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Preface

This thesis incorporates the use of Artificial Intelligence (AI) tools to help with grammatical
improvement of text, and program code creation.
Grammarly∗ is utilised throughout the thesis for spell and grammar checks. I have approved
all suggested changes.
GitHub Copilot† is used to aid the development of Python code by automatically making
suggestions inside the code editor to complete predictable code chunks and to find errors in
my code.
GitHub Copilot and ChatGPT‡ are used to aid the development of HTML code to create a
website displaying the results (Ch. 5) which does not constitute the core scientific work of
this thesis.
I have approved and tested all suggestions to provide robust and reliable results.

The work of this thesis adds a feature to the already existing Validation Interface for the
Belle II Experiment (VIBE) [1] by Patrick Ecker. This is done within the Belle II Analysis
Software Framework (basf2) [2].
The data files and Monte Carlo (MC) simulation files are taken and produced by the Belle II
collaboration and downloaded by Dr. Giacomo De Pietro.
When plotting the trigger line efficiencies (Ch. 3), the uncertainties are calculated using
Patrick Ecker’s DM-Analysis-Tools [3] and the fit is done using the optimize.curve_fit
function from SciPy [4].
The histograms in Ch. 4 are created using a Matplotlib style sheet based on the Belle II
Plotting Style Guide [5] provided to me by Greta Heine.
The website displaying the results (Ch. 5) is built together with Simon Weber in order to
use consistent design choices between our two projects.
Dr. Giacomo De Pietro and Patrick Ecker proof-read this thesis and suggested improvements
of which many are included in the final version.
Prof. Dr. Torben Ferber, Dr. Giacomo De Pietro and Patrick Ecker proposed the studies
conducted in this thesis.
I want to thank them and the entire Belle II group at ETP for welcoming me into their
group and for their support during my time with them.

∗Grammarly Inc: Grammarly. https://www.grammarly.com/
†GitHub and OpenAI: Copilot. https://github.com/features/copilot/
‡OpenAI: ChatGPT. https://chatgpt.com
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1. Introduction

The Standard Model (SM) of particle physics is the most successful description of nature
on the smallest known scale. While it predicts the effects of three of the four fundamental
forces with staggering accuracy, cosmological observations show the existence of Dark
Matter (DM) which does not appear in the SM. Theorists have proposed many different
models covering a wide mass range, but no experiments were able to verify any of these
theoretical predictions. The search for DM is one of the most pressing pursuits in modern
particle physics. It is performed by a vast number of experiments using entirely different
approaches.
Collider experiments such as Belle II look for very rare processes where ordinary matter
couples non-gravitationally to DM. To achieve meaningful statistics even for these events,
Belle II aims for record-breaking luminosities which in turn leads to an extremely high
amount of measured data of which not all can be stored due to limitations in computing
power and storage capacity.
The Belle II trigger system selects which events to store and which to disregard permanently.
It needs to come to a decision in a very short amount of time because, during its selection,
more events are still measured and need to be judged by the system. Its performance is
crucial for the experiment as it influences the data available for analyses.
Running the experiment with a faulty trigger system wastes money and resources and leads
to unnecessary energy consumption. This calls for a thorough monitoring process.
The process needs to be automated, so it can be run over all data-taking periods and
investigate all aspects of the trigger system without spending the working hours it would
otherwise take. Additionally, its results need to be displayed in an easily accessible way to
quickly bring attention to possible errors.

This thesis presents an automated monitoring of the Belle II trigger system. In Ch. 2,
the collider and the detector as well as the trigger system and its software framework are
introduced. Chapter 3 describes trigger line efficiencies and how they are monitored which
lays the groundwork for the automated monitoring (Ch. 4). To make the results easily
accessible for the collaboration, a website is created which is presented in Ch. 5. Chapter 6
gives a summary of the obtained results and points at possible subsequent studies.
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2. The Belle II Experiment

Belle II is a detector at the particle collider SuperKEKB at the KEK complex in Tsukuba,
Japan.

2.1. SuperKEKB Collider
SuperKEKB is an asymmetric, circular e+e− collider with a centre-of-mass (COM) energy of
10.580GeV [6]. Before entering the collider rings, the electrons and positrons are accelerated
in the injector linear accelerator (LINAC) to an energy of 7GeV and 4GeV, respectively.
From there, they are sent into two different rings until they collide at the interaction
point (IP) inside the Belle II detector. A sketch of the accelerator complex can be seen in
Fig. 2.1.
The COM energy is chosen to match the mass of the Υ(4S) resonance1 which mainly
(> 96%) decays into two B mesons [7]. For this reason, SuperKEKB produces a high
number of B mesons and is called a B-factory.
The asymmetry in energy of the electrons and positrons provides a boost to all emerging
particles. This helps detect particles with a small lifetime in the laboratory frame due to
relativistic time dilation.

2.2. Belle II Detector
The Belle II detector is positioned at the Tsukuba straight section at SuperKEKB right at
the IP. It contains multiple layers of detectors that are built in cylindrical shape around
the beam pipe. An overview of Belle II can be seen in Fig. 2.2.
The innermost layer is the Vertex Detector (VXD) which consists of the Pixel Detector (PXD)
and the Silicon Vertex Detectors (SVD). It measures the position of particles with very high
precision which is crucial to reconstruct the particles’ trajectories (often called "tracks")
near the IP.
The next layer around the VXD is the Central Drift Chamber (CDC) through which the
particles propagate revealing their charge and momentum. Outside of the CDC, there are
the Aerogel Ring-imaging Cherenkov (ARICH) and Time-of-Propagation (TOP) detectors,
both delivering data useful for particle identification.
Finally, there are the Electromagnetic Calorimeter (ECL) and the K0

L and Muon Detector
(KLM). The ECL measures energy depositions of leptons, hadrons and photons. The KLM

1Some data-taking periods are intentionally run "off-resonance" meaning the COM energy is not equal to
the mass of the Υ(4S) resonance. This is discussed in Sec. 4.1.
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4 2. The Belle II Experiment

Figure 2.1.: An overview of the SuperKEKB accelerator. The e+e− injector linear ac-
celerator is shown on the bottom right. From there, the electrons travel in
the high-energy ring (HER) and the positrons in the low-energy ring (LER)
(depicted in blue and red, respectively). The Belle II detector is positioned at
the Tsukuba straight section. Image taken from [6].

Figure 2.2.: Overview of the Belle II detector. It is built asymmetrically to match the
forward direction given by the direction of the electrons which are higher-energy
than the positrons. Image taken from [8], annotated by me.
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detects and identifies K0
L and muons behind the ECL and a 1.5T superconducting magnet.

The coordinate system used for Belle II analyses is defined to have its origin at the IP and
the z-axis pointing in the forward direction of the electrons. The x-axis points horizontally
away from the centre of the collider ring. Finally, the y-axis is defined to point vertically
upwards creating a right-handed coordinate system. Because of the cylindrical shape of
the detector, it is often natural to use cylindrical coordinates. Therefore, the azimuth ϕ
is defined in the xy-plane ranging from −180◦ to 180◦ where the x-axis fixes ϕ = 0 [9].
Sometimes, spherical coordinates come in handy, as well. In this case, the origin is defined
at the IP and the polar angle θ ranges from 0 to 180◦ with θ = 0 being the forward direction
of the electrons.

2.3. Belle II Trigger System
Computing power and storage capacity limit the amount of measured data Belle II can
store. Events that happen quite often (mostly Bhabha scattering events) would take away
resources needed to save events of more interest. Therefore, all measured events need to be
somehow assessed as to how interesting they are for analyses. This is where the Belle II
trigger system comes in. It assigns a binary value to every event depending on whether
or not the event is worth storing, 1 ("triggered") meaning the event is stored and 0 ("not
triggered") meaning it is permanently deleted.
The Belle II trigger system consists of two parts: the Level 1 trigger (TRG), sometimes
just called L1, and the high level trigger (HLT).

Level 1 Trigger

When selecting which events should be stored, time is a limiting factor. The system needs
to temporarily store all events that happen during the selection to have the chosen events
available once the selection is finished. Therefore, it does not have time to send all data to
an external computing centre and do thorough calculations there.
Instead TRG uses field-programmable gate arrays (FPGAs) that sit right at the detector
(this is why it is called Level 1 trigger). To be exact, these FPGAs are part of the
subdetectors CDC, ECL and KLM. They create input trigger bits which are binary signals
corresponding to certain signatures which either are of interest for analysis or considered
unnecessary to be stored. For example, the bha_veto trigger bit sends "1" if the event is
Bhabha scattering and "0" if it is not.
Output triggers (final trigger decision logic, FTDL) combine these trigger bits to make
trigger decisions. Many of them use the negated bha_veto decision to filter out Bhabha
scattering.
The FTDL is then prescaled to produce the prescale and mask (PSNM) trigger decision.
Prescaling means that certain FTDL triggers do not store all events they detect but only
every nth, where n is called the prescale factor. For example, the prescale factor of the
trigger line corresponding to Bhabha events is 100, so Belle II only stores 1 out of 100
Bhabha events [10].
If at least one of the PSNM triggers gives a positive result for a certain event, it is then
processed further by the HLT. TRG turns an input rate around 45 kHz (always depending
on current luminosity) into an output rate of no more than 30 kHz. Figure 2.3 shows the
TRG logic.
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Figure 2.3.: The logic of TRG. The subdetectors form the input trigger bit decisions. These
decisions are processed by the global decision logic (GDL) via the input trigger
delay module (ITD) forming output bits (FTDL) which are then prescaled
(PSNM). If at least one PSNM trigger bit returns 1 ("is triggered"), the event
is given to data acquisition (DAQ). Image taken from [11].

High Level Trigger

The HLT consists of about 10 000 CPU cores which immediately reconstruct each triggered
event. Depending on the results of the reconstruction, it then applies a further selection
and stores the remaining events on actual hard drives. The maximum output rate of the
HLT is 10 kHz.

2.4. Belle II Analysis Software Framework
The Belle II Analysis Software Framework (basf2, [2] [12]) is C++ and python software which
can deal with a very high amount of data to perform a wide range of tasks. It is used both
for offline analyses by individual collaboration members and large-scale jobs by systems
such as the HLT. It handles tasks ranging from event generation to track reconstruction
and physics analysis.
For the full documentation of the release light-2403-persian, which is used for offline
analysis throughout this thesis, see [13].



3. Trigger Line Efficiency Monitoring

In this chapter, I investigate trigger line efficiencies for single experiment runs to introduce
important concepts which are necessary for the monitoring process discussed in Ch. 4.

3.1. Trigger Line Efficiencies

The trigger system needs to function well for the experiment to succeed as its decisions
determine which data are stored and end up being used in analyses and more importantly
which data are not stored and therefore permanently discarded. To monitor the trigger
system, I study the efficiency of one trigger line at a time, meaning the percentage of events
this specific trigger line decided to store.
Before starting to monitor trigger line efficiencies, a proper definition is needed. The naive
way would be to calculate the efficiency ϵtrg as

ϵtrg =
N(trg)
Nall

, (3.1)

where N(trg) is the number of events where the trigger line is triggered, and Nall is the
number of all events. However, when studying measured data, Nall is unknown because, by
design, only events which triggered at least one trigger line are registered.
This problem is easily solved by defining one or multiple reference lines. Then, the efficiency
is calculated as

ϵtrg =
N(trg AND ref)

N(ref)
(3.2)

with trg being the trigger line decision of interest and ref = (ref1 OR ref2 OR . . .OR refn)
being the OR connection of all n reference lines.
Note that FTDL and PSNM outputs are combinations of several input trigger bits (see [10]
for the full trigger bit table). Different output trigger lines can therefore be correlated when
using the the same input bit to form a decision. Correlated trigger lines should not be used
as reference lines since this will naturally bias the sample used to study the trigger line.
In this thesis, I only analyse ECL and CDC triggers. Usually, it is a good idea to take an
ECL line as a reference to a CDC line and vice versa. Still, there are input bits used by
both ECL and CDC trigger lines, so one needs to be careful.

7



8 3. Trigger Line Efficiency Monitoring

Table 3.1.: All selection criteria used throughout this thesis.

Final State Particle Selection Criteria

µ± |dr| < 0.5 cm
|dz| < 2 cm

thetaInCDCAcceptance (17◦ ≤ θ ≤ 150◦)
muonID_noSVD > 0.9

γ thetaInECLAcceptance = 2 (32.2◦ ≤ θ ≤ 128.7◦)

ECL Energy Depositions 4 ≤ clusterThetaID ≤ 58
clusterUncorrE > 0.1GeV

clusterTiming < 200 ns

Additionally nCleanedTracks(µ± selection)= 2
Eevent < 11GeV

3.2. Turn-on Curves

Many trigger lines are designed to be triggered if a specific variable exceeds a certain value.
For example, the high energy trigger (hie) uses the total energy Etot that is deposited into
a certain area of the ECL (approximately 22◦ ≤ θ ≤ 128◦) and is triggered when it exceeds
1GeV. To monitor this, I bin the energy deposition and plot the efficiency of all events in
each bin using the DM-Analysis-Tools [3] to calculate uncertainties. This can be seen in
Fig. 3.1. In this plot and throughout the thesis, I study the process e+e− → µ+µ−(γ) with
the selection criteria listed in Tab. 3.1 (for the definition of each variable, see section 7.3.
in [13]).
I select two muons in the acceptance region of the CDC (17◦ ≤ θ ≤ 150◦) with a vertex
close to the IP and a photon within the barrel region of the ECL (32.2◦ ≤ θ ≤ 128.7◦).
Particles in the ECL are only considered if they are measured within a certain angular
region and if they exceed the energy threshold of 100MeV. The clusterTiming selection
filters out cases where the cluster is hit too long after a reference time t0 as this is mostly
caused by beam background.
Since SuperKEKB only supplies the e+e− pair with a total energy of 11GeV, any event

with a higher energy is disregarded.
Ideally, the distribution of Fig. 3.1 should follow a step function, being 0 for all values below
what is called the turn-on point, and 1 for all above. For hie, this means that the efficiency
of events with Etot < 1GeV should be 0, and for Etot ≥ 1GeV, it should approach 1 with
a very sharp transition.
In practice, however, it takes off a bit before the turn-on point and reaches the plateau
a bit later. This is due to the fact that the high-level variable Etot on the x-axis is only
an approximation of the variable used by TRG on the lowest level. One difference is the
resolution of the polar angle region which is considered. In the offline reconstruction, a
selection on the polar angle of the highest-energy ECL crystal is used. The crystals around
the highest-energy one still measure some deposition which will be recognised by TRG if it is
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Figure 3.1.: PSNM efficiency of hie for different values of the total energy deposition in
the ECL. Simulation of experiment 26, run 898 (only e+e− → µ+µ−(γ) final
state).

within the area hie uses (even if the highest-energy crystal is outside this area). This leads to
a non-vanishing hie efficiency for Etot values slightly below 1GeV. Additionally, the energy
resolution and timing selection differ between the two because the offline reconstruction has
more data available and defines a different reference point t0 than the low-level variable.

To monitor the turn-on behaviour, I define the fit function

f(x,m, s, k, y0) =

(
1

2
· erf (s · (x−m)) +

1

2

)
· (k − y0) + y0 (3.3)

where the error function erf is given by

erf(x) =
2√
π

∫ x

0
e−t

2

dt (3.4)

with the mathematical constants π and e.

In addition to the variable x, the fit function in Eq. 3.3 depends on the fit parameters,
namely

• the turn-on point m ,

• the steepness s ,

• the asymptotic value k and

• the starting value y0 .

In the limit s → ∞, k → 1 and y0 → 0 , the fit function resembles the ideal step function.
For most trigger lines, there is a known ideal turn-on point that is monitored by comparing



10 3. Trigger Line Efficiency Monitoring

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Etot (GeV)

0.0

0.2

0.4

0.6

0.8

1.0
hi

e 
PS

NM
 E

ffi
cie

nc
y Belle II Simulation e + e + ( )

(own work)
Reference Line(s): fy30, fyo

MC
MC Fit:
m = 1.109 ± 0.003,
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k = 0.970 ± 0.002,
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Figure 3.2.: PSNM efficiency of hie against the total energy in the ECL. Fitted with the
fit function defined in Eq. 3.3. Simulation of experiment 26, run 898 (only
e+e− → µ+µ−(γ) final state).

with the fit parameter m. k and y0 are important to monitor the actual performance of the
trigger line as they are the true positive rate and false positive rate (for values far away
from the turn-on point), respectively. The steepness parameter s shows how well the trigger
line is performing around the turn-on point.
In Fig. 3.2, a fit is performed using the optimize.curve_fit function from SciPy [4] which
relies on the optimize.leastsq method. This will be used for fitting throughout the thesis.
The fit function has the problem of overestimating the steepness behind the turn-on point
while underestimating the steepness in front of it. To tackle this problem, a double-sided fit
can be performed. This is done by first using the fit function from Eq. 3.3, and then fixing
the results of m, k and y0 to define the double-sided fit function

fDS(x, s1, s2) =

{
f(x,m, s1, k, y0) x ≤ m

f(x,m, s2, k, y0) x > m ,
(3.5)

where f is the symmetric fit function defined in Eq. 3.3.
The design of fDS ensures it is continuous in x = m. The results of a double-sided fit are
shown in Fig. 3.3. As expected, the result for s1 is higher than s from the fit in Fig. 3.2
and s2 is lower.
For the purpose of monitoring the turn-on curves, however, just one parameter that measures
steepness suffices and a perfect fit is not necessary. Therefore, I only use the symmetric fit
in the automated monitoring process described in Ch. 4.
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Figure 3.3.: PSNM efficiency of hie against the total energy in the ECL. Fitted with the fit
function defined in Eq. 3.5. The values for m, k and y0 are taken from the fit
in Fig. 3.2. Simulation of experiment 26, run 898 (only e+e− → µ+µ−(γ) final
state).

3.3. Efficiency of Neural 3D CDC Track Triggers

Now, I investigate neural 3D CDC track triggers, namely the trigger lines fy30 and fyo (the
discussion also applies to their predecessors ff30 and ffo). They are designed to trigger if
∆ϕmax is higher than 30◦ and 90◦, respectively, where ∆ϕmax is the maximum azimuthal
opening angle between any two tracks of the same event.
As depicted in Fig. 3.4 and Fig. 3.5, their turn-on curves have a turn-on point at the values
30◦ and 90◦, respectively, after which the efficiency stagnates until it rises again for the last
few data points. This behaviour differs from the fit function from Sec. 3.2. Therefore, fyo
and fy30 need different treatment.
One possibility, which I use for other trigger lines in Ch. 4, is to perform the fit once to get
a rough estimate of the turn-on point parameter m. Then I zoom in around this calculated
turn-on point and perform the fit again, disregarding points that are too far away from the
turn-on point. However, for fy30 and fyo this procedure is not stable enough which is why
in Ch. 4, I zoom in around the expected turn-on point of the trigger line. In Fig. 3.6 this is
done for the trigger line fyo which has an expected turn-on point at 90◦, so the fit ranges
from 45◦ to 135◦ disregarding the events with a high opening angle.
Another possibility is to manually declare the troublemaking data points as outliers and
disregard them for the fit (Fig. 3.7). To properly fit all data, I fit a second turn-on curve
for the last data points. I do this by selecting a point where the first curve ends and the
second begins. Then, I fit the first curve and take the value for k as the value for y0 for the
second curve, determining only the remaining three fit parameters. This is done in Fig. 3.8.
Note that all of these options succeed in producing a more accurate fit but need some



12 3. Trigger Line Efficiency Monitoring

0 20 40 60 80 100 120 140 160 180
max (°)

0.0

0.2

0.4

0.6

0.8

1.0
fy

30
 P

SN
M

 E
ffi

cie
nc

y Belle II Simulation e + e + ( )
(own work)

Reference Line(s): hie

MC

Figure 3.4.: PSNM efficiency of fy30 for different values of the maximal opening angle
between two tracks. Simulation of experiment 26, run 898 (only e+e− →
µ+µ−(γ) final state).
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Figure 3.5.: PSNM efficiency of fyo for different values of the maximal opening angle between
two tracks. Simulation of experiment 26, run 898 (only e+e− → µ+µ−(γ) final
state).
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Figure 3.6.: PSNM fyo efficiency as a function of maximal opening angle between two
tracks for a range of 90◦ around the expected turn-on point (90◦). Standard
fitting method from Sec. 3.2. Simulation from experiment 26, run 898 (only
e+e− → µ+µ−(γ) final state).
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Figure 3.7.: PSNM fyo efficiency as a function of maximal opening angle between two tracks.
The last five data points are manually disregarded for the fit. Simulation from
experiment 26, run 898 (only e+e− → µ+µ−(γ) final state).
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Figure 3.8.: PSNM fyo efficiency as a function of maximal opening angle between two tracks.
Two different turn-on curves are fitted two the data points. Simulation from
experiment 26, run 898 (only e+e− → µ+µ−(γ) final state).

manual selection (the data points I disregard, the point around which I "zoom in", and
the point where I separate the two curves). Which data points to disregard and where to
separate the curves, changes from run to run. Therefore, these two do not qualify for an
automated monitoring of thousands of runs and I "zoom in" around the expected turn-on
point in the monitoring (Ch. 4).

3.4. Discrepancy Between Data and Simulation

In modern particle physics, Monte Carlo (MC) simulation is used to make predictions and
hint scientists at where to look for new physics. Naturally, one wants to compare data
and MC and therefore also trigger decisions in the simulation are necessary. This is where
trigger simulation (TSIM) comes in.
As the name suggests, TSIM simulates the L1 trigger system of Belle II. In this section, I
investigate a discrepancy of TSIM and TRG for ECL trigger lines such as hie. Figure 3.9
shows comparisons between data and MC for hie and the low multiplicity (lml) trigger line
lml12.
In both plots, the efficiency of data is a few percent higher than that of TSIM, which
is an unexpected issue especially for higher energies as these ECL trigger lines should
conceptually be simulated quite accurately. The discrepancy arises for all ECL trigger lines
and has been studied internally by the collaboration. The error in the TSIM code has been
found and will be fixed in an upcoming release.
This shows that monitoring trigger line efficiencies in both data and simulation is an
important task for the collaboration. Issues like this can impact analyses if they go
unnoticed for too long.
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Figure 3.9.: Efficiency of ECL trigger lines as a function of the total energy that is deposited
into the ECL for both data and simulation of experiment 26, run 898. Data
show a higher asymptotic value by a few percent.





4. Run-Dependent L1 Efficiency Monitoring

During the lifetime of an experiment like Belle II, the collaboration keeps maintaining,
changing and improving the experimental setup. For example, a part of a detector might
break and need replacement, the experiment is performed at different energies or more
particles are accelerated to reach a higher luminosity.
Every time a component of the detector is changed, it can have an impact on trigger
efficiencies as the input trigger bits use data measured by many subdetectors. To find
sources of errors and inaccuracies, the efficiencies need to be investigated for all data-taking
periods.

4.1. Dataset

In this thesis, I only monitor those runs in the dataset (up until June 2022) which use a COM
energy equal to the mass of the Υ(4S) resonance. This excludes some data-taking periods
which consist of energy scan runs and off-resonance runs. For all relevant experiments, the
integrated luminosity

∫
Ldt used in this thesis can be found in Tab. 4.1.

All available samples of MC simulation are used to get the best possible description of
collected data. However, due to selecting only the process e+e− → µ+µ−(γ) (see Sec. 3.2
for the selection criteria), other final states only play a marginal role. The only other
relevant contribution comes from the process e+e− → e+e−µ+µ− when the electron and
positron travel too closely to the beam pipe to be reconstructed.

4.2. Analysis

I now monitor the L1 efficiencies of all runs within a certain experiment, one single trigger
line at a time. For that, I perform a fit of the turn-on curve (see Sec. 3.2) for every run

Table 4.1.: Integrated luminosity of all experiment runs used in this thesis. Determined
using the b2info-luminosity tool from basf2 [2].

Experiment 7 8 10 12 14 16∫
L dt (fb−1) 0.506 1.663 3.655 54.573 16.500 10.294

17 18 20 22 24 26
10.715 89.900 3.788 32.060 85.642 54.795

17
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and analyse the results of the fit parameters. To get a better look at the performance of
the trigger line around the turn-on point, I also perform an additional fit for a smaller
range around the turn-on point that was determined with the full-range fit. This leads to a
finer binning and a narrower fitting range in that area. Therefore, the parameters m and
s (turn-on point and steepness) are determined more accurately than with the full-range
fit. The parameters k and y0 are influenced mainly by data points in the tails of the curve.
Therefore, they are determined more accurately without the additional close-range fit.
The main work of this thesis is creating a mode in the Validation Interface for the Belle II
Experiment (VIBE) [1] which can do this procedure automatically for any trigger line and
any variable. The source code of my contribution can be found in [14]. As an example, I
show the performance of the trigger line hie for experiment 22. Since the neural 3D CDC
track triggers fy30 and fyo call for a slightly different treatment (see Sec. 3.3), the fyo
monitoring of experiment 22 is also shown. More results can be found in Sec A.1.

4.2.1. hie Performance Monitoring

The x-axis of hie turn-on curves is the total energy deposition in the ECL. Its full range
is chosen to be from 0 to 4GeV where the upper limit is a compromise between a large
range to have enough data points for the parameters k and y0 and having high statistics in
every entry. The narrow range is then defined to reach from 0.5GeV below the determined
turn-on point to 0.5GeV above it. Here, I use fy30 and fyo as reference lines (for older
experiment runs ff30 and ffo are used).

The results of the automated monitoring are the fitting parameters of every run of the
experiment, which are visualised by histograms. Figures 4.1a and 4.1b show histograms of
the turn-on point parameter m for simulation of experiment 22 and data of experiment 22,
respectively. As discussed above, the close-range fit is more accurate for this parameter as
it uses more data points in the relevant region around the turn-on point. The figures show
both fitting ranges for comparison.
As can be seen in both Fig. 4.1a and Fig. 4.1b, the close-range fit has a much lower standard
deviation than the full-range fit. This is mainly due to outliers in the full-range fit that
get corrected by fitting again in a region around the turn-on point. Note that the mean
that is given in the figures should be understood as a quick cross-check of the procedure
and to study differences between data and simulation. It is not an accurate measure for
the average result as it includes outliers and does not weight the values with respect to the
luminosity of the corresponding run.
To investigate how well MC simulation agrees with data, 2D histograms which show the
correlation between the two come in handy. As can be seen in Fig. 4.1c, there is a correlation
between data and simulation for the fit parameter m (at this point, I only use the fit results
from the close-range fit) with most high-number bins being along the diagonal of the plot.
This means that the run-dependent MC matches the data reasonably well for most runs.

I repeat the same procedure for the steepness parameter s. Again, I find a value for s for
the first full-range fit and for the narrower fitting range around the detected turn-on point.
Figures 4.2a and 4.2b show histograms of both ranges for simulation and data, respectively.
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(c) 2D histogram of data and simulation

Figure 4.1.: Data-MC comparison of the turn-on point of hie. The 1D histograms show the
distribution of turn-on points for simulation and data, respectively. The 2D
histogram shows the correlation between the two.
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(c) 2D histogram of data and simulation

Figure 4.2.: Data-MC comparison of the steepness parameter of hie. The 1D histograms
show the distribution of the parameter for simulation and data, respectively.
The 2D histogram shows the correlation between the two.

Note that there is no upper limit for the parameter which means there are a few outliers
very far away from the shown range. This leads to a high mean and standard deviation.
The steepness depends on data points around the turn-on point. Therefore, I use the results
of the narrow-range fit for the 2D histogram 4.2c showing the correlation between data and
simulation. As with the turn-on point parameter m, most high-number bins live on the
diagonal meaning the run-dependent MC matches the data well for these runs. However,
there are many bins with one or two runs far away from the diagonal which is to be expected
as s has a much higher standard deviation than m.

Next up is the fitting parameter for the plateau value of the efficiency k. As discussed in
Sec. 3.4, simulation shows a slightly lower value than data which can be seen in Fig. 4.3a
and Fig. 4.3b. Again, the 1D histograms show the results of both fitting ranges while the
2D histogram only shows the more accurate one which this time is the full-range fit (as the
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(c) 2D histogram of data and simulation

Figure 4.3.: Data-MC comparison of plateau efficiency of hie. The 1D histograms show the
distribution of the plateau efficiency for simulation and data, respectively. The
2D histogram shows the correlation between the two.

plateau efficiency manifests itself in values far above the turn-on point). Even with this
difference, Fig. 4.3c shows a clear correlation between simulation and data. This is because
the bug in the simulation code leads to a constant offset independent of the data-taking
period. The only different contribution which leads to a varying trigger line efficiency is
run-dependent beam background which is quite well-modelled by the simulation. There-
fore, it is no surprise that the 2D histogram shows a correlation between data and simulation.

The final fitting parameter y0 can be understood as a cross-check how well the fits are
working. As the efficiency should be consistently 0 below the turn-on point, a value for y0
that is noticeably different from 0 is a hint that something went wrong.
Figure 4.4 shows histograms for data and simulation. All values except for very few outliers
are of order 10−4 or smaller which is a good sign for the stability of the monitoring.
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Figure 4.4.: Starting efficiency parameter y0 of data and MC. The histograms show the
distribution of the parameter for simulation and data, respectively.

4.2.2. fyo Performance Monitoring

For the neural 3D CDC track triggers fy30 and fyo, the x-axis is the maximal 2D azimuthal
opening angle ∆ϕmax between any two tracks of the same event. It ranges from 0◦ to 180◦.
For the monitoring, I use hie as a reference line.
The trigger lines fy30 and fyo (ff30 and ffo for older experiment runs) are harder to monitor
than lines such as hie because their turn-on curves are not constant after the turn-on point
(see Sec. 3.3). Therefore, the full-range fit produces very inaccurate results and since the
close-range fit depends on a somewhat accurate turn-on point approximation, the procedure
I use for other trigger lines is too unstable for fy30 and fyo.
Instead, I restrict the range to be 45◦ ≤ ∆ϕmax ≤ 135◦ for fyo (which is designed to have
the turn-on at 90◦) and 0◦ ≤ ∆ϕmax ≤ 60◦ for fy30 (which is designed to have the turn-on
at 30◦). These ranges include enough data to perform meaningful fits while excluding the
troublemaking regions. I then do not perform an additional fit.

Figures 4.5 and 4.6 show the distributions of the fit parameters m and s for simulation and
data. Simulation produces much more stable results for both parameters. As before, the
mean and standard deviation are heavily shifted by outliers outside of the shown ranges.
Therefore, they should not be considered as a meaningful statement about the average
result. They are handy, however, to notice immediately that the results of data are much
broader spread than those of simulation.
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Figure 4.5.: Data-MC comparison of turn-on point of fyo. The histograms show the distri-
bution of turn-on points for simulation and data, respectively.
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Figure 4.6.: Data-MC comparison of steepness parameter of fyo. The histograms show the
distribution of the parameter for simulation and data, respectively. As there
is no upper limit for this parameter, outliers far outside of the shown range
heavily influence the mean and standard deviation.





5. Displaying the Results on a Website

The run-dependent monitoring (Ch. 4) helps find problems in TRG and TSIM quickly. To be
useful to collaboration members, its results need to be displayed in an easily accessible way.
This is done by creating a website based on HTML, CSS and JavaScript which dynamically
displays the results of Simon Weber’s automated K0

S monitoring and my work. As described
in the preface, the AI tools ChatGPT [15] and GitHub Copilot [16] helped with code creation.

The starting page lets the user decide between the K0
S monitoring and the trigger line

monitoring. After choosing the trigger line monitoring, they see a page describing the
procedure and linking the GitLab page of work (Fig. 5.1).
From there, an experiment can be chosen and the monitoring page will be displayed
(Fig. 5.2). Here, the user can pick a trigger line and one of the four fit parameters to be
displayed for every run of the chosen experiment. By default, both data and simulation
are shown which can be turned off, by clicking on one of the icons in the legend. It is also
possible to zoom to compare data and simulation thoroughly run by run.

Since the results are displayed dynamically using JavaScript, the website can easily be
adjusted and expanded if more trigger lines and experiments are studied. Also, it can be
used as a structure to display the results of more monitoring work with different approaches.

25



26 5. Displaying the Results on a Website

F
igure

5.1.:T
he

Introductory
page

for
the

trigger
line

m
onitoring.

T
he

user
can

click
on

the
experim

ents
in

the
bar

at
the

top
to

see
the

m
onitoring

for
that

experim
ent.



27

F
ig

ur
e

5.
2.

:T
he

pa
ge

sh
ow

in
g

th
e

re
su

lt
of

th
e

tr
ig

ge
r

lin
e

m
on

it
or

in
g.

T
he

us
er

ca
n

se
le

ct
th

e
tr

ig
ge

r
lin

e
an

d
th

e
fit

pa
ra

m
et

er
on

th
e

le
ft

.
T

he
y

al
so

ca
n

tu
rn

off
da

ta
or

si
m

ul
at

io
n

an
d

cl
ic

k
on

a
di

ffe
re

nt
ex

pe
ri

m
en

t
at

th
e

to
p.





6. Summary and Outlook

The thesis presents an automated monitoring process of the L1 trigger performance which
is applied to all physics runs up until experiment 26. The monitoring compares the turn-on
curves of different trigger lines for data and simulation. In particular, it investigates the
turn-on point, the turn-on steepness, and the asymptotic efficiency of the trigger line which
are then compared to the ideal values.
The process is used for all experiment runs to find problematic ones that may show issues
due to detector or software updates. It is important to discover issues of the trigger system
quickly as running the experiment uses a lot of resources which are wasted if the trigger
system does not work properly.
Data and MC show correlations between their results which means the differences in runs
are well-modelled by the simulation. However, there is a lot of runs where the results differ
between data and run-dependent MC. These runs in particular could be the target of
subsequent studies to find out if the reason lies in statistics, the fitting process, or an actual
mismodelled run-dependent simulation.

The trigger_line_efficiency mode which is added to VIBE makes it easy to monitor any
run and trigger line which have not been studied in the thesis. It also lays the groundwork
for trigger line studies of different processes or with different approaches. For example, one
could study the correlation between trigger line efficiencies and observables which do not
directly influence the trigger line decision.
A website makes the result of the monitoring process accessible. It can be easily expanded
to contain results of different studies or to allow for more customisation if a different
monitoring process is performed.

In conclusion, the L1 trigger system works well and its simulation TSIM does a good job
simulating the trigger decisions for single runs. The results show no obvious flaws except for
the run-dependent MC mismodelling the ECL trigger efficiencies (see Sec. 3.4) where the
TSIM results are consistently a few percent lower than TRG. This issue is known and will
be fixed in upcoming releases of the software framework. The monitoring process presented
in this thesis can be used to verify the expected results in the new releases.
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A. Appendix

A.1. Additional Results of the Monitoring
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Figure A.1.: Histograms of fit parameters of trigger line hie for simulation of experiment 7.
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Figure A.2.: Histograms of fit parameters of trigger line hie for simulation of experiment 8.
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Figure A.3.: Histograms of fit parameters of trigger line hie for simulation of experiment 10.
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Figure A.4.: Histograms of fit parameters of trigger line hie for simulation of experiment 12.
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Figure A.5.: Histograms of fit parameters of trigger line hie for simulation of experiment 14.
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Figure A.6.: Histograms of fit parameters of trigger line hie for simulation of experiment 16.

1.04 1.06 1.08 1.10 1.12 1.14
hie turn-on point (GeV)

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f r
un

s /
 (0

.0
5G

eV
)

Belle II Simulation
(own work)
Full range:
 Mean: 1.09, std: 0.02
Range around turn-on:
 Mean: 1.07, std: 0.02

Full range
Range around turn-on

8 10 12 14 16
hie steepness (GeV 1)

0

10

20

30

40

Nu
m

be
r o

f r
un

s /
 (0

.5
Ge

V
1 )

Belle II Simulation
(own work)

Full range:
 Mean: 9.40, std: 7.76
Range around turn-on:
 Mean: 18.12, std: 37.91

Full range
Range around turn-on

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
hie plateau efficiency

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Nu
m

be
r o

f r
un

s /
 (0

.0
02

5)

Belle II Simulation
(own work)

Full range:
 Mean: 0.98, std: 0.01
Range around turn-on:
 Mean: 0.95, std: 0.02

Full range
Range around turn-on

0 1 2 3 4 5
hie starting efficiency (10 4)

0

10

20

30

40

50

60

70

Nu
m

be
r o

f r
un

s /
 (0

.2
5×

10
4 )

Belle II Simulation
(own work)

Full range:
 Mean: 1.15, std: 1.67
Range around turn-on:
 Mean: 1.45, std: 5.88

Full range
Range around turn-on

Figure A.7.: Histograms of fit parameters of trigger line hie for simulation of experiment 17.
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Figure A.8.: Histograms of fit parameters of trigger line hie for simulation of experiment 26.
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Figure A.9.: Histograms of fit parameters of trigger line hie for data of experiment 20.



36 A. Appendix

1.04 1.06 1.08 1.10 1.12 1.14
hie turn-on point (GeV)

0

20

40

60

80

100

120

Nu
m

be
r o

f r
un

s /
 (0

.0
5G

eV
)

Belle II dt = 85.64 fb 1

(own work)
Full range:
 Mean: 1.11, std: 0.02
Range around turn-on:
 Mean: 1.10, std: 0.03

Full range
Range around turn-on

8 10 12 14 16
hie steepness (GeV 1)

0

20

40

60

80

100

120

Nu
m

be
r o

f r
un

s /
 (0

.5
Ge

V
1 )

Belle II dt = 85.64 fb 1

(own work)
Full range:
 Mean: 12.11, std: 17.53
Range around turn-on:
 Mean: 21.32, std: 39.27

Full range
Range around turn-on

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
hie plateau efficiency

0

50

100

150

200

Nu
m

be
r o

f r
un

s /
 (0

.0
02

5)

Belle II dt = 85.64 fb 1

(own work)
Full range:
 Mean: 0.99, std: 0.02
Range around turn-on:
 Mean: 0.98, std: 0.04

Full range
Range around turn-on

0 1 2 3 4 5
hie starting efficiency (10 4)

0

50

100

150

200

250

300

350

Nu
m

be
r o

f r
un

s /
 (0

.2
5×

10
4 )

Belle II dt = 85.64 fb 1

(own work)

Full range:
 Mean: 2.32, std: 2.34
Range around turn-on:
 Mean: 2.12, std: 9.59

Full range
Range around turn-on

Figure A.10.: Histograms of fit parameters of trigger line hie for data of experiment 24.
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Figure A.11.: Histograms of fit parameters of trigger line hie for data of experiment 26.
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