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Abstract

This thesis presents the implementation and evaluation of the GCN algorithm for photon
energy reconstruction in the Belle II electromagnetic calorimeter. The GCN algorithm, a
machine learning technique based on graph convolutional networks, uses fuzzy clustering.
The model is employed to analyze and reconstruct photon energies of single photon events
using Monte Carlo generated and simulated data. This study focuses on the graph-building
process and on investigating the graph input features utilized in the GCN model to optimize
the algorithm’s performance. In particular, the node input features and the number of
edges in a graph as well as the edge weights are studied. To assess the effectiveness of the
GCN algorithm, a comparison is made with the algorithm of the Belle II Analysis Software
Framework and the GravNet algorithm. The results show that the GCN model outperforms
the Belle II Analysis Software Framework model by up to 15% in the photon energy range
of 0.01GeV to 2.5GeV while maintaining comparable performance to the GravNet model.
For photon energies exceeding 2.5GeV, the GCN model performs better than the GravNet
model, with an improvement of up to 16%.
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Disclaimer

This thesis builds on the work of Florian Wemmer [1] studying the photon reconstruction
in the Belle II calorimeter using graph neural networks. The production and selection of
the Monte Carlo simulated single photon events was done by Florian Wemmer with the
Belle II Analysis Software Framework by the Belle II Framework Software Group [2] and
the generated data sets are property of the Belle II collaboration. I reimplemented Florian
Wemmer’s architecture of the GravNet model [3] with a GCN layer [4] and performed the
training and evaluation of the GCN model. I built all graphs using the package NetworkX [5].
Florian Wemmer’s proposed metrics are used in this work and my results of the GCN
model are compared to Wemmer’s results of the GravNet and the basf2 model. The fitting
functions of the relative reconstruction errors were modified by Isabel Haide (KIT, ETP)
and Jonas Eppelt (KIT, ETP). All plots shown in this thesis are created by me with the
Matplotlib package [6] using adapted versions of the plotting functions of Florian Wemmer,
unless otherwise noted. My supervisor Prof. Torben Ferber proposed the studies for this
thesis.
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1. Introduction

Particle physics revolves around the study of subatomic particles, delving into the intricate
fabric of matter and energy of which the universe is built. The Standard Model (SM) has
proven remarkably successful in explaining the interactions between known particles and
the fundamental forces that govern them [7]. Yet it leaves significant gaps and unanswered
questions, hinting at the existence of yet-to-be-discovered particles and phenomena.

The Belle II experiment aims to uncover new physics by analyzing rare decays utilizing
the Belle II detector, located at the SuperKEKB electron-positron collider in Tsukuba,
Japan. At the SuperKEKB accelerator, the Υ(4S) resonance is finely tuned, creating an
ideal experimental environment for studying the decay of B-Meson pairs [8, 9]. To achieve
high-precision measurements, a substantial amount of data is required which depends upon
a high instantaneous luminosity. Ongoing efforts to enhance SuperKEKB’s capabilities
intend to increase the luminosity by an order of magnitude in the coming years. Excellent
performance in photon energy reconstruction is crucial for numerous physics analyses at
Belle II. However, the high instantaneous luminosity leads to increased beam background
and presents a significant challenge to this process [8].

This thesis introduces the graph-building process for graph neural networks (GNNs) to
improve the energy resolution of photon clusters. In particular, the implementation of graphs
in a graph convolutional network (GCN) and the evaluation of the model’s performance
for the photon energy reconstruction in the Belle II electromagnetic calorimeter (ECL) for
different graph input features is studied. By employing the GCN algorithm, all relevant
input features are implemented in contrast to traditional clustering methods. This aids the
GCN model, particularly when confronted with high levels of background interference. As
a result, this thesis successfully enhances the energy resolution for photons in comparison
to the current reconstruction algorithm used in Belle II and gives a better understanding of
graphs and their features that are used here in GNNs.

Chapter 2 provides an introductory overview of the Belle II experimental setup, with a
particular focus on the ECL and beam background processes. It also introduces the Belle II
Analysis Software Framework. Chapter 3 presents the GNN models GCN and GravNet and
their specific implementation for application in the Belle II ECL. In chapter 4, the event
generation and selection processes are described, establishing the essential conditions for
training the machine learning (ML) algorithm. This thesis exclusively utilizes Monte Carlo
(MC) generated and simulated data. The training of the GCN model and the implementation
of the graphs with various input features as well as the model’s architecture are studied in

1



2 1. Introduction

chapter 5. Metrics that effectively characterize and evaluate the reconstruction performance
for the subsequent studies are introduced in chapter 6. Chapter 7 explores the behavior
and performance of the GCN model for different graph input features. It also compares
the performance of the GCN model to the GravNet and the Belle II Analysis Software
Framework algorithm regarding the reconstruction of photon energies for different beam
background scenarios. Finally, chapter 8 serves as a comprehensive summary, encompassing
all the presented results throughout the thesis, and offers an outlook toward future work.



2. The Belle II Experiment

The Belle II experiment is a particle physics experiment located at the SuperKEKB particle
accelerator in Tsukuba, Japan. Resulting from the SuperKEKB collider are electron-
positron collisions of high intensity. As upgrades to their respective predecessors, the
Belle II experiment and the SuperKEKB accelerator supersede the Belle experiment and the
KEKB collider. With an anticipated integrated luminosity of about 50 ab−1 over a decade,
the upgrade amplifies data-taking capabilities, yielding a data set 50 times larger than what
the Belle experiment achieved in the same timeframe. Moreover, the upgrade aspires to
increase the instantaneous luminosity by more than 40-fold compared to the previous Belle
experiment conducted at the KEKB collider. Consequently, the enhanced instantaneous
luminosity leads to an elevated background level within the Belle II experiment.

This chapter about the Belle II experiment describes the detector with its sub-detector
parts in section 2.1. Furthermore, the electromagnetic calorimeter is introduced in detail in
section 2.2. The information in this chapter is based on the Belle II technical report [9] and
the Belle II physics book [8].

2.1. The SuperKEKB Accelerator and the Belle II Detector

The SuperKEKB accelerator comprises two storage rings, one dedicated to high-energy
electron beams and the other to low-energy positron beams. With a circumference of 3016m,
the accelerator features four straight sections, each housing an experimental hall. Figure 2.1
illustrates a schematic view of the SuperKEKB accelerator. The e+e−-collision occurs
exclusively at the Tsukuba experimental hall’s interaction point (IP) within the Belle II
detector. Operating at the energy of the Υ(4S) resonance, 7GeV electrons collide with
4GeV positrons. This resonance decays mostly into B meson pairs, which subsequently
undergo further decays, yielding leptonic or hadronic particles.

The primary objective of the Belle II detector is to enhance our understanding of particle
physics and explore phenomena beyond the SM. A crucial aspect of this pursuit is the
precise identification of various particles generated during collisions. Particle identification
involves combining information from different sub-detectors, each specializing in measuring
specific particle properties and tracks. The collision between the electron and positron
beams in Belle II is asymmetric due to their differing energies. Consequently, the produced
B mesons experience a boosted state instead of decaying immediately.

3



4 2. The Belle II Experiment

Figure 2.1.: A schematic representation of the SuperKEKB accelerator. The Belle II detector
is located at the experimental hall Tsukuba. The other three experimental halls
Oho, Fuji, and Nikko are as well on the straight sections of the accelerator.
The figure is taken from [10].

To achieve comprehensive coverage, the detector is divided into three main components:
the barrel, the forward endcap, and the backward endcap. The barrel assumes a cylindrical
shape, with its parallel axis aligned to the electron and positron beams. The endcaps,
circular in shape, are positioned at either end of the barrel. While the forward endcap is
located at the incoming positron beam, the backward endcap is positioned at the incoming
electron beam. Figure 2.2 provides a schematic representation of the Belle II detector,
illustrating its sub-detectors and their arrangements.

The Vertex Detector, which surrounds the IP, is composed of two main components: the
pixelated silicon sensor (PXD) and the silicon strip layer (SVD). The PXD is constructed
from two all-silicon modules, each featuring sensor matrices of depleted P-channel field effect
transistors (DEPFETs). On the other hand, the SVD comprises four layers of double-sided
silicon strip detectors (DSSDs). The sensors in the Vertex Detector precisely measure the
decay vertex of collision products, primarily focusing on B mesons while also capturing
other particles generated in the e+e−-collision.

Adjacent to the Vertex Detector is the cylindrical central drift chamber (CDC). The CDC
contains numerous wires with the purpose of tracking the trajectories of charged particles
as well as their momenta and their dE/dx information.

Moving further away from the IP, the time-of-propagation (TOP) detector is located which
is designed for particle identification. Positioned in the barrel region, the TOP detector
features 16 quartz bars arranged circularly around the collision point. As particles traverse
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Figure 2.2.: A schematic overview of the Belle II detector with its sub-detector parts. The
detector is centered around the interaction point. The figure is taken from [11].

through the quartz bars, they emit Cherenkov photons, and the TOP detector measures
the propagation and position of these. The distribution of the Cherenkov photons provides
valuable information for particle identification. In addition to the TOP detector in the
barrel is the aerogel ring imaging Cherenkov (ARICH) counter in the forward region of the
detector for particle identification.

Surrounding the CDC is the ECL whose primary function is to measure the total energy
of charged particles and photons. It consists of scintillator crystals that are placed inside
the superconducting solenoid coil. The purpose of the ECL is the determination of the
total energy and the angular coordinates of the particles, with a specific emphasis on
identifying electrons, hadrons, and photons. This thesis focuses on the photon detection
and reconstruction of photon energy and therefore the ECL is described in more detail in
section 2.2.

A constant magnetic field of 1.5T is generated by the superconducting solenoid coil to
curve the trajectories of charged particles in the CDC. The radius of the charged particle
trajectory, influenced by the constant magnetic field, allows the determination of the
particle’s momentum.

The outermost part of the Belle II detector is the K0
L and muon detector (KLM). As the

name says, its primary purpose is to identify and determine the properties of the long living
K0

L and muons. Additionally, the KLM acts as a particle decelerator and serves as the
magnetic flux return yoke for the magnet.
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2.2. The Belle II Electromagnetic Calorimeter

A significant fraction of B decay products consists of neutral particles, a portion of which
decay into photons within the energy range of 20MeV to 4GeV. The primary purpose
of the Belle II electromagnetic calorimeter is to detect photons with high efficiency while
accurately determining their energy and angular coordinates. Furthermore, the ECL aids
in particle identification by analyzing the shower shape of particles, in conjunction with
other sub-detector parts such as the KLM. In addition to its photon detection capabilities
and particle identification role, the ECL is also used for measuring the luminosity. The
luminosity is a parameter used to quantify the rate of collisions [9].

2.2.1. Geometry and Operation

The following section is based on [8, 9]. The ECL is divided into three sections: the barrel
region, the forward endcap, and the backward endcap. In the ECL’s coordinate system, the
IP serves as the origin for spherical coordinates θ and ϕ. θ represents the polar angle, while
ϕ denotes the azimuthal angle with respect to the beam pipe. The z-axis aligns along the
beam pipe in the direction of the electron beam.

Regarding the position from the IP, the forward endcap is located at z = 1.96m and the
backward endcap at z = −1.02m. The barrel extends for a length of about 3m and has
an inner radius of 1.25m. The ECL covers a polar angle range of 12.01◦ < θ < 155.03◦,
providing comprehensive coverage, except for two narrow gaps situated between the barrel
and each endcap. These gaps have a width of approximately 1◦. A schematic representation
of the ECL and its components can be seen in figure 2.3.

The three ECL regions include in total 8736 thallium-doped cesium iodide CsI(Tl) crystals.
Within the barrel region, there are 6624 crystals, each possessing one of 29 distinct shapes.
These crystals take the form of truncated pyramids, with an average cross-section of
6× 6 cm2 and a length of 30 cm, which is equivalent to 16.1 radiation lengths. The crystals
are positioned with their front facing the IP, and they are deliberately shifted relative to
one another to prevent particles from escaping through gaps between the crystals.

The geometrically more complicated endcaps consist of 2112 crystals that also point towards
the IP. The crystals have a similar length as the crystals in the barrel. Due to the irregular
arrangement, there are 69 crystal shapes with a wider variation in cross section and size.
Additionally, there are larger gaps between crystals in the endcaps compared to the barrel
region. The forward endcap is densely packed with crystals compared to the backward
endcap. This difference in packing density is made due to the asymmetric nature of the
electron-positron collision.

Each crystal is wrapped with a thin layer of Teflon and aluminum to keep the emitted light
of the scintillation within the crystal. At the two ends of each crystal are PIN photodiodes
that measure the light yield generated by particles and their subsequent showers.

Crystal Measurements

In the ECL, the basic crystal measurements are the reconstructed energy, the reconstructed
time, and the pulse shape discrimination (PSD). The pulses of the incoming particles at
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Figure 2.3.: A schematic representation of the Belle calorimeter. The mechanical structure
and crystal positions are identical for Belle and Belle II. In the middle is a
display of the cross-section of the overall electromagnetic calorimeter. The
interaction point is in its center and marked with IP. On the left side is the
backward endcap displayed from the perspective of the interaction point and
similarly on the right side is the forward endcap. The figure is taken from [12].

the photodiodes are converted into voltage signals by a preamplifier and then shaped and
digitized by the ShaperDSP module, resulting in a wavefunction [13].

For each crystal i, the reconstructed energy is denoted by Erec
i , while the reconstructed

time is denoted as treci . The reconstructed time is determined by comparing the arrival
times of signals from different photodiodes within the calorimeter and is reported relative
to the time of the collision. This reconstructed time aids in distinguishing prompt particles
produced during the collision from particles originating from the decay of other particles.
Both the reconstructed energy and time are independently obtained by fitting the digitized
amplitudes to a known response function.

The PSD information in the ECL plays a crucial role in accurately identifying particle types
and distinguishing between photons and charged particles within the detector. Different
types of particles exhibit distinct pulse shapes in the ECL due to variations in energy
deposition and subsequent light emission processes. The PSD information is obtained offline
from the reconstructed wavefunction of the crystals. It includes the hadron intensity (HI),
its corresponding fit type, and χ2 for each crystal.
The HI is determined by the number of scintillations caused by hadrons in the crystal. To
properly fit the reconstructed wavefunction, both a photon template fit and, if applicable,
a hadron template fit are employed. The PSD represents the extent to which the hadron
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template fit is necessary to adequately fit the reconstructed wavefunction. The fit type and
χ2 are determined during this process [14]. PSD information is only determined for crystals
with reconstructed energy exceeding 30MeV.
While the measurement of the recorded energy and time are online, the PSD is determined
offline from the recorded data.

2.2.2. Clusters and Leakage

In the ECL, it is common for particles and their showers to distribute their energy across
multiple crystals rather than depositing their total energy within a single crystal. As a
result, a single crystal does not provide the complete reconstructed energy of a particle.
Instead, the energy of a particle must be determined from a cluster. The cluster is defined
by several crystals that all have deposited energy of the same particle. The shape of the
cluster is influenced by the shape of the particle shower and the detected crystals form a
connected region (CR) in the ECL. It is also possible that multiple particles deposit energy
in the same crystal. Therefore, the challenges for the energy estimation are to determine by
cluster algorithms which particle deposited what amount of energy in each crystal.
The simplest shower shape belongs to photons, as they typically deposit the majority of
their energy in a single crystal. The energy distribution around this central crystal is
typically radially symmetrical. Clusters from other particles are often more complicated
due to the asymmetry of their shower shape. This thesis focuses on the reconstruction of
photon showers, neglecting the reconstruction of other particle types.

The reconstruction of the energy is compromised by the leakage of the ECL due to small
gaps between crystals or due to partial energy depositions of the particle after the ECL
in different sub-detector parts. This leads to a lower cluster energy reconstructed by the
cluster than the original particle energy. Leakage has a more pronounced impact in the
endcaps of the ECL, as there are more gaps between the crystals in this region. Additionally,
particles deposit energy in inactive material in other sub-detector parts before reaching the
ECL. Therefore, the energy resolution of the ECL is limited by the leakage, resulting in a
loss of a few percent of the initial particle energy.

2.2.3. Beam Background

This section is based on [8, 15]. A high fraction of the energy depositions in the ECL is
not from collision product particles but from beam background. The beam background is
generated by unstable beam pipe particles that collide on the inner side of the beam pipe.
Their shower is usually low-energetic but in total the energy of the beam background ranges
from 0.5MeV to 1.0MeV in the barrel and is up to 2.0MeV in the endcaps per crystal.
Most beam background particles deposit their total energy in a single crystal.

In the ECL, the most prominent sources of beam background are the Touschek effect, beam
gas scattering, and radiative Bhabha scattering.
The Touschek effect accounts for 98% of the beam background in the ECL. It results
from Coulomb scattering of beam particles that are part of the same bunch and its rate is
proportional to the squared beam current and the inverse beam size.
Beam gas scattering accounts for around 2% of the beam background. It is the result of
the Coulomb scattering of residual gas atoms with beam pipe particles. The scattering rate
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Figure 2.4.: Background energy depositions in the electromagnetic calorimeter for past
low beam background (2018) and future high beam background (2027). The
projection includes the rolled-out barrel and the endcaps. Both are displayed
from the perspective of the interaction point. The energy in each crystal is
represented by color. The figure is adapted from [16].

is proportional to the vacuum pressure and the beam current.
The e+e− → e+e−γ process where an additional photon hits the beam pipe is called radiative
Bhabha scattering. The process is proportional to the luminosity and very likely to produce
high-energetic beam background.

Most of the beam background particles just hit a single crystal but it also occurs that
high-energetic beam background particles hit the ECL and create clusters that are indis-
tinguishable from collision products and their decays. Therefore, the distinguishing of the
cluster type needs to be done at a later stage.

In this thesis two beam background types are studied that are associated with different
phases of the Belle II experiment :

• Low beam background (LBB) also called early background in this thesis is the current
background simulation. The instantaneous luminosity is L = 1.06 · 1034 cm−2 · s−1 .
In a singular event around 1500 crystals have beam background energy deposition.

• High beam background (HBB) also called nominal background in this thesis is the
expected future background simulation in 2027. The instantaneous luminosity is
expected to be L = 6 · 1035 cm−2 · s−1. In one event around 3500 crystals have beam
background energy deposition.

j

The occurrence rate of beam background processes increases with higher luminosity, smaller
beam size, and higher beam currents. This phenomenon is shown in figure 2.4 as well as
the dependency of the beam background energy on the ECL region.
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In the backward endcap and in the inner crystals of the beam pipe in the forward endcap
are the highest beam background depositions. Due to the fact that the positron beam
directed towards the backward endcap is less focused than the electron beam the positrons
collide more often with the beam pipe. Additionally, many wires are positioned in front of
the backward endcap resulting in more non-physical collisions of the beam and detector
material. The beam background energy decreases in the barrel from the crystals closest to
the backward endcap to the crystals closest to the forward endcap.

2.3. Basf2 Reconstruction Algorithm
The Belle II Analysis Software Framework (basf2) [2] is the current software framework
used at the Belle II experiment and includes all software-related activities. In this thesis,
the term basf2 is referring to the energy reconstruction algorithm in the ECL using the
actual basf2.

The energy reconstruction in the ECL using the basf2 algorithm determines clusters as
follows [8]:

1. The clustering starts with finding seed crystals that have a reconstructed energy
Erec

seed > 10MeV.

2. The eight nearest neighbors of the seed crystals are examined and added to the CR if
the crystals have an energy deposition above Erec

i > 0.5MeV.

3. The next-to-nearest neighbors of the seed crystal are added to the CR if the crystals
have an energy of at least Erec

i > 1.5MeV. This procedure is repeated for every
nearest neighbor of a crystal in the CR.

4. If another crystal in the CR of the seed crystal also has an energy deposition of
Erec

i > 10MeV, this crystal’s eight nearest neighbors are also considered as in step
two and the two CRs get merged.

5. All local maximums (LMs) in reconstructed energy in the CRs are determined and
become the origin of a potential cluster. A LM crystal has the highest reconstructed
energy of all its direct nearest neighbors.

6. A cluster is limited to a 5× 5 crystal arrangement, excluding the corners, around the
LMs.

If there are several LMs in one CR each crystal is assigned partially to each LM by using
shared weights that are normalized to unity per crystal. The weight per crystal i is defined
by

wi =
Eie

−Cdi∑
k Eke

−Cdk
, (2.1)

where C = 0.7 is an MC determined constant, di is the distance between the centroid of
the cluster and crystal i and is determined by iteration. The denominator sums over all
crystals k in the cluster. The cluster centroid is determined by

x⃗ =

∑
iw

′
ix⃗i∑

iw
′
i

, (2.2)
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Figure 2.5.: Representation of the basf2 clustering algorithm showing a flat projection of
the θ − ϕ crystal plane in the Belle II electromagnetic calorimeter. The view
is from the interaction point and the barrel is rolled out and visible on the
right side and part of the forward endcap at the top left corner. The left plot
shows the reconstructed energy of the crystals that are the input for the basf2
algorithm. The middle plot shows the determined clusters without timing
selection. In the right plot, the final clusters are displayed where each cluster
with Ecluster < 20MeV is rejected. Each cluster is associated with one particle.
The figure is taken from [16].

with w′
i = 4.0+ log (wi × Ei/Eall). Eall is the sum of all weighted crystal with wi > 0. Only

crystals with w′
i > 0 are used for the calculation of x⃗. Starting with the centroid position

x⃗(0) =

∑
iEix⃗i∑
iEi

, (2.3)

where x⃗i is the geometric center and Ei the energy of crystal i, the iteration procedure is
done until the average centroid positions of all clusters in one CR are stable within 1mm.
The energy of a cluster Ecluster =

∑
nwi × Ei is determined by summation over the n

highest weighted crystal energies of up to 21 nearest neighbors. n depends on the beam
background level and the energy estimation of the eight nearest neighbors. The cluster
time resolution is defined to include 99% of all signal clusters based on MC. Showers below
50MeV with a reconstructed time trec exceeding this value are not retained. Afterwards,
the cluster energy gets corrected as a function of position, energy, and expected background
level. The clustering of one event in the ECL is visualized in figure 2.5. The final cluster
energy determined by the basf2 algorithm is referred to as Ecorr

pred in this thesis.

In conclusion, the basf2 algorithm uses the reconstructed energies of each crystal as an input
and forms CRs. The algorithm determines LMs within the CRs and assigns all crystals
partially to every LM. Thereby clusters are formed that are associated with only one particle.
A disadvantage of the basf2 algorithm is that it cannot assign partial membership of a
crystal to beam background.





3. Graph Neural Networks

GNNs are neural models commonly utilized in deep-learning tasks to process graph data.
GNNs employ a message passing mechanism, where nodes in a graph exchange information
with their connected nodes. One of the notable advantages of GNNs is their ability to
handle graphs of varying sizes and complex structures.

This chapter provides an overview of the fundamental concepts of GNNs, including graph
features and fuzzy clustering, which are discussed in section 3.1. Additionally, this chapter
explores GNN layers relevant to this thesis, such as the GravNet layer detailed in section 3.2,
and the GCN layer explained in section 3.3.

3.1. Fundamentals

3.1.1. Graph Features

The following section is based on [17]. Graphs serve as the input for GNN models and are
characterized by two crucial components: node features and edge features. Thus, a graph is
represented as G = (V ,E), where |V | denotes the number of nodes and |E| represents the
number of edges within the graph.

For the graphs examined in this thesis, undirected edges are utilized, which establish
connections between pairs of nodes. The GNN model employing the GravNet layer takes
dynamic graphs as input, where the graph’s input features vary over time. On the other
hand, the algorithm utilizing the GCN layer operates on static graphs, where the input
features remain constant over time.

ML methods aim to classify objects, which can be node classification, edge classification, or
graph classification for graphs. In this thesis, the focus is on node-level classification, where
each node is assigned partial membership to different classes. This process is commonly
referred to as fuzzy clustering.

3.1.2. Introduction to Fuzzy Clustering

Fuzzy clustering refers to the practice of partially assigning nodes to multiple classes, as
opposed to the exclusive assignment of nodes to a single class, known as hard clustering [18].
The algorithms examined in this study, namely the GravNet and GCN models, both employ
fuzzy clustering techniques. In this context, each crystal is represented as a node, and

13



14 3. Graph Neural Networks

the algorithm determines the fractional contributions of the photon signal and the beam
background to the crystal’s energy. More details regarding this implementation can be
found in chapter 5. The fuzzy clustering weights w

(u)
i , which indicate the fraction of energy

assigned to either the photon signal or the beam background, must satisfy the following
condition: ∑

u

w
(u)
i = 1 ∀i , (3.1)

where w
(u)
i ∈ [0, 1]. This equation ensures that the total energy assigned to each crystal i is

equal to Erec
i , indicating a complete allocation of energy between the photon signal and the

beam background.

3.2. GravNet Layer
This section is based on [3]. The GravNet layer is the core of the GravNet architecture as
the layer is responsible for the message passing among the nodes of the graph. The goal of
the GravNet architecture is to maintain a trainable space representation while minimizing
computational complexity.

The operation of the GravNet layer is visualized in figure 3.1. The layer takes as input a
B × V × FIN data set, where B represents a batch of examples, each comprising a set of
V detector hits, and FIN denotes the initial features such as Cartesian coordinates or the
reconstructed energy.
In the first step it processes the input features FIN by a dense neural network. The
resulting output of the dense neural network consists of two arrays: S, which represents the
coordinates in a learned representation space, and FLR, serving as the learned representation
of node features. The k nearest neighbors are determined based on the Euclidean distance
dij in S between two nodes vi and vj . In the third step, each node vi gathers information
f i
j of its edges from the learned features FLR. The features are weighted by a Gaussian

potential V (dij) = exp
(
−10 d2ij

)
that depends on the distance between the connected nodes

in S. This gravitational potential, which decreases with distance, is the inspiration behind
the layer’s name: gravitational network (GravNet). The scaled features f̃ i

jk, all associated
with node vk, are combined to generate a new feature f̃ i

k by summation. This process is
carried out for all nodes, leading to the formation of the newly learned feature representation
F̃LR. In the last step, another dense layer is used to concatenate the initial features FIN

with the newly learned feature representation F̃LR, resulting in a set of output features
FOUT. This final data set has the dimensions B × V × FOUT.

The GravNet layer involves several hyperparameters, including the number of initial features
FIN, the dimensions of the representation spaces S and FLR, and the number of nearest
neighbors k. The dimension of the output features FOUT is set to the dimension of the
initial features FIN.

One advantage of the GravNet layer over other GNNs is that the output features FOUT

contain information about the nodes and their spatial surroundings. This is achieved
through the use of two information layers, S and FLR, which provide a low-dimensional
representation of node connections. As a result, the GravNet layer offers computational
efficiency without sacrificing important spatial information.
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(a) The input features FIN are processed by a
fully connected layer. The spatial informa-
tion S and a set of features FLR are learned.

(b) Nodes are connected to their k nearest neigh-
bors in the spatial information space S on
the basis of the Euclidean distance d be-
tween neighboring nodes.

(c) The features f i
j of node nk are converted

to the features f̃ i
jk by a Gaussian potential

V (d) and then aggregated by summation to
f̃ i
k.

(d) The initial features FIN and the aggregated
learned features F̃LR are processed by a fully
connected layer to the output features FOUT.

Figure 3.1.: Pictorial representation of the data processing in the GravNet layer. The plots
display the learning of the spatial and feature space (a), the connection of
nodes (b), the message passing (c), and the concatenation to one output (d)
for one node. The process is done simultaneously for all nodes in one graph.
The figures are adapted from [3].
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3.3. GCN Layer
This section is based on [4, 19]. The goal of a GCN is to learn representations of nodes
that capture both their local information (i.e., features of the node itself) and their global
information (i.e., features derived from neighboring nodes). Unlike convolutional neural
networks (CNNs), GCNs need to adapt the convolution operation to accommodate the
non-grid-like nature of graphs. GCNs are commonly used for semi-supervised learning tasks,
where graph-based regularization helps propagate information of the input features across
the graph.

Graph-based regularization smooths label information over the graph. In comparison to
the GravNet layer, the GCN layer does not build the graph but gets it as an input feature.
The layer-wise propagation in a GCN is performed as follows:

H(l+1) = σ
(
D̃−1/2ÃD̃−1/2H(l)W (l)) , (3.2)

where H(l) represents the activation matrix in the lth layer, with H(0) = X. X ∈ RN×C

denotes the signal, where C represents the dimension of the node feature vector. Ã = A+IN
denotes the adjacency matrix of the undirected graph G, and IN is the identity matrix.
Adjacency matrices are able to represent the existence of edges that connect the node pairs
through the value in the matrices. Ã is a N ×N matrix, where N is the total number of
nodes in the graph and Aij is the edge weight of the edge connection between node i and j.
D̃ii =

∑
j Ãij and W (l) are layer specific trainable weight matrices and σ(·) is a non-linear

activation function.

The GCN layer is derived from stacking multiple convolutional layers, which can be expressed
as:

Z = σ
(
D̃−1/2ÃD̃−1/2XΘ

)
, (3.3)

where Z ∈ RN×F represents the convolved matrix, and Θ ∈ RC×F denotes the matrix of
filter parameters. Here, F represents the number of feature maps. A visual representation
of a multi-layer GCN is shown in figure 3.2.

Figure 3.2.: Schematic representation of a multi-layer graph convolutional network. The
input signals Xi in C input channels are transformed by the semi-supervised
learning algorithm to F feature maps in the output layer. Graph edges are
visualized as black lines and the labels are denoted by Yi. The graph structure
is shared over all layers. The figure is taken from [4].



4. Event Generation and Selection

All information in this chapter is taken from [20]. The event generation and selection were
done for the master thesis [1] where more detailed information can be found. Therefore,
only a short summary of the event generation and selection is given in this chapter.

In this thesis, the reconstruction algorithms rely on simulated events. The simulation process
involves generating events that accurately represent the interactions between photons and
the different detector components as explained in section 2.2.1, along with the specific
response of the detector using the GEANT4 software. Simulated MC data offers the advantage
of providing knowledge about the true information of the events. This truth information is
crucial for training the clustering algorithms used in this study.

In this thesis, the focus is on reconstructing single photon events. The photons used for
training and testing the algorithms are simulated with energies ranging from 0.1GeV to
5GeV. The energy and direction of the photons are drawn randomly from independent
uniform distributions, with the photon direction specified by angles 17◦ < θ < 150◦ and
0◦ < ϕ < 360◦. The generation vertex is fixed at x = 0, y = 0, and z = 0.

In addition to simulating the signal from single photons, the expected beam background
(see section 2.2.3) also needs to be simulated. The simulated LBB has an instantaneous
luminosity of LLBB = 1.06 · 1034 cm−2 · s−1, which corresponds to the conditions in 2021.
The simulated HBB has an instantaneous luminosity of LHBB = 8 · 1035 cm−2 · s−1. The
HBB luminosity that is used for this thesis is higher than described in section 2.2.3. This
higher luminosity is chosen to create a more challenging simulation scenario [21], as higher
beam background levels make it more difficult for ML algorithms to distinguish the signal
from the background.

The single or also called isolated photon events are simulated and then selected by the
following criteria:

• Any crystal must have the reconstructed energy Erec > 1MeV to be considered for
the following steps.

• The MC particle is a primary photon and the only particle in the event. Consequently,
the photon is the only particle that deposits energy.

• The LM crystal must have a reconstructed energy of at least 10MeV.

• The region of interest (ROI) consists of a 9 × 9 array of crystals around the LM.
Therefore the array is defined by the 80 nearest neighbors of the LM.

17



18 4. Event Generation and Selection

• The LM is the only LM in the ROI.

• All energy depositions of the photon are within the ROI.

• The matched truth photon must be responsible for at least 20% of the reconstructed
energy in the LM crystal.

• The photon is the only particle that deposits energy in the ROI.

For each event, the truth energy deposition per photon, the reconstructed crystal energy
Ecrystal

rec , the crystal time tcrystalrec , the crystal PSD information (see section 2.2.1), and the
LM positions in the ROI are simulated and recorded. The ROI, which represents a localized
coordinate area centered around the LM crystal, is used as input for the GNN clustering
algorithms.

Figure 4.1 displays an example of a simulated single photon event in the full detector with
LBB and figure 4.1 an example of a simulated single photon event with HBB.
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Figure 4.1.: Representation of a typical low beam background event. The crystals in the
region of interest are displayed. ϕ and θ are the detector coordinates. The size
of the circles for the reconstructed energy is scaled by

√
Erec in all plots to

improve the visibility of low-energy crystals. The figures are adapted from [1].
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Figure 4.2.: Representation of a typical high beam background event. The crystals in the
region of interest are displayed. ϕ and θ are the detector coordinates. The size
of the circles for the reconstructed energy is scaled by

√
Erec in all plots to

improve the visibility of low-energy crystals. The figures are adapted from [1].



5. Training and Implementation

This section focuses on the training and implementation of the GNN algorithms. The
training and implementation of the GravNet algorithm were done in [1] and therefore are
only summarized, while the training and implementation of the GCN with the GCN layer
is done as part of this thesis and therefore described in detail.

Throughout the subsequent sections of this chapter, the term "GNN algorithms" refers
to both the GravNet algorithm, comprising the GravNet layer, and the GCN algorithm,
utilizing the GCN layer, as discussed in section 3.2 and section 3.3, respectively.

The graph representation with its node and edge input features is described in section 5.1.
These graphs serve as an input for the GNN models, whose architecture is explained in
section 5.2. Subsequently, the implementation of the graph representations and the full
training process is described in section 5.3.

5.1. Representation of Events by Graphs

Both the GravNet and GCN algorithms operate on graphs as their input. These graphs are
constructed using the event information discussed in chapter 4. Additionally, the location
of the ROI within the ECL is considered, and only the 9× 9 crystals within the ROI are
included in the graph representation. Each event corresponds to a single graph, where each
crystal within the ROI is represented as a node. The details of the node features can be
found in section 5.1.1.

While the GravNet algorithm dynamically builds the edges during training within the
GravNet layer (see section 3.2), the edges for the graphs used as input in the GCN
algorithm are constructed statically. The process of edge building for the GCN algorithm is
described in section 5.1.2.

One advantage of GNNs, in contrast to other neural network architectures like CNNs, is
their ability to handle varying input sizes. As a result, only a subset of the 81 crystals
in the ROI, specifically those with reconstructed energy greater than 1MeV to filter out
noise-related energy depositions, are included in the graph representation. Consequently, the
size of the graphs varies from event to event, as different crystals are eliminated, resulting
in a different number of nodes in each graph. On average, approximately 20 crystals are
used as graph nodes, for LBB conditions and around 45 for HBB events.
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5.1.1. Node Input Features

Each node in the graph represents a crystal within the ROI that has sufficiently high
reconstructed energy. These nodes possess features containing information about each
crystal. Prior to being used in training, the node input features undergo pre-processing to
ensure their suitability and equal importance within the model. This is achieved by bringing
features outside of [0,1] within this range by normalizing them which was conducted as part
of [1] and is summarized here.

The available node input features include the reconstructed energy Erec, the reconstructed
time trec, and the PSD information (HI, fit type, and χ2) as described in section 2.2.1.

Since the reconstructed energy Erec per crystal in GeV ranges naturally from 0GeV to
approximately 1GeV and only a few outliers to the desired range are expected which are
considered within tolerance, no pre-processing is needed.

The reconstructed time trec per crystal in µs ranges from −1 µs to 1 µs. Since the magnitude
of the values is in the desired range and no issue during training and evaluation occurs, the
reconstructed time is not pre-processed.

The PSD information consists of three features. The HI is capped at [-1,1] where HI> 0
indicates a hadronic shower and HI≤ 0 indicates a fully electromagnetic shower. Due to
the magnitude of the HI, no pre-processing is needed. The fit type is given by four distinct
values {-1,0,1,2}, indicating the fitted template or failure of the fit. The values are mapped
to {0,1/3,2/3,1}. The corresponding χ2 is divided by 200 and capped at 1. The range [0,1]
then contains 90% of the χ2 distribution.

Other possible node input features, describing the crystal properties, include the crystal
mass m, crystal coordinates, and the LM indicator.

The crystal mass m, ranging from 4.03 kg to 5.94 kg, is globally normalized using min-max
normalization to the range [0,1] with the scikit-learn package [22].

To locate each crystal unambiguously, the two global coordinates θ and ϕ are sufficient.
Global coordinates have the advantage over Cartesian coordinates by also representing
the cylindrical form of the ECL. Both θ and ϕ naturally range from 0 to 2π. A min-max
normalization is applied to θ resulting in the desired range [0,1]. For ϕ, the normalization is
performed on the features ϕsin = sinϕ and ϕcos = cosϕ to include the edges of the interval.

Local coordinates θ′ and ϕ′ are useful as the crystal representing the LM is defined as the
origin of the ROI (see chapter 4). Additionally, the local coordinates help the network so
it does not have to learn the continuity in ϕ. θ′ and ϕ′ represent the respective angular
separations in radian to the origin. Since the coordinates are local, the normalization to
the range [0,1] is done per event for the ROI.

Lastly, the LM indicator serves as a node input feature, taking the value 1 if the crystal is
the LM within the ROI and 0 otherwise.

5.1.2. Edge Input Features

This section focuses on the edge input features used in the graphs for the GCN algorithm,
as the GravNet algorithm dynamically builds and learns edge features in the GravNet layer
(see section 3.2).
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In this work, only undirected edges are used to connect two nodes in the graph. The edge
weights are provided as input to the GCN layer and represent the inverse of the Euclidean
distance

1

dij
=

(
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2

)−1/2

, (5.1)

between the connected nodes of the respective crystals i and j. The distance dij is used as
the edge feature for the majority of this thesis. Additionally, the algorithm is examined
with the edge weight computed from the Euclidean distance of Cartesian coordinates xi, yi,
zi, and the reconstructed time trec (see section 7.3.2)

1

d′ij
=

(
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 + (treci − trecj )2m2 · µs−2

)−1/2

. (5.2)

Since the edge weight is the only feature used for the edges, no pre-processing or normaliza-
tion is performed on the weights.

The implementation of the node, as well as the edge input features, is described in sec-
tion 5.3.1.

5.2. Architecture

The GCN and GravNet algorithms share a similar architecture. To achieve deep learning
the architectures are extended and the layers are included in so-called blocks. Each
block contains three fully connected layers, the GCN or the GravNet layer, and a batch
normalization layer. Multiple blocks are stacked to create a deep learning architecture.
Figure 5.1 illustrates the architecture with four stacked blocks.

Output
Layers

Output
Features

Input
Features

Global
Exchange

Dense
Layers

GCN

GCNConv

Layer
Batch
Norm

GravNet/

Figure 5.1.: A schematic view of the graph neural network architectures. In the beginning,
a global exchange is performed. This architecture example consists of four
stacked blocks. A block is visualized in black square brackets and each block
includes three dense layers, the graph neural network layer (GravNet or GCN),
and a batch norm layer. Three final fully collected layers collect all blocks’
output and transform the information into the final output. The figure is
adapted from [20].
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At the initial step and before every block, a global exchange operation is performed. This
operation gathers global information from all nodes and extends the input features by
averaging each feature per graph. The output of each block is passed as an input to
the subsequent block and additionally, the block output is input for the final three fully
connected layers. These final layers concatenate the outputs from each block and reduce
the dimension to the desired number of output classes. For each cluster and background,
one output class is required. In the case of the single photon energy reconstruction, there
are two output classes: one for the photon cluster and one for the background. The input
dimension for the GCN algorithm is given by the number of node input features.

The activation functions used in the GCN and GravNet architectures differ. The GravNet
algorithm employs exponential linear units (ELUs) [23] for the first two fully connected
layers and a hyperbolic tangent (tanh) activation for the last fully connected layer of each
block. On the other hand, the GCN algorithm uses rectified linear units (ReLUs) [24] for
all three fully connected layers. A softmax function is applied to the final output of both
GNN architectures to ensure that the output satisfies equation (3.1). This guarantees the
interpretation of the output as fractions of the reconstructed energy.

Hyperparameters of the architecture include the number of stacked blocks, the dimensions
of the fully connected layers, and the batch normalization momenta. For the GravNet layer,
a hyperparameter optimization was performed using Optuna [25]. The hyperparameters of
the GCN model are discussed in section 5.3.3.

5.3. Implementation

The GNN algorithms are implemented and trained using the ML library PyTorch [26].
The GravNet and GCN layer are implemented using the GravNetConv and GCNConv layers
from PyTorch Geometric [27]. The graph-building process is done using the package
NetworkX [5].

This work focuses on single photon clusters. Each model is trained and evaluated on events
with LBB and on events with HBB. Because the training and evaluation as part of this
thesis are done for the GCN model, the focus lies on the implementation of this particular
model. The performance of the GCN model is compared later to that of the GravNet model
and the basf2 algorithm.

5.3.1. Input Features

The input features, described in section 5.1.1 and section 5.1.2, are implemented crystal-
wise. Each node represents a crystal and includes up to ten node input features with the
corresponding pre-processed values of the reconstructed energy Erec, the reconstructed time
trec, the HI, the crystal mass m, the three global coordinates θ, ϕsin, and ϕcos, and the two
local coordinates θ′ and ϕ′, and the LM indicator.
The impact of individual node input features is studied in section 7.2.

To connect the nodes to a graph edges are used. The number of edges and their edge
weights are studied in section 7.3. One representation of the graph involves connecting each
node in the ROI with all other nodes through edges. The edge weight is determined by the
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(a) Single photon event graph where each node
is connected by an edge to all other nodes.

(b) Single photon event graph where each node
is connected by an edge to its k = 4 nearest
neighbors.

Figure 5.2.: Pictorial representations of a single photon event graph. All nodes are shown
in blue and labeled with their respective crystal id. The local maximum crystal
is colored in red. The edges are visualized by gray lines and the edge weight by
the thickness of the line.

inverse of the Euclidean distance based on Cartesian coordinates. Figure 5.2a provides a
visualization of this graph structure. This way each node has direct access to information
of every other node in the graph. Alternatively, in figure 5.2b, the number of edges in the
example event graph is reduced to the k nearest neighbors of each node. The k nearest
neighbors of each node are determined by the Euclidean distance in the ECL and then an
edge is drawn with the inverse distance as the edge weight.

5.3.2. Loss Function and Optimizer

The GNN models are supervised ML algorithms with learnable model parameters. This
means that the parameters are adjusted by an optimizer to minimize a loss function.

A comparison of the predicted fractions p
(u)
i from the model and the true fraction t

(u)
i of

the MC training’s data set defines the loss. The training of the GCN model deploys the
mean squared error (MSE) loss function

MSE =
1

Nu

1

N

∑
u,i

(
p
(u)
i − t

(u)
i

)2
, (5.3)

where the squared difference between the prediction and truth of each crystal i is summed
over all output classes u and all crystals i and divided by the number of output classes Nu

and the number of nodes N in the graph.
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The optimizer Adam [28] optimizes the weights to reach the loss function’s minimum based
on gradient descent. Furthermore, the first and second moments of the gradients are used
to adjust the learning rate adaptively. At the beginning of each training, the learning rate
is set to 0.01 and decays by a factor of 0.25 if the validation loss does not decrease for five
epochs.

5.3.3. Training

The GCN model is either trained on the full ECL, including the barrel and both endcaps
or only the barrel region. Depending on the ECL region used for the training the number
of events varies.

When training on the full ECL, a total of two million events were generated and selected
according to the process described in chapter 4. Out of these events, 400 000 events are
chosen as the validation data set, while the remaining 1.6 million events are used for training.
If the training is performed on the barrel region alone, 20 000 events are used, with 4 000
events used for validation and the remaining 16 000 events used for training. The training
is performed with mini-batches of the size 1 024. This applies to both beam background
types.

Every training is evaluated with events taking place in the barrel region. For the case of
training on the full detector, 200 000 barrel events are used for testing. If the training is
done on the barrel region, a separate data set of 20 000 barrel events is used for testing the
GCN model. The details of the training and testing regions for each toy study can be found
in chapter 7.

The hyperparameters of the GCN architecture include the dimensions of the fully connected
layers, the dimensions of the GCN layer, the number of blocks, and the batch normalization
momentum. The batch normalization momentum is set to 0.01. After evaluating the training
on 20 000 barrel LBB events for different hyperparameter configurations, the number of
blocks is set to 4, and the in- and output dimensions of the fully connected and GCN layers
are set to 9.

This hyperparameter configuration leads to 2 635 learnable parameters for the GCN model
if the input dimension is ten and therefore all node input features are included in the graph.
In comparison to the GravNet algorithm, the total number of model parameters for the
GCN model is a sixth of the number for the GravNet architecture with 15 799 learnable
parameters [1].

The training process stops and the last configuration is saved when the validation loss does
not decrease for 15 epochs. Figure 5.3 provides two examples showing the training and
validation loss curves.

The training duration depends on the number of events used. Training on 2 million events
takes around 7 hours while the training on 20 000 events typically takes approximately 5 to
10 minutes. These duration are based on training using a single NVIDIA Titan X 12GB
GPU. During training, the GPU memory is loaded with 6881MiB.



5.3. Implementation 27

0 10 20 30 40 50 60 70 80 90
Epoch

10 1

4 × 10 2

6 × 10 2

2 × 10 1Lo
ss Training loss

Validation loss

(a) Training and validation loss of the training of 2 million full detector
low beam background events.
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(b) Training and validation loss of the training of 20 000 full low beam
background events.

Figure 5.3.: Loss and validation loss during training in dependency of the training epoch.
Plot (a) shows the loss of the training of 2 million full detector low beam
background events. The plot (b) shows the loss of the training of 20 000 barrel
low beam background events.





6. Metrics

This chapter presents the metrics used to assess the performance of the GNN models.
First, the fundamental reconstruction quantities are introduced in section 6.1. Following
that, the performance of the models is evaluated in section 6.2. The evaluation involves
determining the relative reconstruction errors by comparing the predicted data generated
by the algorithms with the true data obtained from the MC information. Additionally, the
energy resolution of the GCN model is analyzed and compared to the performance of the
GravNet and basf2 models. This analysis provides insights into the accuracy and precision
of the energy reconstruction achieved by each model.

6.1. Fundamental Reconstruction Quantities
The trained algorithms have as an output the clustering weights w(u)

i . The output classes u
contain the photon signal and the background. Here, the weights describe the predicted frac-
tions of the reconstructed energy per crystal i, i.e. w

(u)
i = p

(u)
i . Furthermore, equation (3.1)

must hold true, which means for the predicted fraction of the reconstructed background
energy

pbackgroundi =
(
1− pphotoni

)
. (6.1)

Because the goal of this thesis is to evaluate the performance of the different GNN algorithms
regarding the accuracy of the single photon energy reconstruction as described in section 6.2,
from now on only the single photon cluster is described and therefore the notation is
reduced to pphotoni = pi. Since the fractions alone have no physical meaning, the predicted
reconstructed energy per crystal i needs to be determined by combining the predicted
fractions and the reconstructed energy Erec

i . This leads to the fundamental reconstruction
quantities per crystal:

Edep
i = Erec

i ti and Epred
i = Erec

i pi . (6.2)

Edep
i corresponds to the true amount of energy the MC photon deposited in crystal i, while

the predicted energy per crystal i is denoted as Epred
i . The total true (deposited) energy

Edep and the total predicted energy Epred are defined by summation over the energies of all
crystals i:

Edep =
∑
i

Edep
i and Epred =

∑
i

Epred
i . (6.3)

Event property cross-checks for the GravNet algorithm can be seen in the thesis [1]. As
part of this thesis, only the performance evaluation is conducted for the GCN algorithm.
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6.2. Performance Evaluation
This work aims to assess the accuracy of photon energy reconstruction. To evaluate the
GNN algorithms, the comparison of just the output weights and the MC information is not
sufficient for this purpose. Instead, entire events are analyzed representing the performance
of the algorithms in a more intuitive way. The improvement in the reconstruction of
the photon energy is evaluated using the reconstruction errors discussed in section 6.2.1.
Additionally, the energy resolution is determined based on the reconstruction errors, as
described in section 6.2.2.

6.2.1. Reconstruction Errors

The primary objects for performance evaluation are the relative reconstruction errors, also
called reconstruction errors. In this thesis, two types of reconstruction errors are studied.
Either the reconstruction error on the deposited energy Edep or the reconstruction error on
the generated energy Egen. While the deposited energy does not factor in any detector effects
such as leakage, the generated energy includes these effects. The performance evaluation is
conducted on all events of a test data set. The distribution of the reconstruction errors
of all the tested events shows a peak. This peak is characterized by its full width half
maximum (FWHM) and tails that are described in detail in section 6.2.2.

The reconstruction error on the deposited energy is determined by

ηdep =
Epred − Edep

Edep
, (6.4)

with the deposited energy Edep and the predicted photon energy Epred as defined in
equation (6.3).

ηdep gives a direct evaluation of the clustering algorithm because it does not take detector
effects such as leakage into account. The reconstruction errors are not absolute values,
they rather distinguish whether the algorithm overestimates or underestimates the photon
energy.

The reconstruction error on the generated energy is determined by

ηgen =
Ecor

pred − Egen

Egen
, (6.5)

with the generated photon energy Egen = Eγ and the leakage-corrected, predicted energy

Ecor
pred =

{
clusterE basf2

Epred GravNet,GCN .
(6.6)

The leakage-corrected total photon energy clusterE of the basf2 algorithm (see section 2.3)
is used for comparison. The GNN algorithms are trained on the deposited energies as truth.
Therefore, the algorithms do not factor in any detector effects and Ecor

pred = Epred as defined
in equation (6.3).

ηgen takes into account detector effects and determines how much of the improvements in
the underlying clustering carry over to actual physics reconstruction. With the perfect
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clustering algorithm, the error on the deposited energy would technically be zero. In
contrast, even with perfect clustering, the reconstruction error on the generated energy
is never zero due to the limitations of the hardware. Consequently, ηgen is on average
significantly larger than ηdep. This effect is shown in the form of a broader, spread-out peak
when comparing the complete distributions of ηgen and ηdep in figure 6.1. The difference
between the two distributions is particularly noticeable in the bigger left tail of the ηgen
distribution.

6.2.2. Energy Resolution

The previous section 6.2.1 presents the distributions of the relative reconstruction errors
ηdep and ηgen. Their characteristics are quantified by the FWHM. Most of the evaluated
events are concentrated in the peak of these distributions. The FWHM measures the width
of the peak and serves as a single metric to evaluate the performance of an algorithm on a
test data set. It is also known as the resolution. A wider, more spread-out peak results in a
larger FWHM, indicating a worse resolution or poorer performance. Apart from the peak
itself, the tails of the distributions are significant for identifying outliers.

FWHM

The FWHM of a given distribution of relative reconstruction errors f(η) is defined as

FWHM = |η1 − η2| , (6.7)

with η1 and η2 being related to the maximum of the distribution f(ηmax) by

f(η1) = f(η2) =
1

2
f(ηmax) . (6.8)

To determine the FWHM a binned χ2-fit is performed with the zfit package [29]. Before
the fit is performed the fit range

rfit =
[
rfitL , rfitR

]
, (6.9)

is estimated with rfitL/R being the left and right limits of the range.

The distribution of the reconstruction errors is fitted with a double-sided crystal ball
function (DCB) which is defined by

f(x;N,µ, σ, αL, nL, αR, nR) = N ·


AL · (BL − x−µ

σ )−nL , x−µ
σ < −αL

exp

(
− (x−µ)

2

2σ
2

)
, −αL ≤ x−µ

σ ≤ αR

AR · (BR − x−µ
σ )−nR , x−µ

σ > αR

(6.10)

with

AL/R =

(
nL/R

|αL/R|

)nL/R

· exp
(
−
|αL/R|

2

2

)
, BL/R =

nL/R

|αL/R|
− |αL/R| . (6.11)

The height of the DCB is given by N . The Gaussian distribution with the mean µ and
the standard deviation σ characterizes the peak while the transition factors αL/R and the
exponent nL/R describe the tails.



32 6. Metrics

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
Epred Edep

Edep

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
Nu

m
be

r o
f E

ve
nt

s /
 (0

.0
02

) ×104

GCN

200000 simulated events
E [0.1, 1.5] GeV

Low Beam Background
Barrel
k=80

Belle II (own work)

(a) Relative reconstruction error on the deposited energy.
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(b) Relative reconstruction error on the generated energy.

Figure 6.1.: Distribution of the relative reconstruction errors f(ηdep/gen) of an example
test data set of the graph convolutional network model trained on low beam
background events. The first bin contains all underflow entries and the last bin
contains all overflow entries. The results are from the toy study in section 7.4.
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After the fit is performed, the FWHM is determined. Since the distribution and also the
DCB is asymmetric, the left and right FWHML/R are determined separately. FWHML/R

are obtained depending on the transition factors αL/R and therefore depend if FWHML/R

are in the Gaussian part or the exponential tails:

FWHML/R =


√
2 log 2 · σ , αL/R >

√
log 4∣∣∣∣µ+

(
σ

αL/R

(
|αL/R|

2 + SL/R − nL/R − µ|αL/R|
σ

))∣∣∣∣ , αL/R ≤
√
log 4

(6.12)

with

SL/R =

(
1

2
n
−nL/R

L/R · exp
(
α2
L/R/2

))−1/nL/R

. (6.13)

The FWHM is then determined by

FWHM = FWHML + FWHMR . (6.14)

The uncertainty of the FWHM δFWHM are determined from the correlated uncertainties of
the fit parameters using the uncertainties package [30]. As a final step, the FWHM and
δFWHM get corrected

FWHMcor ± δcorFWHM = (1− µ) · (FWHM± δFWHM) . (6.15)

This guarantees a fair comparison between different types of algorithms. It is equivalent
to a shift of the peak and then centering the underlying distribution around zero. In the
following sections FWHMcor is denoted by FWHMdep/gen depending on the type of the
relative reconstruction error.

The energy resolution is defined by the standard deviation of a Gaussian distribution

σdep/gen = FWHMdep/gen/2.355 . (6.16)

Tail lengths

The FWHM characterizes the peak of the distribution of the relative reconstruction errors.
It is necessary to additionally analyze the outliers. These outliers are characterized by the
tail lengths TL/R. Due to the potentially significant asymmetry of the tails, the lengths
of the left tail TL and the right tail TR are studied separately. To determine TL/R the
distribution is divided in half at the position of the peak µ. Then the total number of events
on the respective side of the distribution are determined. The number of events, starting at
µ, are counted until reaching 95% of the total number of events and the absolute distance
between µ and the reconstruction error of the last event within the 95% range determines
the tail length TL/R.

To account for any bias introduced by the fitting process, the procedure is repeated twice,
splitting at µ+ δµ and µ− δµ, respectively, to determine the uncertainties δ

L/R
T on the tail

lengths. These uncertainties are corrected in a similar way to the FWHM as described in
equation (6.15), taking into account potential biases induced by the fitting process:

T cor
L/R ± δ

L/R
T,cor = (1− µ) ·

(
TL/R ± δ

L/R
T

)
. (6.17)
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Figure 6.2.: Example of a double-sided crystal ball function fit for the distribution of the
relative reconstruction errors on the deposited energy f(ηdep) of an example
test data set of the GCN model trained on low beam background events.
The fit range, the fit parameters, the tails, and the full width half maximum
(FWHM) are shown in the figure. The uncertainties on the tail lengths, given
by O(δ

L/R
T ) ≈ 0.1%, are extremely small and hence not shown in the limited

space of the plot. The first bin contains all underflow entries and the last bin
contains all overflow entries. The results are from the toy study in section 7.4.

In the following sections T cor
L/R is replaced by TL/R for the sake of readability denoting the

corrected tail lengths.

In figure 6.2, the distribution of ηdep is presented for an example data set. Additionally,
the figure includes the quantities rfit, the fit parameters, and the resulting FWHM and tail
lengths TL/R.

Energy dependence

Figure 6.3 shows the energy resolution of several different photon energies. The energy
dependence of the resolution is determined by analyzing the resolutions of photons that are
generated at different fixed energies. If the energy resolutions are plotted in dependency of
the generated photon energy Eγ they follow the function

σdep/gen (Eγ) =
a√

Eγ(GeV)
− b , (6.18)

with a and b being constants. The full energy dependence shows the performance spectrum
of the algorithms and is studied in section 7.4.
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Figure 6.3.: Example of the energy resolution dependence σgen(Eγ) of the relative recon-
struction errors on the deposited energy f(ηdep) of example test data sets of
the GCN model trained on low beam background events. The results are from
the toy study in section 7.4.





7. Toy Studies for Single Photon Clusters

The goal of this section is to evaluate and understand the GCN algorithm’s performance
based on different graph input features. This evaluation is crucial since any physics
application needs a good understanding of the model’s performance.

The study focuses on analyzing single photon clusters using different graph input features
in conjunction with LBB. The optimal configuration of the graph input feature is then
trained on HBB events as well. While the training primarily utilizes full detector events,
the evaluation is always done on a test data set consisting of events from the barrel region.

In the first section 7.1, a brief motivation for the toy studies is presented, and the settings
for each of them are explained. Subsequently, the performance of the GCN algorithm
is evaluated by examining various graph input features. First, the node input features
are investigated in section 7.2. Then, the edge input features are explored by adjusting
the number of edges in the graph in section 7.3.1, followed by evaluating the model’s
performance for different edge weights in section 7.3.2. Each section provides an explanation
of the respective graph input configurations and assesses the performance of the GCN model.
Finally, in section 7.4, the energy dependence of the GCN model is analyzed for both LBB
and HBB, and compared to the performance of the GravNet and basf2 algorithms.

7.1. Motivation and general Settings

Single photon clusters have a very distinctive signature and are numerous in the ECL. Many
of these photons originate from the decays of B+B− and B0B̄0 particles at Belle II. These
photons typically have energies within the range of Eγ ∈ [0.1, 1.5]GeV. Hence, this energy
interval is selected for the generation of the training events.

Photons with energy below this interval are considered too challenging in this study.
Furthermore, they have less impact in physics analyses since they are mostly due to
radiation processes and are therefore not used for training and testing in this thesis.
Technically the photon energy range could be extended to higher energies which could be
part of further studies. Nonetheless, the GCN model is able to generalize to energies outside
the training interval, as demonstrated in section 7.4.

The angular distribution of ϕ is defined as ϕ ∈ [0.0◦, 360.0◦], while the range of θ depends
on the detector region. For the full detector, θ lies within the interval θ ∈ [17.0◦, 150.0◦],
whereas for the barrel region, it is confined to θ ∈ [37.2◦, 123.7◦]. The event generation
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process involves creating photons with uniform distributions in space and momentum while
staying within the ranges of the ECL regions. Afterwards, the events are overlayed with
either LBB or HBB files to model the beam background correctly. The ROI must then
meet the requirements for one-cluster events, as outlined in chapter 4. Training and testing
events are generated independently but share the same settings and criteria. This approach
ensures comparability while also preventing the model from being evaluated on the same
events it was trained on.

7.2. Node Input Features

In this section, different node input features of the graphs for the GCN model are discussed.
Possible node input features as described in section 5.1.1 are combined and the performance
of the GCN algorithm is evaluated.

7.2.1. Settings

The available node input features for the graph, as discussed in section 5.1.1, include the
reconstructed energy Erec, the reconstructed time trec, the hadron intensity HI from the
PSD information, the global crystal coordinates θ, ϕsin, ϕcos, the local coordinates θ′, ϕ′,
the crystal mass m, and the LM indicator.

The basic node input features used for every training are the reconstructed energy Erec,
the global crystal coordinates θ, ϕsin, ϕcos, and the crystal mass m. Different combinations
of the remaining input features, such as the reconstructed time trec, the hadron intensity
HI, the local coordinates θ′, ϕ′, and the LM indicator, are employed to train, test, and
evaluate the performance of the GCN model. To enhance readability, the excluded node
input features are specified.

In the graph, each node is connected to every other node through an edge. The weight of
the edge between two nodes is determined by the inverse Euclidean distance, as defined in
equation (5.1).

Each training data set, with different combinations of node input features, consists of a total
of two million full detector events with LBB. To assess the GCN algorithm’s performance,
it is tested on 200 000 barrel events with LBB.

7.2.2. Performance Evaluation

Figure 7.1 shows the energy resolution on the deposited energy σdep as well as the corre-
sponding tail lengths Tdep for a test set of 200 000 single photon events with the energy
Eγ ∈ [0.1, 1.5]GeV. This analysis is valuable as it allows to verify the success of the training
process and evaluate the clustering performance without considering leakage effects. It is
shown in figure 7.1a that the absence of the reconstructed time trec in the node input features
leads to poorer energy resolution. All other node input features have a negligible impact on
the energy resolution, as they consistently yield a resolution of approximately σdep ≈ 0.0082.
This phenomenon is also observed in the tail lengths Tdep shown in figure 7.1b. When
the reconstructed time is omitted from the node input features, the reconstruction error
distribution becomes more dispersed, resulting in larger left and right tail lengths.
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To assess the actual model performance and physical reconstruction accuracy, the energy res-
olution of the generated energy σgen is examined. However, displaying the energy resolution
σgen for the entire test set of 200 000 single photon events with energy Eγ ∈ [0.1, 1.5]GeV
is challenging because the generated relative reconstruction error ηgen distribution is not
conforming to a DCB, leading to inaccurate fit results. An example of such a distribution is
depicted in figure A.1. Consequently, the energy resolution σgen is showcased for a test set
of 20 000 single photon events with the fixed energy Eγ = 0.3GeV in figure 7.2a, along with
the corresponding tail lengths in figure 7.2b. Again, the energy resolution of the generated
energy σgen is worse, and the left and right tail lengths TL/R,gen are larger when the node
input features do not include the reconstructed time trec.

7.2.3. Overview and Conclusions

The reconstructed time trec, along with the basic node input features including the recon-
structed energy Erec, the global crystal coordinates θ, ϕsin, ϕcos, and the crystal mass m,
are the only relevant node input features while working with single photon clusters. This
observation aligns with expectations since beam background crystals typically have recon-
structed times closer to trec = ±1 µs, while crystals with energy deposition from photons
generally have reconstructed times around trec ≈ 0 µs. The GCN model can effectively learn
this correlation and performs better when provided with time information. Other node
input features such as the HI, the LM indicator, and the local coordinates have almost no
impact on the model’s performance. This outcome is anticipated since the HI is consistently
around 1 for all crystals in single photon events comprising purely electromagnetic showers.
It is expected that the HI would have an impact in events containing hadronic particles,
thus it is retained in the node input features for future studies. The LM indicator and local
coordinates do not significantly affect the algorithm’s performance, as the LM information
can be learned from the reconstructed energy Erec and from the ROI since the event
is located by definition around the LM. In addition to the global coordinates, the local
coordinates do not contribute relevant information.

In conclusion, only the reconstructed time trec, in addition to the basic node input features,
is found to be relevant. Considering that the time and computational cost for training and
testing the GCN model are similar across all node input feature combinations and further
studies might benefit from these additional input features, all possible node input features
are used in other toy studies for consistency.
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(a) Energy resolution of different node input feature combinations.
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(b) Tail lengths of different node input feature combinations.

Figure 7.1.: Energy resolution FWHM/2.355 (a) and tail lengths T (b) of the deposited
energy for different node input feature combinations of the reconstructed time
trec, the hadron intensity HI, the local maximum indicator LM and the local
coordinates θ′, ϕ′. The GCN model is trained on two million full detector
low beam background events with the photon energies Eγ ∈ [0.1, 1.5]GeV and
tested on 200 000 barrel low beam background events with Eγ ∈ [0.1, 1.5]GeV.
Without the reconstructed time the energy resolution (a) is worse and both left
and right tails (b) are longer compared to other node input feature combinations
that include the reconstructed time.
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(a) Energy resolution of different node input feature combinations.
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(b) Tail lengths of different node input feature combinations.

Figure 7.2.: Energy resolution FWHM/2.355 (a) and tail lengths T (b) of the generated
energy for different node input feature combinations of the reconstructed time
trec, the hadron intensity HI, the local maximum indicator LM and the local
coordinates θ′, ϕ′. The GCN model is trained on two million full detector
low beam background events with the photon energies Eγ ∈ [0.1, 1.5]GeV
and tested on 20 000 barrel low beam background events with Eγ = 0.3GeV.
Without the reconstructed time the energy resolution (a) is worse and both left
and right tails (b) are longer compared to other node input feature combinations
that include the reconstructed time.
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7.3. Edge Input Features
In this section, different edge input features of the graphs for the GCN model are discussed.
These edge input features are adjusted either by modifying the number of edges in the
graph, as discussed in section 7.3.1, or by altering both the number of edges and the edge
weights, as examined in section 7.3.2 to evaluate the performance of the GCN algorithm.

7.3.1. Number of Edges in the Graph

7.3.1.1. Settings

In this toy study, all possible node input features (see section 5.1.1) are employed as inputs
for the graphs.

The number of edges in the graph is depending on the event and the number of edges each
node is connected to. Each node gets an edge connection to its k nearest neighboring nodes.
The distance between two nodes i and j is given by the Euclidean distance

di,j =

√
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 , (7.1)

with the Cartesian coordinates xi/j , yi/j , and zi/j of the corresponding crystals. The edge
weight is defined as the inverse of the Euclidean distance as described in equation (5.1).

Each training data set with a different number of edges consists of a total of two million
full detector events with LBB. The performance of the GCN algorithm is then evaluated on
a test set consisting of 200 000 barrel events with LBB.

7.3.1.2. Performance Evaluation

Figure 7.3 shows the energy resolution on the deposited energy σdep as well as the corre-
sponding tail lengths Tdep for a test set of 200 000 single photon events with the energy
Eγ ∈ [0.1, 1.5]GeV. Similar to the previous analysis, this assessment serves as a check to
verify the success of the training process and evaluate clustering performance without con-
sidering leakage effects, since the training is performed on the deposited energy. Figure 7.3a
demonstrates that the energy resolution remains consistent across different numbers of k
nearest neighbors. The training and testing for k ∈ {40, 50, 60, 70, 80} is performed twice.
The fluctuation of the training is by far bigger than the statistical error of the energy
resolution and the tail lengths. This is particularly evident in the resolution of the deposited
energy. In future work, it would be valuable to analyze the performance of the GCN model
through multiple independent training and testing processes. The tail lengths T , depicted
in figure 7.3b, further demonstrate the training-dependent fluctuations and indicate that
the number of edges does not significantly impact the model’s performance.

Again, it is important to examine the energy resolution and tail lengths of the relative
reconstruction errors for the generated energy ηgen to assess the GCN model’s performance
in photon energy reconstruction. Figure 7.4 displays both the energy resolution and tail
lengths of the reconstruction errors for the generated energy ηgen and the deposited energy
ηdep for a test set of 20 000 single photon events with the energy Eγ = 0.3GeV. The
resolution of the generated energy depending on different training fluctuates within the
statistical error range. Again, there is no significant influence observed from the number of
edges.
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7.3.1.3. Overview and Conclusions

The number of edges, determined by the number of k nearest neighbor connections between
nodes in the graph, does not significantly impact the performance of the GCN algorithm.
Surprisingly, even when each node is connected to all other nodes, the performance remains
comparable to having k = 10 nearest neighbors. This observation can be attributed to the
complex model architecture (see section 5.2), where information is gathered globally and
locally and passed through multiple layers, facilitating high information exchange between
nodes.

It is worth noting that the fluctuations observed during training are considerably larger
than the statistical error in the energy resolution on the deposited energy and tail lengths.
This aspect requires further investigation in future work.

Since the time and the computational cost for the training and testing of the GCN model is
similar for all numbers of k nearest neighbors, k = 80 is used in the other toy studies. This
implies that every node is connected to all other nodes in the graph. For actual real-time
applications on the trigger level, the number of nearest neighbors must be reduced which
could be studied in future work.
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Figure 7.3.: Energy resolution FWHM/2.355 (a) and tail lengths T (b) for different numbers
of edges in the graph. The number of edges is determined from the k nearest
neighbor edge connections in Euclidean distance between the crystal nodes.
The GCN model is trained on two million full detector events with low beam
background and the photon energy Eγ ∈ [0.1, 1.5]GeV and tested on 200 000
barrel events with low beam background and Eγ ∈ [0.1, 1.5]GeV. The number
of edges does not have a visible impact on the performance of the GCN
algorithm.
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Figure 7.4.: Energy resolution FWHM/2.355 (a) and tail lengths T (b) for different numbers
of edges in the graph. The number of edges is determined from the k nearest
neighbor edge connections in Euclidean distance between the crystal nodes.
The GCN model is trained on two million full detector events with low beam
background and the photon energy Eγ ∈ [0.1, 1.5]GeV and tested on 20 000
barrel events with low beam background and Eγ = 0.3GeV. The number of
edges does not have a visible impact on the performance of the GCN algorithm.
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7.3.2. Edge Weights in the Graph

7.3.2.1. Settings

In this toy study, all possible node input features (see section 5.1.1) are used as inputs for
the graphs.

Each node is connected to its k nearest neighboring nodes by an edge. Since the reconstructed
time trec is a necessary node input feature, the goal is to investigate whether including the
reconstructed time trec additionally in the edge input features improves the performance.
The distance between two nodes i and j is given by the Euclidean distance

d′i,j =

√
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 + (treci − trecj )2m2 · µs−2 , (7.2)

with the Cartesian coordinates xi/j , yi/j , zi/j , and the reconstructed time treci/j of the
respective crystals. As the reconstructed time in µs has a similar magnitude as the
Cartesian coordinates in m, the reconstructed time is added as a fourth dimension in
Euclidean space. The edge weight is defined as the inverse of the Euclidean distance as
described in equation (5.2).

The GCN algorithm is trained on a data set of 20 000 barrel events with LBB, and then
tested on a separate data set of 20 000 barrel events with LBB.

7.3.2.2. Performance Evaluation

Figure 7.5 displays the energy resolution on the deposited energy σdep and on the generated
energy σgen as well as the corresponding tail lengths Tdep/gen for a test set of 20 000 single
photon events with the energy Eγ ∈ [0.1, 1.5]GeV. Interestingly, when the reconstructed
time is included in the edge weight, the energy resolution on both deposited and generated
energy is worse for all given values of k. This observation is consistent in figure 7.6, which
presents the energy resolution on the deposited and generated energy, along with the
corresponding tail lengths, for a test set of 20 000 single photon events with the photon
energy Eγ = 0.3GeV. Furthermore, a dependency of the energy resolution on the number
of k nearest neighbors appears when the reconstructed time is included in the edge input
features. Especially for k = 12, the energy resolution is a lot worse and the tails are
significantly longer (see figure 7.6) in comparison to k ∈ {8, 10} with the reconstructed time
included in the edge weights.

7.3.2.3. Overview and Conclusions

Including the reconstructed time trec in the edges as a fourth dimension in the Cartesian
coordinates does not enhance the performance of the GCN model in comparison to the
edges only depending on the Cartesian crystal coordinates.

It is not intuitive that the performance for higher k gets worse since more nodes are
connected via edges where their corresponding crystals are further away from each other in
the ECL. Therefore, it is more likely that their major energy fraction belongs to different
types, such as photon signal or beam background. Because crystals with mostly beam
background energy tend to have a reconstructed time close to trec = ±1 µs and crystals with
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mostly energy of the photon have a reconstructed time around trec ≈ 0 µs, the reconstructed
time should help the algorithm to learn which nodes belong to crystals that are spatial
close in the ECL. A reason for the counter-intuitive results could be that the training is
very sensitive and therefore unstable. Consequently, the study should be repeated in future
studies with training on more events to detect if the result for k = 12 is an outlier.

In conclusion, the reconstructed time should not be included in the edge input features
as a fourth dimension in the Cartesian coordinates, as its incorporation leads to worse
performance of the GCN model compared to when the reconstructed time is excluded.
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(a) Energy resolution of different k nearest neighbor edge connections
with the reconstructed time trec in the edge input features.
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Figure 7.5.: Energy resolution FWHM/2.355 (a) and tail lengths T (b) of different k
nearest neighbors with the reconstructed time trec as an edge input feature as
a fourth dimension in the Cartesian coordinates. The GCN model is trained
on 20 000 barrel detector events with low beam background and the photon
energy Eγ ∈ [0.1, 1.5]GeV and tested on 20 000 barrel events with low beam
background and Eγ ∈ [0.1, 1.5]GeV. The performance of the GCN is worse if
the reconstructed time is included in the edge weights as a fourth dimension in
Euclidean distance.
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(a) Energy resolution of different k nearest neighbor edge connections
with the reconstructed time trec in the edge input features.
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Figure 7.6.: Energy resolution FWHM/2.355 (a) and tail lengths T (b) of different k
nearest neighbors with the reconstructed time trec as an edge input feature as
a fourth dimension in the Cartesian coordinates. The GCN model is trained
on 20 000 barrel detector events with low beam background and the photon
energy Eγ ∈ [0.1, 1.5]GeV and tested on 20 000 barrel events with low beam
background and Eγ = 0.3GeV. The performance of the GCN is worse if the
reconstructed time is included in the edge weights as a fourth dimension in
Euclidean distance and the model performance is dependent on the number of
edges.
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7.4. Energy dependence

This section focuses on analyzing the energy dependence of the GCN algorithm, considering
both training and testing on LBB and HBB events. Assessing the energy dependence is an
essential aspect of this study as it offers insights into how the algorithm performs across
various energy ranges. Furthermore, a comparison is made between the performance of
the GCN algorithm and that of the GravNet and basf2 algorithms. This comparative
analysis provides valuable information regarding the relative strengths and weaknesses of
the different algorithms.

7.4.1. Settings

In this toy study, all possible node input features (see section 5.1.1) are used as inputs for
the graph and each node is connected to every other node in the graph. The edge weight is
determined by equation (5.1).

The training of the GCN model is performed on two million full detector events with either
LBB or HBB with the photon energies ranging in Eγ ∈ [0.1, 1.5]GeV. Afterwards, the
trained models are tested on 20 000 barrel events with LBB or respectively HBB for each
fixed photon energy Eγ ranging from 0.1GeV to 1.5GeV in steps of 0.1GeV and from
1.5GeV to 2.5GeV in steps of 0.25GeV as well as the photon energies 3GeV, 4GeV, and
5GeV. The energy range extends beyond the photon energies used to train the GCN and
also the GravNet model, allowing for an evaluation of the model’s ability to generalize to
different photon energies.

7.4.2. Performance Evaluation

Figure 7.7 illustrates the energy resolution of the deposited energy σdep as well as the
corresponding left and right tail lengths TL/R,dep. Resolution results of the GravNet and
the basf2 models are only given for the photon energy Eγ = 0.3GeV. Notably, for a
photon energy of Eγ = 0.3GeV, the GNN algorithms outperform the basf2 model by 27%.
Comparing the GCN model to the GravNet model, the GCN model demonstrates a slightly
better performance by 4%, indicating that the fundamental clustering capability of the
GCN model is similar to or even better than the GravNet model.

In figure 7.7b, the tail lengths of the photon energies up to Eγ = 2GeV follow the same
function as the energy resolution. However, for higher energies, the left tail becomes
significantly longer, suggesting an underestimation of the photon energy by the GCN
algorithm. This behavior arises from the fact that the GCN model is trained specifically
for the photon energy range Eγ ∈ [0.1, 1.5]GeV.

For both LBB and HBB, the GNN algorithms demonstrate significantly better performance
for the energy reconstruction of the generated energy in the energy regime Eγ ∈ [0.1, 2.5]GeV
compared to the basf2 model with an improvement of up to 15% for Eγ = 0.1GeV. This is
demonstrated in figure 7.8 for LBB events and in figure 7.9 for HBB events. The energy
dependence of the GCN model follows the expected function described in equation (6.18)
since the GravNet and the basf2 model can be described by this function [1] and all
algorithms have a very similar dependency on the photon energy. The GCN model is only
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slightly worse performing than the GravNet model by 4% for energies up to 2.5GeV in
the case of the LBB. For the HBB study this is similar but only results for energies up
to Eγ = 1.5GeV are determined since the distribution is difficult to be described by a
DCB for higher energies. The GCN model outperforms the basf2 model on average by
20% and is around 5% worse in performance compared to the GravNet model. For higher
energies Eγ > 2.5GeV , the GCN model trained on LBB events performs better with an
improvement of up to 16% for Eγ = 5GeV than the GravNet model but worse than the
basf2 algorithm.

The tails of the GCN and the GravNet model for each photon energy are very similar in
length as shown in figure 7.8b for LBB events and in figure 7.9b for HBB events. The GravNet
model has slightly shorter tails than the GCN for the training’s range Eγ ∈ [0.1, 1.5]GeV.

7.4.3. Overview and Conclusions

In both cases of LBB and HBB, the GNN algorithms show significantly better performance
than the basf2 model for photon energies up to Eγ = 2.5GeV. The GCN model has a
slightly worse performance for photons in this energy range than the GravNet model. This
could arise from the fact, that the GravNet model has optimized hyperparameters and
therefore a more stable architecture in comparison to the GCN that is not optimized in
any way so far. As part of future work, the performance of the GCN model with optimized
hyperparameters could be analyzed. However, for higher energies, the GCN model trained
on LBB events performs better than the GravNet model but worse than the basf2 algorithm.
One of the reasons is that photons with Eγ ∈ [0.1, 2.5]GeV often deposit their energy in
only a few crystals, which is a characteristic that the GNN models learn already with
photons that have an energy of Eγ = 0.1GeV. For photons with Eγ > 2.5GeV, the number
of crystals in a cluster increases, which exceeds the algorithm’s training capacity and results
in reduced performance.
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(a) Energy resolution of the deposited energy in dependency of the
photon energy Eγ for the three different models GCN, GravNet,
and basf2.
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(b) Left and right tail lengths for the deposited energy in dependency
of the photon energy Eγ for the GCN model.

Figure 7.7.: Energy resolution FWHM/2.355 (a) and tail lengths T (b) of the deposited
energy in dependency of the photon energy Eγ . The GCN model is trained
on two million full detector events with low beam background and the photon
energy Eγ ∈ [0.1, 1.5]GeV and tested on 20 000 barrel events with low beam
background per photon energy Eγ . The energy resolution of the GCN model
is compared to the basf2 and the GravNet algorithm for Eγ = 0.3GeV. The
GCN model performs better than the basf2 algorithm.
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(a) Energy resolution of the generated energy in dependency of the
photon energy Eγ for the three different models GCN, GravNet,
and basf2.
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Figure 7.8.: Energy resolution FWHM/2.355 (a) and tail lengths T (b) of the generated
energy in dependency of the photon energy Eγ . The GCN model is trained
on two million full detector events with low beam background and the photon
energy Eγ ∈ [0.1, 1.5]GeV and tested on 20 000 barrel events with low beam
background per photon energy Eγ . The energy resolution and the tail lengths
are compared to the basf2 and the GravNet algorithm. The GCN model
performs better than than the basf2 algorithm for Eγ ≤ 2GeV and generalizes
better than the GravNet model for Eγ > 3GeV.
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(a) Energy resolution of the generated energy in dependency of the
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(b) Left and right tail lengths for the generated energy in dependency
of the photon energy Eγ for the three different models GCN,
GravNet, and basf2.

Figure 7.9.: Energy resolution FWHM/2.355 (a) and tail lengths T (b) of the generated
energy in dependency of the photon energy Eγ . The GCN model is trained on
two million full detector events with high beam background and the photon
energy Eγ ∈ [0.1, 1.5]GeV and tested on 20 000 barrel events with high beam
background per photon energy Eγ . The energy resolution and tail lengths are
compared to the basf2 and the GravNet algorithm. The GCN model performs
better than than the basf2 algorithm for Eγ ≤ 1.5GeV.
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This work introduces and analyzes the energy reconstruction of photons in the Belle II ECL
using statically build graphs as an input for GNNs. The ML based GCN model employs
fuzzy clustering for the photon energy reconstruction. The GCN architecture includes
stacked graph convolutional layers that use message passing between nodes in the graph. As
previous studies have shown, the advantage of using GNNs due to varying input sizes and
the models’ ability not to rely on a regular calorimeter geometry can significantly improve
the energy resolution in the ECL. The GravNet model employs message passing between
nodes in a dynamic graph-building process in contrast to the GCN algorithm that uses
static graphs for message passing. MC data is used for training and evaluating the model’s
performance.

The Belle II Analysis Software Framework is currently used for photon reconstruction. The
reconstruction process is referred to as the basf2 model and together with the GravNet
model, these algorithms serve as a comparison for the performance of the GCN model.
The utilized metrics are introduced in chapter 6 for the evaluation of the performance for
different graphs as an input of the GCN model and to ensure a fair comparison of the three
algorithms.

Toy studies for different graph structures as input of the GCN model are analyzed by
evaluating the performance of the energy reconstruction of single photon events. The
graphs are studied with different node input features, different numbers of edges, and
different edge weights. The relevant node input features for the GCN algorithm include the
reconstructed time trec, along with the basic node input features such as the reconstructed
energy Erec, the global crystal coordinates θ, ϕsin, ϕcos, and the crystal mass m. Other
node input features like the hadron intensity HI, the local maximum indicator LM, and the
local coordinates θ′ and ϕ′ have minimal impact on the model’s performance. The number
of edges, represented by the parameter k for the k nearest neighbor connections between
nodes, does not significantly affect the performance of the GCN algorithm above a certain
number of edges. Even with all nodes connected, the performance remains comparable to
having a limited number of k nearest neighbors. Including the reconstructed time trec in
the edge input features as a fourth Cartesian coordinate does not improve the GCN model’s
performance. Instead, it leads to worse results compared to using only Cartesian crystal
coordinates for the edge weights.

One important thing to note is that fluctuations during training studied in chapter 7 are
significant and require further investigation. Therefore, the training process of the GCN
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model should be further optimized regarding training hyperparameters. The uncertainty
on the FWHM and the tail lengths depending on the training should be determined from
statistics. Additionally, training on more events is expected to lead to more stable training
results.

Furthermore, the energy dependence of the GCN model is compared to the GravNet
and basf2 algorithms. The GNN algorithms including the GCN and the GravNet model
demonstrate significantly better performance than the basf2 model for photons with an
energy up to Eγ = 2.5GeV. The GCN model performs slightly worse than the GravNet
model for low photon energies. This applies to both LBB and HBB conditions. The reason
could be that the GravNet model is optimized regarding its hyperparameters in comparison
to the GCN that is not optimized in any way so far. The optimization of the GCN model
could be done to see if the performance of the GNN algorithms is equal if each is optimized
individually. This could include optimizing the existing GCN structure and extending the
used hyperparameters, offering possibilities for fine-tuning its performance and addressing
specific requirements. One additional area worth exploring further is the specific architecture
of the GCN model. There are alternative approaches to implementing GNNs and performing
message passing that can be considered instead of the GCN layer. Investigating these
aspects can lead to further enhancements and refinements in the application of the GCN
architecture for energy reconstruction tasks.

However, for higher energies, the GCN model performs better than the GravNet model but
worse than the basf2 algorithm. This is due to the GNN models’ limited capacity to handle
clusters with a large number of crystals for higher-energy photons. Since the models are
only trained on energies up to 1.5GeV the evaluation of higher energies shows the ability
of the GCN model to generalize better than the GravNet model.

In the next step, the GCN model could be studied and optimized for the energy recon-
struction of overlapping photon clusters or other MC generated particles such as pions or
electrons in a similar way as presented in this work. Furthermore, a validation on data
has to be done to ensure the correct behavior of the network. Although there are still
many challenges until the GCN will predict the photon energies in the Belle II ECL the
model is promising since the input features available in real data could allow the model to
distinguish various cluster signatures effectively.

In conclusion, the GCN algorithm demonstrates its effectiveness and adaptability as an
algorithm for clustering energy depositions, making it a promising choice as an alternative
to the GravNet model for a wide range of current and future applications. Especially the
statically build graphs and the lower amount of free model parameters might make the
GCN algorithm more useful for example in online applications, such as the Level 1 trigger
at Belle II.
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A. Appendix

A.1. Bad Double-Sided Crystal Ball Fit
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Figure A.1.: Example of the distribution of the relative reconstruction error on the generated
energy ηgen. The distribution can not be described by a double-sided crystal
ball function and consequently, the FWHM and tail lengths are not correctly
determined.
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62 A. Appendix

A.2. Performance Evaluation of the Deposited Energy for the
Photon Energy 0.3 GeV for Different Node Input Features

For the photon energy Eγ = 0.3GeV, most DCB fits fail when applied to the distributions
of the reconstruction errors on the deposited energy ηdep. An example of such distributions
is given in figure A.3.
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Figure A.3.: Example of the distribution of the relative reconstruction error on the deposited
energy ηdep. The fitting procedure fails for this type of distribution.
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(a) Energy resolution of different node input feature combinations.
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(b) Tail lengths of different node input feature combinations.

Figure A.2.: Energy resolution FWHM/2.355 (a) and tail lengths T (b) of different node
input feature combinations of the reconstructed time trec, the hadron intensity
HI, the local maximum indicator LM and the local coordinates θ′, ϕ′. The
GCN model is trained on two million full detector low beam background events
with the photon energies Eγ ∈ [0.1, 1.5]GeV and tested on 200 000 barrel
low beam background events with Eγ = 0.3GeV. Without the reconstructed
time the energy resolution (a) is worse and both left and right tails (b) are
longer compared to other node input feature combinations that include the
reconstructed time.
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