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Disclaimer

Data analyses in High Energy Physics such as the measurement presented in this thesis

are a collaborative effort. The SuperKEKB particle accelerator which provides the particle

beams essential for all studies at Belle II was built and is operated and maintained by

the SuperKEKB accelerator group. The Belle II detector was built and is maintained

and operated by the Belle II collaboration. The Belle II collaboration also creates the

simulated and recorded data sets and maintains the computing infrastructure necessary to

process them. The software environment necessary for studies with Belle II data plays an

important role and was created and is maintained by the collaboration.

Parts of this thesis are based on the work of Lennard Damer [1], specifically the fol-

lowing contributions:

1. The dataset (see subsection 4.1.1).

2. The performance scores of the FastBDT classifier, used as a benchmark for this work

(see section 5.2).

3. The feature importance scores of the FastBDT classifier (see section 4.4).

Additionally, the signal extraction process is performed by Lennard Damer. His contri-

butions are explicitly acknowledged and referenced throughout this thesis whenever his

work is utilized.
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Statement on the Employment of

Techniques based on Artificial Intelligence

This thesis incorporates the use of Artificial Intelligence (AI) tools to help with grammatical

or stylistic improvement of text, and program code creation:

1. Grammarly
1

is utilized throughout the thesis for spell and grammar checks, as well

as for paraphrasing individual, selected sentences to improve clarity and precision

in academic writing. I have approved all suggested changes.

2. GitHub Copilot
2

is used to aid the development of Python code, in particular for

debugging, explaining and commenting on existing code, and visualization of data,

which does not constitute the core scientific work of this thesis. I have approved

and tested all suggestions to provide robust and reliable results. The use of GitHub

Copilot has been explicitly acknowledged whenever used.

1

https://www.grammarly.com/ (accessed on 2nd January 2025)

2

https://github.com/features/copilot (accessed on 2nd January 2025)
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1. Introduction

The Standard Model (SM) of particle physics is a well-established framework describing

the fundamental particles and their interactions, but it fails to account for phenomena like

dark matter, the baryon asymmetry of the universe, and neutrino oscillations. The search

for new physics includes exploring interactions such as flavour changing neutral currents

(FCNCs), which are highly suppressed in the Standard Model, making them a sensitive

probe for the SM.

Current observations show a deviation from the standard model at 3.31𝜎 in the ra-

tio 𝑅
D

(∗) , described in section 2.2 [2]. This anomaly hints at an enhanced branching ratio

of 𝑏 → 𝑠𝜏
+
𝜏
−
processes like the B

+ → K
∗+
𝜏
+
𝜏
−
transition [3]. Measuring an enhancement

of this branching ratio would provide further evidence for potential New Physics (NP)

beyond the SM. Such a result could point to Lepton Flavour Universality (LFU) violation,

potentially caused by exotic new particles mediating these processes.

The Belle II experiment is expected to perform well in terms of sensitivity in B
+ → K

∗+
𝜏
+
𝜏
−

decays [4], making it a promising tool in the search for the branching ratio of this process.

Experiments like Belle II collect large amounts of data, but only a small fraction of

the events correspond to the process of interest. This is especially the case for rare decays

like B
+ → K

∗+
𝜏
+
𝜏
−
. The selection of events is performed by a Machine Learning (ML)

model, which is viable due to the complexity and scale of the data. The model is optimized

in a supervised training on simulated data. Increasing the performance of ML models for

event selection enhances the quality of measurements at particle accelerator experiments

without collecting additional data. A more effective event selection process can increase

the signal yield, and thus improve the sensitivity of the experiment.

A widely used model for event selection is the Boosted Decision Tree (BDT), which

is highly effective at classifying tasks, with a frequently used implementation at Belle II

being FastBDT [5], which is a cache-friendly and fast implementation of the BDT.
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1. Introduction

A recent development in ML is the introduction of the Transformer model by Vaswani

et al. [6]. An attention mechanism (see subsection 4.2.2), that regards dependencies within

the input data is the foundation of the Transformer. The Transformer shows exceptional

performance on natural language processing tasks [7] and is the foundation for tools like

the Generative Pre-trained Transformer (GPT) [8].

Transformer-based models have also been applied in High Energy Physics. Examples are

the Particle Transformer (ParT) for the task of jet-tagging [9] and the Event Classifier

Transformer (ECT) for the task of event classification [10].

In this work, different approaches to utilizing Transformer-based models for classi-

fication are tested, with efforts made to improve the performance of current methods,

such as FastBDT. Different models are considered, and one model is selected for a detailed

performance study. The classification for the B
+ → K

∗+
𝜏
+
𝜏
−
analysis [1], which employs

the FastBDT model, is redone using a Transformer-based model on the same dataset, and

the results are compared. To allow for a fair comparison, all steps involved in training and

hyperparameter optimization are replicated from the original analysis. The sensitivity of

the analysis is evaluated by estimating the upper limit of the branching fraction of the

process of interest.

In the following chapters, a brief overview of the physical foundations and the ex-

perimental status of the B
+ → K

∗+
𝜏
+
𝜏
−
process is provided (chapter 2). Additionally,

the Belle II experiment is described (chapter 3). The analysis [1], replicated using a

Transformer-based model, is presented, along with a discussion of the different tools

used in this work and an explanation of the Transformer (chapter 4). Next, the results

of different models tested and evaluated using various evaluation metrics are presented

(chapter 5). Finally, the results are summarized, and an outlook is given, along with a

discussion of possible next steps and applications (chapter 6).
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2. Foundations

The principle of Lepton Flavour Universality (LFU) in the Standard Model of particle

physics is the focus of this chapter, along with an exploration of its potential violations as

signs of NP. The emphasis in section 2.1 is on the principle of LFU and flavour changing

neutral current (FCNC) processes, which are a promising probe of LFU. Section 2.2 explores

how recent results hint at an enhancement of 𝑏 → 𝑠𝜏
+
𝜏
−
transitions. In section 2.3, the

current experimental status is discussed, referencing results from the BaBar and Belle

collaboration. This chapter aims to give a motivation for the search for the B
+ → K

∗+
𝜏
+
𝜏
−

process.

The main ideas and the structure of this chapter follow the Master Thesis of Lennard

Damer [1].

2.1. Lepton Flavor Universality ( LFU)

LFU is a principle in the SM of particle physics, which states that the three generations

of leptons, the electron (𝑒), the muon (𝜇), and the tauon (𝜏) possess the same properties

apart from their mass differences. From observed decay rates of muons and tau leptons,

it is found that all lepton flavors have identical electroweak interaction strengths [11].

LFU is only violated in the SM through the Yukawa interaction after symmetry breaking,

because of the different masses of the leptons. A further violation of LFU would point

at NP, such as new interactions between quarks and leptons. A method for testing the

SM is the study of FCNCs. FCNCs are highly suppressed in the SM, as they are pro-

hibited at tree level, with the lowest order FCNC processes involving a loop (see Figure 2.1).

FCNC processes are further suppressed in the SM given the unitarity of the Cabibbo-

Kobayashi-Maskawa (CKM) matrix. Contributions to the interaction strength of different

quarks interfere destructively. This is often referred to as the Glashow–Iliopoulos–Maiani

(GIM) mechanism [13], historically explaining the suppression of the 𝑠 → 𝑑𝜇
+
𝜇
−
process

and successfully predicting the charm quark.

3



2. Foundations

Figure 2.1.: Lowest order Feynman diagrams for the FCNC process 𝑏 → 𝑠𝜏𝜏 . The left

diagram is called electroweak penguin, and the right diagram is called box

diagram. Both diagrams are strongly suppressed in the SM. Taken from [12].

2.2. Enhancement of 𝒃 → 𝒔𝝉+𝝉− Transitions

FCNC processes like 𝑏 → 𝑠𝜏
+
𝜏
−
are good test for the SM as they are strongly suppressed.

The SM prediction for the branching fractions of 𝑏 → 𝑠𝜏
+
𝜏
−
decays is O(10

−7) [14]. An
enhancement of branching ratios of such processes compared to the SM prediction points

at New Physics beyond the Standard Model.

A deviation from the SM prediction of the branching ratio has been measured in the

process 𝑏 → 𝑐ℓ
−
𝜈ℓ [15], which is a tree level process mediated by a charged current.

To measure the deviation from the SM of this process, the ratio 𝑅
D

(∗) is calculated (see

Equation 2.1), and compared to the SM prediction. 𝑅
D

(∗) describes the relative branching

fractions B of the B → X𝜏
−
𝜈𝜏 and the B(B → Xℓ

−
𝜈ℓ) processes

𝑅
X
=
B(B → X𝜏

−
𝜈𝜏 )

B(B → Xℓ
−
𝜈ℓ)

, ℓ = 𝑒, 𝜇. (2.1)

𝑅
X
has been measured for decays containing the 𝑏 → 𝑐ℓ

−
𝜈ℓ process like B → Xℓ

−
𝜈ℓ ,

X = (D,D∗). The deviation of 𝑅
D

(∗) from the SM has been measured at 3.31𝜎 [2].

Capdevila et al. [3] have shown, that, assuming a common NP explanation for the

deviation of 𝑅
D
𝑅

D
∗ and, an enhancement of the 𝑏 → 𝑠𝜏

+
𝜏
−
of up to three orders of

magnitude is expected under fairly general assumptions. The enhancement could be

explained in several extensions of the SM that allow LFU violation in the third generation

[4]. A visualization of the correlation between 𝑅
X
/𝑅SM

X
and the branching ratio of the

𝐵 → 𝐾
∗
𝜏
+
𝜏
−
process, together with the current measurement of 𝑅

X
/𝑅SM

X
is shown in

Figure 2.2.
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2.3. Current Experimental Status

Figure 2.2.: Branching ratios of different 𝑏 → 𝑠𝜏𝜏 processes (including uncertainties) as a

function of 𝑅
X
/𝑅SM

X
. The blue ribbon represents the decay studied in this work,

where the branching ratio of the B → K
∗
𝜏𝜏 process could be increased by three

orders of magnitude. The green ribbon indicates the current experimental

range for 𝑅
X
/𝑅SM

X
, obtained by performing the weighted average of 𝑅

D
, 𝑅

D
∗

and 𝑅
J/Ψ. Taken from [3].

This process with two 𝜏 leptons in the final state is well suited for the Belle II ex-

periment, because of the low multiplicity of final states compared to hadron-colliders [4],

and the ability to reconstruct multiple decay modes of the tau lepton (see Figure 2.3). The

enhanced branching ratio of B
+ → K

∗+
𝜏
+
𝜏
−
would be in the observable range of Belle II.

2.3. Current Experimental Status

The search for the 𝑏 → 𝑠𝜏
+
𝜏
−
process has been performed at “B factories” like SuperKEKB

and BaBar. B factories are electron-positron colliders operating at the Υ(4𝑆) resonance,
where almost exclusively BB̄ pairs are produced. In both experiments, one of the B Mesons

is reconstructed to set constraints on the other B Meson (signal B Meson). The decay of

the signal B Meson is then searched for activity compatible with the process of interest. To

identify the 𝜏 lepton, which decays very quickly with a mean lifetime of (290.3±0.5) ·10
−15

s

[16], one has to take into account the different decay modes of the 𝜏 lepton (see Figure 2.2)

and search for the decay products.

5



2. Foundations

Figure 2.3.: Illustration of the branching fractions of the most common 𝜏 decay processes.

The green inner circle represents the leptonic 𝜏 decays, which are made up of

decays into electrons or muons almost equally. The blue inner circle represents

hadronic and other decay modes. Adapted from [17].

Search at the BaBar experiment The BaBar collaboration has studied the process B
+ →

K
+
𝜏
+
𝜏
−
with a data sample, collected at the center-of-mass energy of the Υ(4𝑆)

resonance, corresponding to a total integrated luminosity of 424 fb
−1

[12]. In its

search, the BaBar collaboration only reconstructed 𝜏 leptons, that decayed in a

leptonic decay 𝜏
− → ℓ

−
𝜈ℓ𝜈𝜏 with ℓ = 𝑒, 𝜇, which makes up 35.2% of all possible 𝜏

decays (see Figure 2.2). The BaBar collaboration was not able to find any evidence

for a signal, but they were able to find an upper limit for the branching fraction

B(B+ → K
+
𝜏
+
𝜏
−) < 2.25 · 10

−3

at 90% CL [12].

Search at the Belle II experiment At Belle II, the process B
0 → K

∗0

𝜏
+
𝜏
−
was studied with

a data sample, collected at the center-of-mass energy of the Υ(4𝑆) resonance, corre-
sponding to a total integrated luminosity of 711 fb

−1

[18]. In contrast to the BaBar

search, the 𝜏
− → 𝜋

−
𝜈𝜏 process was included in the reconstruction in addition to the

leptonic decay modes, covering 46% of the decay modes. The Belle collaboration also

6



2.3. Current Experimental Status

was not able to find evidence for a signal, but they were able to find an upper limit

for the branching fraction B(B0 → K
∗0

𝜏
+
𝜏
−) < 3.1 · 10

−3

at 90% CL [18].

The SM prediction for the branching fractions of both processes is O(10
−7) [14]. The

branching fractions could be enhanced by NP effects (see section 2.2), so both results are

compatible with such NP effects.

7



3. The Belle II Experiment

Belle II is a particle physics experiment at the SuperKEKB collider at KEK, which aims to

measure the decay of B mesons produced in electron-positron collisions. The goal is to

measure parameters to test the SM and probe the existence of new particles [4].

In section 3.1, the SuperKEKB collider, and the production of B Mesons is explained.

Section 3.2 discusses the composition of the Belle II detector and its several sub-detectors.

3.1. The SuperKEKB Collider

The SuperKEKB is an asymmetric-energy electron-positron double-ring collider, where

7 GeV electrons are collided with 4 GeV positrons (see Figure 3.1). The beams intersect

at the interaction point (IP), which is at the center of the Belle II detector. The energies

of the colliding particles result in a center-of-mass (COM) energy of

√
𝑠 = 10.58 GeV,

which corresponds to the Υ(4𝑆) resonance. The Υ(4𝑆) decays into two B mesons with a

branching fraction of 96% [16]. Through this process loads of B mesons are produced and

SuperKEKB is thus referred to as a B factory. The COM energy just slightly exceeds the

BB̄ production threshold, so the B mesons are produced almost at rest in the COM frame

of reference. This is necessary to observe rare decays like B
+ → K

∗+
𝜏
+
𝜏
−
with sufficient

statistics.

The advantage of this collider is, that the B mesons are produced with no additional

particles. The background at SuperKEKB is typically smaller than at hadron-colliders

due to the low multiplicity of final states and the absence of event pile-up [4]. Because

of the asymmetric beam energies, the final state particles are boosted in the lab frame of

reference, allowing precise measurements of mixing parameters and lifetimes. This is

especially relevant for measuring time-dependent CP violation.

SuperKEKB is designed to reach a luminosity 30 times higher than its predecessor

8



3.2. The Belle II Detector

Figure 3.1.: Schematic view of the SuperKEKB Collider. The electrons and positrons are

injected into the ring after being accelerated by a linear accelerator. The

electron and positron beams collide at the Tsukuba section. Taken from [19].

KEKB by increasing the beam current and shrinking the beam size. The current luminosity

record was reached in December 2024 with L = 5.1 · 10
34

cm
−2

s
−1

[20].

3.2. The Belle II Detector

The Belle II detector has a cylindrical structure centered around the interaction point and

is made up of several sub-detectors (see Figure 3.2). Due to the asymmetric beam energies,

the detector is built asymmetrically, where the direction of the electrons is called the

forward direction, and the direction of the positrons is called the backward direction. The

cylindrical region around the IP is called the barrel, and the ends of the barrel are called

endcaps. Between the Electromagnetic Calorimeter (ECL) and the K
0

L
/ Muon Detector

(KLM), there is a superconducting solenoid coil that provides a magnetic field of 1.5 T

in the direction along the beam pipe, that causes charged particles to follow a curved

trajectory. The particle momentum and the charge of the particle can be determined by

measuring the curvature of the trajectories.

The sub-detectors are placed from the innermost Pixel Detector (PXD) to the outer-

9



3. The Belle II Experiment

  

Pixel Detector (PXD)

Silicon Vertex Detector (SVD)

Central Drift Chamber (CDC)

Time-Of-Propagation counter (TOP)

Aerogel RICH detector (ARICH)

Electromagnetic Calorimeter (ECL)

K 0L / Muon Detector (KLM)

Figure 3.2.: Schematic view of the several sub-detectors of Belle II detector.

Taken from [21].

most KLM in a way, that the particles, that are detected by one of the outer detectors, pass

through the inner detectors.

Pixel Detector ( PXD) and Silicone Vertex Detector ( SVD) The innermost detector is used

to find the vertex of the decay. The PXD consist of two layers of sensors with with

radii at 14 mm and 22 mm [22]. The PXD is followed by the Silicone Vertex Detector

(SVD), consisting of four silicone strip detector layers. The purpose of these detectors

is to measure the vertices of decays. In the SVD, the energy loss along the trajectory

𝑑𝐸
𝑑𝑥

is measured. The information is used for particle identification.

Central Drift Chamber ( CDC) Inside the CDC there are wires spanned parallel to the beam

magnetic field of the solenoid. The CDC is filled with a gas mixture of ethane and

helium. Charged particles cause ionization of the gas molecules, and the ionized par-

ticles drift towards the wires, where they are measured. This allows the trajectories

of the particles and the momenta to be reconstructed.

Time-Of-Propagation Counter ( TOP) In the barrel region, there is the Time-of-Propagation

Counter (TOP), used for particle identification. The TOP consists of a quartz radiator,

where Cherenkov photons are produced when particles with sufficient energy hit.

The Cherenkov photons are totally reflected internally and detected using photo-

multiplier tubes. The emission angle of the Cherenkov photons is reconstructed by

measuring the time of propagation of the photons. The velocity of the initial particle

is directly linked to the angle of the Cherenkov photons. [22].

10



3.2. The Belle II Detector

Aerogel RICH Detector ( ARICH) The Aerogel RICH Detector (ARICH) in the forward end-

cap is designed to separate kaons from pions over the full kinematic range, i.e. from

0.5 to 4 GeV. The detector consists of an aerogel radiator, where Cherenkov photons

are produced by charged particles with sufficient energy, and an array of position-

sensitive photon detectors to measure the Cherenkov Photons [22]. The information

gathered in the TOP and the ARICH, is used for particle identification.

Electromagnetic Calorimeter ( ECL) The ECL consists of CsI(Tl) scintillating crystals. Its

main purpose is to detect photons and neutral hadrons, which produce showers

within the crystal. The energy of incoming particles is measured with high resolution.

The ECL is also used to distinguish between electrons, which deposit all of their

energy, and charged hadrons, which deposit only a small fraction of their energy.

The polar angle region of 12.4
◦
< 𝜃 < 155.1

◦
, with a gap of ~1

◦
between the barrel

and the endcap region, is covered by the ECL [22].

K0
L / Muon Detector ( KLM) The KLM consists of a stack of alternating iron plates and active

detector elements and is located outside the superconducting solenoid. The iron

plates serve as the solenoid’s magnetic flux return and provide material in which the

K
0

L
mesons shower hadronically [22].

11



4. Tools and Related Work

A variety of tools are used in this work, most notably the Transformer, which is used as a

classifier and tested against the widely used BDT method. In this chapter, the search for

B
+ → K

∗+
𝜏
+
𝜏
−
using FastBDT as a classifier is described (section 4.1), which serves as a

benchmark for the Transformer-based classifiers. The datasets that are used in this work

along with the FastBDT algorithm are discussed. A detailed explanation of the Transformer

is given in section 4.2. The application of Transformers on tabular data and in High Energy

Physics is examined. In section 4.3, the hyperparameter optimization procedure in this

work is described. To make the classifier more explainable, algorithms for measuring the

importance of input features are addressed in section 4.4.

4.1. Search for B+
→ K∗+𝝉+𝝉− using FastBDT

This section gives a brief overview of the analysis by Lennard Damer [1].

The classifier’s performance in this analysis is used as a benchmark and sanity check for

the performance of the Transformer-based model. The dataset and the choice of input

features are taken from this analysis. The classifier, the dataset, and the signal extraction

strategy are described briefly.

4.1.1. Dataset

Monte Carlo (MC) simulations are used to model the processes within the detector after a

collision, with truth information provided by the event generator. The MC data is thus

used for training a classifier, that is later applied to separate signal from background

processes. The events are generated at the Υ(4𝑆) resonance energy. For validating the MC

data, it is compared to the recorded data.

For signal events, a sample of 50 million BB̄ events is simulated, where one B me-

son is restricted to decay into a K
∗+
𝜏
+
𝜏
−
product (that further decays generically), while

12



4.2. Transformers

the other decays generically. For the main physics background events, consisting of qq̄

and BB̄ events, datasets equivalent to 1 ab
−1

of integrated luminosity for each background

type are used. A summary of the datasets used at Υ(4𝑆) energy is provided in Table 4.1

From the data, the physical process is reconstructed. The data is split into four channels

based on the reconstruction of the signal side final states. Several input features for the

classifier are constructed, based on the properties of the events. For a detailed description,

refer to [1].

Table 4.1.: Simulated dataset at the Υ(4𝑆) energy used in this work. Taken from [1].

Process Integrated Generated

Luminosity [fb−1] events ×10
6

B
+ → K

∗+
𝜏
+
𝜏
−

50

𝑒
+
𝑒
− → 𝑢𝑢 1000 1586

𝑒
+
𝑒
− → 𝑑 ¯𝑑 1000 396

𝑒
+
𝑒
− → 𝑠𝑠 1000 362

𝑒
+
𝑒
− → 𝑐𝑐 1000 1300

𝑒
+
𝑒
− → Υ(4𝑆) → 𝐵

0

𝐵
0

1000 508

𝑒
+
𝑒
− → Υ(4𝑆) → 𝐵

+
𝐵
−

1000 539

4.1.2. FastBDT

After the reconstruction, the data is passed to a classifier, that separates between signal

and background. As a classifier, FastBDT is used, which is a speed-optimized and cache-

efficient implementation of the stochastic Gradient Boosted Decision Tree (SGBDT) for

event classification [5]. The input features are selected based on their ability to separate

between signal and background (see Table A.5).

The current sensitivity of the B
+ → K

∗+
𝜏
+
𝜏
−
analysis using FastBDT by Lennard Damer is

B(B+ → K
∗+
𝜏
+
𝜏
−) < 5.76 × 10

−3

at 90% Confidence Level.

4.2. Transformers

Transformers, introduced by Vaswani et al. [6], have proven successful for tasks like natural

language processing [7] and have also been applied to data analyses in High Energy Physics

[9, 10]. The Transformer is based on an attention mechanism (see subsection 4.2.2), which

regards dependencies within the input data. The Transformer takes a sequence of a given

length as an input. The elements of the sequence are embedded into a multidimensional
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embedding space (see subsection 4.2.1). The attention mechanism computes attention

scores between the elements of the input sequence to determine the relevance of one part of

the input to another. These scores are then used to weigh and update the representation of

each element, focusing on the most relevant information for the task (see subsection 4.2.2).

The output of the attention mechanism is then passed to a simple Multi Level Perceptron

(MLP). For the binary classification task, the output dimension of the MLP is set to one,

and a sigmoid function is applied. The sigmoid function

𝜎 (𝑥) = 1

1 + 𝑒−𝑥 (4.1)

maps any real-valued input to the interval (0, 1). The function is well suited to the task, as

it is differentiable, and manipulates the model outputs to be similar to the truth informa-

tion of the events, which is either zero for a background event or one for a signal event.

The fundamental structure of such a Transformer-based classifier is displayed in Figure 4.1.

Figure 4.1.: The fundamental architecture of a Transformer used for a classification task.

A special challenge for the application of Transformers in this work is the adaptation

of the Transformer on tabular data. Several approaches towards applying Transformer-

based networks to tabular data have been made [10, 23–25] (see subsection 4.2.3 and

subsection 4.2.4).

4.2.1. Embedding

The embedding feeds the input data to the attention block in such a way, that the attention

function is able to process it. The input data is transformed into a multidimensional em-

bedding space, which makes it easier for the model to distinguish between different inputs.

The embedding is performed by MLPs for numerical inputs. Categorical input features

could also be passed to the attention function by corresponding them to representations

in the embedding space via a lookup table. However, there are no categorical features in

the dataset studied in this work.
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4.2.2. Attention

The attention mechanism is the transformer’s core component, which relates different

positions of the input sequence to compute a representation of the sequence. Three distinct,

independent representations (query 𝑄 , key 𝐾 and value 𝑉 ) of the input data are computed

𝑄 =𝑊
q
z + 𝑏

q
,

𝐾 =𝑊
k
z + 𝑏

k
,

𝑉 =𝑊
v
z + 𝑏

v
,

(4.2)

where z is the embedded input data, and the matrix𝑊 and the vector 𝑏 are composed of

trainable weights. 𝑄 , 𝐾 , and 𝑉 are passed to the attention block. In particular, the "Scaled

Dot-Product Attention" (see Figure 4.2) is used, where the input consists of queries 𝑄 and

keys 𝐾 of dimension 𝑑
k
and values𝑉 of dimension 𝑑

v
. The compatibility between query𝑄

and key 𝐾 is determined by computing the dot-product 𝑄𝐾
𝑇
. The dot product of 𝑄 and 𝐾

is scaled by 1/
√︁
𝑑

k
for numerical stability and a softmax function is applied to obtain the

weights on the values 𝑉

softmax(x)𝑖 =
𝑒
𝑥𝑖∑
𝑗 𝑒
𝑥 𝑗
. (4.3)

The output of the attention function is computed as a weighted sum of the values𝑉 , where

the weights assigned to the values 𝑉 are determined by dot-product 𝑄𝐾
𝑇
[6].

The output of the attention function is computed as

Attention(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾

𝑇√︁
𝑑

k

)
𝑉 . (4.4)

There are adaptations to the basic attention function, that aim to increase performance,

like the Multi-Head Attention (MHA) and the class attention:

Multi-Head Attention ( MHA) Instead of using a single attention function, the input is split

into ℎ different parts (heads), and the attention is computed for each head indepen-

dently in parallel. The MHA allows the model to focus on different relationships

within the input at once [6]. A visualization of the MHA is shown in Figure 4.2.

Class Attention The class-attention block was introduced by Touvron et al. [26] to improve

the performance of transformers in image classification. It has a structure similar to

the ordinary attention block, but a global class token 𝑥
class

is introduced. The class

token 𝑥
class

serves as a summary representation of the entire input data, that combines
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Figure 4.2.: (left) Scaled Dot-Product Attention computes attention scores by taking the

dot product of query 𝑄 and key 𝐾 , scaling by the square root of the key

dimension 𝑑𝑘 , and applying a softmax. The output is found by a weighted sum

of the values, with the weights being the attention scores. (right) Multi-Head

Attention extends this by applying multiple attention mechanisms in parallel,

allowing the model to focus on different relationships within the input at once,

before concatenating and projecting the outputs. Taken from [6].

information from all other tokens in the sequence through the attention mechanism.

The attention between 𝑥
class

and all tokens z = [𝑥
class

, 𝑥
input

] is computed. The inputs

to the MHA are

𝑄 =𝑊
q
𝑥

class
+ 𝑏

q
,

𝐾 =𝑊
k
z + 𝑏

k
,

𝑉 =𝑊
v
z + 𝑏

v
.

(4.5)

This method aims to improve the performance in tasks like classification and is

applied in different models like Particle Transformer [9], FT-Transformer [24] and

Event Classifier Transformer [10].

4.2.3. Transformers on Tabular Data

The state-of-the-art for processing tabular data is tree-based ensemble methods like

BDTs, whereas tasks like image- or natural language processing are performed best by

deep learning techniques [23]. BDTs have several advantages, such as high prediction

accuracy, fast training, and interpretability (feature importance). Nevertheless, attempts
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have been made to apply Transformer-based models to tabular data [23–25]. The main

challenge is that Transformers are designed for processing sequences (e.g. sentences in

natural language processing), instead of tabular data. To make the input accessible to

the Transformer, the data is embedded into a multidimensional embedding space (see

subsection 4.2.1).

Several studies have demonstrated, that Transformer-based models, like the TabTrans-

former [23], the FT-Transformer [24], or the TabNet [25], show similar and in some

cases slightly better performance than BDT models on a variety of different datasets.

The TabTransformer and the FT-Transformer follow the general architecture depicted in

Figure 4.1 with slight adaptations, while the TabNet is structured differently.

The models are tested in section 5.2.

TabTransformer The self-attention block is used, where categorical features are embedded

using a lookup table, and numerical features are passed to the attention block directly

[23].

FT-Transformer The network incorporates both self-attention and class-attention blocks.

The embedding is performed by a linear layer for numerical input features and by a

lookup table for categorical features [24].

TabNet TabNet uses an attention mechanism to dynamically select the most important

input features for each sample at each decision step. By processing features sequen-

tially through a series of decision steps, the model ensures that only the most relevant

features are prioritized for classification. This approach improves model efficiency

and interpretability by identifying feature importance for each prediction, enabling

insights into the decision-making process [25].

4.2.4. Application of Transformers in High Energy Physics

The prospect of improving the performance on classification tasks by employing Trans-

formers in High Energy Physics has led to the proposal of models designed specifically

towards their application in High Energy Physics like the ParT [9] or the ECT [10].

Particle Transformer ( ParT) The ParT [9] is a transformer-based model made for jet-flavor

tagging. What makes this model unique is that the attention score is augmented by

an interaction matrix, that is derived from the energy-momentum 4-vectors of the

particles. The ParT has shown promising results in terms of performance, performing
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better than state-of-the-art methods [9]. However, the ParT is not tested in this work,

as its use case differs from the task studied in this work.

Figure 4.3.: Model architecture of the Event Classifier Transformer. The model integrates

an embedding layer, self-attention and class attention layers with residual

connections, FFNs, normalization layers, and linear layers. A sigmoid function

ensures, that the model output is a value between zero and one, that suits the

classification task. Taken from [10].

Event Classifier Transformer ( ECT) The ECT [10] is a Transformer-based model designed

for the separation of signal and background in High Energy Physics. The structure of

the model is depicted in Figure 4.3. The input features are embedded by feedforward

neural networks (FFNs) and passed to an MHA block after normalization. The

output is summed to make a residual connection [27]. A position-wise FFN with

normalization, dropout, and a residual connection is applied to each token. A class-

MHA block (see subsection 4.2.2) is applied, again utilizing a residual connection.

The output is passed to a linear layer with the output dimension one, and a sigmoid

function is used to make the model suitable for a classification task. The model is

tested in section 5.2.
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4.3. Hyperparameter Optimization

4.3. Hyperparameter Optimization

A ML model has many tuneable parameters, called hyperparameters, that determine the

structure of the model (e.g. the number and dimension of hidden layers) and the optimiza-

tion process (e.g. the learning rate or the size of the data batches used for optimization).

Optimizing those hyperparameters is a crucial task necessary for obtaining optimal results.

In this work, the Optuna framework is used for this task [28]. The hyperparameter search

spaces for the different tests conducted are shown in the appendix A. During the hyperpa-

rameter optimization, different hyperparameter settings are chosen, and the generalization

error is estimated in the validation, by computing the loss of the validation set. The loss

function used in this work is the Binary Cross Entropy [29]. There are two different

possible validation strategies:

Validation using a Validation Set The training data is split into the nonoverlapping train-

ing and validation sets. The model is trained on the training set, and evaluated on

the validation set, to estimate the generalization error [29]. Using a validation set

further has the advantage, that the validation score is accessible during the process

of training, allowing the use of a pruning algorithm and an early stopping algorithm,

as described below. However, the validation set cannot be used for the training,

making it only feasible on large datasets.

k-fold Cross Validation The data is split into 𝑘 equally sized, nonoverlapping subsets

("folds"). The model is trained with 𝑘 − 1 folds serving as the training set and

the remaining set serving as the validation set. This process is repeated 𝑘 times, each

time using a different validation set. The 𝑘 different results are averaged to get a

performance metric. This algorithm takes considerably more computational cost, but

has the advantage, that the the model is trained on a larger portion of the data [29].

However, the evaluation score is only accessible, once the model has finished training

on all folds, making the use of pruning and early stopping algorithms impossible.

In Optuna, a sampling algorithm is used to narrow down the search space based on the

record of suggested hyperparameters and the corresponding validation results. In this

work, the TPESampler is applied [28].

In case the validation is performed using a validation set, pruning and early stopping

algorithms are used. Optuna offers pruning algorithm stops unpromising trials at an early

stage of training to decrease the runtime [28]. The early-stopping algorithm is used, that

stops the training preemptively when the validation score does not improve for a given
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number of epochs (patience). The weights of the iteration yielding the best validation

score are saved. Both algorithms need to access the validation score during the training

(e.g. after every epoch), making them incompatible with the k-fold cross validation.

4.4. Feature Importance

The feature importance measures the impact each input feature has on the model’s output.

Analyzing the feature importance provides valuable insights into the model and the input

data. The choice of which input features should be included in the training of a model

is based on its importance. Removing noisy features that do not separate well between

signal and background can decrease overfitting and increase performance.

FastBDT offers two different methods for determining the feature importance. The

intern feature importance algorithm works by summing up the separation gain, a quantity

inherent to decision trees, of each feature by looping over all trees and nodes. This

algorithm does not apply to Transformer-based networks because of the fundamental

differences between the models.

The extern feature importance algorithm works by measuring the drop in performance

(the AUC score, described in section 5.1) of the model if one feature is left out. This

requires 𝑁 fit operations, where 𝑁 is the number of features. The accuracy of the feature

importance can be further improved by recursively removing the most important feature,

requiring 𝑁 (𝑁 + 1)/2 fit operations. This algorithm is model-agnostic and would work on

any model. However, it is not a viable option for Transformer-based models, because of

the long training time.

To compute the feature importance of the Transformer-based model, an adaptation

to the extern feature importance algorithm is made. The model is trained once with all

input features included and evaluated using the AUC score. The feature importance score

of an input feature is found by measuring the drop in performance (the AUC score) after

the values of this input feature are set to their mean value. This requires evaluating the

model 𝑁 times, where 𝑁 is the number of input features. No re-training of the model is

needed, which makes it a fast and computationally inexpensive method.
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The task of the classifier is to distinguish between signal and background events. To

compare the performance of different models, evaluation metrics described in section 5.1

are utilized. Different Transformer-based models are considered for the classification of the

dataset (section 5.2), and one model is chosen for a detailed performance study. This model

is used to redo the classification of the B
+ → K

∗+
𝜏
+
𝜏
−
analysis [1], where the classification

was done using the FastBDT. To allow for a fair comparison, all steps in the process of

training, optimizing hyperparameters, and setting constraints on overfitting are replicated

from the analysis. To estimate the sensitivity of the analysis, a maximum likelihood scan is

performed and compared to the results of the FastBDT. The feature importance algorithm

is applied and compared to the results of the feature importance algorithm of FastBDT [5].

5.1. Evaluation metrics

Evaluation metrics are used to quantify the performance of the classifiers. The classifier, as

characterized in Figure 4.1, returns an output value between zero and one for each input.

Ultimately a threshold is chosen, so that outputs greater than the threshold are classified

as signal and outputs less than one are classified as background. The ROC curve describes

the behavior of the model at different thresholds. Finally, the classified data is used to find

the sensitivity of the analysis.

5.1.1. The ROC Curve

The Receiver Operating Characteristic (ROC) curve is used to monitor the performance of a

classifier at different thresholds. The characteristics of the model, i.e. the true positive rate

(TPR) and the false positive rate (FPR), depend on the threshold. The TPR (signal efficiency),
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the FPR (background efficiency) and the background rejection (Rej) are computed as

TPR =
TP

P

(5.1)

FPR =
FP

N

(5.2)

Rej = 1 − FPR, (5.3)

where TP (true positives) is the number of truly classified signal events, FP (false positives)

is the number of falsely classified background events, P is the total number of total signal

events, and N is the total number of background events.

Scanning over different thresholds and computing the signal efficiency and the background

rejection returns the ROC curve. The ROC curve is computed for the training set and

the test set separately, where the ROC curve of the test set shows how well the model

generalizes to unfamiliar data. A difference between the ROC curves of the training

set and the test set suggests that the model may have overfitted. Overfitting occurs

when the model learns the training data too well, including its noise and details, leading

to poor generalization to unfamiliar data. An example of a ROC curve is given in Figure 5.1.

In this work, the ROC curves are computed using the roc_curve function from

sklearn [30]. Two different evaluation metrics derived from the ROC curve are described

below.

The Area under the ROC Curve (AUC) A metric to describe the performance is the AUC,

which is computed by integrating over the ROC curve.

AUC =

∫
1

0

TPR dFPR (5.4)

A random classifier would get an AUC score of 0.5 and a perfect classifier would get

an AUC score of 1.

In this work, the AUC is computed using auc from sklearn [30], which uses the

trapezoidal rule for integration.

Background Rejection at a certain Signal Efficiency The AUC is a good metric to evaluate

the overall performance of a classifier but fails to capture the performance of the

classifier in specific regimes of signal efficiency. To provide a metric, that captures

the performance in at specific signal efficiencies, the background rejection at a given
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signal efficiency is computed

Rej𝑋 = 1 − FPR at TPR = 𝑋 . (5.5)

A random classifier would get a Rej𝑋 score of 1 − 𝑋 and a perfect classifier would

get a Rej𝑋 score of 1.

5.1.2. Sensitivity

The ultimate goal of this work is to reduce the upper limit on the measurement of the

branching fraction of the B
+ → K

∗+
𝜏
+
𝜏
−
process, by improving the signal yield. The signal

extraction strategy using a template maximum likelihood fit is described in detail in [1].

The resulting estimated sensitivity of the Transformer-based model is compared to the

sensitivity of the FastBDT.

5.2. Evaluation of Transformers as Classifiers

As a first step, different Transformer-based models adapted to tabular data are applied

to the dataset described in subsection 4.1.1 and compared to the FastBDT performance

using the AUC score. The goal is to understand different Transformer-based approaches

to classification tasks, assess their performance, and identify a potentially suitable model.

Ultimately, a model is selected to redo the classification performed by the FastBDT. Four

distinct models are evaluated as potential alternatives for redoing the classification task,

replacing the original FastBDT model. One model is chosen to be integrated into the

workflow of the B
+ → K

∗+
𝜏
+
𝜏
−
analysis [1], replacing the FastBDT. The sensitivity of the

resulting analysis is estimated and compared to that of the original analysis using FastBDT.

Additionally, the feature importance algorithm is applied to the Transformer-based model

used in the classification task, and the resulting feature importance rankings are analyzed

and compared to the FastBDT feature importance rankings.

5.2.1. Selection of a Model

To choose one model for re-doing the classification of the B
+ → K

∗+
𝜏
+
𝜏
−
analysis using

FastBDT [1], different Transformer-based classifier models are considered. The models

under consideration are described in subsection 4.2.3 and subsection 4.2.4. A simpli-

fied process of training and hyperparameter optimization, which is described in detail

in the appendix A.1, is used to test the models on the dataset. The difference in the
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hyperparameter optimization process is that a validation set is used instead of k-fold

cross-validation, reducing computational cost but limiting the use of the full dataset for

training and testing. Additionally, no constraints are set to reduce overfitting. Because

of these differences, the results of this comparison have to be considered with caution.

The purpose of this comparison is to show that Transformer-based classifiers apply to the

event classification task and to give a suggestion for the choice of a model to investigate

further in subsection 5.2.2.

The models are compared using the AUC score of the test set, which is not used in

the training of the models, so the ability of the model to classify unfamiliar data is tested.

The results of this comparison are displayed in Table 5.1.

Table 5.1.: Comparison of AUC values between different models. The different

Transformer-based models are trained as described in the appendix A, using a

simplified process of training and hyperparameter optimization, and evaluated

using the AUC value of the test set of their respective ROC curves, which are

shown in Figures A.1, A.2, A.3 and A.4. The results are compared to the AUC

values of the FastBDT (from [1]). The highest AUC values are highlighted. The

comparison has to be considered with caution, as the process of training and

hyperparameter optimization of the Transformer-based models differs from the

process of applying FastBDT. The code creation for this comparison is aided by

the AI programming assistant GitHub Copilot.

Test AUC value

Model ℓℓ-channel ℓ𝜋-channel 𝜋𝜋-channel 𝜌-channel

FastBDT 0.887 0.877 0.928 0.915

TabTransformer 0.873 0.893 0.926 0.922
TabNet 0.859 0.881 0.926 0.918

FT-Transformer 0.837 0.877 0.921 0.905

ECT 0.871 0.885 0.931 0.919

The result demonstrates that Transformer-based models show only minor differences to

the FastBDT concerning the test AUC value, performing even slightly better on three out of

four channels. The difference in performance between different Transformer-based models

is small and might be caused by statistical fluctuation, or the choice of the hyperparameter

search space.

The model chosen for further investigation is the ECT, as the model is designed for

the same application [10] and has shown good performance in the comparison.
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5.2.2. Training of the Event Classifier Transformer ( ECT)

The ECT model
1

(see subsection 4.2.4) is chosen for a detailed performance study, where

the settings and methods for optimization are replicated from the B
+ → K

∗+
𝜏
+
𝜏
−
analysis

using FastBDT [1].

The data is split into a training set (70% of the data) and a test set (30% of the data).

As a loss function, the Binary Cross Entropy Loss
2

is used, where weights are applied to

account for the imbalance between the size of the signal and the background set:

𝑊𝑖 =
𝑁

tot

𝑁
classes

· 𝑁𝑖
, 𝑖 ∈ {signal, background}, (5.6)

where 𝑁
classes

is 2, 𝑁
tot

is the total number of events and 𝑁
signal

and 𝑁
background

are the

number of signal and background events. For the training process, the Adam optimizer

[31] is utilized, and the entire dataset is processed across several epochs. The dataset

is split into batches within each epoch to improve memory efficiency and speed. The

Hyperparameter optimization is performed using Optuna (see section 4.3), using the k-fold

cross validation with k=3, with the objective value, that is minimized, being the Binary

Cross Entropy Loss of the test set. The search space for the hyperparameter optimization

is specified in Table A.4. No pruning algorithm is applied, as it is incompatible with the

k-fold cross validation. To visualize, how the value of individual hyperparameters impacts

the objective value, the optimization history is shown in Figure A.5. Constraints are set,

to disregard trials with unintentional behavior. One constraint is set to avoid overfitting,

where the model does not generalize well to unfamiliar data in the test set:

|AUC
test

− AUC
train

|
AUC

test

< 0.01. (5.7)

Another constraint is set to make sure, the data is well represented in different folds during

the k-fold cross validation, and the spread of AUC
test

between different folds is small:

𝑚𝑎𝑥 (AUC
test

) −𝑚𝑖𝑛(AUC
test

)
𝑚𝑖𝑛(AUC

test
) < 0.05. (5.8)

1

implementation adapted from: https://github.com/jaebak/EventClassifierTransformer (accessed on 06th

November 2024)

2

documentation: https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html (accessed on 15th Jan-

uary 2025)
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Using the optimized hyperparameters, the models are trained for the entire training set

for the final time. The Binary Cross Entropy Loss of the training set during the training is

displayed in Figure A.6.

5.2.3. Evaluation of the ECT and Comparison to FastBDT

After the optimization of the model is completed, the result is evaluated using the metrics

described in section 5.1. The model is used to classify the dataset into signal and back-

ground, and the results are plugged into the analysis pipeline, where the sensitivity is

computed and compared to the FastBDT result.

The ROC curves for the ECT model are presented in Figure 5.1, alongside the FastBDT

ROC curves for comparison. Additionally, the AUC values and the background rejection

at TPR = 0.5 are shown in Table 5.2. In terms of performance, the ECT model exhibits

results comparable to those of the FastBDT. An interesting aspect of this comparison is

the difference in the test AUC value between ECT and FastBDT relative to the number of

input features (see Figure 5.2). A better performance of the ECT is observed on datasets

with a higher number of input features. This trend should be interpreted carefully and

studied further, as the absolute differences are small and could be influenced by other

factors, such as the number of events in each dataset.

Table 5.2.: Comparison of the performance of FastBDT and ECT. As evaluation metrics, the

AUC value and the background rejection at TPR=0.5 are used. The evaluation

metrics are computed on the test set, making them a probe for how successfully

the model generalizes to unfamiliar data. The code creation for this comparison

is aided by the AI programming assistant GitHub Copilot.

ℓℓ-channel ℓ𝜋-channel 𝜋𝜋-channel 𝜌-channel

Model AUC Rej
0.5 AUC Rej

0.5 AUC Rej
0.5 AUC Rej

0.5

FastBDT 0.887 0.930 0.877 0.937 0.928 0.956 0.915 0.950

ECT 0.878 0.931 0.872 0.931 0.929 0.953 0.914 0.952

The classifier returns a value between zero and one for every input. In Figure 5.3, the

classifier outputs of the signal process and the different background processes are shown.

As expected, the model outputs values close to zero for most background events and

values close to one for most signal events. For the model to work as a classifier, a threshold

between zero and one is chosen, to define a signal region. The choice of the signal region

impacts both the FPR and the TPR and thus affects the result of the analysis. To find the
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Figure 5.1.: Comparison of ROC curves between FastBDT (from [1]) and ECT on all four

channels. There is no major deviation between the FastBDT and the ECT ROC

curves.

threshold yielding optimal sensitivity, the Punzi Figure of Merit (FoM) [32]

FoM =
TPR

3/2 +
√︁
𝑁𝐵

(5.9)

is computed, with a desired significance of 3𝜎 (as in [1]). 𝑁𝐵 denotes the total background

yield at a given threshold. The Punzi FoM is calculated for different thresholds, and the

threshold yielding the highest FoM value is chosen. In Figure 5.4, a scan of FoM values

for possible thresholds between zero and one is shown, where the highest FoM is used to

select the threshold. Figure 5.5 shows the signal and background efficiency at different

thresholds along with the threshold selected using the FoM. The selected threshold does

not lie in a region of rapid signal efficiency change, ensuring stable classification.
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Figure 5.2.: Difference in the test AUC value between the FastBDT and the ECT plotted

against the number of input features shown in Table A.5. The plot shows that

there is a slight increase in performance of the ECT relative to the FastBDT in

terms of test AUC, with a higher number of input features.

Figure 5.3.: Classifier outputs of the signal process and the different background processes

of all four channels. A perfect classifier would assign outputs close to one for

signal processes and outputs close to zero for background processes.
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Figure 5.4.: The Punzi Figure of Merit at different classifier outputs. The classifier output

corresponding to the highest FoM is chosen as the threshold for classification.
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Figure 5.5.: Signal and background efficiency at different thresholds. The threshold, se-

lected using themaximum FoM, does not lie in a region of rapid signal efficiency

change, ensuring stable classification.
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To obtain an estimation for the signal sensitivity, an "Asimov" dataset [33] is constructed,

that matches the simulated dataset after the classifier is applied. The composition of the

Asimov dataset is shown in Figure 5.6. To estimate the sensitivity of the analysis, a template

maximum likelihood fit is performed, to find the signal strength 𝜇
UL

corresponding to

the upper limit of the branching fraction B(B+ → K
∗+
𝜏
+
𝜏
−) at 90% Confidence Level (see

Figure 5.7). The upper limit of the signal strength 𝜇
UL

is a value that is multiplied by

the number of simulated signal events 𝑁
Signal

, to determine the number of signal events

necessary to set the upper limit at 90% CL. A more detailed explanation of the signal

extraction strategy is given in [1]. The upper limit of the branching fraction is computed

using the signal strength 𝜇
UL

B(B+ → K
∗+
𝜏
+
𝜏
−) <

𝜇
UL

× 𝑁
Signal

𝜖
Signal

× 2 × B(Υ(4𝑆) → B
+
B
−) × 𝑁

BB̄

, (5.10)

where 𝜖
Signal

denotes the combined signal efficiency ( TPR) for all four channels and 𝑁
BB̄

corresponds to the number of BB̄ events in the entire dataset. The comparison of the

estimated sensitivities using the different classifiers is shown in Table 5.3. A 4.86% increase

in the sensitivity of the analysis is observed when substituting the FastBDT classifier with

the ECT classifier.

Table 5.3.: Estimation of the upper limits on the branching ratio B(B+ → K
∗+
𝜏
+
𝜏
−) using

a template maximum likelihood fit of analyses applying different classifiers

(FastBDT [1] and ECT (own work)). The upper limit on the branching ratio

of the analysis using the ECT is 4.86% lower, indicating an improvement in

sensitivity. The upper limits are computed by Lennard Damer.

Model Upper limit on B(B+ → K
∗+
𝜏
+
𝜏
−) × 10

−3

at 90 % CL

FastBDT 5.76

ECT 5.48
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Figure 5.6.: Construction of the "Asimov" dataset from the MC data after applying the

classifier cut found through the Punzi FoM. The dataset is used to estimate the

sensitivity. The plots are created by Lennard Damer.

32



5.2. Evaluation of Transformers as Classifiers

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
0.0

0.2

0.4

0.6

0.8

1.0

CL
s

observed CLS

expected CLS

expected CLS ±1
expected CLS ±2
CLS = 10%

Figure 5.7.: Extraction of the signal strength 𝜇 that is used to find the sensitivity of the

upper limit of the branching fraction at 90% CL. The upper limit of the signal

strength 𝜇
UL

is a value that is multiplied by the number of simulated signal

events 𝑁
Signal

, to determine the number of signal events necessary to set the

upper limit at 90% CL. The plot is created by Lennard Damer.
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5.2.4. Feature Importance

The feature importance measures how much each feature contributes to the classification

of the events. The FastBDT model offers two different feature importance algorithms, and

one feature importance algorithm is adapted to Transformer-based models (see section 4.4).

The algorithm for finding the feature importance of a Transformer-based model is applied

to the ECT, and the results are compared to the inner feature importance algorithm of

FastBDT in Figures A.7, A.8, A.9, and A.10. This comparison serves as a proof of concept

for the feature importance algorithm for Transformer-based models.

The feature importance of the Transformer-based model closely resembles the fea-

ture importance of the FastBDT model, validating the feature importance algorithm.

Differences may be explained either by the fundamental difference of the model or by the

fundamental difference between the feature importance algorithms.
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At the Belle II experiment, the search for the B
+ → K

∗+
𝜏
+
𝜏
−
process, a decay heavily

suppressed in the Standard Model, is of interest, as an enhanced branching ratio in this

decay would hint at New Physics beyond the Standard Model. To support this analysis,

Transformer-based models are tested for the classification task, and their performance is

evaluated against the widely used FastBDT [5] classifier.

Several Transformer-based approaches are investigated, showing similar performance

while following a simplified training and hyperparameter optimization process. One

model, the Event Classifier Transformer [10], is selected to re-do the classification of the

B
+ → K

∗+
𝜏
+
𝜏
−
analysis, that was initially performed using the FastBDT. The comparison

of both classifiers reveals similar performance in terms of the AUC value, which confirms

the feasibility of Transformer-based approaches as tools for analyses in High Energy

Physics.

The Event Classifier Transformer is employed in the data analysis workflow of the

B
+ → K

∗+
𝜏
+
𝜏
−
process, demonstrating that it is possible to integrate Transformer-based

models into existing workflows. A 4.86% increase in sensitivity is observed when the

FastBDT classifier is substituted with the ECT classifier (see Table 5.3). Additionally, a

feature importance algorithm for the Transformer model is examined, producing predic-

tions that are consistent with those of FastBDT, making themodel’s predictions explainable.

Open questions remain for future work and Transformers-based models should be

further explored and optimized for application in High Energy Physics:

Evaluating other Models In this work, several different Transformer-based models are

considered, and one is chosen for a detailed performance study. However, there are

alternatives for the choice of themodel architecture (see subsection 4.2.3). Using other

Transformer-based models may further improve the performance of the classification

task.
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Evaluating other Loss Functions For training the models, the Binary Cross Entropy Loss

is used in this work. There are other choices of a loss function, as suggested in [10],

that may be used, to improve the performance.

Feature Importance The feature importance algorithm tested in this work yields results

that are consistent with those of FastBDT. However, there are several different ways

to extract the feature importance [34]. The application of the attention mechanism

may enable further feature importance algorithms, that are based on the attention

weights of the model [35, 36]. Improving the feature importance algorithm allows

for a better selection of input features.

Evaluating Cases of Transformer Model Effectivity In the datasets evaluated in this work,

the Transformer-based model demonstrates better performance in terms of AUC

value compared to FastBDT when applied to datasets with many input features,

while it falls behind on datasets with fewer input features (see Figure 5.2). However,

the differences in performance are small and may be subject to other influences.

Further investigation is required to identify the specific conditions under which the

Transformer model outperforms FastBDT.

Evaluating difference in Event Selection between Transformer and FastBDT It should be

investigated whether the FastBDT and the Transformer classifier select different

events. If so, combining both models could enhance classification performance.

Making Transformer-based models accessible To make Transformer-based classifiers ac-

cessible for further analyses, the methods used in this work should be documented

so that they are understandable and easy to use.

The results indicate that Transformer-based approaches are promising tools, complement-

ing traditional Machine Learning methods such as FastBDT. With further investigation,

these methods could potentially be applied to other analyses, expanding the toolkit avail-

able for performing classification tasks.
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A. Appendix

A.1. Selection of a Model

In this section, the process of testing different models is described, to choose one model for

a detailed comparison to the FastBDT. The training and hyperparameter optimization pro-

cesses differ from the process in the analysis using FastBDT in [1] in that they are simpler

and less computationally expensive. The hyperparameter optimization is performed using

Optuna, as described in section 4.3. Instead of k-fold cross validation, a validation set is

used, reducing the amount of data available for training and testing. As the validation

score, the Binary Cross Entropy Loss of the validation set is utilized. A pruning algorithm

(the Median Pruner from Optuna [28]) is applied, stopping unpromising trials at an

early stage. Additionally, the constraint to avoid overfitting is not applied. The number of

epochs is not specified as a hyperparameter, and instead, the early stopping algorithm is

applied, stopping the training, if the validation score does not improve for a given number

of epochs (patience), and saving the model weights of the best epoch.

The dataset outlined in subsection 4.1.1 is utilized to train all models, with each model

being trained separately on all four channels using the input features specified in Table A.5.

The dataset is split into the training set (70% of the data), the validation set (15% of the

data), and the test set (15% of the data). The Adam optimizer [31] is used to train all four

models. As a loss function, the Binary Cross Entropy Loss
1

[29] is used, where weights are

applied to account for the imbalance between the size of the signal and the background

set. The weights are computed as described in Equation 5.6

Some of the models tested are slightly adapted to make them suitable for the task,

and the implementations are discussed below. Hyperparameter optimization is not per-

formed on the TabNet model, because fundamental changes to the code would have been

required.

1

documentation: https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html (accessed on 15th Jan-

uary 2025)
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TabTransformer [23] The model is implemented in the PyTorch [37] framework
2

. An

adaptation to the model presented in [23] is made by integrating a linear embedding

layer, instead of passing the data directly to the attention block. The hyperparameter

search space is given Table A.1, and the resulting ROC curve is shown in Figure A.1.

FT-Transformer [24] The model is implemented in the TensorFlow [38] framework
3

. No

adaptations to the model are made. The hyperparameter search space is given in

Table A.2, and the resulting ROC curve is shown in Figure A.3.

TabNet [25] The model is implemented in the PyTorch [37] framework
4

. The default

hyperparameter settings are used, and the resulting ROC curve is shown in Figure A.2.

Event Classifier Transformer [10] The model is implemented in the PyTorch [37] frame-

work
5

. No adaptations to the model are made. The hyperparameter search space is

given in Table A.3, and the resulting ROC curve is shown in Figure A.4.

The resulting test AUC are compared in Table 5.1. The resulting scores have to be consid-

ered with caution, because of the different hyperparameter optimization procedures and

because no constraints to avoid overfitting are applied.

Table A.1.: Hyperparameter ranges used for the TabTransformer in section A.1. The

optimization is performed over 100 iterations.

Hyperparameter Range

activation function {GeLu, ReLU}

embedding dimension [3,12]

dropout [0,0.6]

N layers [2,5]

learning rate [10
−6

, 10
−3

]

patience [10,25]

batch size 64

2

documentation: https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html (accessed

on 16th October 2024)

3

implementation adapted from: https://github.com/aruberts/TabTransformerTF/tree/main (accessed on

29th October 2024)

4

documentation: https://pypi.org/project/pytorch-tabnet/ (accessed on 29th October 2024)

5

implementation adapted from: https://github.com/jaebak/EventClassifierTransformer (accessed on 06th

November 2024)
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Table A.2.: Hyperparameter ranges used for the FT-Transformer in section A.1. The opti-

mization is performed over 50 iterations.

Hyperparameter Range

attention dropout [0,0.5]

FFN dropout [0,0.5]

learning rate [10
−5

, 10
−2

]

batch size {32, 64, 128, 256, 512, 1024}

patience 20

Table A.3.: Hyperparameter ranges used for the ECT in section A.1. The optimization is

performed over 100 iterations.

Hyperparameter Range

dropout [0,0.6]

linear factor [1,12]

learning rate [10
−6

, 10
−3

]

N heads [2,8]

N nodes [3,10] × N heads

patience 20

batch size 64
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Figure A.1.: ROC curves of the TabTransformer on all four channels. The simplified process

for training and selecting hyperparameters, as described in section A.1, is

used.
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Figure A.2.: ROC curves of the TabNet on all four channels. The simplified process for

training and selecting hyperparameters, as described in section A.1, is used.
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Figure A.3.: ROC curves of the FT-Transformer on all four channels. The simplified process

for training and selecting hyperparameters, as described in section A.1, is

used.

46



A.1. Selection of a Model

Figure A.4.: ROC curves of the ECT on all four channels. The simplified process for

training and selecting hyperparameters, as described in section A.1, is used.
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A.2. Evaluation of the Event Classifier Transformer

In this section, additional plots and tables related to subsection 5.2.2 are shown.

Table A.4.: Search space for the hyperparameter optimization. The parameters that de-

scribe the model are the dropout rate within the dropout layers, the number of

heads of the MHA, and the linear factor and number of nodes that specify the

dimensions of the linear layers. The parameters describing the optimization

procedure are the learning rate of the classifier, the batch size, and the number

of epochs. The optimization is computationally expensive due to k-fold cross

validation, and the number of trials is set to N=30.

Hyperparameter Range

dropout [0,0.3]

N heads [1,12]

linear factor [1,12]

N nodes [3,10] × N heads

learning rate [1E-6, 1E-4]

batch size {32, 64, 128, 256, 512, 1024}

N epochs [50,200]
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Table A.5.: List of input features used for the training of the FastBDT and the Transformer-

based model. To allow for a fair comparison, the choice of input features is not

changed from the analysis using the FastBDT. Adapted from [1].

Training Variable ℓℓ ℓ𝜋 𝜋𝜋 𝜌

p𝐶𝑀𝑆𝑚𝑖𝑠𝑠 ✓ ✓ ✓ ✓

E𝐶𝑀𝑆𝑚𝑖𝑠𝑠 ✓ ✓ ✓ ✓

Et ✓ ✓ ✓

M𝐾
∗+ ✓ ✓ ✓

M (𝐾∗+
; t

1
) ✓ ✓ ✓ ✓

M (𝐾∗+
; t

2
) ✓ ✓ ✓ ✓

cos(𝑇ℎ𝑟𝑢𝑠𝑡𝐵 ;𝑇ℎ𝑟𝑢𝑠𝑡𝑅𝑂𝐸) ✓ ✓ ✓ ✓

cos(𝑇ℎ𝑟𝑢𝑠𝑡𝐵 ;𝑇ℎ𝑟𝑢𝑠𝑡𝑧) ✓ ✓ ✓ ✓

Thrust
B

✓ ✓ ✓ ✓

Thrust
ROE

✓

CLEO Cone 0 ✓ ✓ ✓

CLEO Cone 1 ✓ ✓ ✓

CLEO Cone 2 ✓ ✓ ✓

CLEO Cone 3 ✓ ✓ ✓

CLEO Cone 4 ✓ ✓

CLEO Cone 5 ✓

CLEO Cone 6 ✓ ✓

CLEO Cone 7 ✓ ✓

CLEO Cone 8 ✓ ✓

H so

00
✓ ✓

H so

02
✓ ✓

H so

03
✓ ✓ ✓

H so

04
✓ ✓ ✓

H so

12
✓ ✓

H so

14
✓ ✓ ✓

H so

20
✓ ✓ ✓

H so

22
✓ ✓ ✓ ✓

H so

24
✓ ✓ ✓

Hoo

01
✓ ✓

Hoo

02
✓ ✓ ✓

Hoo

03
✓ ✓

Hoo

04
✓ ✓

Σ 12 23 29 26
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ℓℓ-channel

ℓ𝜋-channel

𝜋𝜋-channel

𝜌-channel

Figure A.5.: History of the trials during hyperparameter optimization of the ECT model,

where the process of training and hyperparameter optimization is replicated

from the analysis using FastBDT. The objective value, that is minimized, is the

mean Cross Entropy Loss of the validation sets during k-fold cross validation.

The choice of the hyperparameter search space is the same for all channels (see

Table A.4). Trials, that are excluded because of the constraints on overfitting

and on the difference between folds, are not shown in this plot.
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A.2. Evaluation of the Event Classifier Transformer

Figure A.6.: Binary Cross Entropy Loss of the training set during the training process of

the ECT, where the process of training and hyperparameter optimization is

replicated from the analysis using FastBDT.
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A.3. Feature Importance

In this section, the comparison of the feature importance of FastBDT from [1] and the ECT.

The relative scale of both feature importance algorithms differs due to the fundamental

difference between approaches. The feature importance of the ECT closely resembles the

feature importance of the FastBDT, validating the approach. The code creation for this

comparison is aided by the AI programming assistant GitHub Copilot.

Figure A.7.: Feature importance of the FastBDT (left) and the ECT (right) of the ℓℓ-channel.

Figure A.8.: Feature importance of the FastBDT (left) and the ECT (right) of the ℓ𝜋-channel.
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Figure A.9.: Feature importance of the FastBDT (left) and the ECT (right) of the 𝜋𝜋-channel.

Figure A.10.: Feature importance of the FastBDT (left) and the ECT (right) of the 𝜌-channel.
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