for a similar dataset, which
it has not seen before. Ideally the network is able to generalise to some extend and complete
the task it was trained to do on inputs, which deviate slightly from the training.

A common task for a network is to classify the input as one of a number of classes. This can
be achieved by predicting a number ν1 . . . νk for each class, which can be transformed into
a probability p1 . . . pk, that the given input belongs to each class, via the softmax function.

pi = eνi∑k
j=1 eνj

(3.3)
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The true label can be one-hot encoded, meaning that yi is one for the true class and zero
for all other classes. Now a cross-entropy loss can be applied

L = −
k∑

i=1
yi log(pi) = − log(pTrue). (3.4)

3.2. Graph Neural Networks

An important subset of neural networks are graph neural networks (GNN), which work on
information encoded as a graph. A graph consists of nodes, which are connected by edges.
The strength of the connections between nodes can be qualified as weights of the edges in a
weighted graph. Graphs can be represented via an adjacency matrix with a row and column
for each node. In an unweighted graph, the entries in the adjacency matrix are either one,
if the node belonging to the row is connected to the node belonging to the column, or zero
otherwise. If this matrix is symmetric, meaning, that if node A is connected to node B,
node B is also connected to node A, the graph is considered undirected.

An important feature of GNNs is that nodes can pass messages with their close neighbours.
Each node can aggregate information of all the nodes it is connected to. For example each
node can calculate the mean or maximum of a feature of its neighbours and integrate the
result into the output of the layer. The advantage of GNNs is that sparse data of different
sizes, like detector hits in a collider experiment, can be easily represented.

3.3. GravNet

GravNet [27] is a novel deep learning architecture using GNNs, which can achieve a high
performance on irregular inputs, like a particle detector, without preprocessing the input,
by learning a space representation for the input.

The initial input of the GravNet-layers is a B × V × FIN dataset consisting of a batch
with B events, each with V detector hits, which all have FIN features, like their position
and measured energy. By using a dense neural network1 two arrays are created from
the input features FIN: a set of coordinates S in the abstract space for each vertex and
a learnable representation of the vertex features FLR. Now the vertices are encoded as
nodes in a GNN and nodes are connected with their closest N neighbours measured by the
euclidean distance djk in the abstract space. For each vertex the features of its neighbours
are weighted by a potential of the distance djk between the vertices.

f̃ i
jk = f i

j × exp (−|djk|) (3.5)

Now information can be aggregated for each vertex by applying a function, like the mean
or the maximum, on the weighted features of the neighbours connected to the vertex.
Due to the potential, vertices which are closer contribute more to the aggregated feature.
This is the reason for the learnable space S, since vertices, which should exchange a lot
of information can be moved close to each other. Finally the resulting features F̃LR are
appended to the input features, fed through another dense layer and transformed into
a new set of features for each vertex FOUT, resulting in an output with the dimension
B × V × FOUT. An illustration of the steps performed by the GravNet layer is shown in
Figure 3.2.

1A MLP which has the same weights for each V in all B
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Figure 3.2.: Illustration of the data flow across the GravNet layer. (a) The input
features FIN are converted into a set of coordinates S in the clustering space and a learned
set of features FLR. (b) Using the position of each vertex according to S, a graph is built
and each vertex is connected to its N = 4 closest neighbours. (c) For each node the f i

j

features of its neighbours are converted into the f̃ i
jk by weighing them with a potential

of the euclidean distance djk. These weighted features are gathered by the given vertex,
resulting in the new features f̃ i

k for each node for each choice of gathering function. (d)
The resulting features F̃LR are transformed with the original input features FIN into the
output features FOUT. Adapted from Ref [27]
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3.4. Object condensation
An innovative method for machine learning is the object condensation (OC) method [9]. For
example, it can be used to reconstruct particles from detector signals or recognise objects in
images. The basic idea of the object condensation method is to aggregate information about
higher object into condensation points. Each individual vertex, a quantum of information
like a pixel in an image or a cell in a calorimeter, is assigned to an object that should
be reconstructed, like a particle or a shape in an image. The placement of vertices in an
abstract clustering space can be learned with an appropriate definition of the loss, so that
vertices belonging to the same object are connected, while vertices belonging to different
objects are pushed apart. After sufficient training, the network is able to create a cluster
and predict relevant properties for each object in a dataset.

For each vertex a scalar quantity β, which can be understood as a measure of the network’s
confidence, is predicted. Vertices with high β in sufficient isolation are taken as condensation
points and the information aggregated into them is taken as the result of the model.

Loss Definition
In order to compute the loss during training, βi is transformed into a charge qi

qi = arctan2 βi + qmin (3.6)

which scales monotonously with β and contains the hyperparameter of a minimum charge
qmin. Higher values of qmin ensure, that all vertices belonging to a condensation point are
clustered together.

An attractive (V̆k) and repulsive (V̂k) potential in the abstract clustering space can be
defined for each object k. Instead of computing the potentials coming from each vertex
belonging to the object k, which would become very computationally expensive, one can
approximate the potentials in terms of the distance ||x − xα|| between a position x and the
vertex α with the highest charge qαk belonging to the object k at xα:

V̆k(x) =||x − xα|| · qαk (3.7)
V̂k(x) = max(0, 1 − ||x − xα||) · qαk (3.8)

An example of an effective potential affecting a vertex is shown in Figure 3.3.

In order to compute the loss one needs to know, which vertices i belong to which object k.
This information is expressed in the matrix elements Mik, which are one if the vertex i
belongs to the object k and zero otherwise in this notation. Putting it all together one
arrives at

LV = 1
N

N∑
i=1

qi

K∑
k=1

(
MikV̆k(xi) + (1 − Mik)V̂k(xi)

)
(3.9)

Due to the attractive potential V̆k, points which belong to the same object are pulled
together. The repulsive potential ensures that there are no points belonging to another
object in the immediate proximity of one condensation point, influencing the prediction.
The strength of the loss is proportional to both the charge of the vertex and the charge of
the condensation point.

In order to avoid the trivial minimum of the loss by choosing very small β for all vertices,
an additional loss Lβ is introduced, to ensure a high charge of at least one condensation
point for each object and small β for noise vertices.

Lβ = 1
K

K∑
k=1

(1 − βαk) + sB
1

NB

N∑
i=1

niβi (3.10)
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Figure 3.3.: Visualisation of the potential affecting a vertex belonging to an object,
whose condensation point is located in the centre. Three condensation points belonging
to different objects are located around the centre. [9]

In this notation, ni is one for noise-vertices and zero otherwise. The strength of the
background suppression can be controlled with the hyperparameter sB.

Other loss terms should also be weighted by the charge of each vertex, so that the vertices
where the network is the most sure contribute the strongest.

Lp = 1∑N
i=1 ξi

·
N∑

i=1
Liξi (3.11)

ξi = (1 − ni)(qi − qmin) (3.12)

Inference

In the last step of inference, vertices with a βi higher than a threshold parameter tβ are
considered as condensation points. A candidate is only taken as a condensation point if it
is not within a distance td, controlled by a second parameter, of another candidate with
a higher β. Next all vertices within td of a condensation point are assigned to it. The
properties of the reconstructed object are taken from the prediction of the condensation
point.



4. COCOA-dataset

The network presented in this thesis is trained and evaluated on a dataset generated by
COCOA. In the following chapter COCOA is introduced and the provided dataset and the
used detector geometry is described based on Ref [10] [11]. Lastly the input format for the
neural network is described.

4.1. COCOA

The COnfigurable Calorimeter simulatiOn for Ai (COCOA) software package, developed
for ML-based studies, allows the simulation of particle showers in a full-cover-calorimeter.
Showers are generated by a PYTHIA8 Monte Carlo event generator and their interactions
with a configurable detector are simulated in GEANT4.

A COCOA-dataset [29], which contains 60 649 simulated events of a single quark jet, was
provided and is used in this investigation. It has the cell-wise detector information, like
position and deposited energy, as well as truth particle information belonging to each cell
and track. In addition to the training set a testing set with 38 922 single quark events is
provided, as well as a testing set with 38 295 showers originating from a single gluon. The
distributions of the dimensionality for the events can be seen in 4.1.

The simulated initial particles have an energy in the range [10, 200] GeV and their angular
coordinates are distributed uniformly in the ranges η ∈ [−2.5, 2.5] and ϕ ∈ [−π, π].

4.2. Detector

The detector is designed to be similar to detectors in use at current collider experiments
and is loosely inspired by the ATLAS calorimeter. The inner 150 cm of the detector have
a strong uniform magnetic field, which is stopped by four 1.1 cm layers of iron. The
detector is split up into a barrel for |η| < 1.5 and two endcaps for 1.5 < |η| < 3.0 each
consisting of six layers. The inner three layers simulate a homogeneous electromagnetic
calorimeter (ECAL) with radiation length of X0 = 2.5 cm. The outer three layers simulate
a hadronic calorimeter (HCAL) with an active and a passive material resulting in a nuclear
interaction length of λint = 26.6 cm by only sampling some of the detected energy. Noise
and smearing are added at random. Instead of a complicated tracker, the position of the
truth particle at the beginning of the calorimeter is taken, and its true energy is smeared
for an approximation of a momentum measurement.

4.3. Input format

The network is given B events in each batch as input. Each event consists of V vertices.
A vertex can be a single detector cell hit or a track. It has the following FIN features:
position and deposited energy for hits, and position, charge, and measured momentum
for tracks. In the implementation the vertex information from all event is concatenated

15
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Figure 4.1.: Boxplots of the number of entries within one event for the quark test dataset
(green) and the gluon test dataset (blue). The mean value is written on the left.

and can be separated by a rowsplits array, which contains the event boundaries. While
the network only has access to the stated features, other truth information is stored for
evaluation. This includes which particle made a given track or deposited the majority of
the energy in a given cell encoded as a truth-index, and its properties like its initial energy
or angular coordinates. After selecting a single event via the rowsplits, vertices belonging
to the same particle can be grouped using the truth-index.



5. Experimental Investigations

5.1. Filtering the dataset

After encountering issues during training, an error was found in the provided dataset.
The simulation wrongfully assigned detector hits to the same particle, although they are
positioned on opposite sides of the detector. Such an event is displayed in Figure 5.1.

The authors of the dataset were informed and they were able to replicate the problem. No
corrected dataset was provided in time for this thesis. Therefore studies were performed
to identify events that are less affected by the issues for the training. By requiring that
90% of the energy deposited by a particle in the detector is within close proximity of the
mean position of all detector hits of the particle, the problematic events could be removed.
With a generous slice, which allows a difference in ϕ and η of 0.5, half of the dataset (29674
events) remained.

During the investigation, another problematic event was found. A single event in the
training dataset contained a track at a position 1 × 1012 mm outside the detector. Since
this track is definitely unphysical, the event was also removed.

These cuts are only made on the training set; the testing set is not changed to ensure a
fair comparison to Ref [10].

5.2. Technical Implementation

The training of the reconstruction model was implemented in Python using TensorFlow
[30], Keras [31], the DeepJetCore framework [32] and the Adam optimiser [33]. A lot of
the infrastructure already existed, because the project [34] developed for the analysis of
the HGCAL could be utilised. The code of the final project can be found online [35].

A pictorial representation of the network architecture is shown in Figure 5.2. All dense
layers have a dimension of 64 and are activated by the ELU activation. A small value for
qmin of 0.1 is chosen, since here the focus is on predicting the objects themselves directly,
and the association of individual hits to the object is secondary. The condensation space
has three dimensions for easy visualisation. The training is performed for 1200 epochs with
a decreasing learning rate in later epochs over three days.

Opposed to the modified object condensation approach in Ref [10], here the original
object condensation approach is followed. This means, the values for β are trained in an
unsupervised manner. Initially the β-values for tracks were forced to be one, which helped
the network reconstruct charged particles, but further testing showed, that the network
can achieve similar performance without this manual change to the algorithm.

17
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(a) All particles in the event (b) Only energy deposits by one particle

Figure 5.1.: Example of corrupted event. All detector hits are displayed at the position
of the corresponding cell. The scale is proportional to the deposited energy. Points are
colour and symbol coded based on the truth particle which deposited the most energy in
the cell. Purple squares are cells where noise is the dominant contributor.

5.3. Reconstruction goals

The model is given the cell-wise information of position and deposited energy and the track
information of position, momentum and charge and is tasked with reconstructing the truth
particles of the shower. The loss function has three main components next to the clustering
described in section 3.4: position-, classification- and energy-loss.

The position-loss rewards the network for correctly predicting the positional quantities
ϕ and η of the truth particles, by adding a loss term proportional to the square of the
difference in these quantities. Due to the modular nature of the angle ϕ, an encoding via
the x- and y-coordinates on the unit circle corresponding to ϕ is chosen.

The goal of the classification-loss is to predict what type of particle the truth particle is. A
simplified classification with only three classes is adopted. All particles are assigned to one
of three groups: charged particles, neutral hadrons and photons. All points are assigned
one of these three groups or classified as background noise. This classification is trained via
a categorical cross-entropy loss. Since the number of particles in each category is unevenly
distributed as seen in Figure 4.1, the classification loss is weighted by the frequency of each
class.

Lastly the energy-loss penalises the model for not predicting the true energy of each particle.
By applying a loss proportional to the square of the difference of the predicted and the
true energy, the model learns to predict the true initial energy of the parent particle.

For these high energetic particles, the momentum is approximated as the energy and the
transverse momentum pT is calculated from the predicted energy E and pseudorapidity η

pT = E

cosh η
. (5.1)

5.4. Using the TOpAS cluster

Since the training of a machine-learning model requires a lot of computing power and a
significant speed boost can be achieved by utilising a GPU, it was necessary to make use



Chapter 5. Experimental Investigations 19

Pr
ep

ro
ce

ss

D
en

se

G
ra

vN
et

B
lo

ck

G
ra

vN
et

B
lo

ck

G
ra

vN
et

B
lo

ck

G
ra

vN
et

B
lo

ck

D
en

se

B
at

ch
N

or
m

al
ise

D
en

se

D
en

se

B
at

ch
N

or
m

al
ise

O
ut

pu
t

D
en

se

D
en

se

D
en

se

B
at

ch
N

or
m

al
ise

G
ra

vN
et

B
at

ch
N

or
m

al
ise

Figure 5.2.: Illustration of the network architecture. The network consists of a preprocess
layer, which normalises all input features, followed by one dense layer and four blocks.
Each block is made up of three dense layers, a batch normalisation layer, a GravNet layer
and another batch normalisation layer. The last block is followed by another dense layer,
a batch normalisation layer, further two dense layers, another batch normalisation layer
and the output layer.

of the computing cluster TOpAS (Throughput Optimized Analysis System) at GridKa.
For this purpose a script was created, that automatically submits a job to TOpAS.

By using the scheduling system HTCondor, the submission script was an important step
in the training pipeline. It transfers all needed files to the cluster, sets up the required
environment, and starts the training. The progress can be monitored with wandb [36].
After the execution, all created files are transferred back to the local machine for further
analysis.

The submission pipeline is not limited to training scripts. All kinds of resource intensive
jobs can be submitted to TOpAS.

5.5. GPU Optimisation

One of the problems during training was a long execution time for individual steps, resulting
in a long and inefficient training. Upon a closer examination, the major problem for the
delay was found in the loss layer. Multiple events are grouped into batches and the loss
is calculated for each batch. The inefficiency arises from the fact that two matrices are
calculated for each event in a batch sequentially. For the dataset of the HGCal, the loss
layer was originally designed for, this is not a problem, since a single event has more than
100 000 hits and therefore each batch consists of only a few events, so the loop is only
executed a few times. Since a single event in the COCOA-dataset contains significantly
fewer hits as seen in Figure 4.1, one batch can contain many events and the loop was
executed repeatedly. Even though one iteration is quite fast, the inherent inefficiency of
loops in Python resulted in a long calculation time for the loss of a batch.

In order to combat this, it was decided to change the implementation of the CUDA-kernels,
so that the matrices of multiple events can be calculated at the same time. The main
bottleneck was the calculation of the attractive and repulsive potential.
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Attractive Potential

For the attractive potential, one needs to know which hits belong to the same particle.
This is expressed by a matrix with one row for each particle, containing the indices of all
hits made by this particle. Since not all particles have the same number of hits associated,
the empty fields are filled with negative one.

The repetition of the same index for a particle in a different event can be avoided by simply
offsetting the truth-indices. Now, with unique indices for all particle the matrix can be
determined via the same logic as before, but converting all events in a batch at once.

Repulsive Potential

In order to calculate the repulsive potential one needs to know all hits, which do not belong
to a chosen particle. Before the changes this was encoded in a binary matrix, with a row
for each particle containing a one, if the corresponding hit does not belong to the particle,
and a zero, if it does.

To correctly adapt this information for a calculation of multiple events at the same time,
one has to compare which event the chosen particle and the hit fall into, because despite
the fact that a hit might be due to a different particle, other events should not influence
the current event.1

Although the old encoding still worked after the changes, it becomes an inefficient repre-
sentation for the information with a larger batch size, since most entries are zero, because
the hits come from a different event than the particle. Furthermore, the dimension of the
matrix is K × d with the total number of particles K. The problem is that the matrix
dimension d grows with to the sum of the number of hits Vi of all events in a batch, which
can lead to memory problems for large batch sizes.

dold =
B∑

i=1
Vi (5.2)

Therefore it was decided to change the encoding to the same approach as the matrix for
the attractive potential. In the new definition, the indices of hits in the same event, but
from a different source are stored in each row. Now the number of columns is limited by
the maximum number of hits in a single event, instead of the sum of all hits in a batch.

dnew = max(V ) (5.3)

While this number could theoretically be reduced by the minimal number of hits belonging
to a particle in the largest event most of the time, evaluating the minimal dimension would
be more resource intensive, than the current implementation.

Improvement

After implementing this logic, adapting the loss calculation to the new definition of the
second matrix and comparing the results with the old implementation, an improvement of
around one order of magnitude was achieved, depending the batchsize. Now the training of
a model on the COCOA-dataset is ten times faster. The training time is therefore reduced
from weeks to a few days.

1The same selection would have worked for the attractive potential, but it would be less efficient than the
chosen offset-method.
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5.6. Matching

In order to evaluate the quality of the reconstruction, the predicted particles need to
be matched to true particles. In accordance with Ref [10] the predicted particles are
matched to the true particles separately for charged and neutral particles, since they can
be differentiated by the existence of a track. For charged particles only the difference in
position ∆R2 = ∆η2 + ∆ϕ2 is minimised. For neutral particles, the matching algorithm
minimises both the difference in position as well as the difference in transverse momentum
expressed by the following metric

d =

√( ∆pT

pT truth

)2
+ 5 · ∆R2 (5.4)

The inefficiencies that arise if the number of true and predicted particles do not match are
discussed in section 6.2.1.





6. Evaluation

6.1. Condensation Spaces

A first quick check to see if the model is working as intended is to visualise the abstract
condensation space by plotting the coordinates of each vertex in the abstract clustering
space, or a projection of the coordinates if a higher dimension is chosen for the clustering
space. Two examples of clustering spaces are provided in Figure 6.1.

Figure 6.1a shows an example of a good condensation space. The points are collected in
discrete groups and in each group there are only points of the same colour, meaning, that
the network is able to correctly separate the detector hits of each particle. Additionally
the number of clusters matches the number of true particles in the event.

An example of a suboptimal condensation space is shown in Figure 6.1b. While the network
is able to sort the vertices somewhat, one can see, that the majority of the points is
positioned in a big cloud. There are no clear condensation points for all objects.

High values for qmin ensure, that all vertices are clustered close to their condensation points.
For models with low qmin it is no problem, if vertices with low β are not positioned close
to their condensation point, as long as one exists somewhere.

Although the visualisations have limited significance, they can provide insight into what
the model is doing. By looking at the condensation spaces for a couple of events, one can
quickly asses, whether the model is capable of clustering the input in a sensible manner or
whether there is a problem.

6.2. Quark dataset

The evaluation is performed on an independent dataset from the training, by feeding
the new dataset through the trained model and comparing the output with the truth
information. The cuts used on the training set are not applied to the test set, to ensure a
fair comparison with Ref [10].

The model is evaluated on reconstruction efficiency, classification correctness, momentum
resolution, particle metrics and jet metrics. Additionally, the model will be evaluated
on the provided gluon dataset described in section 4, to test the ability of the model to
generalise beyond the training data.

One has to be careful with drawing conclusions from these tests, since the provided dataset
has some problems assigning detector hits to individual particles as discussed. Therefore
the results, which are all calculated from the given truth information, have limited validity.
The jet metrics are the least impacted, but the confusing truth assignment may still skew
the results.

23
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(a) Example of a good condensation space (b) Example of a suboptimal condensation space

Figure 6.1.: Examples of condensation spaces. For one event all detector hits are plotted
according to their predicted position in the abstract condensation space. The size of
each point is scaled by the predicted β of each point. Points belonging to the same truth
particle are coloured in the same colour.

(a) Reconstruction efficiency binned by the energy of
the truth particle

(b) Reconstruction fake rate binned by the energy of
the fake particle

Figure 6.2.: Efficiency and fake rate of the reconstruction binned by the energy of the
truth particle

6.2.1. Efficiency

Important qualities of particle reconstruction are a high efficiency and a low fake rate.
Efficiency is defined as the number of correctly reconstructed particles per true particle

ϵ = Nmatched
Pred

NTruth
. (6.1)

So an efficiency of one would mean, that all particles are reconstructed. While it is trivial
to only optimise efficiency, the challenge comes from also having a low fake rate. The fake
rate is defined as the number of wrongly predicted particles per predicted particles

f = Nunmatched
Pred
NPred

. (6.2)

Here, a fake rate of 0 would mean that no particle was predicted that was not actually
there.

As seen in Figure 6.2 the model achieves a high reconstruction efficiency of larger than
90% for particles with an energy higher than 10 GeV. As expected, the efficiency drops off
for lower energetic particles, since they leave weaker signatures in the detector. Combined
with the low fake rate over all energies, the results are satisfactory.



Chapter 6. Evaluation 25

Figure 6.3.: Probability of correctly predicting the class of a particle binned by the
energy of the true particle for photons (blue), neutral hadrons (orange) and charged
particles (green)

6.2.2. Classification

Another difficult challenge of reconstruction algorithms is to differentiate neutral hadrons
and photons, since low energetic neutral hadrons deposite most of their energy in the ECAL
and leave similar signatures to photons.

Displayed in Figure 6.3 one can see the accuracy of the classification of particles, which
are matched with a truth particle. Although one might assume, that charged particles can
always be differentiated by the existence of a track, some charged particles in the dataset
are missing tracks, leading to a small performance loss. Otherwise the charged particles
are almost always classified correctly.

Due to the imbalance of photons compared to neutral hadrons in the dataset as seen in
Figure 4.1, the network misclassified low energetic hadrons as photons, leading to a very
bad performance for neutral hadrons at low energies. Weighing the classification loss by
the frequency of the different particles led to a slightly worse accuracy for photons but
an significant improvement in the accuracy for neutral hadrons. Nevertheless the model
continues to achieve higher accuracy for photons but worse accuracy for neutral hadrons
compared with the modified object condensation approach presented in Ref [10].

Overall the model showed, that it can differentiate between different particle types. Future
work might try to classify the particles into finer groups and identify specific particles.

6.2.3. Momentum resolution

Lastly an important measure is the resolution of the momentum prediction, which is shown
in Figure 6.4.

The network tends to predict momenta, which are too high, for particles with low energies
and momenta, which are too low, for particles with high energies. This could be addressed
by finding an energy dependent correction similar to correction performed for the jet
pT discussed in section 6.2.5. The momentum resolution is better for charged particles
than for neutral particles, since they have a track. While the tracker might provide good
estimates for the momentum of low energy charged particles, the importance diminishes for
higher energies. Therefore it is important to also use calorimeter information for the best
estimation of the momentum of charged particles, which the network is capable of doing.

Especially for low energetic neural particles, the relative error is quite high. A small
absolute error can lead to a large relative error for low momenta. A reason might be,



26 Bachelor Thesis: Applying the Object Condensation approach to the COCOA-dataset

Figure 6.4.: Momentum resolution of the reconstructed particles binned by the momen-
tum of the truth particle. The upper plot shows the absolute deviation in GeV and the
lower plot shows the relative deviation from the correct value. The resolution is shown
for all particles (blue), neutral particles (orange) and charged particles (green).

that the reconstruction algorithm is unable to separate multiple neutral showers in close
proximity and joins them, leading to an underestimation of the total number of particles in
an event and an momentum prediction, which is to high for the particle, it was matched to.

Overall the momentum resolution results for high energetic particles are satisfactory.

6.2.4. Particle Metrics

Ideally, the reconstruction should predict accurate values for the properties of each individual
particle. Although the dataset does not have a good definition what a truth particle is,
the difference in position, expressed via η and ϕ, pT and particle energy is shown for
reconstructed neutral particles in Figure 6.5.

While the network is able to predict the correct initial energy and transverse momentum
for most neutral particles to a satisfactory level, it struggles for some and tends to predict
energies and momenta, which are significantly to high. This is mostly due to low energetic
particles, where a small absolute deviation leads to a large relative error as discussed in
section 6.2.3. Other outliers might be due to events with confusing particle definition, for
which the evaluation has to be redone once the problems with COCOA are fixed.

The resolution of the angular coordinates for individual neutral particles is worse than
the resolution presented in Ref [10] and a slight bias towards low η can be observed. The
network is not able to combine the positions and energies of the hits of a particle into a
precise prediction of the true coordinates of the particle.

6.2.5. Jet Metrics

Since the provided dataset has some problems assigning detector hits to individual particles,
the most important quantities of the reconstruction are jet level metrics. While the average
position of the particles in the shower can somewhat easily be predicted from the detector
hits, the most interesting reconstruction is of the jet energy or jet pT .

The transverse momentum pT of the shower is a combination of the prediction of the energy
of each particle combined with the prediction of the position of each particle. It is an
interesting quantity in many real physics applications.
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(a) Histogram of the relative residuum of pT (b) Histogram of the relative residuum of the energy

(c) Histogram of the residuum of η (d) Histogram of the residuum of ϕ

Figure 6.5.: Evaluation of the prediction of particle metrics of neutral particles. Outliers
are collected in the outermost bins and fraction of correctly displayed events is written in
the top right with the optimal fit values for a normal distribution on the clipped data.

Jet Clustering

In order to calculate jet level metrics, the individual particles need to be combined into jets.
At first the jets were clustered separately for the predicted and true particles with a anti-kt

algorithm with a radius parameter of 0.4 and a minimum number of two constituents with
the FastJet package [37]as described in Ref [10]. The predicted and true jets were matched
by minimising the distance in ∆R2.

Figure A.1 in appendix A shows the number of jet constituents from the clustering algorithm
and the total number of particles per event based on the truth information of the quark
test set. Comparing the results with the number of jet constituents for the truth jets
presented in Ref [10], it seems that the evaluation of the jets metrics is performed under the
assumption, that most events consist of a single jet. For a fair comparison, the jet metrics
are calculated from all particles in a given event too, instead of applying the clustering
algorithm, which increased the number of outliers. The jet pT is taken as the sum of the
predicted transverse momenta of all particles and the angular coordinates η and ϕ are
calculated as an momentum weighted average from the predictions of all particles. The
jet metrics based on the anti-kT clustering algorithm can still be found in Figure A.2 in
appendix A. The truth information is also calculated similarly as the sum or momentum
weighted average of the individual truth particles.

The jet pt-prediction of the network is further corrected in accordance with Ref [10]. A
correction factor for the relative residuum of the jet transverse momentum is calculated
in bins of the predicted pt and a simple linear function is fitted to the results. Now the
prediction can be corrected with the results of the fit. In the case of this thesis no significant
response offset was found and the improvements from the correction are negligible.
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Figure 6.6.: Histogram of the relative residuum of pT of the whole jet. Outliers are
collected in the outermost bins and fraction of correctly displayed events is written in the
top right with the optimal fit values for a normal distribution on the clipped data.

Figure 6.7.: Overlay of the histogram of the relative residuum of pT of the whole jet
from the object condensation model presented in this thesis (dark blue) onto the figure
presented in Ref [10]

Results

The relative residuum of jet pT is displayed in Figure 6.6. A normal distribution fitted
to the results has no offset of the mean from zero and a standard deviation of σ = 0.22.
Compared with the results presented in Ref [10], the distribution is significantly narrower
than the presented modified object condensation algorithm with σ = 0.30. For illustration
the distribution in Figure 6.6 is overlaid into the results shown in Ref [10] in Figure 6.7 by
matching the x-axis. It is unclear how the fit values for the presented algorithms in Ref
[10] are calculated, since the model presented in this thesis appears to have a narrower
distribution than the TSPN-SA model, but a larger fitted σ.

More insight can be gained by also discussing other jet-level quantities like the position or
number of particles in the jet. As for the particle prediction, the resolution of the angular
coordinates is still capable of improvement. This is expected, since the jet coordinates are
calculated from the individual particles. Compared with the results presented in Ref [10],
the distributions in Figure 6.8b and 6.8c are significantly wider. The network is not able
to predict the position with a high accuracy. The bias for small η-values is still noticeable.

The model achieves a close match to the distribution of the number of particles in each
event to the truth as shown in Figure 6.8a. Overall it tends to predict to few instead of
too many particles in some showers. Some particles in dense events are not recognised.
Nevertheless the close match to the truth information is satisfactory for the number of
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(a) Comparison of the number of particles between the prediction and the truth

(b) Histogram of the residuum of average η in the
whole jet

(c) Histogram of the residuum of average ϕ in the
whole jet

Figure 6.8.: Evaluation of the prediction of jet metrics. Outliers are collected in the
outermost bins and fraction of correctly displayed events is written in the top right with
the optimal fit values for a normal distribution on the clipped data.

particles in a jet. Especially considering the corrupted hit assignment for some events, the
model achieves very good results. The TSPN-SA and the HGPFlow algorithms do not
operate on individual cells, but on topoclusters. These algorithms predict the total number
of particles in a first step and then match them directly to the truth particles to calculate
the loss function. This approach comes with severe issues when trying to apply it to a
larger fraction of the detector since it necessarily introduces cross-talk between detector
regions. This makes a calibration in data, that often relies on a factorisation assumption
between two well separated reconstructed particles, close to impossible. Furthermore, it
introduces a significant source of bias from the distribution in the training sample. However,
these algorithms can be trained without the cell-truth particle assignment that is broken
in the current dataset. Therefore it can be that these algorithms were trained with more
correct truth information, and as a result perform slightly better in the setting. It was not
investigated, whether these topoclusters are also broken. Nevertheless the similarity to
the truth information of the number of particles per jet of all machine learning algorithms
is similar. The match to the number of jet is significantly closer than between the truth
information and the traditional particle-flow algorithm presented in Ref [10].

The observation that the model tends to reconstruct too few rather than too many particles
fits the low fake rate and suboptimal efficiency at lower energies discussed in section 6.2.1.

6.3. Gluon dataset

While an artificial neural network might perform well on data it has seen before, it is an
important quality that it can generalise to some extent. In a particle physic application,
not every interaction might be included in the training set, but the model should still
perform well enough on events, which differ slightly from the training. For this reason,
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(a) Comparison of the number of particles between
the prediction and the truth

(b) Histogram of the relative residuum of pT of the
whole jet

Figure 6.9.: Results of the prediction of jet metrics for the gluon jets. Outliers are
collected in the outermost bins and fraction of correctly displayed events is written in the
top right with the optimal fit values for a normal distribution on the clipped data.

another testing set [29] is available, where the showers do not come from quarks, but from
gluons with a similar energy. Below, the predicted jet metrics are shown for the evaluation
on the gluon testing set.

The trend of not recognising every particle continues for the gluon dataset, but no perfor-
mance loss for the prediction of jet pT is observed. The model is capable to sufficiently
generalise and predict the correct transverse momentum for differently structured showers.
The other plots of the performance on the gluon dataset can be found in appendix B.

6.4. Summary

Overall, the model shows satisfactory performance, particularly in higher-energy regimes.
It exhibits a good efficiency and fake rate, as well as improved jet pT resolution. However,
there is room for improvement in the model’s sensitivity to low-energy signals and the
resolution of the prediction for the angular coordinates of the jets. Until a new dataset is
published, it is unclear what the true performance of the object condensation algorithm is
and how it compares in detail to the other algorithms presented in Ref [10].



7. Conclusions

In the course of this thesis, an existing training pipeline was adapted for the COCOA-
dataset. Due to the difference in the use case, it was necessary to change the implementation
of some CUDA-kernels. Afterwards the training of a model was significantly faster. This
in combination with the usage of TOpAS enabled the sufficient training of models in time
for this thesis, leading to a model, which is able to reconstruct particle showers with a high
precision.

It was shown that the object condensation approach to machine learning is able to produce
good reconstruction results on the provided dataset. Some of the results presented in
Ref [10] were improved upon. Especially the reconstruction of jet pT showed significant
improvement over the modified object condensation algorithm. In the high energy regime
the model showed satisfactory efficiencies and energy resolution.

This work uncovered some problems of the current COCOA-dataset. Some events have
an unphysical assignment of hits to particles. Nevertheless it still provides a baseline to
compare different machine learning algorithms. New innovative algorithms can be tested
and compared with each other, since the dataset finds a good balance between being
complex enough to be relevant for real applications while being simple enough so that
models accurately depict their performance after a manageable computational expense.

If a fixed COCOA-dataset is published and a new model is trained, an improvement in
the performance is expected. Until the dataset is updated, the validity of the evaluation
remains uncertain.

Future work might apply the object condensation algorithm to more complex datasets
to investigate the capability to reconstruct more complex detector environments. With
simulations that closer mimic real detectors, the ability of neural networks to find complex
connections between inputs might lead to further improvement upon traditional reconstruc-
tion approaches. If further tests on simulated data continue to provide results as good or
better than the reconstruction algorithms in use, the object condensation approach might
be used for reconstruction in real particle physics experiments.
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Appendix

A. Jet Definition

Figure A.1.: Comparison between the number of jet constituents. The results of the
anti-kT algorithm are displayed in blue. The total number of particles per event are
displayed in yellow.
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(a) Histogram of the relative residuum of pT of the clustered jet.

(b) Histogram of the residuum of η in the clustered
jets

(c) Histogram of the residuum of ϕ in the clustered
jets

Figure A.2.: Evaluation of the prediction of clustered jet metrics. Outliers are collected
in the outermost bins and fraction of correctly displayed events is written in the top right
with the optimal fit values for a normal distribution on the clipped data.

B. Evaluation on the gluon dataset

(a) Reconstruction efficiency binned by the energy of
the truth particle

(b) Reconstruction fake rate binned by the energy of
the fake particle

Figure B.3.: Efficiency and fake rate of the reconstruction binned by the energy of the
truth particle for the gluon dataset
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Figure B.4.: Probability of correctly predicting the class of a particle binned by the
energy of the true particle for photons (blue), neutral hadrons (orange) and charged
particles (green) for the gluon dataset

Figure B.5.: Momentum resolution of the reconstructed particles binned by the energy
of the truth particle for the gluon dataset. The upper plot shows the absolute deviation in
GeV and the lower plot shows the relative deviation from the correct value. The resolution
is shown for all particles (blue), neutral particles (orange) and charged particles (green).
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(a) Histogram of the relative residuum of pT (b) Histogram of the relative residuum of the energy

(c) Histogram of the residuum of η (d) Histogram of the residuum of ϕ

Figure B.6.: Evaluation of the prediction of particle metrics of neutral particles for
the gluon dataset. Outliers are collected in the outermost bins and fraction of correctly
displayed events is written in the top right with the optimal fit values for a normal
distribution on the clipped data.

(a) Histogram of the residuum of average η in the
whole jet

(b) Histogram of the residuum of average ϕ in the
whole jet

Figure B.7.: Evaluation of the prediction of jet metrics for the gluon dataset. Outliers
are collected in the outermost bins and fraction of correctly displayed events is written in
the top right with the optimal fit values for a normal distribution on the clipped data.
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