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1 Introduction

In 2012 the Higgs boson was discovered at the Large Hadron Collider (LHC) at CERN
in Switzerland [1]. This was the last particle predicted by the Standard Model to be
discovered. The Higgs boson is of special importance, because via the Higgs mechanism
massive particles can be explained. The Standard Model classifies all known elementary
particles and describes the electromagnetic, weak and strong interactions. While the
Standard Model is the most successful theory in particle physics, there are some phenomena
that the Standard Model is unable to explain. It does not include the theory of relativity
and is thus unable to explain gravitational force. This leads to the search of physics beyond
the Standard Model.

The top quark was first discovered at the Tevatron collider at Fermilab [2, 3], it was the
last particle of the third generation of matter to be discovered. The top quark-antiquark
pair production with an associated particle 𝑋 (𝑡𝑡 + 𝑋) is of special interest, especially for
event classes that have similar final states (𝑡𝑡 + 𝑋, 𝑋 → 𝑞𝑞). Because of this, they are
not distinguishable by their final state objects in data measured by a particle detector,
for example, for the 𝑡𝑡𝐻 events with decays 𝐻 → 𝑏�̄� which need to be distinguished from
𝑡𝑡𝑍 (𝑍 → 𝑏�̄�) events and 𝑡𝑡𝐵 (𝑔 → 𝑏�̄�) events. The correct identification of 𝑡𝑡𝐻 events
is especially important because of the top-Higgs Yukawa coupling. An accurate event
classification is important to test the understanding of the Standard Model and possibly
uncover new physics.

In the last years, efforts have been made to use various machine learning models in the
multiclass classification of the 𝑡𝑡 + 𝑋 events [4–7]. Especially Graph Neural Networks
(GNN) architectures have received attention, due to the data structure lending itself to the
representation as a multi-relational graph. Naturally, when using a GNN to classify an
event, it is of interest why it makes a particular prediction. GNNs however, due to the
complex structure of graph data and black-box nature, are hard to interpret.

This thesis focuses on examining a GNN trained for this classification task using the
GNNExplainer method to better understand the underlying decisions taken by the GNN
when using different 𝑡𝑡 + 𝑋 events as input.

This thesis is structured into 7 chapters. This introduction is chapter 1. Chapter 2
introduces the theoretical foundations of the physics processes examined in this thesis.
Chapter 3 deals with the LHC and CMS Experiment, introducing the basic functionality and
defining the kinematic variables. The GNN framework and the basics of Neural Networks
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2 1 Introduction

are introduced in chapter 4. The GNNExplainer method is introduced in chapter 5.
Chapter 6 examines the GNN using the GNNExplainer introduced in the previous chapter.
Finally, a conclusion is drawn in chapter 7.
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2 High Energy Physics

This chapter attempts to provide a basic understanding of the underlying physics theories
by taking a look at the Standard Model in section 2.1 and the 𝑡𝑡 + 𝑋 events in section 2.2,
which are the main focus of this thesis.

2.1 Standard Model

The Standard Model of particle physics forms the basis of the understanding of matter and
interactions between matter, except for gravitation. The following summary is based on [8].
A systematic presentation of the individual particles can be seen in Fig. 2.1. Elementary
particles can be divided in two categories, fermions with half-integer spin and bosons
with integer spin value. Fermions form all forms of known matter, they can be further
distinguished into leptons and quarks. Fermions can be sorted into three generations of
matter. Only the first generation forms stable states, with the other generations eventually
decaying into the former. There are six lepton-flavours, electron 𝑒 (I. generation), muon
𝜇 (II. generation) and tau 𝜏 (III. generation) which carry an electric charge of negative
one in units of the elementary charge and distinguish them from the associated neutrinos.
Electron-neutrino 𝜈𝑒 (I. generation), muon-neutrino 𝜈𝜇 (II. generation) and tau-neutrino
𝜈𝜏 (III. generation) are electrically neutral. Similarly, there are six quark-flavours, up
𝑢 (I. generation), charm 𝑐 (II. generation) and top 𝑡 (III. generation) with an electric
charge of +2/3, as well as down 𝑑 (I. generation), strange 𝑠 (II. generation) and bottom 𝑏
(III. generation) with an electric charge of −1/3. Quarks in contrast to leptons possess
an additional degree of freedom which is the colour charge red, blue and green. Due
to colour confinement quarks cannot exist in isolation, only bound in hadrons where
the colour charges neutralise each other. Furthermore, for every fermion there exists
an antiparticle, which carries the same mass as their matter counterpart but carries an
opposite electric charge and magnetic moment. Gauge bosons or vector bosons give rise to
interactions between leptons and quarks, they are spin 1 particles. The photon 𝛾 is the
force carrier of the electromagnetic interaction. The 𝑊 ± bosons and 𝑍 bosons govern the
weak interaction. Furthermore, there exist eight gluons 𝑔, which are exchange particles for
the strong interaction. There is only one known scalar boson with spin 0, the Higgs boson,
which gives mass to other particles via the Higgs mechanism.

3



4 2 High Energy Physics

Figure 2.1: Elementary Particles of the Standard Model. Taken from [9].

The Standard Model can currently not explain gravitation, dark matter and dark energy.
This is why there is a concerted effort to find physics beyond the Standard Model to explain
these phenomena and reconcile the deficiencies of the Standard Model.

2.2 𝑡𝑡 + 𝑋 events
The top quark 𝑡 is the heaviest known elementary particle, it is also the only quark that
does not form bound states because it is too short-lived. It can only decay through the weak
interaction, for a large majority of more than 99% of the cases a 𝑊 boson and a bottom
quark 𝑏 are the decay products. Less likely decays can result in a charm quark 𝑐 or a strange
quark 𝑠. The resulting 𝑊 boson can decay via hadronic decay into a quark-antiquark pair
or via leptonic decay into a lepton-neutrino pair [10].

At the LHC top quark-antiquark pairs are mostly generated via gluon-gluon fusion [11],
there are three possible decay channels, the di-leptonic decay channel (10.5%) in which
both 𝑊 bosons decay into a lepton and associated neutrino. In the semi-leptonic decay
channel (43.8%) one of the 𝑊 bosons results in a leptonic decay and the other 𝑊 boson
results in a hadronic decay. Lastly, in the hadronic decay (45.7%) both 𝑊 bosons decay
into a quark-antiquark pair [10].

This thesis focuses on the di-leptonic decay channel illustrated in Fig. 2.2. For this channel
events are expected to have two leptons, at least three jets and large missing transverse
energy. This channel is particularly suitable for event classification because the products
of the top decay are leptons and therefore easier to distinguish than for a hadronic or
semi-leptonic decay of the top quarks.
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2.2 𝑡𝑡 + 𝑋 events 5

When measuring such a top quark-antiquark decay in a particle detector only the final
state objects are detected. The problem with measured data is that events with similar
final states are not distinguishable from each other. This poses a challenge when trying to
classify the final state products and events. Machine learning tasks require a true label in
order to train a model. A solution for this problem is to simulate data using knowledge
about the underlying physics processes. The data for the di-leptonic decay channel used in
this thesis is generated using Monte Carlo event simulation.

To characterise the final state objects of the decays, they are sorted into seven categories.
The 𝑏-jet stemming from the top decay into a 𝑊 − boson and bottom quark is sorted into
the category “𝑡𝑜𝑝𝑏”. The 𝑊 − boson decays into a lepton 𝑙− (electron 𝑒−, muon 𝜇−) and
the corresponding antineutrino 𝜈𝑙. Since taus 𝜏 can result in a hadronic decay, they are not
considered. The lepton 𝑙− of the top quark decay is sorted into the “𝑡𝑜𝑝𝑙𝑒𝑝” category. The
antineutrino 𝜈𝑙 cannot be directly detected in the CMS detector, only characterised by the
missing transverse energy, which is denoted in the “𝑚𝑒𝑡” category. Analogously the 𝑏-jet
of the antitop 𝑊 + decay can be sorted into the “𝑎𝑛𝑡𝑖𝑡𝑜𝑝” category. While the antilepton
𝑙+ of the 𝑊 + boson decay is sorted into its own category “𝑎𝑛𝑡𝑖𝑡𝑜𝑝𝑙𝑒𝑝” the same cannot be
done for the corresponding neutrino 𝜈𝑙, which is characterised by its missing transverse
energy. The missing transverse energy cannot be assigned to individual particles, a large
number of neutrinos results in a large transverse energy which cannot be distinguished
further.

The additional jets are produced through a coupling of the top quark-antiquark pair to
a particle 𝑋 which can be a Higgs-boson 𝐻, 𝑍 boson or a gluon 𝑔. This results in two
hadronic quark 𝑞 antiquark 𝑞 jets, the final state objects of the additional jet are sorted into
the “𝑎𝑑𝑑” category. Additionally, jets that are not identifiable are assigned the category
𝑢𝑛𝑘𝑛𝑜𝑤𝑛.

Figure 2.2: Illustration of an examplary di-letonic 𝑡𝑡 + 𝑋 event in leading order.

5



6 2 High Energy Physics

The possible event classes are characterised by the coupling of the top quark-antiquark pair
with the particle X, which can be a Higgs boson 𝐻, a 𝑍 boson or a gluon 𝑔. The coupling
between the top quark and the Higgs boson is called the top Higgs-Yukawa coupling. The
Higgs boson decay can occur through many different processes [12]. The most common
decay of the Higgs boson is the decay into a bottom quark-antiquark pair (57.2 %). In this
thesis, only the 𝐻 → 𝑏𝑏 decay is considered.

Another possible coupling is the top quark-antiquark 𝑍 boson coupling, resulting in a
decay into a fermion-antifermion pair [13]. This decay can be leptonic 𝑍 → 𝑙𝑙 or hadronic
(69.9%) into quark-antiquark pairs 𝑍 → 𝑞𝑞 or more exotic decays. In this thesis, only the
hadronic decays are examined and special attention is paid to the 𝑍 → 𝑏𝑏 decay.

Lastly, the additional gluon radiation can result in a light-flavour quark-antiquark pair
𝑔 → 𝑞𝑞, a charm quark-antiquark pair 𝑔 → 𝑐𝑐 and a bottom quark-antiquark pair 𝑔 → 𝑏𝑏
[14].

The flavour tagging of the jets is done using the multi-class flavour tagging algorithm
“𝐷𝑒𝑒𝑝𝐽𝑒𝑡” [15], utilising the heavy flavour tagging values “𝐶𝑣𝐿” and “𝐶𝑣𝐵” defined
in equations 2.1 and 2.2. The heavy flavour taggers utilise that charm jets possess
characteristics intermediate to 𝑏-jets and light-flavour jets, this makes it inefficient to define
a singular charm tagger. The charm versus light-flavour tagging value “CvL” discriminates
charm jets from light-flavour jets in this case 𝑏-jets act as extreme cases of 𝑐-jets. Low
values of the “CvL” tagger indicate the presence of a light-flavour jet or gluon jet

𝐶𝑣𝐿 = 𝑃 (𝑐)
𝑃 (𝑐) + 𝑃 (𝑢𝑑𝑠𝑔) . (2.1)

Here 𝑃 (𝑐) denotes the probability of the jet being a charm flavour jet and 𝑃 (𝑢𝑑𝑠𝑔) is the
probability of the jet being an up, down, strange or gluon flavour jet. Correspondingly the
charm versus bottom tagging value “CvB” discriminates charm jets from 𝑏-jets in this case
light-flavour jets act as extreme cases of 𝑐-jets

𝐶𝑣𝐵 = 𝑃 (𝑐)
𝑃 (𝑐) + 𝑃 (𝑏) . (2.2)

Low values of the “CvB” tagger indicate the presence of a 𝑏-jet. Here 𝑃 (𝑏) denotes the
probability of the jet being a bottom flavour jet. Only by leveraging both discriminators
the jet flavour can be determined, a high value for both “𝐶𝑣𝐿” and “𝐶𝑣𝐵” result indicate
a charm-tagged jet.
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3 LHC and CMS Experiment

This chapter deals with the structure of the Large Hadron Collider (LHC) in section 3.1
based on [16]. A summary of the CMS experiment in section 3.2 is given based on [17]. It
establishes the basic functionality and the basic kinematic variables in section 3.3, which
are used in interpreting the measured data.

3.1 Large Hadron Collider (LHC)

The Large Hadron Collider (LHC) is the most powerful and with a circumference of 27km
the largest particle accelerator in existence [16]. It is capable of proton-proton collisions
at up to

√
𝑠 = 14 TeV center-of-mass energy. The LHC is located at the European

Organization for Nuclear Research (CERN) sitting 100 meters underground. Particles are
accelerated in pre-accelerators, each accelerator inserts the particle into the next accelerator
of higher energy before they are inserted into the LHC rings. In these two rings the
particles are accelerated in opposite directions, almost reaching the speed of light. At four
interaction points the particle beams collide with each other and measurements are taken
by detector systems. There are currently nine experiments at the LHC with the most
famous being ALICE, LHCb (Large Hadron Collider beauty), ATLAS (A Toroidal LHC
ApparatuS) and the CMS (Compact Muon Solenoid) experiments.

The Run 2 of the LHC, which is the basis of this thesis, observed proton-proton collisions
at
√

𝑠 = 13 TeV center-of-mass energy.

3.2 CMS Detector

The Compact Muon Solenoid Experiment (CMS experiment) is designed to study the decay
products of proton-proton beam collisions [17]. In order to achieve this, the CMS-Detector
is designed as a multilayer detector, with each layer identifying a different particle or
particle characteristic. The detector is installed cylindrically around the interaction point;
the different layers of the CMS Experiment are shown in Fig. 3.1.

The inner tracking system is the innermost layer of the detector, in Fig. 3.1 it is referred to
as Silicon Tracker because it consists of several layers of silicon pixel detectors and silicon
strip trackers. The CMS tracker measures the trajectories and vertices of charged particles.

7



8 3 LHC and CMS Experiment

The electromagnetic calorimeter is a homogeneous crystal calorimeter made up of lead
tungstate crystals, the purpose of the calorimeter is to measure the energy of electrons,
positrons and photons using the scintillation properties of its material.

The hadron calorimeter is a sampling calorimeter to detect hadron jets of the final jet
products, it is also important in determining the missing transverse energy caused by
neutrinos and exotic particles. It consists of alternating brass absorbers and plastic
scintillator layers.

The CMS tracker, electric and hadronic calorimeters are enclosed by the superconducting
solenoid, the magnet is designed to generate a homogeneous 3.8 T field. This large magnetic
flux allows the CMS tracker to determine the transverse momentum with the help of the
bending radius of the trajectory for charged particles.

The CMS detector uses three gaseous particle detectors interspersed in an iron yoke to
identify muons and measure their momentum. The momentum of the muons is measured
in a similar fashion to the CMS tracker.

Figure 3.1: Illustration of the CMS Detectror. Taken from Ref. [18].

3.3 Basic kinematic quantities
The section of this chapter is based on [17, 19] if not stated otherwise.

The coordinate system used by the CMS detector is centred at the nominal collision point,
the designed interaction point of the experiment. The 𝑥-axis is designed to point radially
inwards, the 𝑦-axis positioned to point vertically upwards and the 𝑧-axis is oriented along
the beam-axis. The CMS detector is cylindrical, so the cylindrical coordinates (𝑟, 𝜑, 𝜃)
are introduced, and the radial coordinate 𝑟 lies in the 𝑥, 𝑦-plane. The azimuthal angle is
defined as the anticlockwise angle measured from the 𝑥-axis in the 𝑥, 𝑦-plane. The polar
angle 𝜃 is defined as the angle between the 𝑧-axis and the radial coordinate 𝑟, measured
from the 𝑧-axis.

8



3.3 Basic kinematic quantities 9

The rapidity 𝑦 is a measure of the relativistic velocity of a particle along the beam axis.
Using the previously introduced coordinate systems, the rapidity 𝑦 can be defined using
the momentum 𝑝𝑧 along the beam axis and the energy 𝐸 of the particle

𝑦 = 1
2 ln 𝐸 + 𝑝𝑧

𝐸 − 𝑝𝑧
. (3.1)

For particles with masses significantly larger than their momentum, the pseudorapidity 𝜂
can be used to describe the direction of an object with respect to the polar angle 𝜃. The
object travels at small angles to the beam-axis for large values of the pseudorapidity 𝜂 and
perpendicular to the beam for values of zero

𝜂 = − ln tan 𝜃

2 . (3.2)

The spatial distance is the distance between two objects 𝑖 and 𝑗 is defined using the
pseudorapidities 𝜂𝑖 and 𝜂𝑗 and the azimuthal angles 𝜑𝑖 and 𝜑𝑗

Δ𝑅𝑖𝑗 =
√︁

(𝜂𝑖 − 𝜂𝑗)2 + (𝜑𝑖 − 𝜑𝑗)2. (3.3)

The transverse momentum is the momentum of a particle perpendicular to the beam axis.
It can be defined as the components of the transverse momentum in the x-y-plane. The
transverse momentum is used because protons are hadrons and not fundamental particles,
so their partons and not the proton itself participate in the collisions

𝑝T =
√︁

𝑝2
𝑥 + 𝑝2

𝑦. (3.4)

Alternatively, the transverse momentum of a charged particle can be determined using the
electric charge 𝑞 of a particle, the magnetic flux 𝐵 of the superconducting solenoid of the
CMS detector and the bending radius 𝑟 of the particle trajectory in the CMS tracker

𝑝T = 𝑞𝐵𝑟. (3.5)

Neutrinos and other exotic particles cannot be detected because of their lack of interaction.
But the transverse momentum they carry can be reconstructed from the observed transverse
momenta due to the conservation of energy and momentum. The missing transverse
momentum is often substituted with the missing transverse energy (MET), which can be
derived as the sum of the transverse momentum 𝑝T of all visible particles 𝑖

𝐸miss
T = | −

∑︁
𝑖

𝑝T,𝑖|. (3.6)

When interpreting the MET, one has to keep in mind that one cannot distinguish the
number of individual objects caused.

The invariant mass of a system of objects can be derived using equation 3.7 where 𝐸
denotes the energy, 𝑝T the transverse momentum and 𝑝𝑧 momentum along the beam axis
of the system

𝑀 =
√︁

𝐸2 − 𝑝2
T − 𝑝2

𝑧. (3.7)
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4 Machine Learning and Graph Neural
Networks

Machine learning methods have seen a rise in importance in a wide array of fields, especially
in the sciences. This chapter introduces the basics of neural networks in section 4.1.
Establishing a general understanding of the topic to introduce Graph Neural Networks in
section 4.3, which are specialised in dealing with graph data, introduced in section 4.2.

4.1 Basics of Neural Networks

Neural networks are a machine learning method modelled after the information-passing
capabilities of natural brain structures, using a so-called artificial neuron to process
information. The following short summary of the basic functionality is based on [20]. An
artificial neuron 𝑗 is illustrated in Fig. 4.1. The artificial neuron is a computation unit,
which applies trainable weights 𝑤1𝑗 , 𝑤2𝑗 , ..., 𝑤𝑛𝑗 to each input 𝑥1, 𝑥2, ..., 𝑥𝑛 the transfer
function returns the network input 𝑔𝑗 . The network input 𝑔𝑗 is a linear combination of the
weighted inputs and possibly a bias. The activation function 𝑓 is applied to the network
input and a threshold 𝜃 can be applied so that the activation function only passes on the
output 𝑦 if the condition 𝑔𝑗 > 𝜃 is fulfilled. The activation function 𝑓 is used to introduce
nonlinearity, which increases the modelling power of the neural network because now the
network can derive an output that varies non-linearly with the input. Without a non-linear
activation function, a neural network with multiple hidden layers has no more expressive
power than a neural network with a single hidden layer.

11



12 4 Machine Learning and Graph Neural Networks

Figure 4.1: Illustration of an artificial neutron. Based on Ref. [20].

Neural networks are formed by artificial neurons, such a neural network is pictured in Fig.
4.2. Each input 𝑥1, 𝑥2, ..., 𝑥𝑛 is assigned to an input neuron, which is part of an input layer
that transmits them to the hidden layer. The neurons of the hidden layer can take the
form of the artificial neuron 𝑗 shown in Fig. 4.1. The output layer consists of the output
neurons 𝑦1 and 𝑦2 returning the output values of the neural network.

Figure 4.2: Illustration of a simple neural network consisting of an input layer, hidden
layer and output layer consisting of artificial neurons. Based on Ref. [20].

Embedding layers or hidden embeddings are a special type of hidden layers that map
information from a higher dimension to a lower dimension. In this thesis embeddings are
used to allow the model to process graph data. Deep Neural Networks (DNNs) are neural
networks that utilise multiple hidden layers. For training purposes, a set of input values
and true labels are given; during training the input is propagated through all layers of the
neural network, and the output is measured against the true label. The loss function ℒ
measures the loss between output and true label

�̄� ← 𝑤 − 𝛾
𝜕ℒ
𝜕𝑤

. (4.1)

12



4.2 Graph Theory 13

The weights 𝑤 are trained via gradient descent using the loss function ℒ, where 𝛾 denotes
the learning rate. The learning rate determines how the weights are adjusted, if the learning
rate is too large, the minimum of the loss function can be missed.

For a more detailed look at neural network methods, Ref. [20] can be consulted.

4.2 Graph Theory

If not stated otherwise, the following short summary of graph theory and graph data is
based on [21–23].

A graph 𝐺(𝑉, 𝐸) consists of nodes 𝑉 and edges 𝐸 between nodes. An edge from node
𝑢 ∈ 𝑉 to node 𝑣 ∈ 𝑉 is typically denoted as (𝑢, 𝑣) ∈ 𝐸. If the nodes 𝑢 and 𝑣 are connected
by an edge 𝑒 they are called adjacent to each other. The nodes 𝑢 and 𝑣 are incident to
such an edge 𝑒. An edge 𝑒 = (𝑢, 𝑣) is called a loop if 𝑢 = 𝑣 ∈ 𝑉 joining the node with itself,
as illustrated by node 4 in Fig. 4.3a.

A node is theoretically not limited in the number of connections it can form; the number
of incident edges is denoted by the node degree. An end node has one edge connecting it
to the graph and as a result a node degree of 1. For example node 1 or 5 in Fig. 4.3a. The
nodes 2 and 3 have a node degree of 3, a loop as seen at node 4 adds two degrees to the
node degree. An isolated node that is not connected to the rest of the graph has a node
degree of 0, Fig. node 6. Nodes 7 and 8 connected by the edge (7,8) are isolated from the
rest of the graph. The entire graph in Fig. 4.3a can be understood as the union of two
disconnected graphs A and B (including the disconnected node 6).

(a) Demonstration graph (b) Directed graph

Figure 4.3: Two graphs for demonstration purposes (a) shows an undirected incomplete
graph and (b) an directed incomplete graph.

Edges are called undirected if (𝑢, 𝑣) ∈ 𝐸 and (𝑣, 𝑢 ∈ 𝐸) are equivalent, in Fig. 4.3b a graph
is pictured where that is not the case, a directed graph. In a directed graph, the edges are
ordered, meaning that the edges (𝑢, 𝑣) and (𝑣, 𝑢) are not equivalent. Interpreting this as
the flow of information means that information can travel from node 1 to node 2 but not
in reverse.

There is no single representation of a graph, as illustrated in Fig. 4.4. Both figures
are representations of the same graph, in both cases, their edges can be represented as
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)].

13



14 4 Machine Learning and Graph Neural Networks

Figure 4.4: Two equally valid representations of the same graph. Figure adapted from
Ref. [21].

The adjacency matrix 𝐴 is a mathematical representation of a graph. For a graph with
n-nodes numbered from 1 to n, it is a 𝑛× 𝑛 matrix which shows if nodes are adjacent. For
graphs with multiple/parallel edges between two nodes 𝑢 and 𝑣 the entry 𝑎𝑢𝑣 denotes the
number of edges incident to the nodes 𝑢 and 𝑣, a graph with weighted edges will have
entries between 0 and 1. In this thesis graphs do not have multiple edges, so like in the
example eq. 4.2 for graph Fig. 4.4 an entry of 1 means that the two nodes are adjacent
to each other. For an entry of zero, the opposite is true. For an undirected graph, the
adjacency matrix is always symmetric, this can be seen in the adjacency matrix 𝐴 in eq.
4.2 for the undirected graph illustrated in Fig. 4.4.

𝐴 =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠ (4.2)

A complete graph, as illustrated in Fig. 4.5, is a graph in which all nodes are adjacent
to all other nodes, the graphs used in this thesis are complete graphs. All entries of an
adjacency matrix 𝐴 for a complete (undirected) graph are one, except for the diagonal,
which contains only zeros. The adjacency matrix of the complete graph Fig. 4.5 is shown
in eq. 4.3.

14



4.3 Graph Neural Networks (GNNs) 15

Figure 4.5: Illustration of an complete graph. Taken from Ref. [24]

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 0 1 1
1 1 1 1 1 0 1
1 1 1 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.3)

One of the reasons why graphs are so attractive as information tasks is feature information.
Features or attributes can be assigned to nodes, edges and graphs themselves. Node-level
attributes for 𝑁 nodes 𝑉 and 𝐹 node attributes are represented by the matrix 𝑋 with the
dimensions 𝑑𝑖𝑚 = |𝑉 | × 𝐹 = 𝑁 × 𝐹

𝑋 =

⎛⎜⎜⎜⎝
𝑥11 𝑥12 · · · 𝑥1𝐹

𝑥21 · · · · · · · · ·
· · · · · · · · · · · ·
𝑥𝑁1 · · · · · · 𝑥𝑁𝐹

⎞⎟⎟⎟⎠ (4.4)

Edge-level attributes can be assigned by modifying the adjacency matrix, simply replacing
the entries of the adjacency matrix with the edge features. Lastly, there are graph-level or
global attributes that are assigned to an entire graph or subgraph.

4.3 Graph Neural Networks (GNNs)
Graph Neural Networks are specialised in performing prediction tasks on graphs, the
following summary is based on [23]. A Graph Neural Network (GNN) uses message
passing (MSG) to exchange information between nodes and updates this information
using neural networks. Information handled by a GNN can be node-level, edge-level or
graph-level information, in order to explain the basic functionality in the following section
only node-level information (node features) is referenced.

The Graph Neural Networks use a graph 𝐺(𝑉, 𝐸) as input and return a graph as output,
updating information without changing the fundamental graph structure. The basis of any

15



16 4 Machine Learning and Graph Neural Networks

GNN is the aggregation of information often called message passing. In Fig. 4.6 the message
for a target node 𝐴 is generated, the GNN aggregates messages of the neighbourhood 𝒩 (𝐴)
consisting of the nodes 𝐵, 𝐶 and 𝐷. The messages of the nodes adjacent to node 𝐴 are
in turn the product of aggregation over their neighbourhoods. For example, the message
aggregated of the neighbourhood 𝒩 (𝐵) consists of the messages of node 𝐴 and 𝐶. The tree
structure of the hidden embeddings of nodes in order to compute the hidden embedding
for node 𝐴 is called the computation graph 𝐺𝐶 .

Figure 4.6: Message for target node 𝐴 aggregated over the neighbourhood of node 𝐴,
consisting of the messages of the nodes 𝐵, 𝐶 and 𝐷. Which are in turn
aggregated of the messages of their neighbourhoods. Taken from Ref. [23].

In computation terms, the message aggregated over the neighbourhood 𝒩 (𝑢) can be denoted
as an aggregation operation 𝑚

(𝑘)
𝒩 (𝑢) = AGGREGATE({ℎ(𝑘−1)

𝑣 ,∀𝑣 ∈ 𝒩 (𝑢)}) that combines
the previously computed hidden embedding ℎ

(𝑘−1)
𝑣 of every node 𝑣 in the neighbourhood.

The hidden embedding ℎ
(𝑘)
𝑢 for node 𝑢 at iteration 𝑘 can now be expressed in order of

update and message passing operations, a possible formulation can be seen in equation 4.5

ℎ(𝑘)
𝑢 = UPDATE(𝑘)(ℎ(𝑘−1)

𝑢 , 𝑚
(𝑘)
𝒩 (𝑢)) (4.5)

At each iteration 𝑘 the GNN updates the hidden embedding of the previous iteration ℎ
(𝑘−1)
𝑢

with the aggregated neighbourhood information 𝑚
(𝑘)
𝒩 (𝑢) to the hidden embedding 𝑘

(𝑘)
𝑢 . At

iteration 𝑘 = 0 the hidden embedding is simply the initial embedding, for example the node
features 𝑋. Each additional layer of the GNN results in an additional message passing
iteration, so the message in the figure 4.6 is being aggregated for a two-layer GNN. A
one-layer GNN would only aggregate information of the nodes 𝐵, 𝐶 and 𝐷, for example the
node features of those nodes. Iterating over 𝑘-Iterations can be understood as aggregation
over the 𝑘-hop neighbourhood of a node, a one-hop neighbourhood is only aggregated over
the immediate neighbours of a node.

In order to turn the eq. 4.5 into a workable GNN framework, trainable weights 𝑊 and a
bias 𝑏 have to be introduced. Equation 4.6 shows the most basic GNN framework. The
weights 𝑊

(𝑘)
self and 𝑊

(𝑘)
neighbour are matrices with the dimensions 𝑑𝑖𝑚 = 𝑑(𝑘) × 𝑑(𝑘−1) and the

bias 𝑏(𝑘) is a matrix with the dimension 𝑑𝑖𝑚 = 𝑑(𝑘). Here, the dimension 𝑑(𝑘) refers to
the dimensionality of the node feature information at the current iteration and 𝑑(𝑘−1) the
dimensionality of the node feature information at the previous iteration 𝑑(𝑘).
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4.3 Graph Neural Networks (GNNs) 17

ℎ(𝑘)
𝑢 = 𝜎(𝑊 (𝑘)

selfℎ
(𝑘−1)
𝑢 + 𝑊

(𝑘)
neighbour

∑︁
𝑣∀𝒩 (𝑢)

ℎ(𝑘−1)
𝑣 + 𝑏(𝑘)). (4.6)

In this example, this basic GNN structure only aggregates node-level information (node
features). However, in many cases edge-level and graph-level information is also of interest.
So to aggregate this information, the message passing framework has to be updated. The
new message needs to aggregate node-level, edge-level and graph-level information at each
iteration step

ℎ
(𝑘)
(𝑢,𝑣) = UPDATEedge(ℎ(𝑘−1)

(𝑢,𝑣) , ℎ(𝑘−1)
𝑢 , ℎ(𝑘−1)

𝑣 , ℎ
(𝑘−1)
𝐺 ). (4.7)

The hidden embedding ℎ
(𝑘)
(𝑢,𝑣) for the edge (𝑢, 𝑣) is derived by updating the embedding of the

edge of the previous iteration (𝑘− 1), the hidden embeddings of the nodes 𝑢 and 𝑣 incident
to the edge of the previous iteration (𝑘 − 1) and the hidden embedding for graph-level
information ℎ

(𝑘−1)
𝐺 of the previous iteration. The message 𝑚𝒩 (𝑢) for the neighbourhood of

the node 𝑢 is modified to aggregate the hidden embeddings of edges incident to node 𝑢
and a node 𝑣 ∈ 𝒩 (𝑢) in the neighbourhood of node 𝑢

𝑚𝒩 (𝑢) = AGGREGATEnode({ℎ(𝑘)
(𝑢,𝑣)∀𝑣 ∈ 𝒩 (𝑢)}). (4.8)

The hidden embedding ℎ
(𝑘)
𝑢 of node 𝑢 can then be calculated as an UPDATE function taking

the hidden embedding ℎ
(𝑘−1)
𝑢 of the previous iteration, the new message 𝑚𝒩 (𝑢) aggregated

over the neighbourhood of node 𝑢 and the graph-level information of the previous iteration
as the input

ℎ(𝑘)
𝑢 = UPDATE𝑛𝑜𝑑𝑒(ℎ𝑘−1

𝑢 , 𝑚𝒩 (𝑢), ℎ
(𝑘−1)
𝐺 ). (4.9)

The embedding of the graph ℎ
(𝑘)
𝐺 is derived by updating the hidden embedding ℎ

(𝑘−1)
𝐺

of the previous iteration, the hidden embeddings of all nodes 𝑢 ∈ 𝑉 of the input graph
𝐺(𝑉, 𝐸) and the hidden embeddings of all edges (𝑢, 𝑣) ∈ 𝐸 of the input graph 𝐺(𝑉, 𝐸)

ℎ
(𝑘)
𝐺 = UPDATE𝑔𝑟𝑎𝑝ℎ(ℎ(𝑘−1)

𝐺 , {ℎ(𝑘)
𝑢 , ∀𝑢 ∈ 𝑉 }, {ℎ(𝑘)

(𝑢,𝑣),∀(𝑢, 𝑣) ∈ 𝐸}). (4.10)

The UPDATE functions for edge-, node- and graph-level information as well as the
AGGREGATE functions are not identical but serve to update and aggregate hidden
embeddings depending on the neighbourhood information.

The GNN framework shown in eq. 4.6 is the simplest way to implement AGGREGATE and
UPDATE functions, the framework can be generalised and improved upon by modifying
the AGGREGATE and UPDATE functions. An in depth look at these methods can be
found in detail in Ref. [23].
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5 GNNExplainer

This chapter introduces GNNExplainer an Explainable AI method for generating explana-
tions for GNNs by assigning an importance to the input features of the GNN. The basic
functionality of the GNNExplainer is introduced in section 5.1, while a closer look at the
different mask configurations is taken in section 5.2. A short overview of the implementation
is given in section 5.3. The summary of this method in the following chapter is based on
[25].

5.1 Basic Functionality
5.1.1 Motivation

The GNNExplainer generates explanations for the behaviour of Graph Neural Networks
(GNNs), but why would one use GNNs and not DNNs or other Neural Network structures
instead?

Deep Neural Networks have a large drawback, they are only applicable to data in vector
form, but not every machine learning task is best represented as a vector. A lot of
information can be naturally represented as graphs. Examples include molecules, social
networks or decay processes. Such graphs are challenging to work with because one has
not only to consider feature information (node-, edge-, and graph-level) but also relational
information between the individual nodes. Another difficulty when working with graphs
is that the node ordering is unfixed, which leads to several possible but equally valid
representations for a graph structure. GNNs solve this problem by aggregating information
of a 𝑘-hop neighbourhood at each iteration step, as introduced in section 4.3.

Nevertheless, there is a serious disadvantage to Graph Neural Networks: Explainability.
GNNs possess a complex structure due to them taking into account rich graph structural
information as well as node, edge and graph feature information. Thus, a prediction made
by a GNN cannot be easily explained. In contrast to a basic machine learning task, the
steps a GNN takes to reach a prediction cannot be easily retraced. It is impossible to
explain them through linear combinations; a computation tree cannot be drawn for a GNN
model the decisions taken are simply too complex.

GNNs can be understood as a black box, producing a prediction after being given an input,
but leaving the way how exactly this prediction is reached in the dark. The transparency
of a model is important to eliminate mistakes and biases, for example to differentiate noise
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20 5 GNNExplainer

from relevant results. Methods that strife to explain the predictions of such models are
called Explainable AI, GNNExplainer is such a method that is specialised for GNNs.

There are generally two approaches to generate an explanation for a black-box, one is to
approximate the model with another model and then probe this model for an explanation.
Another method is to assign an importance to the input and probe the model for changes
in the prediction when changing the input, this is the approach GNNExplainer takes.

5.1.2 Functionality

GNNExplainer is a post-hoc interpretability method, meaning this method requires an
already trained model 𝜑. One advantage of GNNExplainer is that it is model agnostic,
it does not require modification of the underlying GNN framework and no retraining of
the GNN. The GNNExplainer can generate explanations for any Graph Neural Network
(GNN) that can be formulated in terms of Message passing (MSG), Aggregation (AGG)
and UPDATE computations as discussed in section 4.3. In order to generate an explanation
the GNNExplainer uses that the prediction 𝑦 = 𝜑(𝐺𝐶 , 𝑋𝐶) of a trained GNN model 𝜑 is
only dependent on the computation graph 𝐺𝐶 and the associated node features 𝑋𝐶 of that
graph.

GNNExplainer can generate explanations for Node-level prediction (NLP) and Graph-level
prediction (GLP), the formulation for NLP explicitly refers to the node 𝑣. The computation
graph 𝐺𝐶 for GLP and 𝐺𝐶(𝑣) for NLP are not necessarily the same graph depending
on the aggregation of the hidden embedding for a node 𝑣 as introduced in section 4.3.
The prediction for this node analogous to graph-level operations can be formulated as
𝑦(𝑣) = 𝜑(𝐺𝐶(𝑣), 𝑋𝐶(𝑣)). The computation graph 𝐺𝐶(𝑣) and associated node features
𝑋𝐶(𝑣) can differ depending on the node.

In this thesis, the computation graphs 𝐺𝑆 and 𝐺𝑆(𝑣) are identical because the hidden
embedding for a node 𝑣 is aggregated over all nodes. Furthermore, the input graph is
complete, so for both NLP and GLP the computation graph corresponds with the input
graph, the graph with which the underlying GNN is trained.
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5.1 Basic Functionality 21

Figure 5.1: Illustration of a Computation Graph 𝐺𝐶 of a GNN, in order to determine the
prediction 𝑦 for node 𝑣, the GNN aggregates over the two subgraphs in green
and yellow. The yellow subgraph is unimportant for the prediction 𝑦, only the
green subgraph is important. GNNExplainer extracts the green subgraph 𝐺𝑆 ,
which only contains graph structural information and associated node features
𝑋𝑆 , which are relevant for the prediction 𝑦. Figure taken from Ref. [25].

The Basic idea behind the GNNExplainer is that only a small fraction of edges and node
attributes have an impact on the prediction 𝑦. The goal of the GNNExplainer is to find this
compact subgraph 𝐺𝑆 ⊆ 𝐺𝐶 of the computation graph and a small subset of associated
node attributes 𝑋𝑆 of that subgraph. This can be illustrated by figure Fig. 5.1, the
computation graph 𝐺𝐶 contains the two subgraphs in green and yellow, the uncoloured
nodes and edges are not part of the computation graph because they do not contribute
during message passing or aggregation, and are thus not part of the hidden embedding of
node 𝑣. The subgraph 𝐺𝑆 is important for the prediction of the node 𝑣 marked in red is
represented in green, the subgraph in yellow is not important in order to make a prediction
for node 𝑣.

The subgraph 𝐺𝑆 contains all the relevant graph structural information and subset 𝑋𝑆

all the relevant node feature information for the prediction 𝑋𝑆 . Such a subgraph 𝐺𝑆 and
subset of node features 𝑋𝑆 is illustrated in Fig. 5.2, the subgraph is again coloured in green
and all unimportant nodes and edges are coloured out. The associated node features 𝑋𝑆

are displayed above the nodes, with the unimportant node features crossed out.
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22 5 GNNExplainer

Figure 5.2: The explanation (𝐺𝑆 , 𝑋𝑆) provided by GNNExplainer only contains the
compact subgraph 𝐺𝑆 (green), which contains the graph structural information
relevant to the prediction and the subset of node features 𝑋𝑆 . In order to
denoise the computation graph, features and edges are excluded from the
explanation, which do not contribute to the prediction 𝑦 significantly. Figure
taken from Ref. [25].

Because all irrelevant graph structural information (edges, nodes) and irrelevant node
features are removed from the computation graph 𝐺𝐶 and subset 𝑋𝐶 resulting in a noise
free subgraph 𝐺𝑆 and subset 𝑋𝑆 it can also be understood as a form of denoising. The
collection (𝐺𝑆 , 𝑋𝑆) of subgraph and associated node features can be seen as an explanation
of the prediction 𝑦 because it contains all the relevant information in order to reach the
prediction, e.g. used as an input graph 𝐺𝐶 and 𝐺𝑆 should result in approximately the
same result.

GNNExplainer can now be formulated as an optimization problem in eq. 5.1, using mutual
information (MI) between a predicted label distribution 𝑌 and the explanation (𝐺𝑆 , 𝑋𝑆).

max
(𝐺𝑆 ,𝑋𝑆)

(MI(𝑌, (𝐺𝑆 , 𝑋𝑆))) (5.1)

The mutual information measures how much information about the predicted label dis-
tribution 𝑌 can be derived from a subgraph and subset of node features, a value of zero
would indicate that the prediction is independent of the subgraph. Conversely, larger values
signify a larger dependence of the prediction on the subgraph, by maximising the mutual
information of the subgraph 𝐺𝑆 and a subset of node features 𝑋𝑆 most impactful for the
prediction is derived.

𝑀𝐼(𝑌, (𝐺𝑆 , 𝑋𝑆)) = 𝐻(𝑌 )−𝐻(𝑌 |𝐺 = 𝐺𝑆 , 𝑋 = 𝑋𝑆) (5.2)

The marginal entropy 𝐻(𝑌 ) of the predicted label distribution is derived from the compu-
tation graph 𝐺𝐶 . The conditional entropy 𝐻(𝑌 |𝐺, 𝑋) explicitly formulated as the entropy
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5.1 Basic Functionality 23

of the subgraph 𝐻(𝑌 |𝐺 = 𝐺𝑆 , 𝑋 = 𝑋𝑆) quantifies the amount of information needed
to derive the predicted label distribution 𝑌 given the subgraph 𝐺𝑆 and associated node
features 𝑋𝑆 . Formulating the optimisation problem in this way shows why GNNEXplainer
can be understood as a denoising task, seeing graph 𝐺 and d-dimensional node features 𝑋
as a noisy version of the predicted label distribution 𝑌 .

Being a post-hoc method the model 𝜑 being used is already trained, which is not changed
during the optimisation steps. With 𝜑 being constant, the marginal entropy 𝐻(𝑌 ) also
remains constant during the optimisation process. The optimisation problem can be
reduced to minimising the conditional entropy.

𝐻(𝑌 |𝐺 = 𝐺𝑆 , 𝑋 = 𝑋𝑆) = −E(𝑌 |𝐺𝑆 ,𝑋𝑆)[𝑙𝑜𝑔𝑃𝜑(𝑌 |𝐺 = 𝐺𝑆 , 𝑋 = 𝑋𝑆)] (5.3)

Here E denotes the expected value operator and 𝑃𝜑 the sigmoid transformed logits, which
represent the probability of the event in question being associated with a predicted label.

Direct optimisation of equation eq. 5.3 is impossible because not only one subgraph 𝐺𝑆

exists but potentially exponentially many subgraphs and thus exponentially many possible
explanations.

In order to solve this problem, GNNEXplainer introduces two masks, an edge mask 𝑀
on the adjacency matrix of the computation graph and a feature mask 𝐹 on the node
features. These masks control the influence of entries of the input. In essence, the influence
the subgraph and associated node features have on the prediction 𝑦. The masks can
be understood as selectors masking out irrelevant entries. For example, if a feature is
unimportant and masked out the prediction 𝑦 will not change and vice versa if it is
important 𝑦 will change. Applying the sigmoid transformed feature selector 𝜎(𝐹 ) on the
associated node features 𝑋𝐶 of the computation graph 𝐺𝐶 via elementwise multiplication
⊙ will return a subset of node features 𝑋𝐹

𝑆 which are important for 𝑦.

𝑋𝐹
𝑆 = 𝑋𝐶 ⊙ 𝜎(𝐹 ) (5.4)

A subgraph 𝐺𝐹
𝑆 can be generated in a similar fashion by applying the (edge mask) selector

to the adjacency matrix 𝐴𝐶 of the computation graph 𝐺𝐶 .

𝐺𝐹
𝑆 = 𝐴𝐶 ⊙ 𝜎(𝑀) (5.5)

The subgraph 𝐺𝐹
𝑆 and subset 𝑋𝐹

𝑆 are not necessarily identical to the desired explana-
tion (𝐺𝑆 , 𝑋𝑆), only for a well-trained edge masks 𝑀 the subgraph 𝐺𝐹

𝑆 is an accurate
representation of the subgraph 𝐺𝑆 . Entries of the node mask 𝐹 are randomly initialised
and kept between zero and one by applying a sigmoid function 𝜎(𝐹 ). The masks are
derived by probing the model in this way, suppressing edges and node features during each
optimisation step.

Often the goal of an analysis with GNNExplainer is not an exact prediction 𝑦 but how
or why a label 𝑦 of a prediction 𝑦 is predicted, this is done via the cross entropy between
an initial prediction and the sum of probabilities of a prediction 𝑃𝜑 of the model being a
possible label 𝐾 at the specific subgraph (𝐺𝑆 , 𝑋𝑆).

ℒ := −
𝐾∑︁

𝑘=1
I𝑦=𝑘𝑙𝑜𝑔𝑃𝜑(𝑌 = 𝑦|𝐺 = 𝐴𝐶 ⊙ 𝜎(𝑀), 𝑋 = 𝑋𝐶 ⊙ 𝜎(𝐹 )) (5.6)

23
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The optimisation is done via gradient descent Ref. [25] using the loss function ℒ in eq. 5.6.
Subsequently regularisation terms are applied to the loss. Regularisation terms include sum
over all elements in the edge mask, mean over all elements of the node mask, elementwise
entropy over the masks and mean over the elementwise entropy. These terms ensure a
compact form of the explanation, the elementwise entropy results in discrete masks and
further constraints can be added through Lagrange multipliers.

5.2 Node Masks

The goal of GNNExplainer is to find an explanation (𝐺𝑆 , 𝑋𝑆) containing the subgraph 𝐺𝑆

and subset of node features 𝑋𝑆 , these are obtained by applying trainable masks as selectors

𝐺𝑆 = 𝐴𝐶 ⊙ 𝜎(𝑀) (5.7)

𝑋𝑆 = 𝑋𝐶 ⊙ 𝜎(𝐹 ) (5.8)

Information about the influence of edges and node features on the prediction 𝑦 of the
GNN are contained in the edge mask 𝑀 and node feature mask 𝐹 . If an edge or feature is
unimportant, the mask entries will be zero or close to zero. The remaining mask entries
will be assigned values based on their impact on the prediction, with the most important
features assuming values close to one. The masks are more compact than an actual
subgraph or d-dimensional node features, they also apply a numeric importance to all mask
entries. As a result, they are more practical than the actual subgraph and associated node
features (𝐺𝑆 , 𝑋𝑆), from this point onward the masks will be regarded as the explanation
GNNEXplainer yields.

The edge mask 𝑀 contains graph structural information and is always of the dimension
dim = 𝑁 × 𝑁 , with 𝑁 denoting the number of edges in the graph. The current imple-
mentation of GNNExplainer used in this thesis does not consider edge attributes when
generating the node mask. This ignores crucial graph structural information, because of
this and the difficulties in interpreting the edge mask for large input graphs in this thesis
only node feature masks are used for the Analysis of GNNs.

The GNNExplainer implementation used in this thesis offers three mask configurations
for the node mask: Attribute/Feature, Individual Feature and Scalar. In this thesis, the
terms node feature and node attribute are used interchangeably. The masks differ in their
dimensions R1𝑥𝐹 , R𝑁𝑥𝐹 and R𝑁𝑥1, this determines which information particular masks
hold and how they can be interpreted.

The Attribute/Feature configuration illustrated in Fig. 5.3, masks common node features of
all nodes, taking the dimension dim = 1×𝐹 , where 𝐹 denotes the number of node features.
This configuration does not consider the importance of individual nodes, the same mask is
trained for all nodes. This is the most computationally efficient mask configuration out of
the three node mask types because the same node mask is trained for all nodes.
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Figure 5.3: The Attribute/Feature configuration masks all common features of all nodes.

The Individual Feature configuration is shown in Fig. 5.4. This configuration masks node
features for each node individually, i.e. it considers the importance of nodes as well as the
features of these nodes. In terms of functionality, the mask can be understood as attribute
mask applied to each node. Correspondingly, the mask takes the dimension dim = 𝑁 × 𝐹 ,
𝑁 denotes the number of nodes and 𝐹 the number of features. If a node is masked out in
this configuration all node features of this node take values that are zero or close to zero.

Figure 5.4: The Individual Feature configuration masks node features for each node
individually.

The Scalar configuration masks all nodes, it does not consider the importance of node
features. The dimension dim = 𝑁 × 1 of the mask is only influenced by the number of
nodes 𝑁 .

This mask configuration is more computationally efficient than the individual feature mask
and less efficient than the feature configuration if there are more nodes than node features.
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26 5 GNNExplainer

Figure 5.5: The Scalar configuration masks all nodes with no regard of feature information.

5.3 Implementation

This thesis uses the implementation of GNNExplainer found in the 𝑡𝑜𝑟𝑐ℎ_𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐.𝑛𝑛-
module [26], for the training of the masks Adam Optimizer found in the 𝑡𝑜𝑟𝑐ℎ.𝑜𝑝𝑡𝑖𝑚-module
[27] is used. The Parameters of the GNNExplainer are listed in tab. 5.1, as mentioned
before the edge mask is not considered and will not be optimized, by setting the Parameter
𝑎𝑙𝑙𝑜𝑤_𝑒𝑑𝑔𝑒_𝑚𝑎𝑠𝑘 to 𝐹𝑎𝑙𝑠𝑒.

As learning rate, the default learning rate of 𝑙𝑟 = 0.01 is used. There are no values given
for the 𝑛𝑢𝑚_ℎ𝑜𝑝𝑠 variable because, as a complete graph, the hidden layer of a node is
always aggregated over all nodes.

The 𝑟𝑒𝑡𝑢𝑟𝑛_𝑡𝑦𝑝𝑒 chosen in this paper is 𝑝𝑟𝑜𝑏, which means that the mask entries correspond
to percentages of the input. A mask entry of one corresponds to 100% of the input being
used in the prediction, correspondingly a zero means that the feature is completely masked
out. For example, an entry of 0.7 would mean that 70% of the input is being used in the
prediction, with 30% of the feature being masked out.
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5.3 Implementation 27

Table 5.1: Most important parameters of the GNNExplainer implementation from
𝑡𝑜𝑟𝑐ℎ_𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐-module Ref. [26]

Parameter description

𝑚𝑜𝑑𝑒𝑙 Trained GNN-model 𝜑 passed to the GNNExplainer.
𝑒𝑝𝑜𝑐ℎ𝑠 Number of optimization steps during training.
𝑙𝑟 Learning rate of the optimizer.
𝑛𝑢𝑚_ℎ𝑜𝑝𝑠 How many k-hops during the neighbourhood aggregation are used,

if not given the 𝑛𝑢𝑚_ℎ𝑜𝑝𝑠 will be automatically calculated.
𝑟𝑒𝑡𝑢𝑟𝑛_𝑡𝑦𝑝𝑒 Output of the GNNEXplainer explanation. Offers three types of

return 𝑝𝑟𝑜𝑏, 𝑙𝑜𝑔_𝑝𝑟𝑜𝑏, 𝑟𝑎𝑤 as well as a return type for 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛.
𝑓𝑒𝑎𝑡_𝑚𝑎𝑠𝑘_𝑡𝑦𝑝𝑒 Determines the configuration of the node mask 𝑓𝑒𝑎𝑡𝑢𝑟𝑒,

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒 and 𝑠𝑐𝑎𝑙𝑎𝑟.
𝑎𝑙𝑙𝑜𝑤_𝑒𝑑𝑔𝑒_𝑚𝑎𝑠𝑘 Determines if an edge mask will be trained.
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6 Analysis of GNNs with GNNExplainer

The goal of this chapter is to generate explanations utilising the GNNExplainer method
introduced in chapter 5 and on the basis of these results to identify the relevant features for
GNN prediction. These features are the basis of the decisions made by the underlying GNN.
By examining the results and comparing them against the physics expectations for the
event classes, an attempt is made to reach a better understanding of the decision-making
process of the GNN. A summary of the results is made in section 6.3.

6.1 Interpretation
The explanations generated by GNNExplainer as introduced in chapter 5 are generated
for 800 epochs. The choice of the optimising iteration is important because the masks
are randomly initialised and then slowly optimised with respect to the initial prediction.
So, if not enough epochs are used, this will result in an incorrect mask that does not
reflect the input importance of the individual features. Using more epochs than necessary
does not lead to a reduction in the expressive power of the mask, but it does increase
computation time. Explanations are generated for each individual event in the dataset
chosen for analysis and a node feature mask is trained for every event individually. For large
datasets with a large number of individual events, this can be computationally demanding,
so the configuration of 800 epochs achieves a high predictive power while being comparably
efficient. All explanations are generated for the mask feature configuration as introduced
in chapter 5.2.

When interpreting the node mask feature importance returned by the GNNExplainer one
has to keep in mind how these are derived in the first place. The masks filter out features
unimportant for the prediction by reducing the input and observing if the prediction of
the GNN changes compared to the initial prediction. The initial prediction is treated as a
kind of “true label”. The importance given is a measure of how the input influences the
prediction. Using this definition, a feature is important if the specific value is important for
the prediction. In essence, this means changing it changes the prediction. An unimportant
feature in contrast does not change the prediction if it is partly or completely filtered
out by the feature mask. The more the prediction changes (compared to the initial
prediction) when changing the input feature, the more important it is for the prediction.
This behaviour is independent of the actual feature values. If a feature with a small
feature value is important for the prediction, changing it will still result in a change in the
prediction.
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30 6 Analysis of GNNs with GNNExplainer

Another important point when interpreting the feature importance is that the explanation
is in regard to the model, not in regard to the underlying physics processes. The node
mask is explicitly trained in regard to an initial prediction made using the trained model,
not the actual true label, which determines the class of the event. The GNNExplainer
aims to generate explanations for the behaviour of GNNs, showing how the input values
influence the prediction of the GNN.

6.2 Node Features

The features “pT”, “Phi” and “Eta” denote the transverse momentum, the azimuthal angle
and the pseudorapidity respectively, as introduced in section 3.3. The feature “M” denotes
the invariant mass of the jet or object in question and “E” denotes the energy of the object
in question (this can be either a jet, a lepton or the missing transverse energy). The feature
“charge” is a measure of the electric charge of the object, it assumes values of 1 for leptons,
−1 for antileptons and zero for all other final state objects. The heavy flavour tagging
values “CvL” and “CvB” are introduced in the chapter 2.2. The feature flags “is jet” and
“is lep” determine if an object in question is a jet or a lepton. The “is jet” flag is one, if
the object is a jet and zero if it is not. Similarly, the “is lep” flag is one if the object in
question is a lepton and a value of zero if it is not. The missing transverse energy (MET)
is characterised by having a value of zero in both feature flags. The “pnominal” feature is
the result of a previously made node-level prediction (NLP) using the same dataset. The
goal of the node-level prediction is to predict if a node is an additional jet or not. The
inclusion of this feature in the graph-level prediction (GLP) has led to an improvement in
the predictive capabilities of the GNN model.

6.3 Graph-level prediction (GLP)

The goal of the graph-level prediction is to predict a class label for an event out of several
event types. This predicted label can be measured against the true class of the event. So,
it is of interest why a certain prediction is reached by the GNN and the GNNExplainer
offers an explanation by assigning a feature importance to the input features. Only the
di-leptonic decay channel is considered. The decay channel and the possible event classes
are introduced in chapter 2.2. The importance of features for the prediction of an event
class can vary for each event. In order to derive a valid explanation, the mean of masks over
all similar events in a dataset, is taken. An example is the mean over all events identified
as 𝑡𝑡𝐿𝐹 events in figure 6.1.
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6.3 Graph-level prediction (GLP) 31

Figure 6.1: Mean over node mask features of 49058 events predicted to be 𝑡𝑡𝐿𝐹 event
class.

For each event class some events are falsely predicted, so the explanations generated by
the GNN can be separated into two categories: true positives in Fig. 6.2a, for which the
class label is correctly predicted and false positives in Fig. 6.2b for which the class label
is wrongly predicted. Plotting the node mask features of the events results in similar
behaviour as shown in Fig. 6.1 for 𝑡𝑡𝐿𝐹 events. This is in line with the expectations put
on the GNNExplainer. The node feature mask is a measure of how the input features
influence the decisions made by the GNN. If the GNN predicts two events to be of a certain
class, they are expected to have similar node feature masks. This is expected because the
feature masks are trained explicitly in regard to the prediction of the GNN, not the true
class of an event; this holds true for all event classes.

(a) True Positives (b) False Positives

Figure 6.2: Mean over node feature masks for a) all events correctly predicted as 𝑡𝑡𝐿𝐹
events and b) all events incorrectly predicted as 𝑡𝑡𝐿𝐹 events.

31



32 6 Analysis of GNNs with GNNExplainer

Examining the mean of the 𝑡𝑡𝐿𝐹 events in Fig. 6.1 shows that the most important features
are by far the “is jet” and “CvB” features. The behaviour of the two-dimensional heavy
flavour taggers “CvL” and “CvB” is not necessarily expected, for this event, the additional
radiation in question is light-flavour one would expect “CvL” (input) feature values (not
the importance generated by the GNNExplainer) to be small and “CvL” input values to
be large. As explained in section 6.1 small values do not necessarily translate into small
importance values, the guess that “CvL” has a high importance because for a 𝑡𝑡𝐿𝐹 event
a low “CvL” input value is just as characteristic as “CvB” having a high input value is
not far-fetched. Ultimately, the importance of a feature is determined by how the input
influences the prediction of the GNN, in this case, a small importance is assigned to the
“CvL” tagger. The underlying GNN seems to favour identifying the event class with the
higher tagger (input) value, in this case assigning high importance values to the feature
“CvL”.

The feature flag “is lep” shows medium importance. Similarly, the transverse momentum
“pT” is not a top feature, but not an unimportant feature either. The invariant mass of
the jet “M” and the energy “E” have a very low feature importance, but are not zero
either. The behaviour of the feature “pnominal” is similar. This feature is most likely
used to distinguish additional jets from other jets, with the additional jets being light
flavour jets they are probably easier to distinguish from the 𝑏-jets of the top quark decay,
resulting in lower importance values for the feature “pnominal”. The features “Phi”, “Eta”
and “charge” are irrelevant for the prediction, this is in line with the physics expectations.
An importance of the features “Phi” and “Eta” would mean the existence of a preferred
spatial direction that contributes to predicting the event class. The feature “charge” is
likely of no importance because the channel observed is the di-leptonic decay channel and
the top quark decays for all events in a similar fashion.

Figure 6.3: Scatter plot of the node feature masks of 5000 events with 𝑡𝑡𝐿𝐹 as predicted
class in grey and the mean of each individual feature in red.

When interpreting the importance of features based on the feature mask in Fig. 6.1, one
has to take into account that the result is derived as the average over a large number of
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6.3 Graph-level prediction (GLP) 33

events. So, the results of the GNNExplainer can vary strongly depending on the event
under scrutiny, so there is the possibility that an explanation derived from the mean is
not helpful in trying to understand a certain event. So in order to better understand the
predictions of the underlying GNN, the fluctuations of the feature importance of the masks
have to be taken into account.

For the individual events, the feature importance fluctuates compared to the mean calculated
over all events. These fluctuations are illustrated in Fig.6.3. To make these plots comparable,
5000 events are examined for each event class. Additionally, the mean is displayed as a
red cross. When interpreting this plot, one has to consider that each point represents the
feature importance of a single event, due to the transparency one event alone is not visible
and 10 events are barely visible. A concentration of over 100 events results in a solid grey
they cannot be further distinguished, so this diagram serves mainly as an illustration of
the spread of the fluctuations.

ttLF

The observations made for the mean in Fig. 6.3 can be mostly reproduced for the distribution
of the node mask importances. Similar to the mean, the “is jet” feature stands out mainly
as being concentrated for high feature mask values above 0.5 in the upper part of the
plot, reinforcing the importance of that feature. The heavy flavour tagger values “CvL”
and “CvL” show an inverse behaviour, for “CvL” the concentration diminishes for higher
importance values, while “CvB” diminishes for lower values of the distribution. The “CvL”
feature value also shows some events with a feature importance of one, strongly deviating
from the mean. So the GNN in some cases sees the smaller “CvL” input value as important
for the prediction, but in much smaller quantities than the “CvL” feature.

The features “pT” and “is lep” fluctuate a lot, in the mean this can be seen by them having
average importance. Especially, the transverse momentum “pT” is different from the mean
by being mainly concentrated at the extremes, with a comparatively low concentration
in between. In contrast, the “is lep” feature has a considerable concentration of events
between the importance values 0 and 1. The “pnominal” feature has a strong concentration
in the bottom third of the graph, slowly thinning out towards the top. The invariant mass
also shows fluctuations with a majority of events at importance value zero, some events
with importance one and a smaller number of events in between. The energy “E” shows a
small number of events having it as a very important feature but overall being concentrated
at zero importance.

Similar to the examination of the mean, the features “Phi”, “Eta” and “charge” are
unimportant for the prediction.
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34 6 Analysis of GNNs with GNNExplainer

Figure 6.4: Scatter plot of node feature masks of 5000 events (falsely) classified as 𝑡𝑡𝐿𝐹
events for different datasets.

These results can be reproduced for events in different datasets (falsely) identified as 𝑡𝑡𝐿𝐹
events in Fig. 6.4, this is in line with the results for true and false positives in Fig. 6.2.
This shows that falsely identified events have similar node feature masks as true positives
independent of the dataset in use.

ttC

The 𝑡𝑡𝐶 event class, is characterised by the additional jets consisting of charm quarks
because of the 𝑔 → 𝑐𝑐 decay in Fig. 6.5, shows much lower feature importance values for
the top events in comparison to the 𝑡𝑡𝐿𝐹 events in Fig. 6.3. There are also more than
one or two standout features, with the top features being the heavy flavour taggers “CvL”
and “CvB”, both with high importance. This is within expectations because high feature
input values for “CvL” and “CvL” as charm tagging discriminants signify the presence of a
𝑐-flavour jet. So, it is to be expected that this would also result in high feature importance
for the two heavy flavour taggers because determining a jet to be a charm jet requires
both heavy flavour taggers to be present. The reason for the lower feature importance
of the tagging features could lie in the identification of the 𝑐-flavour jets. Which require
both “CvL” and “CvB” to assume significant values, making them harder to distinguish
because they do not show the inverse behaviour they would for light-flavour or 𝑏 jets. The
distribution of events for the “CvL” feature is much more concentrated at the extremes
than for the “CvB” feature, which shows significant concentrations for higher and lower
feature importance different from one and zero. The “CvB” tagging value also shows a
lower concentration for events with average feature importance values. Surprisingly the
invariant mass “M” shows an importance nearly as high as the tagging features. This
would be more expected for an additional 𝑏-jet with the bottom quark 𝑏 having a mass
several times larger than the charm quark 𝑐. But then again, the same is true for the
charm quark 𝑐 in contrast to the light flavour quarks up 𝑢 down 𝑑 and strange 𝑠. For the
feature “M” most events are concentrated in the extremes, but there are also a significant
number of events with importance values between zero and one. The “is jet” feature follows
with slightly lower importance, showing fluctuations between one and zero importance
values. The transverse momentum “pT” mask shows a very strong fluctuation between an
importance of zero and one. The distribution is a lot more concentrated in the extremes in
contrast to the 𝑡𝑡𝐿𝐹 events. There is a small number of events that have a high feature
importance for the energy “E” but for the majority of events the feature seems to be
unimportant.
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6.3 Graph-level prediction (GLP) 35

Figure 6.5: Scatter plot of the node feature masks of 5000 events with 𝑡𝑡𝐶 as predicted
class in grey and the mean of each individual feature in red.

For the “pnominal” feature, events are mainly concentrated around low importance values,
with a smaller number of events with slightly increased importance and some with impor-
tance one. Similar observations can be made for the “is lep” feature, mainly concentrated
for lower values but lacking the concentration at importance value one. Similarly to the
explanation for the 𝑡𝑡𝐿𝐹 events the features “Phi”, “Eta” and “charge” are unimportant
for the prediction, this is again in line with the physics expectations.

ttB
For the 𝑡𝑡𝐵 event class shown in Fig. 6.6 the feature “pnominal” has the highest importance
and is mainly concentrated around the mean at high mask values, but also possesses a
concentration of events at the importance value of zero. A possible explanation for the
high importance value is that it is used to distinguish between the additional 𝑏-jet and one
originating from a top quark decay (𝑡𝑜𝑝𝑏, 𝑎𝑛𝑡𝑖𝑡𝑜𝑝𝑏).

The heavy flavour tagger “CvL” is the feature with the second highest importance, looking
at the fluctuations shows that the feature importance assumes a high mask value for a
majority of the events but also assumes values over the whole range of possible values.
Interestingly, the other tagging discriminator “CvL” is completely concentrated at value 0
unimportant for the prediction. The “CvL” tagging value assumes low importance values in
the presence of 𝑏-flavour jets, so it is within expectations that “CvB” is of little importance
for the prediction.

Similarly to the 𝑡𝑡𝐶 events, the invariant mass “M” plays a role in the prediction but
in contrast to the 𝑡𝑡𝐶 events, the feature is much more important and has a stronger
concentration for higher importance values. This can potentially be explained by the higher
mass of the bottom quark, making it more distinct from the other additional radiation jets.
But there is also a concentration of events with importance zero.

The mask of the transverse momentum “pT” shows strong fluctuations with a significant
number of events for all importance values, with high concentrations at the extremes and
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36 6 Analysis of GNNs with GNNExplainer

also a concentration around the mean at 40% importance. The events for the feature flag
“is lep” mainly assume lower importance values. In contrast to that, the events for the “is
jet” flag are more spread out, having a high concentration for lower values but also some
events for average and higher values. There are also some events with importance value
one. The energy “E” shows a very distinct distribution, concentrated for some events at
one and a majority at zero. In line with physics expectations, the features “Phi”, “Eta”
and “charge” show an importance of zero for the prediction.

Figure 6.6: Scatter plot of the node feature masks of 5000 events with 𝑡𝑡𝐵 as predicted
class in grey and the mean of each individual feature in red.

ttH

In this thesis, only the events with an additional pair of 𝑏-jets originating from 𝐻 → 𝑏𝑏 are
considered.

The top feature for 𝑡𝑡𝐻 events Fig. 6.7 is the “is jet” flag, similar to 𝑡𝑡𝐿𝐹 events concentrated
at higher importance values. The feature “CvL” has the second highest importance; events
are mainly concentrated at values above 0.3 and at 1. Events with very low importance
are virtually absent. The heavy flavour tagging discriminators “CvL” and “CvB” show
again an inverse behaviour with “CvL” being mainly concentrated at low values around
zero. This is expected because of the additional jet being a 𝑏-jet similar to the 𝑡𝑡𝐵 event.

The mean of the “is lep” feature is of medium importance, with events either concentrated
below the mean or around an importance value of one.

In contrast, the feature “pnominal” which has a similar mean to “is lep” has a fluctuating
importance value between zero and one with considerable event concentrations for most
importance values. A possibility is that the feature is again used to distinguish the
additional 𝑏-jets from the 𝑏-jets of the top decay. If this is the case, it is noteworthy that
the importance value varies a lot more, a possible explanation could be that the NLP is
much less effective in predicting additional jets for 𝑡𝑡𝐻 events when the additional radiation
is a bottom quark pair.
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In contrast to the previous event types, the transverse momentum 𝑝𝑇 is concentrated at
very low importance values around zero, only a few events assume values other than zero.
Similar behaviour can be observed for the invariant mass “M”, which in contrast to the
𝑡𝑡𝐵 events plays a minor role in the prediction. It is unclear why this is the case with the
additional jet in both cases being a 𝑏-jet.

Another difference is that for some events, the “charge” feature plays a role in the prediction.
Otherwise, the majority is concentrated at zero. The energy “E” and the pseudorapidity
𝜂 (“Eta”) show an importance value of one for very few events. The azimuthal angle “𝜑”
plays no role in the prediction, as expected.

Figure 6.7: Scatter plot of the node feature masks of 5000 events with 𝑡𝑡𝐻 as predicted
class in grey and the mean of each individual feature in red.

ttZB

The top quark-antiquark pair with an additional 𝑍 boson to two bottom quarks decay
events in Fig. 6.8 share similarities with the 𝑡𝑡𝐻 events in Fig. 6.7. The most important
feature is “pnominal” showing fluctuations mainly concentrated on higher values in the upper
half of the distribution, this is in contrast to the 𝑡𝑡𝐻 event which shows strong fluctuations.
Similar to the 𝑡𝑡𝐵 events, this feature could be relevant to distinguish additional 𝑏-jets
from 𝑏-jets of the top decay.

The heavy flavour taggers “CvL” and “CvB” show an inverse behaviour for most events,
but are less distinct than for 𝑡𝑡𝐿𝐹 , 𝑡𝑡𝐵 and 𝑡𝑡𝐻 events. The “CvL” tagger has a large
number of events for high and middling importance values, thinning out at the bottom and
virtually no events at zero. The “CvB” feature is mainly concentrated at lower importance
values thinning out towards higher values, except that for some events the feature “CvB”
has an importance of one, contrary to the inverse behaviour of the taggers.

The transverse momentum “pT” shows strong fluctuations, showing events with importance
values between zero and one. The invariant mass “M” is mainly concentrated at importance
values of zero but also some events with importance values different from zero. The feature
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importance of “M” and fluctuations are similar to the ones of the 𝑡𝑡𝐻 events and in contrast
to the 𝑡𝑡𝐵 events.

The invariant mass again is relevant for some events but is mainly concentrated at zero
importance, the same is true for the “charge” feature. The behaviour of the “charge”
feature is in contrast to the 𝑡𝑡𝐿𝐹 , 𝑡𝑡𝐶 or 𝑡𝑡𝐵 events, 𝑡𝑡𝐻 events show a similar behaviour
but for fewer events. This is surprising because only leptons have a “charge” flag different
from zero, 1 for leptons and −1 for antileptons. It is unclear why the leptonic top quark
decay would influence the classification of the event when the leptonic decay is expected to
be similar for all events.

The features “Phi” and “Eta” are of low importance for the prediction; the energy “E”
shows a small fluctuation, but a large majority of events is concentrated at zero.

Figure 6.8: Scatter plot of the node feature masks of 5000 events with 𝑡𝑡𝑍𝐵 as predicted
class in grey and the mean of each individual feature in red.

ttZnonB

The 𝑡𝑡𝑍𝑛𝑜𝑛𝐵 event class is characterised by the additional radiation stemming from the
𝑍 → 𝑞𝑞 decay, explicitly not being a pair of bottom quarks. The most important feature
of the event shown in Fig. 6.9 is the “CvL” tagging mask, which is nearly completely
concentrated at importance value one. This is in line with expectations: a high “CvL”
value shows the absence of 𝑏-flavour jets, so for a decay that does not result in a bottom
quark the importance should show a corresponding behaviour. The second highest mean
importance value is the “CvL” feature, showing strong fluctuations between the values zero
and one. A fluctuation for the feature importance of “CvL” is not unexpected because
there is no distinction between the additional radiation being a light-flavour jet (𝑢, 𝑑, 𝑠) or
a charm-tagged jet, which could result in a different “CvL” importance depending on the
jet flavour.

The feature flag “is lep” is centred around the importance value 0.4, having very low values
at the top and virtually no values at the bottom of the distribution. This concentration
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in the middle of the figure is different from the distributions of that feature in the other
events, which are more spread out and also assume values at least one of the extremes.

The feature “pnominal” shows strong fluctuations, showing fewer events for high importance
values. This results in a similar mean as for the “is lep” feature.

For some events “charge” is a very important feature, but for the large majority, the feature
is unimportant. The invariant mass “M” is mainly concentrated at a zero importance
value, but shows small numbers of events with higher importance values. The transverse
momentum “pT” is concentrated around the importance value zero, thinning out for higher
values. The features “Phi”, “Eta” and “E” are of no importance for the prediction in line
with expectations.

Figure 6.9: Scatter plot of the node feature masks of 5000 events with 𝑡𝑡𝑍𝑛𝑜𝑛𝐵 as predicted
class in grey and the mean of each individual feature in red.

other

Besides these event classes, there is also the possibility that the GNN identifies an event as
𝑜𝑡ℎ𝑒𝑟. This indicates this event is predicted to be part of a background process. There
are no background processes simulated in the dataset used for the analysis, so they are all
misidentified events of a different event class.
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Figure 6.10: Scatter plot of the node feature masks of 5000 events with 𝑜𝑡ℎ𝑒𝑟 as predicted
class in grey and the mean of each individual feature in red.

This makes it hard to make meaningful observations about them. The top feature by far
is the “CvL” tagger, mainly concentrated at events with high importance. A possible
noteworthy observation is that in contrast to the other event classes, the feature “charge”
plays a larger role in the prediction. The other events for which charge lightly fluctuated by
having a few events with the importance around one. The “is lep” feature is concentrated
at the extremes, also in contrast to the other event types.

Summary

A surprising result of the analysis of the explanations is the fluctuations of the feature
importance, a feature can have a high importance for one event while being unimportant
for another, despite belonging to the same event class. These fluctuations can be very large
for example, most of the 𝑡𝑡𝐿𝐹 events in Fig. 6.3 have an importance value of zero for the
invariant mass “M” but also some events with a feature importance of one. These results
for “M” are literally the opposite of each other. At this stage of the analysis, the reason
for this behaviour is unknown. A possible explanation could be that the GNNExplainer
determines which features play a role in predicting a class label and not one of the other
possible class labels for the underlying GNN, see section 5.1. For example, a 𝑡𝑡𝐵 event is
characterised by a high “CvL” importance for most events and a low “CvB” importance.
This is in stark contrast to the 𝑡𝑡𝐿𝐹 event class, with most events having a low “CvL” and
high “CvB” values, so the multitaggers are a good feature to distinguish the events from
each other. Now considering a 𝑡𝑡𝐵 event in contrast to a 𝑡𝑡𝐻 event that is characterised by
similar importance values for “CvL” and “CvB”, the tagging features are now less helpful to
distinguish the events from each other. In such a case, other features like the invariant mass
“M”, the transverse momentum “pT” and others could play a role in distinguishing them.
While these features are now assigned a high importance for the 𝑡𝑡𝐵 vs 𝑡𝑡𝐻 comparison
it is unlikely that they would have the same importance for the comparison 𝑡𝑡𝐵 vs 𝑡𝑡𝐿𝐹 ,
causing the fluctuations in the feature importance depending on which event types are
most similar to the event in question.
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Another reason for the fluctuations could be that in the analysis, only the feature information
in the form of the node feature mask is considered, graph structural information is not
considered because of the focus on the feature information and the implementation of the
GNNExplainer not considering edge attributes, see section 5.2.

Evaluating the results for all events, there is no single feature that stands out as the
most important across all event classes. For each event, a combination of several events
is impactful in determining the event class. Nonetheless, there are some features that
seem to be more important than others, for most events at least one of the heavy flavour
tagging values “CvL” and “CvB” maintains a high importance for the prediction. This
is in line with expectations that the jet flavour plays an important role in order to find
the event type. A 𝑡𝑡𝐿𝐹 event in Fig. 6.3 is characterised by a light flavour jet resulting in
a higher “CvB” importance value and a lower “CvL” importance value. Similarly, a 𝑡𝑡𝐵
event in Fig. 6.6, characterised by a 𝑏-flavour jet, possesses a high “CvL” importance for
most events and a low “CvB” importance. With these features most likely being important
for the prediction by playing a role in determining the flavour of the additional jets, an
improvement in the accuracy of the heavy flavour taggers would probably play a greater
role in improving the prediction than an improvement in the determination of the invariant
mass “M” or the transverse momentum “pT”.

The feature “pnominal” also stands out, generally assuming a high importance for 𝑡𝑡𝐵 and
𝑡𝑡𝑍𝐵 events, as well as showing strong fluctuations for 𝑡𝑡𝐻 events. If this reflects the
feature being used to distinguish the additional 𝑏-jets from the 𝑏-jets of the top decay,
then improving the accuracy of the NLP classification could be crucial in improving the
prediction for these events.

The importance of a feature cannot always be meaningfully interpreted in a physical
sense. This is for example the case for the features “is jet” and “is lep”. It is unclear why
they would be influential in the prediction of the event class. The feature “is jet” simply
determines if a node is a jet or not, the “is lep” feature does the same for leptons. While it
makes sense that these features are used in distinguishing jets from leptons and neutrinos,
it is unexpected that this would be more important for some events and less important for
other events.
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7 Conclusion

The goal of this thesis is to gain a better understanding of the underlying decision a
Graph Neural Network (GNN) takes in order to reach a prediction for 𝑡𝑡 + 𝑋 events in
proto-proton collisions at the CERN Large Hadron Collider. A better understanding of the
decision-making of the GNN could be helpful in improving the event classification. The
interpretation of importance values generated by applying the GNNExplainer introduced
in chapter 5 on the trained GNN serves as the main tool to archive this objective.

While the importance values of some features confirm physics expectations, such as the
heavy flavour jet tagging values “CvL” and “CvB” being an important feature depending on
the flavour of the final state object. This is expected because the events are characterised
by the additional radiation of a particle 𝑋. The decay of that particle 𝑋 results in the
additional jets in the dataset. The heavy flavour tagging value “CvL” discriminates charm
from light flavour jets, “CvB” discriminates charm from 𝑏-jets. So, using both heavy flavour
tagging values, one can determine the flavour of a jet. With this, a majority of event classes
can be distinguished by the flavour of their additional jets. Another expected result is
the “pnominal” feature being important for events with additional 𝑏-jets. This is expected
because the feature “pnominal” is an NLP score, determining if a jet is an additional jet or
not. So it is within expectations that this feature helps in differentiating an additional
𝑏-jet from a 𝑏-jet of the top quark decay. Some other features are important depending on
the event class. Other feature importance values are hard to interpret in a physics sense,
like the feature flags “is jet” and “is lep”, which determine if the object in question is a
jet or a lepton. Since some of the most important features are the heavy flavour tagging
values and the product of an NLP prediction, the prediction of the GNN could be improved
by increasing their accuracy. Especially the “pnominal” feature is interesting because it
could aid in the distinction of the 𝑡𝑡𝐵, 𝑡𝑡𝐻 and 𝑡𝑡𝑍𝐵 events, which forms an irreducible
background process when trying to investigate the 𝐻 → 𝑏�̄� decay of the 𝑡𝑡𝐻 events.

One of the most important observations made in this thesis is the fluctuations of the
feature importance between events of the same event class. The source of this behaviour
is still unknown but it, being present in all event classes, hints at it being a fundamental
behaviour of the underlying GNN. An in depth look into how the concrete input features
influence the feature mask importance could be helpful in the understanding of the results.

A further look into these results is necessary, especially how the decisions taken by the
GNN are influenced by graph structural information and how these interlock with the
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44 7 Conclusion

feature information examined in this thesis. For this to be possible, the GNNExplainer
method might have to be expanded to include edge feature information, which is utilised by
the GNN as edge weights. Alternatively, another Explainable AI method could be utilised
to complement these results. For example Taylor Coefficient Analysis [28]. This method
was originally developed for DNNs, but can also be implemented for GNNs, as utilised in
[7].
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