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Abstract

In recent years a complementary search paradigm to classical searches has gained traction in
the high energy physics community. While classical searches select regions of interest in the
data based on a simulation of potential signal models, anomaly detection seeks to identify
data regions, that are anomalous with respect to the data. Such searches offer the benefit of
independence from concrete models. This thesis explores three autoencoder architectures as
a machine-learning-driven tool for model-independent searches at the Belle II experiment.
Autoencoders are types of neural networks that compress information in a lower dimensional
latent space and reconstruct the information from it. The three architectures explored
in this thesis use unregularised latent spaces, latent spaces with a Gaussian prior and
with a Dirichlet prior. With the process of encoding and decoding optimized for certain
samples, a higher error in the reconstruction is expected for rare samples or samples not
represented during the training. This thesis studies the sensitivities of this error for two
free parameters of the inelastic Dark Matter model with Dark Higgs. In a comparison
between the three architectures unregularized latent spaces provide the highest sensitivities.
Studies on the dimensionality of the latent spaces show varying sensitivities for different
mass configurations. The studies yield the highest sensitivities for small-mass configurations
with an 8-dimensional latent space and for large-mass configurations with a 9-dimensional
latent space. Further studies on using the latent space to identify anomalies and efforts to
validate the autoencoders on Belle II data are presented.
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Disclaimer

This work builds on Patrick Ecker’s (KIT, ETP) work done for a search for Inelastic Dark
Matter with a Dark Higgs with displaced vertices. His programs were partly changed or
extended. This applies to the workflow management, event simulation, generator simulation,
and all histogram plots. The background samples were produced and centrally reconstructed
by the Belle II collaboration. The simulation for the signal samples was written by Patrick
Ecker and run by me with adjusted parameters. The content of all plots is created by me
unless stated otherwise. All autoencoders trained and analyzed in this work are implemented
by me. The implementation of the Dirichlet Variational Autoencoder is inspired by Barry
M. Dillon’s implementation from [1]. The training algorithm was developed with the
support of Mahnoor Tanveer from Helmholtz AI and implemented by me using pytorch and
scikit-learn [2]. All analyses and results presented in this thesis were done by me.
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1. Introduction

Throughout years of research, the standard model of particle physics has proven to be
a very accurate description of the smallest particles. However, some observations still
can not be described by it. One of these is what is called Dark Matter. Observations of
stars and galaxies point to the existence of a form of matter undetectable by our current
methods. Many models describing such matter have been proposed and many experiments
are collecting vast amounts of data in search for it.

To falsify these models, regions of interest in the data are selected and the features of the
models are checked. This process however must be repeated for every model. Therefore, a
complementary search paradigm has been proposed: Instead of looking for specific features
of each model, unusual data points are identified and investigated. Such a search is agnostic
towards specific models and can provide new hints for physics beyond the standard model.
This ansatz of detecting anomalies is already established in other areas like IT security or
banking [3] and is gaining traction within High Energy Physics (HEP).

To explore new ways how such searches could be conducted in the context of HEP, the
LHC-Olympics [4] were held in 2020. The promising results are inspiring this work to
apply anomaly detection in the context of the Belle II experiment. As an e+e− collision
experiment, Belle II is sensitive to different signatures of Dark Matter. One of these
signatures searched for is from the Inelastic Dark Matter model. This model boasts up
to seven free parameters, making simulations for all its different configurations time- and
resource-intensive. These configurations also show a wide range of features, complicating
the selection of regions of interest. Here, methods of Anomaly Detection (AD) can simplify
this search and offer a model-parameter-independent selection.

Its features and the parameter ranges considered in this work are described in Chapter 3, as
well as the standard model background processes considered. Selection and reconstruction
of events are described in Chapter 4 including a study of the background processes used
in the training. For anomaly detection, three different architectures of autoencoders
(Chapter 5) are tested and their sensitivities to different parameter configurations are
studied in Chapter 7.
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2. The Belle II Experiment

The Belle II experiment allows for precise tests of the Standard Model (SM) and to investigate
its shortcomings using byproducts of electron-positron collisions. In this position, it presents
itself as an application for anomaly detection and model-independent searches.

2.1. SuperKEKB

Located at KEK in Tsukuba, Japan, the SuperKEKB accelerator is currently the world’s
most luminous electron-positron collider. As described in its technical report [5] and
in [6], it is an upgrade to the previous accelerator KEKB to achieve a target luminosity of
650 fb−1 s−1. It mostly operates at the energy of the Υ(4S) with electrons accelerated to
7GeV in the high energy ring (HER), and positrons to 4GeV.

Since at the resulting center of mass energy of
√
s = 10.58GeV approximately 96% of the

produced Υ(4S) mesons decay into B meson pairs, SuperKEKB is classified as a B factory.
However, operations at the Υ(1S) up to Υ(6S) resonances are possible.

Compared to its predecessor, KEKB, SuperKEKB has increased the beam currents and
implements the nano-beam scheme, in which superconducting quadrupole magnets squeeze
the beams in the vertical direction and increase the crossing angle. A scheme of the
accelerator, including the pre-accelerators and the four experimental halls is shown in
Fig. 2.1.

2.2. Belle II

The Belle II detector is the upgrade of the Belle detector to, among other goals, extend
the possible reach of searches for new physics. Some of the main improvements over the
predecessor are the new Pixel Detectors (PXD) and the Electromagnetic Calorimeter (ECL)
electronics. It is designed as a general-purpose, 4π-detector using several tracking layers,
an ECL, systems for Particle Identification (PID), and a dedicated KL and Muon Detector
(KLM). A detailed description of these components can be found in [7]. Here, only a short
overview based on this technical report should suffice.

The detector’s design is layered (see Fig. 2.2), starting with the vertex detectors right after
the beam pipe. Innermost, the PXD is located, built of two layers of silicon pixel sensors
in Depleted Field Effect Transistor (DEPFET) technology. Next is the Silicon Vertex

3



4 2. The Belle II Experiment

Figure 2.1.: Scheme of the SuperKEKB accelerator complex including the Belle II detector.
Blue (Red) marks the beamlines and linear pre-accelerators for the electrons
(positrons). The four experimental halls are also marked with Tsukuba hall
containing the Belle II detector at the only Interaction Point (IP). Taken
from [5].

Figure 2.2.: Schematic overview of the Belle II detector with notes to the subsystems.
Additionally, the directions and energies of the electrons and positrons at a
typical run at Υ(4S) are shown. Due to the asymmetric energies, the detector
itself is built asymmetrically.

Detectors (SVD) with four layers of double-sided silicon strip sensors. The last part of
the tracking detectors is the Central Drift Chamber (CDC), made of wires and filled with
Helium-Methane gas. Besides its main use for precise measurements of charged particles’
tracks, the energy loss of particles within the gas gives information on the type of particle.
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This information is combined with measurements of the Time-of-Propagation (TOP) and
Aerogel Ring-imaging Cherenkov (ARICH), to give the PID. The TOP uses the Cherenkov
effect in quartz radiators and ARICH measures the Cherenkov cone in an aerogel with
photon detectors.

The surrounding ECL is built out of CsI(Tl) crystals covering the polar angle from 12.4◦ to
155.1◦. In it, most particles are stopped as they cause cascading particle showers in the
crystals. Since they often reach neighboring crystals, a single particle is detected by a cluster
of crystals. Via the scintillation of these showers, the energy of a particle is measured.

Particles that are not stopped by the ECL, usually K0
L and µ, reach the KLM system.

It is located outside of the superconducting solenoid and consists of steel plates (for the
magnetic reflux) and glass-electrode resistive plate chambers. On the endcaps and the
first two layers of the barrel region, scintillators are used to accommodate the high beam
backgrounds produced by SuperKEKB.

Since the luminosity provided by SuperKEKB is too high to record every single event, a fast
decision logic called trigger is used [8]. Multiple of these triggers are used in two steps: In
the first step, the L1 trigger, the decision to keep or discard an event is made using low-level
data from the detector. After that, a reconstruction of tracks, clusters, and particles is
performed to base the High Level Trigger (HLT) decisions on.

2.3. basf2

To handle the data generated by the detector, the Belle II collaboration has created an
analysis software framework called Belle II Analysis Software Framework (basf2) [9] [10].
It contains tools to generate Monte Carlo (MC) particles, the detector’s response and to
handle raw data of the sub-detectors. Most importantly it also contains algorithms for
tracking, clustering, and particle identification, which form the basis of any further analysis.
This work uses its modules for decay reconstruction and combinatorics, candidate selection,
and vertex fitting.





3. Physics Theory

3.1. Physics Beyond the Standard Model

While the SM has proven itself with very precise predictions, it is also a consensus among
the physics community that some observed phenomena can not be explained by the SM.
The rotation speed of galaxies around their center is one of these. Stars far away from a
galaxy’s center rotate much faster around the center than the gravitation of visible matter
would allow. The prevalent explanation for this is non-visible matter, called Dark Matter
(DM).

While the first idea of non-visible matter can be found in ancient Greece, the modern search
gained momentum with Vera Rubin’s and Kent Ford’s research in the 60s and 70s [11]. By
now DM several phenomena like the Comsmic Microwave Background (CMB), the dynamics
of galaxy clusters, and the strong CP problem are considered to be linked with DM. Over
time, a myriad of different models on the nature of DM has been proposed.

Inelastic Dark Matter with a Dark Higgs

Increasingly stronger bounds on the mass(es) of potential DM particles have shifted the
focus to light (GeV −MeV) candidates. Strong bounds imposed by the CMB do not apply
to inelastic couplings to SM particles. A detailed description of this model can be found
in [12]. A short overview of it with a focus on some simplifications taken for this work is
given below.

The inelastic Dark Matter with a Dark Higgs (IDMDH) model not only introduces two
Dark Matter particles but also bosonic particles, that can interact with the Dark Matter.
Together, Dark Matter and the exchange particles make up the Dark Sector. In this
setup, the dark sector can be reached by kinetic mixing of a Dark Photon A′ and the SM
photon. The lightest matter particle of the dark sector is called χ1. By coupling to the A′

it can be excited into a χ2. In analogy to the SM Higgs mechanism, a Dark Higgs h′ is
introduced, creating a second, independent portal to the SM sector and therefore creating a
rich phenomenology. Like in the SM this Higgs sector is needed, to give the DM particles
mass. This leads to seven free parameters:

• The mass of the A′, mA
′

• The mixing angle of the SM photon to the A′, ϵ

7



8 3. Physics Theory

• The mass of the h′, mh
′

• The mixing angle of the SM Higgs to the h′, θ.

• The mass of the χ1, mχ1

• The coupling of the χ1 and χ2 to the h′, f

• The coupling of the χ1 and χ2 to the A′, gX

Importantly, not all possible combinations of these parameters correspond to the perturbative
regime, e.g. all couplings are required to be smaller than

√
4π. This implies, that the h′

can not be much heavier than the A′

m2
h
′ ≲

√
π

4gX
m2

A
′ . (3.1)

Further, from considerations of DM annihilation and the CMB the masses have the con-
straints

f4

64π2mχ1
< mh

′ ≲ mχ1
< mA

′ . (3.2)

Simplifications

As shown in [12] there are multiple processes and final states, that could be used to search
for IDMDH. In this work, only the process shown in Fig. 3.1 is considered. In this process,

Figure 3.1.: Feynman diagram of the DM production process considered in this work.

a SM photon mixes with a Dark Photon, which radiates a Dark Higgs. This Dark Higgs
decays into a muon-anti-muon pair. The Dark Photon decays into the two Dark Matter
particles χ1 and χ2. The heavier χ2 further decays into a χ1 and, via a Dark Photon, into
an electron-positron pair. This leaves a final state in the detector of two lepton pairs µ+µ−
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and e+e− and missing Energy. As the two χ1 produced can not be detected, the sum of all
particles’ energies should not add up to the total energy of the collision.

For further simplification, the Dark Photons mass is set to mA
′ = 4mχ1

. From the theory,
the mass of the χ2 is

mχ2
= mχ1

+
f ·mA

′

gX
(3.3)

The coupling constants are fixed to

f =
√
4παf ≈ 0.2476 (3.4)

and
gX =

√
4παD ≈ 1.12 (3.5)

with αf = 0.006 and αd = 0.1. This means that

f

gX
· 4 ·mχ1

≈ mχ1
. (3.6)

Since this work uses Belle II as an experimental setup, the parameter combinations to
consider are restricted by the SuperKEKB accelerator’s usual energy 10.58GeV. This leads
to the condition

mχ1
+mχ2

+mh
′ < 10.58GeV. (3.7)

From constraints discussed in [12] follows

mχ1
> mh

′ (3.8)

and
∆m = mχ2

−mχ1
> 2 ·mµ. (3.9)

As discussed in [12], the search for non-prompt decays in this model benefits greatly from
fewer SM backgrounds. Such a search is currently conducted by Patrick Ecker using a
classical approach with selections and bump hunts. Such an approach, however, can not be
easily conducted for prompt decays due to a much higher SM background. This motivates
the use of machine learning tools since they rely on huge amounts of data. Therefore, this
work focuses on prompt decays of both, the h′ and the χ2. This is ensured by fixing the
mixing angles ϵ and θ to the sufficiently high value of 10−2, since the mixing angles control
the lifetimes of the A′ and h′.

3.2. Standard Model

3.2.1. Possible Background Processes

A DM process, as displayed in Fig. 3.1 is expected to have the following signature in the
detector:

• a muon-anti-muon pair from the decay of the h′,

• an electron-positron pair from the decay of the χ2,
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• missing energy from the undetectable χ1 particles.

There are multiple possible SM processes that can mimic such a final state. The process
e+e− → e+e−µ+µ− would directly produce the lepton pairs and missing energy could
be introduced by errors in measurement or reconstruction. Since tauon decays include
an undetectable neutrino, the process e+e− → τ+τ− could look like the signal’s final
state. While the processes e+e− → e+e− and e+e− → µ+µ− lack one lepton pair and
missing energy, the combination with beam background and/or errors in detection and
reconstruction can fake the signature of the signal. Since muons and pions have similar
masses and therefore can be easily confused, the e+e− → e+e−π+π− process can also
contribute to the background.

The SuperKEKB accelerator is mostly run on the Υ(4S) resonance. This resonance
mostly decays into B mesons, which have multiple decay channels like B± → l±νlX or
B0 → K0l+l−. While usually, such events contain much more than four particles, the
high production rate of B-Mesons still gives a background caused by reconstruction errors.
Besides the resonant production of a b-quark and anti-b-quark, the non-resonant productions
e+e− → uū, e+e− → dd̄, e+e− → ss̄, and e+e− → cc̄ can also contribute to the background.
These processes are also collectively called "continuum background".

3.2.2. Beam Background

Beam background describes several processes that are caused by the operation of the e−

and e+ beams independent from their collisions. The rate of these processes has increased
with the high luminosity of SuperKEKB. Beam background measurements for the current
Belle II configuration (Phase 3) are not yet finished, so the measurements for the previous
configuration (Phase 2) [13] form the basis of this section. The main processes causing
these backgrounds are:

• Touschek background: Coulomb interactions between particles in the same bunch.
Such particles collide with the beam pipe wall and produce showers.

• Interactions with residual free gas molecules. Additionally to a baseline of gas present
in the beam pipe, outgassing of the beam pipe material increases during operation.

• Synchrotron radiation: Photons with energy in the 10 - 100 keV range may be
produced by synchrotron radiation.

• Injection background: Beams are constantly injected, due to the short lifetime of
circulating beams. These continuous injections introduce perturbations, which cause
a higher background rate.

Together, these processes produce particles, that have nothing to do with the collision
process itself. They can produce additional tracks in the tracking detectors or clusters
in the ECL. As such, they can complicate analyses and searches by faking signatures of
particles.



4. Dataset Generation and Analysis

To train the autoencoders in this work, MC samples of the processes discussed in Section 3.2
are used. Sensitivity studies are performed on MC samples of IDMDH processes with
various parameter configurations. Section 4.1 describes the methods used to generate
the MC signal samples. The details of reconstructing Final State Particles (FSPs) and
intermediate particles are described in Section 4.2, as well as further selections and their
effects. Section 4.3 follows with an analysis of the MC samples and the physics processes
involved.

4.1. Simulation
It is common praxis in the High Energy Physics (HEP) community to develop and test new
analysis methods and algorithms on simulated samples. To do so the Belle II collaboration
provides general purpose MC samples. This work uses the MC samples with simulated
beam background from the 2021 production campaign.

The background processes that are used in this work are listed in Table 4.1. Samples with
a different simulated luminosity than 100 fb−1 are reweighted later accordingly. For the
samples with four leptons, e+e− → e+e−µ+µ− and e+e− → e+e−e+e−, the parameters
of the simulation are restricted [14]1: When the invariant mass of one of the lepton pairs
is smaller than 0.5GeV c−2, the process is not simulated in order to reduce the effective
cross-section of the process. The production of signal samples is done privately and uses
MadGraph5 [15] for event generation. The detector response is simulated by basf2, which
has a model of the detector implemented using Geant4 [16]. After the detector simulations,
the reconstruction of tracks, clusters, and calculation of PID likelihoods is performed. The
model parameters given in Table 4.2 are combined according to the constraints discussed in
Section 3.1. For each possible combination, 25,000 events are simulated. Beam background
events are simulated separately and overlayed during the event simulation. In the further
discussion, three exemplary signal samples are used to represent the three extreme cases:

• small masses DM: mh
′ = 0.5GeV c−2, mχ1

= 0.5GeV c−2

• large masses DM: mh
′ = 2.5GeV c−2, mχ1

= 2.5GeV c−2

• high mass splitting: mh
′ = 0.5GeV c−2, mχ1

= 3GeV c−2

1While the internal note on the used generators cited here also mentions this limitation for the e
+
e
− →

µ
+
µ
−
µ
+
µ
− sample, this is not reflected in the basf2 source code.

11



12 4. Dataset Generation and Analysis

Table 4.1.: Summary of MC samples with the produced luminosity and number of events
simulated

process simulated luminosity in fb−1 number of events (·106)

e+e− → e+e−µ+µ− 100 188.3
e+e− → τ+τ− 100 91.9

e+e− → e+e−π+π− 100 189.5
e+e− → e+e−e+e− 100 3955
e+e− → µ+µ− 100 114.8
e+e− → e+e− 100 2958
e+e− → B0B̄0 100 54
e+e− → B+B− 100 51
e+e− → uū 100 160.5
e+e− → dd̄ 100 40.1
e+e− → ss̄ 100 38.3
e+e− → cc̄ 100 132.9

e+e− → µ+µ−µ+µ− 2000 0.35120
e+e− → K0K

0
(γ) 1000 0.886400

Table 4.2.: Summary of the model parameter values simulated.

model parameter values

mχ1
in GeV c−2 [0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]

mh
′ in GeV c−2 [0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]

mA
′ in GeV c−2 4 ·mχ1

f 2.746× 10−1

gX 1.12
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4.2. Reconstruction and Selection
Typically, searches for specific model configurations select data based on the expected signal
features. These selections are optimized in order to reduce background events as much as
possible while keeping the signal ones. With the signal’s features depending on the chosen
parameter configuration, such selections are optimized to reach high signal-to-background
ratios. Since the goal of this work is to replace such selections geared towards specific model
parameter configurations, the approach to event selection differs from a typical analysis.
Instead of having a high signal-to-background ratio, this selection aims for samples well
suited for training and representative of what processes are happening within the detector.
While one might be inclined to use all backgrounds and let the selection be fully done
by the autoencoders, this approach is not practical. Firstly, the huge amount of data
would pose a computing challenge and training times would probably increase strongly.
Secondly, using such a wide range of data would also make it harder to actually reflect
the physics. Such samples would include a huge amount of events, like beam background
and mis-reconstructed events. As such events do not represent collision physics, they are
considered ‘unphysical‘. As such, they can mimic any given signal just by chance. Typically
these events can be rejected using detector information like the number of CDC hits or high-
level variables like the PID. Such variables often take discrete values or have sharp cut-offs,
which make them not well suited for usage in neural networks. As a consequence, in this
work, a preselection of events is performed using this information. These selections search
to strike a balance between keeping as many signal events as possible, while also reducing
the number of background and ’unphysical’ events in the training samples. Therefore, this
selection focuses on some basic requirements all signal mass configurations share.

4.2.1. Reconstruction

Final State Particles

The first basic requirement an event should have are a pair of opposite-charged muons and
a pair of electron and positron in its final state. As such FSP leptons, only good tracks are
considered, which are defined as:

• The track has at least 20 hits in the CDC.

• The track originates from the IP (|z0| < 2 cm and d0 < 0.5 cm).

• The track is in the CDC acceptance 17◦ < θ < 150◦.

Here, |z0| describes the longitudinal and d0 the longitudinal projection of the distance of
closest approach of the track with respect to the IP The polar angle θ is defined with respect
to the detector’s cylindrical axis in the direction of the electron beam. To reduce the number
of misidentified particles, the PID is used. It uses information across all subdetectors to
calculate the likelihood of multiple particle hypotheses. Here, a binary version of it is used,
only considering the electron and muon hypotheses. This variable is one if the particle is
likely to be an electron and zero if it is likely to be a muon:

PID(e, µ) =
Le

Le + Lµ
(4.1)

The selection on it is:
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• The binary PID (e, µ) must be greater than 0.1 for electron candidates and smaller
than 0.9 for muon candidates.

Intermediate Particles

From these FSPs, candidates for the intermediate particles h′ and χ2 are constructed by
combining their respective daughter candidates as shown in Fig. 3.1. As described in
Section 3.1, the h′ is reconstructed from two muons with opposite charge and the χ2 from
an electron-positron pair. When both particles originate from the same parent particle, it
should be possible to find this decay vertex by extrapolating their track. This also allows
to restrict the particles’ path further by fitting the tracks to exactly intersect. A vertex fit,
as this is called, then yields a χprob on how likely its result is and is performed for both
pairs. The selection criteria imposed on them are:

• The decay vertex must originate from the IP by requiring that the radial distance of
the decay vertex with respect to the IP dr < 0.2 cm.

• All candidates with failed fits are rejected.

• At least one of the vertex fits must fulfill χprob > 0.01

Veto for π0

Since the signal’s final state does not include any photons, another requirement is the
absence of these. However, photons can be produced by beam background, so vetoing the
existence of photons directly would also remove signal events. Instead, the production of
photons in collision processes is targeted by vetoing the decay π0 → γγ. A π0 occurs often
in τ decays like τ → π + π0 + ντ . To apply this veto, two photons need to be in the event
and a π0 needs to be reconstructed from them. The conditions for selecting for photons are:

• The number of cluster hits in the ECL is greater than 1.5.

• The cluster is located between 17◦ and 150◦ in the ECL.

• The reconstructed energy is smaller than 0.25GeV

• The absolute time difference between the collisions and measurment of the photon in
the ECL must be smaller 200 ns.

By combining two of these photons, π0 candidates are constructed and only candidates
with an invariant mass 0GeV c−2 < mγγ < 0.3GeV c−2 are kept. Later, these candidates
are used to discard the events.

Rest of the Event

Since the signal is expected to only have four tracks, events with more tracks fulfilling the
criteria for FSPs are discarded. Additionally, the energy of all remaining ECL clusters is
summed up. All events with more energy than 0.05GeV in these clusters are discared.

Additionally, the missing energy four-vector is calculated using the beam energy
√
s =

10.58GeV:
Emiss = Pbeam −

∑
i∈FSP

Pi. (4.2)

with the beam four vector Pbeam = (Ebeam, 0, 0, 0) and the FSPs’ four vectors Pi.
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4.2.2. Event Selection

For a better understanding of the effect the reconstruction and following selections have
on the sensitivity towards the signals, the Punzi Figure of Merit (PFOM) [17] is used as a
metric for sensitivity:

PFOM =
ϵ

a
2 +

√
B
, (4.3)

with the signal efficiency ϵ = Nafter selection/Nproduced events and the number of remaining
background events B after application of the selection criteria. The parameter a corresponds
to the significance level expressed in terms of σ corresponding to one-sided Gaussian tests
at a given significance. Its value is chosen as a = 1.

After the reconstruction step, signals are selected with a total efficiency between 0.58 and
0.48, depending on the simulated model configurations described in Table 4.2. As Fig. 4.1
shows, the efficiency of the selection is highest for large mh

′ and mχ2
. There is a drop in
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Figure 4.1.: Signal efficiency and PFOM for the signal model parameter configurations after
reconstruction and selections applied.

the efficiency for model configurations with a large difference between the masses of the h′

and the χ2.
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Vetoing π0

For the π0 veto, all the event candidates with 0.1GeV c−2 < mγγ < 1.17GeV c−2 are
discarded. Fig. 4.2 demonstrates this selection for background samples and the three
exemplary signals. Since only π0 candidates with a mass close to the nominal π0 mass
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Figure 4.2.: Visualization of the π0 veto. Signals are scaled to the bin with the highest
background. The grayed-out area marks the events discarded. Not all event
candidates are in this histogram, as some of them do not have a valid π0
candidate.

are used, there is a bias towards such candidates, even in the cases where photons come
from the beam background. This causes reduced signal efficiency. The loss of efficiency,
compared to after the reconstruction, is low for equal mχ1

and mh
′ (≈ 1%). Towards

high mass splittings, it increases. However, this selection also reduces the background and
therefore enhances the sensitivity, as the increase of the PFOM in Fig. 4.3 shows.

Missing Energy

A selection on the missing energy is also applied. This selection is motivated by a few
events with a very high missing energy in the background samples as shown in Fig. 4.4.
These events stem from reconstruction errors and would heavily influence the preprocessing
and training process. As can easily be seen from Eq. (5.2), the mean µ(xunscaled) and
standard deviation σ(xunscaled) would be heavily influenced by large outliers, which would in
turn heavily influence the standardization. Therefore, all event candidates with unrealistic
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Figure 4.3.: PFOM and efficiency for different masses at fixed angles π0 veto.

missing energy, Emiss < 0GeV or Emiss > 10.58GeV are removed. Since this selection
targets only very few events, efficiency and PFOM barely change.

Best Candidate Selection

The remaining events still can have multiple candidates, when tracks qualify for multiple
FSPs. As Fig. 4.6 shows, this affects only a few events: In some, two tracks can be
interchanged (i.e. be taken as a muon or an electron) leading to a multiplicity of two. In
the other case, two track pairs can be interchanged, giving a multiplicity of 4. Higher
multiplicity events are already removed by previous selections. A multiplicity of 3 does not
occur, as this would require that the charge of two particles is ambiguous. The candidate
with the lowest missing energy is taken as the best candidate. This choice is arbitrary and
may be revised. However, as Fig. 4.6 shows, only a few events have multiple candidates
and therefore the impact of the selection is small.
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Figure 4.4.: Visualization of the selection on Emiss. The grayed-out area marks the events
discarded. While the upper limit has no effect, the lower one removes a few
events.
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Figure 4.5.: PFOM and efficiency for different masses for the Emiss selection.
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Figure 4.6.: Distributions of multiplicities of event candidates for the background samples
and example signals.
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Table 4.3.: Event counts and their percentage of the total amount of the background
processes. All numbers are normed for 100 fb−1.

process events percentage

e+e− → τ+τ− 590702 97%
Continuum 79813 1.2%

e+e− → µ+µ− 4243 0.6%

e+e− → BB̄ 1811 2.7× 10−1%

e+e− → e+e−e+e− 588 0.9× 10−1%

e+e− → e+e− 565 0.8× 10−1%

e+e− → e+e−π+π− 284 0.4× 10−1%

e+e− → e+e−µ+µ− 54 0.8× 10−1%

e+e− → µ+µ−µ+µ− 17.3 2.6× 10−3%

e+e− → K0K
0
(γ) 0.4 0.6× 10−4%∑

678077.7 100%

4.3. Background Studies

To gain an understanding, the autoencoders need to learn, it is helpful to gain an understand-
ing of which particles and processes make up the background. As an overview, Table 4.3
shows the number of events for each background process with all the previous selections
applied. The main contribution stems from e+e− → τ+τ− events. Small contributions
come from continuum events, with the remaining background sources being negligible.

It is possible, that other particles are mistaken for electrons or muons since the qualifications
for muons and electrons are not very strict. In MC one can look up, which true particles
are causing the track and clusters. This truth-matching process allows assigning a true
particle to the particles used as the electron and muon FSP. In some cases, no particle
can be assigned. Here the tracks are originating from the beam background or hits from
multiple particles are used when reconstructing the tracks.

Fig. 4.7 shows the rates of the different combinations of true particles used to reconstruct
the χ2 and h′ decays. For the sake of simplicity, all hadrons are grouped together. This
figure shows that most of the background’s FSP are pions. This misidentification is driven
by the fact, that only the PID information with respect to muons and electrons is used
and the likelihoods for pions, and other particles, do not factor in. Using only the binary
likelihood between electrons and muons makes no use of likelihoods with other particle
hypotheses. This certainly could be used to improve the selection, testing this however was
out of the time scope of this thesis.

In consequence, Fig. 4.7 demonstrates, that the background of the IDMDH signals not only
includes processes with the same final state but other misidentified particles.
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Figure 4.7.: True FSP used to reconstruct h′ and χ2.
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In general, anomalies are defined as substantial variations from the norm [3]. This can
be understood in two ways: Firstly, anomalies can be data points with properties, the
majority of the data does not have. Such anomalies are called out of distribution. The other
understanding, and the one used in the context of this thesis, is that of over-densities: While
anomalies show properties that can be part of the normal data points, certain properties
occur more often than in the rest of the data. As HEP is statistical by the nature of
quantum mechanics, this work follows the second understanding of anomalies.

Independent of the understanding of anomalies, there is no generally accepted metric to
define anomalies. Different, so-called Anomaly Scores (ASs), can be developed depending
on the methods used to analyze the data points.

In recent years the search for anomalies, also called Anomaly Detection (AD), has gained
traction as a complementary paradigm in searches for physics beyond the Standard Model
(BSM). The rising number of increasingly complex theoretical models for possible BSM
scenarios is impossible to cover with dedicated searches for each one of them. Therefore,
model-independent searches can identify data, which deviates from SM based predictions.
In these regions, more precise and dedicated searches can then be conducted to set limits
or extract information on the BSM models.

For these problems, established methods of AD are considered as not well suited. This
sparked the LHC Olympics 2020 [4], a challenge held to develop new ansatzes for model-
independent searches in HEP. In its course, several methods for AD were developed. the
challenge presented a search in dijet events with three DM particles Z ′ → X(→ qq̄)Y (→ qq̄)
as a benchmark and test case. For development, there was one data set consisting of
background and signal data with corresponding labels. The evaluation was done on three
different kinds of Black Boxes; one with a signal similar to the development sample but
with different masses, one without any signal, and one with a signal with additional decay
modes into three jets. While several submitted models could identify the signal in the first
Black Box, they could not make statements about the absence of a signal. Additionally,
none could identify the structurally different signal of Black Box 3. The following lessons
are taken from the results of the LHC-Olympics:

• A model should indicate the absence of an anomaly.

• The complexity of the signal has a huge impact on the detecting abilities and a model
tuned towards one expected kind of signal might be insensitive to a structural different

23
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model.

As a consequence, this work will only attempt to be model-parameter-independent.

While the LHC Olympics focused on newly created algorithms, the use of autoencoders has
gained some popularity within the HEP community [1], [18]. Autoencoders are a common
tool in AD in several fields as they are rather easy to train. In the following sections their
base principles are introduced, several varieties are explained and the training algorithm
used in this work is explained.

5.1. Machine Learning and Autoencoders

The broad term Machine Learning (ML) describes a wide range of algorithms, which
behaviors are determined by tuning parameters based on example inputs. During this
process called training, these examples are passed through the algorithm and a value based
on its output is calculated. Then the algorithm’s parameters are adjusted to minimize this
value using, among others, gradient descent.

5.1.1. Neural Networks

As one kind of ML algorithms Neural Networks (NNs) are inspired by the function of
a biological brain. Their smallest building blocks, the neurons, were first described as
Rosenblatt-percteptrons [19]. These neurons are simple functions taking inputs and returning
a 0 or 1 based on them. In this information processing, each input is multiplied with a
weight wi. All weighted inputs are then summed up and passed through an activation
function f mapping the output to 0 or 1.

y = f(
∑
i

wi · xi + b). (5.1)

Usually, a bias b is added to the sum. In praxis, a continuous mapping is chosen as an
activation function, which must not necessarily be restricted between 0 and 1.

Neurons are ordered in so-called layers. In fully connected layers, the only kind used in this
work, each neuron in a layer receives the output of all neurons in previous layers as input.
Together these layers make up a NN. These networks are trained to minimize a given metric
based on their output. The choice of the metric, also called the loss function, depends
on the task the NN is expected to do. To train the NN a process called backpropagation
is used. During it, the loss function’s gradient for the last layer’s weights and biases is
calculated. Via gradient descent, they are adjusted and this adjustment is propagated
through all previous layers. For computational efficiency, training samples are usually not
shown one after the other, but in batches with the loss function being averaged over all
batches. There exist several additional algorithms and variations to this concept, some of
which are used in this work and described in Section 5.2.

In this work, the pytorch [20] library is used for the technical implementation
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5.1.2. Prescaling

It is common, to scale all input features to be distributed in the same range of values,
usually centered around 0. One simple way to do this is the standardization:

xscaled =
xunscaled − µ(xunscaled)

σ(xunscaled)
. (5.2)

Here µ(xunscaled) is the mean of the unscaled feature x over all simulated background
samples, and σ(xunscaled) is the standard deviation.

5.1.3. Autoencoder Architectures

Basic Autoencoders

The first Autoencoder (AE) were proposed as a tool for dimension reduction [21]. As its
core concept, a NN takes input features and puts out a usual lower number of features.
This first NN is called the encoder. Taking the lower dimensional representation, a second
NN (decoder) produces an output of the same form as the input. The loss function must
then reflect the difference between the input to the encoder and the output of the decoder.
This loss is also called reconstruction error and different metrics exist to quantify it. In this
work the Mean Squared Error (MSE) per event is used:

MSE =
N∑
i

(xi − x̂i)

N
, (5.3)

with the input features xi, the reconstructed features x̂i, and the number of features N .
This is a common metric used to train autoencoders in the context of HEP [1]. A schematic
overview of an AE can be seen in Section 5.1.3.

Figure 5.1.: Scheme of an Autoencoder. The input features are compressed into a bottleneck
(latent representation, in blue) with an encoder (green). From it, the features
are then reconstructed via the decoder (yellow).

With using this setup two possibilities exist to identify anomalies: One way is to use the
additional variables from the lower dimensional representation. This reduces the number
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of dimensions to detect anomalies in, but AD remains a multi-dimensional problem. The
second way to use AEs for AD is to use the reconstruction error. The autoencoder is
expected to reconstruct the samples from its training well. Rare, anomalous samples are
expected to be reconstructed badly and therefore have a higher reconstruction error. This
reduces AD to a one-dimensional problem.

There are several variations of this concept, some of which will be described in the following.
To distinguish the basic AE model from the general class of models, the model will be
capitalized or abbreviated with AE.

Variational Autoencoder

Basic AEs map each input sample to one point in latent space. However, it does not
enforce, that close-by points in latent space also represent similar data. This lack of
generalization was targeted for improvement when Variational Autoencoders (VAEs) was
introduced [22]. Instead of learning deterministic representations, a Gaussian distribution
for each sample is learned. Therefore, for each sample a mean µ = (µ1, µ2, ...µN ) and a
variance σ2 = (σ2

1, σ
2
2, ...σ

2
N ) is learned. Both define a Gaussian distribution

g(z) =
1√

σ2(2π)N
e
− 1

2
z−µ

σ
2 , (5.4)

from which a sample z is pulled. This sample is then used as a latent representation and to
reconstruct the input. Section 5.1.3 shows a schematic overview. Since the variance is always

Figure 5.2.: Scheme of a Variational Autoencoder. The decoder now has a 2∗L dimensional
output from which half is interpreted as a mean and the other as a variance.

positive, in praxis its logarithm logvar = log
(
σ2

)
is learned by the encoder. Therefore,

negative values are interpreted as small variances. Additionally, the overall distribution is
regularised to be a standard gaussian (µ = 0, σ = 1), via the Kullback-Leibler Divergence
(KLD) [22]:

DKL((N)(µ, σ)|(N)(0, 1)) = −0.5
L∑
l

(1 + log
(
σ2
l

)
− µ2

l − σ2
l ), (5.5)
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with the gaussian distribution (N), the number of latent dimensions L, the latent mean
µl and the latent variance σl. The total loss function that has to be minimized per event
becomes

L = MSE + βDKL =

N∑
i

(xi − x̂i)

N
− β · 0.5

l∑
l

(1 + log
(
σ2
l

)
− µ2

l − σ2
l ). (5.6)

The hyperparameter β gives weight to the regularising term and is set to 0.1 in this work.

Dirichlet Variational Autoencoder

Dirichlet Variational Autoencoder (DVAE) are an extension of VAE where instead of a
gaussian distribution a Dirichlet distribution is used. The implementation in this work
follows [1], where a Dirichlet distribution is approximated by applying a softmax function in
the latent space. Section 5.1.3 shows the schematics of an DVAE. A Dirichlet distributions

Figure 5.3.: Scheme of a Dirichlet Variational Autoencoder. After sampling from a gaussian
distribution, a softmax function is applied. The results are then passed to the
decoder.

probability function has the form

Dα(z) =
Γ(

∑
i αi)∏L

i Γ(αi)

L∏
i

r
αi−1
i , (5.7)

with the hyperparameters αi > 0, the number of latent dimensions L, and the Γ function
as the extension of the factorial function to non-integer values. The distribution can be
interpreted as a distribution over different possibilities. For example, consider a particle
that could be either a e, µ, or a π: one can assign probabilities to each hypothesis, e.g.
30% to be an e, 40% to be a µ, and 30% to be a µ. For each of these triplets, the Dirichlet
distribution assigns a probability for this combination being true. From this example, it is
also clear that only triplets which sum up to 100% are allowed. So the distribution is only
defined on an L-dimensional simplex.

For the approximation via a softmax function on a gaussian distribution

Dα(r) ≈ softmax(N (z, µ̃, σ̃)) (5.8)
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with the softmax function
softmax(xi) =

exi∑N
j exj

(5.9)

the parameters become

µ̃i = logαi −
1

L

L∑
i

αi (5.10)

and

σ̃i =
1

αi
(1− 2

L
) +

1

R2

L∑
i

1

αi
. (5.11)

With that, the regularisation term in the loss is the KLD of the learned Gaussians to the
imposed prior defined by the hyperparameter αi:

DKL(N (µl, σl)|Dα(r)) =
1

2

L∑
i

(
σ̃2
i

σ2
i

+
(µ̃i − µi)

2

σ2
i

− L− log
σ2
i

σ̃2
i

). (5.12)

With the choice of the hyperparameter α, a hierarchical structure can be given to the
latent space. Following the reasoning in [1], anomalous samples should be pushed towards
variables with a lower weight. Since it is not clear what categories will be encoded in the
latent space, a naive choice for these hyperparameters is done:

αi =

{
0.1, for i = L− 1

0.9, else
. (5.13)

This gives L− 1 categories the same weight and creates on rare category (αL = 0.1). Of
course, other choices can be made, making this a possibility for further exploration.
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5.2. Training

Training the various versions of autoencoders brings several challenges in terms of ensuring
convergence and training time. Namely, convergence can fluctuate heavily between epochs
and might not happen at all. To tackle these issues, cross-validation, weight averaging,
gradient clipping, and learning rate scheduling are employed. As some of these measures
also slow down convergence and prolong training time, early stopping and a best epoch
selection are implemented.

Cross-validation

The first measure used to stabilize the training is cross-validation. For this, in each epoch,
the data set is split into five parts, called folds. Four of these are used to perform the
backpropagation, while the other one is used for validation. Within an epoch, each of the
folds is used for validation once, while the others are used for backpropagation, so each
data point is used four times for backpropagation within an epoch. For each epoch, the
data is shuffled and new folds are defined. This procedure prevents biases in the training
data, which could arise from a fixed split between training and validation data sets. While
it might seem unlikely in a case with a rather big data set of around 68 thousand points,
tests showed, that cross-validation still stabilized convergence. This is likely due to the
nature of the data, which contains a high proportion of nonphysical events caused by beam
background and errors in the reconstruction algorithm. In this work, the scikit-learn [2]
KFold class is used.

Weight Averaging

To further ensure smooth convergence, stochastic weight averaging is used. In this, back-
propagation does not change the model’s weights and biases within an epoch. Instead,
the weights and biases of each backpropagation are accumulated, and only at the end of
the epoch, they are averaged and applied to the model. By doing that the stability of
the training is further improved by averaging out the adjustments on the weights and
biases. However, this also slows down the convergence and more epochs are needed until
convergence is reached. While this method was vital during test runs on smaller data sets
(106 events) during the design phase of the model, the final data set might not need this
measure. The effect of removing weight averaging on training time and convergence was not
studied due to time constraints. For the technical implementation, the torchcontrib [20]
SWA class was used.

Gradient Clipping

Another measure taken to avoid instabilities in training is gradient clipping. During each
backpropagation, the norm of the gradient is limited to 0.001. This also contributes to
longer training times as it limits the changes made per epoch. The implementation uses
the pytorch [20] clip_grad_norm_ function.
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Early Stopping and Best Epoch Selection

To ensure no longer training than needed and get optimal results a best epoch selection in
combination with early stopping is employed. As the best epoch, the epoch with the lowest
validation loss is considered. If there is no new best epoch for more than 15 epochs the
training is stopped.

Learning Rate Scheduling

Learning rate scheduling is adapted to yield better training results and stabilize the training
in its later stages on the one hand, but also to reduce the number of epochs needed to reach
convergence. For this pytorchs [20] ReduceLROnPlateau scheduler is used. It monitors the
validation loss and reduces the loss by a factor of 0.1 when there is no relevant change for a
set number of 10 epochs. As an irrelevant change, a relative difference smaller than 10−4 to
the best epoch is considered.



6. Training Analysis

For the training, all background samples described in Section 4.3 are used.

Additionally, weights in the loss calculation are needed to reflect the discrepancy between
the actual number of events of a background process and its expected fraction in the
experiment.

The input features are each FSP’s four-vector and the missing momentum and missing energy
of the event. In total, these are 20 input features. Across all autoencoder architectures, the
hyperparameters described in Table 6.1 are used. These hyperparameters were chosen based
on experiments using only a small subset of the training samples. For the AE and VAE
architectures models with latent space dimensionality 1 to 10 are trained. Since for the
DVAE, the one-dimensional case is not defined, architectures with latent space dimensions
2 to 10 are trained.

During the training, each epoch’s average total loss, MSE, and regularising terms for VAE
and DVAE are reported. Additionally, each epoch’s learning rate is tracked to monitor the
learning rate scheduler.

6.1. Basic Autoencoders

A summary of the training results is provided in Table 6.2. With an increasing number of
latent dimensions the reconstruction improved. This improvement is expected since more
dimensions allow for an easier encoding of event features. As a downside, higher numbers

Table 6.1.: Overview of the hyperparameters fixed across all autoencoders.

Hyperparameter Value

Encoder architecture 3 layers, 100 neurons each
Decoder architecture 3 layers, 100 neurons each
starting learning rate 10−5

Batch size 256
maximum epochs 500

31
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Table 6.2.: Summary of training results for latent dimensions 1-10 for the AE.

Latent dimensions Training time in h avg. MSE of best epoch

1 1.6 0.7
2 17 0.3
3 22 0.22
4 26 0.14
5 23 0.1
6 27 0.08
7 28 0.06
8 25 0.04
9 21 0.028
10 27 0.013

of latent space dimensions tend to have longer training times. However, since the training
was performed on different GPUs, the training times in Table 6.2 only give tendencies.

Fig. 6.1 shows the trainings progress for the 1-dimensional AE. Until epoch 9 the loss
function decreases. After that, an increase is observed which triggers the learning rate
scheduler. This then stalls the training until its termination conditions are reached. Training
higher dimensions qualitatively shows the same behavior but takes longer. As Fig. 6.2
shows, the learning rate scheduling shows an effect in these cases: The drop in the learning
rate before epoch 400 causes a slight drop in the loss function. This follows from the smaller
steps in adjusting the weights and biases the smaller learning rate causes. With the higher
learning rate, the training oversteps the minimum in the loss function, while smaller steps
can get closer to the minimum.
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Figure 6.1.: Training details for the training of an AE with one-dimensional latent space.
The total loss is equal to the MSE.
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Figure 6.2.: Training details for the training of an AE with 10-dimensional latent space.
The total loss is equal to the MSE.
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Table 6.3.: Summary of training results for latent dimensions 1-10 for the VAE.

Latent dimensions Training time in h avg. loss of best epoch

1 2.1 0.9
2 8 0.8
3 9 0.7
4 7 0.7
5 9 0.7
6 7 0.7
7 9 0.7
8 8 0.7
9 8 0.8
10 8 0.7

6.2. Variational Autoencoder

In the same manner as the AE, the training of the VAE can be analyzed. A summary of
the training results is provided in Table 6.3. Like for the AE, the 1-dimensional model
converges fast and shows the loss on a plateau after some epochs. Again this is not changed
by the learning rate scheduler. This can be seen in Fig. 6.3.

The 8-dimensional VAE (Fig. 6.4) shows fluctuations of the loss functions during training
but still converges. Something similar can be observed in the 9-dimensional case, but no
other training.

As Table 6.3 shows, all models with more than one latent dimension, end around the same
loss values. The suspected reason for this is the choice of β = 0.1. This choice gives the
KLD term a higher weight and thereby incentivizes the VAE to structure the latent space
before minimizing the MSE. As a consequence, the encoder structures the latent space into
a Gaussian distribution without encoding information useful for the reconstruction. This
effect can be observed in Fig. 6.5. This plot shows the latent variables of a 4-dimensional
VAE with their correlations.

Testing other values for β could not be done in the scope of this thesis.



6.2. Variational Autoencoder 35

0 5 10 15 20 25 30
epoch

100

8 × 10 1

9 × 10 1

M
ea

n 
Sq

ua
re

d 
Er

ro
r

0 5 10 15 20 25 30
epoch

100

3 × 10 1

4 × 10 1

6 × 10 1

KL
D

0 5 10 15 20 25 30
epoch

100

8.8 × 10 1

9 × 10 1

9.2 × 10 1

9.4 × 10 1

9.6 × 10 1

9.8 × 10 1

to
ta

l l
os

s

validation loss
training loss
best epoch: 15, 
 min. loss: 0.9

0 5 10 15 20 25 30
epoch

10 7

10 5

10 3

10 1

Le
ar

in
gr

at
e

Figure 6.3.: Training details for the training of an VAE with one-dimensional latent space
(top). The total loss is equal to the MSE + 0.1 × KLD. The two constituents
of the loss are shown in the lower row of the plot (bottom).
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Figure 6.4.: Training details for the training of an VAE with 8-dimensional latent space
(top). The total loss is equal to the MSE + 0.1 × KLD. The two constituents
of the loss are shown in the lower row of the plot (bottom.
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Figure 6.5.: Latent variables and their correlation of the 4-dimensional VAE.
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Table 6.4.: Summary of training results for latent dimensions 2-10 for the DVAE.

Latent dimensions Training time in h avg. loss of best epoch

2 8 0.7
3 18 0.4
4 21 0.29
5 20 0.28
6 30 0.2
7 30 0.15
8 30 0.12
9 28 0.09
10 40 0.08

6.3. Dirichlet Variational Autoencoder (DVAE)

Training evaluation

Like in the case of the AEs (Section 6.1), the DVAEs show an increase in training time and
a decrease in the loss of the best epoch with an increasing number of latent dimensions
(Table 6.4). As can be seen in Fig. 6.6, training for 10 latent dimensions already approaches
the maximum number of epochs. Here, even training for more epochs might be possible, as
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Figure 6.6.: Training details for the training of an DVAE with 10-dimensional latent space.
The total loss is equal to the MSE.

indicated by the fact that the learning rate scheduler did not take any action. Testing this,
however, was not possible within the time frame of this thesis.



7. Detecting Anomalies

As discussed in Chapter 5, the MSE is expected to be higher for samples the autoencoder
was not trained on. So, it should be possible to extract signal events by selecting events
above a given MSE threshold. But not all anomalies are equally anomalous. Autoencoders
learn to replicate an event by compressing them into lower dimensions. This compression
means, that some information is lost and only some features are encoded. Signals sharing
these features therefore might be equally well reconstructed than the background. The
features that are encoded heavily depend on the number of latent dimensions. This is
supported by the lower MSE for more latent dimensions shown in Chapter 6. So, it is
expected, that the MSE will vary for different model parameter configurations and the
number of latent dimensions. In the following three sections, this connection is explored for
the three autoencoder architectures AE, VAE, DVAE.

7.1. Basic Autoencoder

As discussed in Section 5.1.3, the reconstruction error MSE between the input of an
autoencoder and its output is an intuitive choice as AS. Since all models were trained on
only background samples, it is expected, that the signal samples show higher MSE values
when passed through the AEs. Fig. 7.1 shows these distributions for the simple case of a
1-dimensional AE for the example signals defined in Section 4.1. The figure shows, that
some example signals, namely the one representing high masses and high mass differences,
have a similar low MSE as the background. Only in the case of light masses, a distinctive
peak is formed. As a consequence, using the MSE as AS will not show the same sensitivity
toward all model parameter configurations.

In comparison, the MSE distribution for a 10-dimensional AE (Fig. 7.2) shows fewer
distinctive differences for the signals. All example signals show lower MSE than in the
1-dimensional case. Also, the example with small mh

′ and mχ2
does not have a distinctive

peak.

To evaluate the potential sensitivity of a model towards the signals, the PFOM from
Eq. (4.3) is used. The efficiencies in these calculations are with respect to the number of
events after the selections described in Section 4.2. Therefore, only the sensitivity of the
autoencoder is evaluated. The PFOM is calculated for selections using different MSE values
as selection criteria. The granularity in which it is evaluated is calculated using the 1%-tile
and 99%-tile of the MSE distribution. The values between both ends are split into 100

39
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Figure 7.1.: Distribution of the MSE of the background samples and the example signals
for a 1-dimensional AE.

evenly-sized steps. Using this stepsize, the values between the minimum and maximum
MSE found in the background samples are probed. This procedure is chosen to be robust
towards outliers while still having fine enough bins to capture the changes in the sensitivity.
While this is not as relevant with the one-dimensional AE, it becomes more relevant in
models with more latent dimensions. As can be seen in Fig. 7.2, the region of low MSE
values have a high event density, while outliers are still present. Simply using the maximal
and minimal values and splitting these at equidistant values might not capture differences
of the signals.

For each of the signal examples, the PFOM is evaluated, leading to the graphs in Fig. 7.3
in the case of the one-dimensional AE. Clearly, the example signal with high mass splitting
does not gain sensitivity from the use of this model. However, the sensitivity for the other
examples can be improved with it.

To get the optimal sensitivity for each of the signals, the selection can be chosen at the
point of maximal PFOM for each signal. This approach does in a sense drop the premise
of a model parameter-independent search. However, the problem of searching for multiple
possible parameters is reduced to optimize the selection for just one variable. Performing
this PFOM optimization for all simulated signals yields Fig. 7.4. This plot confirms the
trend of higher sensitivity towards low masses of this model. This tendency, however, should
be taken with some caution, since some training samples have a cut-off for low masses as
discussed in Section 4.1. For all signals with mχ1

> 2GeV c−2, this model does not show
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Figure 7.2.: Distribution of the MSE of the background samples and the example signals
for a 10-dimensional AE.

any significant sensitivities. The selection efficiencies drop under 1%, lowering the number
of remaining signal events below the threshold for statistical significance.

This optimization is repeated for every AE. For the AE with 10 latent dimensions, this leads
to Fig. 7.5. This model shows a sensitivity towards signals with high masses, while there is no
sensitivity for lower masses. With that in mind, it becomes clear that different-sized latent
spaces show different capabilities to detect signals. To get an overview of where different
AE have their sensitivities, the example signals are used. For each of these the maximal
PFOM value is plotted over the number of latent dimensions in the model in Fig. 7.6. This
shows, that no model has any sensitivity for signals with a high difference between the mχ1

and mh
′ . For the high mass examples, the sensitivity rises until 8 latent dimensions. It does

not lose as much sensitivity as the example with small masses. Training models with even
higher dimensions might reveal even higher sensitivities in this area. The example for small
masses shows the highest sensitivity for all models, except the 10-dimensional one. Based
on this figure, the 8-dimensional AE seems to be the optimal choice. The optimization
results for all signal samples are in Fig. 7.7. This figure shows the very high sensitivity
for low-mass configurations. Configurations with high mass differences are undetectable
for this model, as with any other one. Comparing high mass configurations to Fig. 7.5,
some configurations, like mh

′ = 1.5 eV c−2, mχ1
= 1.5 eV c−2 show less sensitivity than the

10-dimensional AE.

To visualize the effect, Fig. 7.8 shows the h′ mass distribution for the background samples
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Figure 7.3.: PFOM over MSE of the 1-dimensional AE for the three example signals.

and the three example signals. The left figure shows the distributions after the selections
discussed in Section 4.2. For the right figure, the 8-dimensional AE is used. The selection
on the MSE is optimized towards the example signal for small masses.



7.1. Basic Autoencoder 43

0.25 0.5 1.0 1.5 2.0 2.5 3.0
m 1

0.25

0.5

1.0

1.5

2.0

2.5

m
h′

PFOM=0.33 × 10 2

sig.eff.=0.75 × 10 1

MSE>1.24

PFOM=2.951 × 10 3

sig.eff.=0.74 × 10 1

MSE>1.17

PFOM=0.31 × 10 2

sig.eff.=0.93 × 10 1

MSE>1.24

PFOM=2.089 × 10 3

sig.eff.=0.67 × 10 1

MSE>0.89

PFOM=2.193 × 10 3

sig.eff.=0.79 × 10 1

MSE>0.95

PFOM=2.221 × 10 3

sig.eff.=0.81 × 10 1

MSE>0.97

PFOM=1.438 × 10 3

sig.eff.=2.748 × 10 2

MSE>0.51

PFOM=1.472 × 10 3

sig.eff.=0.34 × 10 1

MSE>0.55

PFOM=1.483 × 10 3

sig.eff.=0.37 × 10 1

MSE>0.56

PFOM=1.486 × 10 3

sig.eff.=0.36 × 10 1

MSE>0.56

PFOM=1.215 × 10 3

sig.eff.=2.6800 × 10 3

MSE>1.759 × 10 1

PFOM=1.219 × 10 3

sig.eff.=0.388 × 10 2

MSE>1.953 × 10 1

PFOM=1.220 × 10 3

sig.eff.=0.340 × 10 2

MSE>1.953 × 10 1

PFOM=1.222 × 10 3

sig.eff.=2.6000 × 10 3

MSE>1.953 × 10 1

PFOM=1.227 × 10 3

sig.eff.=0.8400 × 10 3

MSE>1.953 × 10 1

PFOM=1.206 × 10 3

sig.eff.=0.9200 × 10 3

MSE>1.176 × 10 1

PFOM=1.206 × 10 3

sig.eff.=1.0800 × 10 3

MSE>1.176 × 10 1

PFOM=1.205 × 10 3

sig.eff.=1.5200 × 10 3

MSE>1.176 × 10 1

PFOM=1.209 × 10 3

sig.eff.=0.0
MSE>1.176 × 10 1

PFOM=1.220 × 10 3

sig.eff.=0.388 × 10 2

MSE>1.953 × 10 1

PFOM=1.258 × 10 3

sig.eff.=0.576 × 10 2

MSE>2.730 × 10 1

PFOM=1.206 × 10 3

sig.eff.=1.2400 × 10 3

MSE>1.176 × 10 1

PFOM=1.206 × 10 3

sig.eff.=1.2000 × 10 3

MSE>1.176 × 10 1

PFOM=1.206 × 10 3

sig.eff.=1.4800 × 10 3

MSE>1.176 × 10 1

PFOM=1.209 × 10 3

sig.eff.=0.80000 × 10 4

MSE>1.176 × 10 1

= 1.0 × 10 1, = 1.0 × 10 1, mA ′ = 1.2 × 101GeV/c2

0.001

0.002

0.003

0.004

0.005

PFOM

Figure 7.4.: PFOM, signal efficiency and MSE value of the selection for each simulated
signal after the PFOM optimization for a 1-dimensional AE.
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Figure 7.5.: PFOM, signal efficiency and MSE value of the selection for each simulated
signal after the PFOM optimization for a 1-dimensional AE.
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Figure 7.6.: Maximal PFOM of the example signals over the number of latent dimensions
for AE.
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Figure 7.7.: PFOM, signal efficiency and MSE value of the selection for each simulated
signal after the PFOM optimization for a 8-dimensional AE.
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Figure 7.8.: Comparison of the invariant mass of the h′ candidates before and after the
selection MSE > 0.1978.
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7.2. Variational Autoencoder (VAE)

Starting with the comparison of the maximal PFOM values for the example signals in
Fig. 7.9, it becomes clear, that the VAE architecture shows little promise. Again, the low
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Figure 7.9.: Maximal PFOM of the example signals over the number of latent dimensions
for VAE.

mass example shows the highest sensitivity. However, since the MSE changes little with the
latent dimensions, the sensitivities also do not change. With the sensitivity for the heavy
example rising until 3 latent dimensions, this could be considered as the optimal VAE. As
Fig. 7.10 shows, there is only significant sensitivity in the low-mass regions. Even there,
the sensitivity does not exceed that of the AE models.
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Figure 7.10.: PFOM, signal efficiency and MSE value of the selection for each simulated
signal after the PFOM optimization for a 3-dimensional VAE.
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7.3. Dirichlet Variational Autoencoder (DVAE)

Again, the maximal PFOM of the example signals can be used as a starting point to analyze
the models. As Fig. 7.11 shows, with higher numbers of latent dimensions the sensitivity
for the high mass example increases. This suggests the 9-dimensional DVAE as the optimal
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Figure 7.11.: Maximal PFOM of the example signals over the number of latent dimensions
for DVAE.

model. Fig. 7.12 shows the results of the PFOM optimization for all signal. It shows a
higher sensitivity towards low masses and now towards high mass differences. Also, some
sensitivity for high-mass configurations can be observed. Qualitatively, this picture does
not change across the different-sized latent spaces. When comparing these results, with
the AE, especially the 8- and 10-dimensional one, the DVAE is not more sensitive for any
configuration.
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Figure 7.12.: PFOM, signal efficiency and MSE value of the selection for each simulated
signal after the PFOM optimization for a 9-dimensional DVAE.
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7.4. Anomaly Detection in the Latent Space
The fact, that neither the DVAEs nor the VAEs are worse at detecting anomalies via
the MSE is not surprising. While the AE is only optimized for this metric, the others
additionally give a structure to the latent space. As such it is also interesting to use the
latent space to identify anomalies. Compared to the classical selection-based search this
would reduce such a search to fewer variables. The tradeoff for that is, that these variables
do not have a physical interpretation. Conducting such a search for multiple models is
beyond the scope of this thesis. Therefore, only a few interesting cases are studied.

Gaussian Latent Spaces

The latent spaces of the VAEs are regularised to be a Gaussian distribution. As discussed
in Section 6.2 all VAEs with more than 1 latent dimension behave equivalently. Therefore,
the 3-dimensional case is chosen arbitrarily. Its latent space is visualized in Fig. 7.13.

Figure 7.13.: Latent space of the 3-dimensional VAE. On the diagonal, the distributions of
the latent variables are shown. In the scatter plots, the correlations between
two variables are shown.

In only two of the three variables, a structure of the background samples can be observed.
E.g. latent variable 2 shows a separation between the e+e− → µ+µ− and e+e− → e+e−

samples. Still, a concrete interpretation of these variables is not possible. Looking at the
signal, only a little difference to the background can be seen. One reason for this is the
choice of β as discussed in Section 6.2. A too-high value of β gives precedence to organizing
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the latent space. This prioritizes the construction of a Gaussian distribution in the latent
space over encoding information for the reconstruction. Therefore, the VAE do not learn
features of the training data but place inputs into a gaussian distribution. As a consequence,
anomalies are also placed into a gaussian distribution without regard to their features.

Dirichlet Latent Spaces

Unlike the AEs and VAEs, the DVAEs give some kind of interpretation. As discussed in
Section 5.1.3, the prior hyperparameter α is chosen such, that the last latent variable can
represent the rare events. This makes its interpretation as a ’degree of anomaly’ somewhat
intuitive. In the simple case of just two latent variables, the latent space looks like presented
in Fig. 7.14.

Figure 7.14.: Latent space of the 2-dimensional DVAE. On the diagonal, the distributions
of the latent variables are shown. The scatter plots show the correlations
between two variables. For the 2-dimensional DVAE, this is per definition a
line.

Even though a strong hierarchy (α = (0.9, 0.1)) is used, anomalous events are not pushed
towards one edge. Moving to higher dimensional latent spaces, more interesting cases arise.
With the categorical interpretation of the latent space, the PFOM optimization method
used for the MSE in Section 7.1 can be adapted by simply switching the MSE for the latent
variable. With this method, every single latent variable can be tested as an AS. Fig. 7.15
shows the results for the example signals for all latent variables of the 10-dimensional DVAE.
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Figure 7.15.: Results of the PFOM optimization for the example signals for the latent space
of the 10-dimensional DVAE.

The latent space shows only small sensitivities across all example signals. This demonstrates
the complexity of such high-dimensional latent spaces, even if they are structured. Using
different priors α might improve the performance, though it is not clear what values for α
would accomplish that.





8. Validation

Until now, all training and analyses were based on simulated samples. But simulations only
approximate the real data and the behavior of the autoencoders could differ when applied
to real data. Mismodeling aspects of the data could bias the autoencoder: Since it has
not seen these aspects, it can not encode or decode them. In turn, this will lead to higher
MSEs values for data samples, which then wrongfully suggests anomalies. There are two
possible ways to handle this problem:

Training on Data

One could train directly on data. This would remove all possible mismodeling of the
simulation, but then potential anomalies would also be included in the training samples.
This would change the premise of AD with autoencoders. Where before, unseen samples
were expected to have a higher MSE, now rare samples are expected to have a higher
MSE. This still is a reasonable assumption but does require some validation. Training the
autoencoders with increasing numbers of signals injected would give a limit on how rare a
signal could be until the autoencoder learns to reconstruct it. Since the sensitivity studies
presented in Chapter 7 show dependencies of the MSE on the model parameters, this test
might have to be repeated with multiple model parameter configurations. Another, more
model-parameter-independent way, would be to select side-band samples. Such samples
would be rejected by the selection described in Section 4.2. But since the selection of the
training samples mostly aims to reject misreconstructed events and beam background, there
are no side bands left.

Applying to Data

The second option for validation is, to use the autoencoders trained on MC samples and
apply them on data. This requires that data and simulation are in good enough agreement,
that the autoencoders behave the same for MC and data. The latent space delivers
appropriate variables for this test, as the latent variables capture, what the encoder learns
to encode. As a test sample, data with an integrated luminosity of

∫
L = 1.03 fb−1 is

processed as described in Section 4.2 and passed through the AE with 8 latent dimensions.
Additionally, a correction for the particles track momenta is applied [23]. Up until now,
no measures were taken, to ensure that any of the simulated events used for training are
actually triggered. For the following test, all data and simulated events are required to be
triggered by the HLT and the L1-Trigger for 3 full tracks (fff).
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Figure 8.1.: Comparison of the distribution of latent variable 0 of the 8-dimensional AE for
MC and data.

These additional corrections allow comparing data and MC as shown in Fig. 8.1, Fig. 8.2.
While the basic structure of the simulation is also present in the data, some clear differences
can be seen. First, the simulations underestimate the number of events for most bins. Both
variables also show a higher excess of data events in the area of the e+e− → BB̄ sample.
In variable 0 there also is a higher excess in the area of the four lepton processes.

There could be several causes for these discrepancies. One known is that the current event
generators used do not simulate initial or final state radiation [14]. In these cases, a photon
is radiated by the electron or positron shortly before they collide (Initial State Radiation
(ISR)) or by the FSP after the collision process (Final State Radiation (FSR)). In both
cases, this leads to more missing Energy as the radiated photons often do not leave the beam
pipe. Other possible discrepancies might arise from the trigger efficiency. This comparison,
therefore, requires a much more detailed investigation, before any possible claims on the
existence of anomalies could be made.

The knowledge gained from this investigation can also be applied to the selection of training
samples. Excluding events, that are excluded in the data-MC comparison could also be
excluded from the training. This could reduce the range of different inputs the autoencoder
needs to replicate and therefore may improve sensitivities.
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Figure 8.2.: Comparison of the distribution of latent variable 1 of the 8-dimensional AE for
MC and data.





9. Conclusions

In this thesis, three different autoencoder architectures, Autoencoder (AE), Variational
Autoencoder (VAE), and Dirichlet Variational Autoencoder (DVAE) are explored as a tool
for model-parameter-independent searches for inelastic Dark Matter with a Dark Higgs
(IDMDH). For all, errors in the event reconstruction from a latent space measured by the
Mean Squared Error (MSE) are analyzed as Anomaly Score (AS). The sensitivity of this
metric is studied for different mass configurations of the IDMDH model.

Mean Squared Error as Anomaly Score

The sensitivity of the MSE varied with the number of latent dimensions and the mass
configurations. No single autoencoder showed sensitivity towards all regions in the model
parameter space. For configurations with small (<1.5GeV/c2) mh

′ and mχ2
, the highest

sensitivity is reached with an 8-dimensional AE. A 9-dimensional AE has the highest
senstivity for configurations with large (>1.5GeV/c2) mh

′ and mχ2
. For configurations

with high mass differences between the χ2 and h′, none of the autoencoders showed sensitivity.
Sensitivities for low mass configurations are possibly biased by the lack of simulation for the
e+e− → e+e−µ+µ− and e+e− → e+e−e+e− background process below an invariant mass
of 0.5GeV/c2. Including such samples in the training samples is planned in further efforts.
The studies can also be extended to more latent dimensions as current studies suggest a
possible improvement in sensitivity for large mass configurations.

The VAEs are restricted by the strong regularisation of their latent spaces. This limits
their ability to reconstruct resulting in no lower average MSE values with a higher number
of latent dimensions. Further improvement could be reached with less regularised latent
spaces. Autoencoders with unstructured latent spaces proved more effective than structured
ones, though the DVAE did not perform much worse. Further experiments with more latent
dimensions and less strict regularisations could improve their viability.

DVAEs showed a similar behaviour than the unregularised AEs, but with slightly lower
sensitivities overall. The studies suggest further sensitivities could be reached by longer
training times and more latent dimensions.

Searching Anomalies in Latent Space

Bringing efforts in latent tagging presented in [1] proved difficult. Only the latent spaces of
DVAEs showed some sensitivities but showed no improvement over the MSE. The naive
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choice of priors could be one of the reasons and further studies with more elaborate choices
could improve latent tagging. One starting point could be to reflect on the hierarchy of the
background processes in the choice of priors. The results of the VAEs could certainly be
improved with a less strict regularisation.

Additional methods for multivariate analysis like clustering, density estimation, or decision
trees could be tools to define anomalies.

Prospects of Autoencoders Anomaly Detection

Autoencoders, as trained and used in this thesis, proved not to be able to detect all anomalies
equally. While a comparison with a purely selection-based approach is not made, it is
likely the currently reached sensitivities with autoencoders are not significantly higher.
However, additional information, like non-binary Particle Identification (PID) likelihoods,
used in the selection of the training sample can lead to higher sensitivities. The usage
of advanced autoencoder architectures like Normalized Autoencoders [18] or graph-based
architectures can bring improvements too. As demonstrated by Chapter 8, autoencoders
show similar behavior on data as for simulation. But some aspects of this comparison like
trigger efficiencies and limitations in the Monte Carlo (MC) event generators require further
investigation.

Outlook

Besides improvements, the current work offers multiple ways to extend its scope. Additional
model parameters like the mixing angles θ and ϵ could be varied and the sensitivities
studied. More final states of the signal process could be included or the search widened
for non-prompt decays. On the Machine Learning (ML) side, Anomaly Detection (AD)
in High Energy Physics (HEP) is a very active field of development. With the CMS and
ATLAS collaborations at the forefront of this effort, many methods based on jet images
have been developed. New autoencoder architectures like the Normalized Autoencoder [18]
have emerged in the last year, which tackle some of the issues with the architectures
described here. Also, ansatzes based on density estimations like Classification without
Labels (CwoLa) [24] could be brought to the context of this work.

While this work focused on using AD in offline analysis, the usage on the trigger level is
another discussed topic. With the high luminosities of Belle II and future experiments have
to deal with, it becomes increasingly important to quickly identify interesting events to
not miss any hint for physics beyond the standard model. This could be another future
application of this work.
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Figure A.1.: True particles used to reconstruct the h′ and χ2 candidates for the e+e− →
τ+τ− sample.
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Figure A.2.: True particles used to reconstruct the h′ and χ2 candidates for the Continuum
sample.
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Figure A.3.: True particles used to reconstruct the h′ and χ2 candidates for the e+e− →
e+e− sample.
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Figure A.4.: True particles used to reconstruct the h′ and χ2 candidates for the e+e− →
µ+µ− sample.

unm. e hadr.
MCmatched particle h ′ +

unm.

e

hadr.

M
Cm

at
ch

ed
 p

ar
tic

le
 h

′

1

5

5

2

1

1

15

21

4

3

28

344

320

43

3

15

341

401

72

4

77

94

11

unm. e hadr.
MCmatched particle 2, e +

unm.

e

hadr.

M
Cm

at
ch

ed
 p

ar
tic

le
 

2,
e

2

2

520

17

177

219

22

2

4

1

223

6

96

123

1

178

7

92

119

100

101

102

100

101

102

BB BKG

Figure A.5.: True particles used to reconstruct the h′ and χ2 candidates for the e+e− → BB̄
sample.
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Figure A.7.: True particles used to reconstruct the h′ and χ2 candidates for the e+e− →
e+e−π+π− sample.
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Figure A.9.: True particles used to reconstruct the h′ and χ2 candidates for the e+e− →
µ+µ−µ+µ− sample.

unm. e hadr.
MCmatched particle h ′ +

unm.

e

hadr.

M
Cm

at
ch

ed
 p

ar
tic

le
 h

′

0 0

0

unm. e hadr.
MCmatched particle 2, e +

unm.

e

hadr.

M
Cm

at
ch

ed
 p

ar
tic

le
 

2,
e

0

0

0

10 1

1.2 × 10 1

1.4 × 10 1

1.6 × 10 1

1.8 × 10 1

2 × 10 1

10 1

1.2 × 10 1

1.4 × 10 1

1.6 × 10 1

1.8 × 10 1

2 × 10 1

e+e K0K0( )

Figure A.10.: True particles used to reconstruct the h′ and χ2 candidates for the e+e− →
K0K

0
(γ) sample.



A.2. Training Details for AEs 67

A.2. Training Details for AEs

0 5 10 15 20 25
epoch

100

7 × 10 1

8 × 10 1

9 × 10 1

to
ta

l l
os

s

validation loss
training loss
best epoch: 9, 
 min. loss: 0.7

0 5 10 15 20 25
epoch

10 7

10 5

10 3

10 1

Le
ar

in
gr

at
e

Figure A.11.: Training details for the training of an AE with 1-dimensional latent space.
The total loss is equal to the MSE.
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Figure A.12.: Training details for the training of an AE with 2-dimensional latent space.
The total loss is equal to the MSE.
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Figure A.13.: Training details for the training of an AE with 3-dimensional latent space.
The total loss is equal to the MSE.
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Figure A.14.: Training details for the training of an AE with 4-dimensional latent space.
The total loss is equal to the MSE.
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Figure A.15.: Training details for the training of an AE with 5-dimensional latent space.
The total loss is equal to the MSE.
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Figure A.16.: Training details for the training of an AE with 6-dimensional latent space.
The total loss is equal to the MSE.



A.2. Training Details for AEs 69

0 100 200 300 400
epoch

10 1

100

to
ta

l l
os

s

validation loss
training loss
best epoch: 413, 
 min. loss: 0.6 × 10 1

0 100 200 300 400
epoch

10 7

10 5

10 3

10 1

Le
ar

in
gr

at
e

Figure A.17.: Training details for the training of an AE with 7-dimensional latent space.
The total loss is equal to the MSE.
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Figure A.18.: Training details for the training of an AE with 8-dimensional latent space.
The total loss is equal to the MSE.
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Figure A.19.: Training details for the training of an AE with 9-dimensional latent space.
The total loss is equal to the MSE.
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Figure A.20.: Training details for the training of an AE with 10-dimensional latent space.
The total loss is equal to the MSE.
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Figure A.21.: Distribution of the MSE for the 1-dimensional AE.
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Figure A.22.: Distribution of the MSE for the 2-dimensional AE.
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Figure A.23.: Distribution of the MSE for the 3-dimensional AE.
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Figure A.24.: Distribution of the MSE for the 4-dimensional AE.
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Figure A.25.: Distribution of the MSE for the 5-dimensional AE.
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Figure A.26.: Distribution of the MSE for the 6-dimensional AE.
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Figure A.27.: Distribution of the MSE for the 7-dimensional AE.
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Figure A.28.: Distribution of the MSE for the 8-dimensional AE.
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Figure A.29.: Distribution of the MSE for the 9-dimensional AE.
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Figure A.30.: Distribution of the MSE for the 10-dimensional AE.



76 A. Appendix

A.4. Latentspace of AEs

Figure A.31.: Latent variables and their correlations for the 1-dimensional AE for the
background samples and the three example signals.
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Figure A.32.: Latent variables and their correlations for the 2-dimensional AE for the
background samples and the three example signals.
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Figure A.33.: Latent variables and their correlations for the 3-dimensional AE for the
background samples and the three example signals.
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Figure A.34.: Latent variables and their correlations for the 4-dimensional AE for the
background samples and the three example signals.
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Figure A.35.: Latent variables and their correlations for the 5-dimensional AE for the
background samples and the three example signals.
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Figure A.36.: Latent variables and their correlations for the 6-dimensional AE for the
background samples and the three example signals.
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Figure A.37.: Latent variables and their correlations for the 7-dimensional AE for the
background samples and the three example signals.
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Figure A.38.: Latent variables and their correlations for the 8-dimensional AE for the
background samples and the three example signals.
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Figure A.39.: Latent variables and their correlations for the 9-dimensional AE for the
background samples and the three example signals.
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Figure A.40.: Latent variables and their correlations for the 10-dimensional AE for the
background samples and the three example signals.
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A.5. Training Details for VAEs
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Figure A.41.: Training details for the training of an VAE with 1-dimensional latent space
(top). The total loss is equal to the MSE.
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Figure A.42.: Training details for the training of an VAE with 2-dimensional latent space
(top). The total loss is equal to the MSE.

0 20 40 60 80 100 120
epoch

100

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

M
ea

n 
Sq

ua
re

d 
Er

ro
r

0 20 40 60 80 100 120
epoch

100

KL
D

0 20 40 60 80 100 120
epoch

100

8 × 10 1

9 × 10 1

to
ta

l l
os

s

validation loss
training loss
best epoch: 107, 
 min. loss: 0.7

0 20 40 60 80 100 120
epoch

10 7

10 5

10 3

10 1

Le
ar

in
gr

at
e

Figure A.43.: Training details for the training of an VAE with 3-dimensional latent space
(top). The total loss is equal to the MSE.
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Figure A.44.: Training details for the training of an VAE with 4-dimensional latent space
(top). The total loss is equal to the MSE.
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Figure A.45.: Training details for the training of an VAE with 5-dimensional latent space
(top). The total loss is equal to the MSE.
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Figure A.46.: Training details for the training of an VAE with 6-dimensional latent space
(top). The total loss is equal to the MSE.
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Figure A.47.: Training details for the training of an VAE with 7-dimensional latent space
(top). The total loss is equal to the MSE.
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Figure A.48.: Training details for the training of an VAE with 8-dimensional latent space
(top). The total loss is equal to the MSE.
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Figure A.49.: Training details for the training of an VAE with 9-dimensional latent space
(top). The total loss is equal to the MSE.
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Figure A.50.: Training details for the training of an VAE with 10-dimensional latent space
(top). The total loss is equal to the MSE.
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A.6. MSE for VAEs
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Figure A.51.: Distribution of the MSE for the 1-dimensional VAE.
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Figure A.52.: Distribution of the MSE for the 2-dimensional VAE.
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Figure A.53.: Distribution of the MSE for the 3-dimensional VAE.
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Figure A.54.: Distribution of the MSE for the 4-dimensional VAE.
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Figure A.55.: Distribution of the MSE for the 5-dimensional VAE.
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Figure A.56.: Distribution of the MSE for the 6-dimensional VAE.
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Figure A.57.: Distribution of the MSE for the 7-dimensional VAE.
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Figure A.58.: Distribution of the MSE for the 8-dimensional VAE.
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Figure A.59.: Distribution of the MSE for the 9-dimensional VAE.
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Figure A.60.: Distribution of the MSE for the 10-dimensional VAE.
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A.7. Latentspace of VAEs

Figure A.61.: Latent variables and their correlations for the 1-dimensional VAE for the
background samples and the three example signals.
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Figure A.62.: Latent variables and their correlations for the 2-dimensional VAE for the
background samples and the three example signals.
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Figure A.63.: Latent variables and their correlations for the 3-dimensional VAE for the
background samples and the three example signals.
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Figure A.64.: Latent variables and their correlations for the 4-dimensional VAE for the
background samples and the three example signals.
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Figure A.65.: Latent variables and their correlations for the 5-dimensional VAE for the
background samples and the three example signals.
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Figure A.66.: Latent variables and their correlations for the 6-dimensional VAE for the
background samples and the three example signals.



A.7. Latentspace of VAEs 103

Figure A.67.: Latent variables and their correlations for the 7-dimensional VAE for the
background samples and the three example signals.
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Figure A.68.: Latent variables and their correlations for the 8-dimensional VAE for the
background samples and the three example signals.
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Figure A.69.: Latent variables and their correlations for the 9-dimensional VAE for the
background samples and the three example signals.
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Figure A.70.: Latent variables and their correlations for the 10-dimensional VAE for the
background samples and the three example signals.
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Figure A.71.: Training details for the training of an DVAE with 2-dimensional latent space
(top). The total loss is equal to the MSE.
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Figure A.72.: Training details for the training of an DVAE with 3-dimensional latent space
(top). The total loss is equal to the MSE.
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Figure A.73.: Training details for the training of an DVAE with 4-dimensional latent space
(top). The total loss is equal to the MSE.
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Figure A.74.: Training details for the training of an DVAE with 5-dimensional latent space
(top). The total loss is equal to the MSE.
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Figure A.75.: Training details for the training of an DVAE with 6-dimensional latent space
(top). The total loss is equal to the MSE.
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Figure A.76.: Training details for the training of an DVAE with 7-dimensional latent space
(top). The total loss is equal to the MSE.
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Figure A.77.: Training details for the training of an DVAE with 8-dimensional latent space
(top). The total loss is equal to the MSE.
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Figure A.78.: Training details for the training of an DVAE with 9-dimensional latent space
(top). The total loss is equal to the MSE.
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Figure A.79.: Training details for the training of an DVAE with 10-dimensional latent space
(top). The total loss is equal to the MSE.
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A.9. MSE for DVAEs
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Figure A.80.: Distribution of the MSE for the 2-dimensional DVAE.
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Figure A.81.: Distribution of the MSE for the 3-dimensional DVAE.
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Figure A.82.: Distribution of the MSE for the 4-dimensional DVAE.
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Figure A.83.: Distribution of the MSE for the 5-dimensional DVAE.
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Figure A.84.: Distribution of the MSE for the 6-dimensional DVAE.
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Figure A.85.: Distribution of the MSE for the 7-dimensional DVAE.
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Figure A.86.: Distribution of the MSE for the 8-dimensional DVAE.

1 2 3 4 5
MSE

10 3

10 1

101

103

105

107

Ev
en

ts
 / 

0.
11

18

Belle II Simulation dt = 100 fb 1

 = 0.1
 = 0.1

f = 0.275
gX = 1.121

m = fmA ′/gX

e+e +

Continuum
e+e e+e (Bhabha)
e+e +

BB BKG
e+e e+e e+e
e+e e+e +

e+e e+e +

e+e + +

e+e K0K0( )
 m 1=0.5GeV/c2 
 mh ′=0.5GeV/c2 
 in a.u.
 m 1=2.5GeV/c2 
 mh ′=2.5GeV/c2 
 in a.u.
 m 1=3GeV/c2 
 mh ′=0.5GeV/c2 
 in a.u.
MC stat. unc.

Figure A.87.: Distribution of the MSE for the 9-dimensional DVAE.
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Figure A.88.: Distribution of the MSE for the 10-dimensional DVAE.
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Figure A.89.: Latent variables and their correlations for the 2-dimensional DVAE for the
background samples and the three example signals.
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Figure A.90.: Latent variables and their correlations for the 3-dimensional DVAE for the
background samples and the three example signals.
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Figure A.91.: Latent variables and their correlations for the 4-dimensional DVAE for the
background samples and the three example signals.
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Figure A.92.: Latent variables and their correlations for the 5-dimensional DVAE for the
background samples and the three example signals.
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Figure A.93.: Latent variables and their correlations for the 6-dimensional DVAE for the
background samples and the three example signals.
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Figure A.94.: Latent variables and their correlations for the 7-dimensional DVAE for the
background samples and the three example signals.
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Figure A.95.: Latent variables and their correlations for the 8-dimensional DVAE for the
background samples and the three example signals.
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Figure A.96.: Latent variables and their correlations for the 9-dimensional DVAE for the
background samples and the three example signals.
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Figure A.97.: Latent variables and their correlations for the 10-dimensional DVAE for the
background samples and the three example signals.
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Figure A.98.: Punzi Figure of Merit (PFOM) over MSE for the three example signals for
the 1-dimensional AE.
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Figure A.99.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM opti-
mization for the 1-dimensional AE for each mass configuration of the signal.
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Figure A.100.: PFOM over MSE for the three example signals for the 2-dimensional AE.
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Figure A.101.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 2-dimensional AE for each mass configuration of the
signal.
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Figure A.102.: PFOM over MSE for the three example signals for the 3-dimensional AE.
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Figure A.103.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 3-dimensional AE for each mass configuration of the
signal.
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Figure A.104.: PFOM over MSE for the three example signals for the 4-dimensional AE.
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Figure A.105.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 4-dimensional AE for each mass configuration of the
signal.
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Figure A.106.: PFOM over MSE for the three example signals for the 5-dimensional AE.
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Figure A.107.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 5-dimensional AE for each mass configuration of the
signal.
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Figure A.108.: PFOM over MSE for the three example signals for the 6-dimensional AE.
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Figure A.109.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 6-dimensional AE for each mass configuration of the
signal.
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Figure A.110.: PFOM over MSE for the three example signals for the 7-dimensional AE.
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Figure A.111.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 7-dimensional AE for each mass configuration of the
signal.
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Figure A.112.: PFOM over MSE for the three example signals for the 8-dimensional AE.
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Figure A.113.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 8-dimensional AE for each mass configuration of the
signal.
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Figure A.114.: PFOM over MSE for the three example signals for the 9-dimensional AE.
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Figure A.115.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 9-dimensional AE for each mass configuration of the
signal.
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Figure A.116.: PFOM over MSE for the three example signals for the 10-dimensional AE.
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Figure A.117.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 10-dimensional AE for each mass configuration of the
signal.
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Figure A.118.: PFOM over MSE for the three example signals for the 1-dimensional VAE.
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Figure A.119.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 1-dimensional VAE for each mass configuration of the
signal.
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Figure A.120.: PFOM over MSE for the three example signals for the 2-dimensional VAE.
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Figure A.121.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 2-dimensional VAE for each mass configuration of the
signal.
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Figure A.122.: PFOM over MSE for the three example signals for the 3-dimensional VAE.
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Figure A.123.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 3-dimensional VAE for each mass configuration of the
signal.
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Figure A.124.: PFOM over MSE for the three example signals for the 4-dimensional VAE.
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Figure A.125.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 4-dimensional VAE for each mass configuration of the
signal.
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Figure A.126.: PFOM over MSE for the three example signals for the 5-dimensional VAE.
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Figure A.127.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 5-dimensional VAE for each mass configuration of the
signal.
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Figure A.128.: PFOM over MSE for the three example signals for the 6-dimensional VAE.
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Figure A.129.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 6-dimensional VAE for each mass configuration of the
signal.
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Figure A.130.: PFOM over MSE for the three example signals for the 7-dimensional VAE.
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Figure A.131.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 7-dimensional VAE for each mass configuration of the
signal.
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Figure A.132.: PFOM over MSE for the three example signals for the 8-dimensional VAE.
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Figure A.133.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 8-dimensional VAE for each mass configuration of the
signal.
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Figure A.134.: PFOM over MSE for the three example signals for the 9-dimensional VAE.

0.25 0.5 1.0 1.5 2.0 2.5 3.0
m 1

0.25

0.5

1.0

1.5

2.0

2.5

m
h′

PFOM=0.36 × 10 2

sig.eff.=2.52 × 10 1

MSE>1.16

PFOM=0.33 × 10 2

sig.eff.=2.51 × 10 1

MSE>1.11

PFOM=2.711 × 10 3

sig.eff.=2.83 × 10 1

MSE>1.07

PFOM=2.415 × 10 3

sig.eff.=1.88 × 10 1

MSE>0.88

PFOM=2.102 × 10 3

sig.eff.=2.22 × 10 1

MSE>0.86

PFOM=2.102 × 10 3

sig.eff.=2.19 × 10 1

MSE>0.88

PFOM=1.611 × 10 3

sig.eff.=0.91 × 10 1

MSE>0.54

PFOM=1.557 × 10 3

sig.eff.=1.29 × 10 1

MSE>0.58

PFOM=1.569 × 10 3

sig.eff.=1.17 × 10 1

MSE>0.58

PFOM=1.566 × 10 3

sig.eff.=1.36 × 10 1

MSE>0.60

PFOM=1.227 × 10 3

sig.eff.=0.360 × 10 2

MSE>1.891 × 10 1

PFOM=1.237 × 10 3

sig.eff.=1.204 × 10 2

MSE>2.280 × 10 1

PFOM=1.242 × 10 3

sig.eff.=0.968 × 10 2

MSE>2.280 × 10 1

PFOM=1.244 × 10 3

sig.eff.=1.420 × 10 2

MSE>2.410 × 10 1

PFOM=1.256 × 10 3

sig.eff.=1.012 × 10 2

MSE>2.410 × 10 1

PFOM=1.210 × 10 3

sig.eff.=1.60000 × 10 4

MSE>1.112 × 10 1

PFOM=1.210 × 10 3

sig.eff.=2.00000 × 10 4

MSE>1.112 × 10 1

PFOM=1.210 × 10 3

sig.eff.=1.60000 × 10 4

MSE>1.112 × 10 1

PFOM=1.213 × 10 3

sig.eff.=0.5600 × 10 3

MSE>1.371 × 10 1

PFOM=1.233 × 10 3

sig.eff.=0.492 × 10 2

MSE>2.021 × 10 1

PFOM=1.303 × 10 3

sig.eff.=1.112 × 10 2

MSE>2.800 × 10 1

PFOM=1.210 × 10 3

sig.eff.=2.80000 × 10 4

MSE>1.112 × 10 1

PFOM=1.210 × 10 3

sig.eff.=2.80000 × 10 4

MSE>1.112 × 10 1

PFOM=1.210 × 10 3

sig.eff.=0.80000 × 10 4

MSE>1.112 × 10 1

PFOM=1.211 × 10 3

sig.eff.=0.0
MSE>1.112 × 10 1

= 1.0 × 10 1, = 1.0 × 10 1, mA ′ = 1.2 × 101GeV/c2

0.001

0.002

0.003

0.004

0.005

PFOM

Figure A.135.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 9-dimensional VAE for each mass configuration of the
signal.
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Figure A.136.: PFOM over MSE for the three example signals for the 10-dimensional VAE.
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Figure A.137.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 10-dimensional VAE for each mass configuration of the
signal.
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Figure A.138.: PFOM over MSE for the three example signals for the 2-dimensional DVAE.
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Figure A.139.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 2-dimensional DVAE for each mass configuration of the
signal.
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Figure A.140.: PFOM over MSE for the three example signals for the 3-dimensional DVAE.
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Figure A.141.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 3-dimensional DVAE for each mass configuration of the
signal.
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Figure A.142.: PFOM over MSE for the three example signals for the 4-dimensional DVAE.
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Figure A.143.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 4-dimensional DVAE for each mass configuration of the
signal.
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Figure A.144.: PFOM over MSE for the three example signals for the 5-dimensional DVAE.
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Figure A.145.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 5-dimensional DVAE for each mass configuration of the
signal.
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Figure A.146.: PFOM over MSE for the three example signals for the 6-dimensional DVAE.
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Figure A.147.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 6-dimensional DVAE for each mass configuration of the
signal.
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Figure A.148.: PFOM over MSE for the three example signals for the 7-dimensional DVAE.
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Figure A.149.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 7-dimensional DVAE for each mass configuration of the
signal.
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Figure A.150.: PFOM over MSE for the three example signals for the 8-dimensional DVAE.
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Figure A.151.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 8-dimensional DVAE for each mass configuration of the
signal.
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Figure A.152.: PFOM over MSE for the three example signals for the 9-dimensional DVAE.

0.25 0.5 1.0 1.5 2.0 2.5 3.0
m 1

0.25

0.5

1.0

1.5

2.0

2.5

m
h′

PFOM=0.68 × 10 2

sig.eff.=2.30 × 10 1

MSE>0.37

PFOM=0.60 × 10 2

sig.eff.=2.20 × 10 1

MSE>0.33

PFOM=0.40 × 10 2

sig.eff.=2.97 × 10 1

MSE>2.963 × 10 1

PFOM=0.41 × 10 2

sig.eff.=2.30 × 10 1

MSE>2.567 × 10 1

PFOM=2.678 × 10 3

sig.eff.=2.67 × 10 1

MSE>2.063 × 10 1

PFOM=2.768 × 10 3

sig.eff.=2.94 × 10 1

MSE>2.423 × 10 1

PFOM=2.373 × 10 3

sig.eff.=1.67 × 10 1

MSE>1.378 × 10 1

PFOM=1.718 × 10 3

sig.eff.=1.94 × 10 1

MSE>1.090 × 10 1

PFOM=1.752 × 10 3

sig.eff.=1.83 × 10 1

MSE>1.126 × 10 1

PFOM=1.870 × 10 3

sig.eff.=2.08 × 10 1

MSE>1.306 × 10 1

PFOM=1.370 × 10 3

sig.eff.=1.17 × 10 1

MSE>0.621 × 10 1

PFOM=1.273 × 10 3

sig.eff.=0.58 × 10 1

MSE>0.441 × 10 1

PFOM=1.327 × 10 3

sig.eff.=0.68 × 10 1

MSE>0.513 × 10 1

PFOM=1.415 × 10 3

sig.eff.=1.19 × 10 1

MSE>0.693 × 10 1

PFOM=1.586 × 10 3

sig.eff.=1.48 × 10 1

MSE>0.873 × 10 1

PFOM=1.208 × 10 3

sig.eff.=0.3600 × 10 3

MSE>0.8051 × 10 2

PFOM=1.209 × 10 3

sig.eff.=0.40000 × 10 4

MSE>0.8051 × 10 2

PFOM=1.244 × 10 3

sig.eff.=0.35 × 10 1

MSE>0.369 × 10 1

PFOM=1.430 × 10 3

sig.eff.=1.21 × 10 1

MSE>0.693 × 10 1

PFOM=1.701 × 10 3

sig.eff.=1.40 × 10 1

MSE>0.909 × 10 1

PFOM=2.067 × 10 3

sig.eff.=1.53 × 10 1

MSE>1.162 × 10 1

PFOM=1.208 × 10 3

sig.eff.=2.40000 × 10 4

MSE>0.8051 × 10 2

PFOM=1.209 × 10 3

sig.eff.=0.0
MSE>0.8051 × 10 2

PFOM=1.249 × 10 3

sig.eff.=0.33 × 10 1

MSE>0.369 × 10 1

PFOM=1.420 × 10 3

sig.eff.=1.15 × 10 1

MSE>0.657 × 10 1

= 1.0 × 10 1, = 1.0 × 10 1, mA ′ = 1.2 × 101GeV/c2

0.001

0.002

0.003

0.004

0.005

PFOM

Figure A.153.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 9-dimensional DVAE for each mass configuration of the
signal.
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Figure A.154.: PFOM over MSE for the three example signals for the 10-dimensional DVAE.
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Figure A.155.: PFOM, signal efficiency and optimal MSE value yielded by the PFOM
optimization for the 10-dimensional DVAE for each mass configuration of
the signal.
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A.14. Data-MC Comparison for 8-dimensional AE
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Figure A.156.: PFOM and signal efficiency after selecting only events passing the L1-Trigger
for 3 full tracks and the High Level Trigger (HLT). The signal efficiencies
are calculated with respect to the total number of simulated events (25000).
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Figure A.157.: Distribution of latent variable 0 of the 8-dimensional AE The background
samples are scaled to data luminosity of

∫
L = 1.03 fb−1. For both, data

and background samples, only events that passed the L1 trigger for three
full tracks and the HLT are shown.
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Figure A.158.: Distribution of latent variable 0 of the 8-dimensional AE for the background
samples and the three example signals. For both, the signal and background
samples, only events that passed the L1 trigger for three full tracks and the
HLT are shown.
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Figure A.159.: Distribution of latent variable 1 of the 8-dimensional AE The background
samples are scaled to data luminosity of

∫
L = 1.03 fb−1. For both, data

and background samples, only events that passed the L1 trigger for three
full tracks and the HLT are shown.
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Figure A.160.: Distribution of latent variable 1 of the 8-dimensional AE for the background
samples and the three example signals. For both, the signal and background
samples, only events that passed the L1 trigger for three full tracks and the
HLT are shown.
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Figure A.161.: Distribution of latent variable 2 of the 8-dimensional AE The background
samples are scaled to data luminosity of

∫
L = 1.03 fb−1. For both, data

and background samples, only events that passed the L1 trigger for three
full tracks and the HLT are shown.
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Figure A.162.: Distribution of latent variable 2 of the 8-dimensional AE for the background
samples and the three example signals. For both, the signal and background
samples, only events that passed the L1 trigger for three full tracks and the
HLT are shown.
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Figure A.163.: Distribution of latent variable 3 of the 8-dimensional AE The background
samples are scaled to data luminosity of

∫
L = 1.03 fb−1. For both, data

and background samples, only events that passed the L1 trigger for three
full tracks and the HLT are shown.
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Figure A.164.: Distribution of latent variable 3 of the 8-dimensional AE for the background
samples and the three example signals. For both, the signal and background
samples, only events that passed the L1 trigger for three full tracks and the
HLT are shown.
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Figure A.165.: Distribution of latent variable 4 of the 8-dimensional AE The background
samples are scaled to data luminosity of

∫
L = 1.03 fb−1. For both, data

and background samples, only events that passed the L1 trigger for three
full tracks and the HLT are shown.
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Figure A.166.: Distribution of latent variable 4 of the 8-dimensional AE for the background
samples and the three example signals. For both, the signal and background
samples, only events that passed the L1 trigger for three full tracks and the
HLT are shown.
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Figure A.167.: Distribution of latent variable 5 of the 8-dimensional AE The background
samples are scaled to data luminosity of

∫
L = 1.03 fb−1. For both, data

and background samples, only events that passed the L1 trigger for three
full tracks and the HLT are shown.
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Figure A.168.: Distribution of latent variable 5 of the 8-dimensional AE for the background
samples and the three example signals. For both, the signal and background
samples, only events that passed the L1 trigger for three full tracks and the
HLT are shown.
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Figure A.169.: Distribution of latent variable 6 of the 8-dimensional AE The background
samples are scaled to data luminosity of

∫
L = 1.03 fb−1. For both, data

and background samples, only events that passed the L1 trigger for three
full tracks and the HLT are shown.
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Figure A.170.: Distribution of latent variable 6 of the 8-dimensional AE for the background
samples and the three example signals. For both, the signal and background
samples, only events that passed the L1 trigger for three full tracks and the
HLT are shown.
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Figure A.171.: Distribution of latent variable 7 of the 8-dimensional AE The background
samples are scaled to data luminosity of

∫
L = 1.03 fb−1. For both, data

and background samples, only events that passed the L1 trigger for three
full tracks and the HLT are shown.
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Figure A.172.: Distribution of latent variable 7 of the 8-dimensional AE for the background
samples and the three example signals. For both, the signal and background
samples, only events that passed the L1 trigger for three full tracks and the
HLT are shown.
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