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Disclaimer

This thesis uses Monte Carlo samples adopted from A. Heidelbach’s (KIT, ETP) master
thesis [1] and generated by him. Furthermore, the Python routines for plotting are
adopted from him. The Punzi-net architecture used within this thesis is based on https:
//github.com/feichtip/punzinet. The idea to study a possible candidate selection with
Punzi-net for the B± → K±a, a → γγ search at Belle II was proposed to me by T. Ferber
(KIT, ETP) and A. Heidelbach (KIT, ETP). All of the analyses reported in this thesis are
performed by me, all results are formulated by me, and all figures are my created by me
unless otherwise noted.
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1. Introduction

Physics as a science describing the phenomena of nature has dramatically evolved in the
last one hundred years, answering more and more open questions. On the largest scale, the
endeavours led to many successful theories and discoveries about stars, black holes, and the
big bang. On the smallest scales, the perseverent search for the fundamental building blocks
of nature discovered the atomic models with protons, neutrons, and electrons as well as
effects like radioactivity questioning their indivisibility. Similar breakthroughs in electronics
and computer science not only had a profound impact on everyday life but also allowed the
opportunity to build large-scale experiments like particle colliders to dig deeper into the
known particles and discover the elementary particles of the standard model. Although
many predictions of the standard model are probed to incredible precision, physicists
quickly noticed shortcomings in the theoretic description, which were incompatible with
the experimental results, e. g., the neutrino’s mass or the neutron’s vanishing electric dipole
moment.

These new open questions brought up different new physic theories to describe the effects
beyond the Standard Model. One group of these theoretically predicted particles are the
axion-like particles. The axion-like particles are a broad group of pseudoscalar particles
with couplings to the standard model, with free parameters for mass coupling and mixing.
This thesis considers a model in which the axion-like particle predominantly couples to the
electro-weak sector of the standard model. Assuming the coupling to the W -boson being
the strongest leads to an interesting signature in which the axion-like particle is produced
in a one-loop flavour changing neutral current transition and decays into two photons.
Consequently, arising signatures like B± → K±a, a → γγ can be studied at high-intensity
experiments like Belle II and BaBar.

Within this thesis, a neural network is used as a modern analysis technique to perform the
signal selection on Monte Carlo events. To achieve this, the thesis adopts the previously
implemented non-differentiable minimal detectable cross-section and a loss function for
a neural network classifier based on this cross-section. The previous use of the so-called
Punzi-net in the e+e− → µ+µ−Z ′ search [2] at Belle II showed that the novel Punzi-loss
function can outperform standard multivariate analysis techniques. Within this thesis, the
previous implementation is adapted for the search for the B± → K±a, a → γγ signature
at Belle II. Therefore, several functions are changed to ensure compatibility with the
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2 1. Introduction

B± → K±a, a → γγ data set. Additionally, the thesis implemented loss validation to
monitor the training process and improved output routines to obtain quantitative results.
The training on the Punzi-loss was also improved to perform batched training for further
optimization. This thesis shows that the Punzi-net approach to the B± → K±a, a → γγ
analysis can attain results similar to the previous cut-based analysis. Furthermore, it shows
that architectural improvements to the neural network can improve obtained results.

Chapter 2 introduces the experimental Setup of the Belle II detector at the SuperKEKB
accelerator and discusses the main feature variables. Subsequently, Chapter 3 summarizes
the principles and challenges of machine learning and neural networks. Chapter 4 describes
the implementation of neural networks in the python programming language and especially
the implementation of the Punzi-loss function introduced by [2]. Chapter 5 summarizes
the results that this approach can achieve on the B± → K±a, a → γγ dataset in different
setups.



2. The Belle II Detector and Variables used
in B Physics

This chapter introduces the experimental setup of the SuperKEKB accelerator and the
Belle II detector. Furthermore, it also discusses the methods and variables used to investigate
the B± → K±a, a → γγ process.

2.1. The Belle II Detector

One way to measure the fundamental properties of elementary particles or search for new
particles, e.g. axion-like particle (ALP), is using modern high-luminosity particle colliders
and detectors. An example of such facilities is the Belle II detector at the SuperKEKB
collider in Tsukuba, Japan. Fig. 2.1 shows the setup of this accelerator complex. SuperKEKB
is an asymmetric electron-positron collider that operates mostly at a center-of-mass energy
at the Υ(4S) resonance. This resonance decays predominantly into a pair of either charged
or neutral B- and anti-B-mesons.

The B mesons subsequently decay through several modes. This thesis deploys improvements
in the candidate selection of the search for the new physics signature of the ALP in the
studied decay B± → K±a, a → γγ.

Fig. 2.2 displays the Belle II detector, which consists of several subdetectors measuring
specific quantities of different particles. Physical quantities like energy and momentum are
reconstructed by combining the subdetector measurements.

Vertex detector and central drift chamber (CDC): The innermost sub-detectors
measure the paths of the charged particles. At first, in the Vertex detector, semiconductor
detectors measure the trajectories near the interaction point. The CDC continues the
track measurement by measuring the ionization between multiple charged wires. Due to
the magnetic field in the CDC, the tracks of charged particles curl into helices, carrying
information about the particles’ mass and charge [5].

Particle Identification: The particle identification sub-detectors Aerogel Ring Imaging
Cherenkov Detector (ARICH) and Time of Propagation (TOP) use the Cherenkov effect
to identify the particles by their masses. The Cherenkov cone’s opening angle depends on
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4 2. The Belle II Detector and Variables used in B Physics

Figure 2.1.: Schematic setup of the SuperKEKB accelerator. The electrons are injected
with the electron gun at the bottom and accelerated in a linear accelerator.
Positrons are created by the electrons hitting a target. Both beams are then
injected into the storage rings. Adapted from [3].
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Figure 2.2.: Illustration of the Belle II detector and its subdetectors. This figure is adapted
from [4].

the particle’s velocity and refractive index n. Therefore, particles with equal momenta but
different masses have different Cherenkov angles. ARICH measures the angle directly as
the radius of the resulting ring image of the Cherenkov cone. TOP, on the other hand,
uses multireflection of the Cherenkov light in thin plates to resolve the angle indirectly.
Therefore detectors on the plates’ edges read the time distribution of the incoming reflected
light to resolve the total flight time and hence the opening angle.

Electromagnetic Calorimeter: The Electromagnetic Calorimeter (ECL) measures the
energies of incoming particles via scintillator crystals. High energetic particles can excite
electrons in a scintillator material which then return to their initial state while emitting
lower energetic photons. As the emitted photons have low energies, photodiodes can measure
their energies.

KL and Muon Detectors: The outermost part of the detector is the KL and Muon
Detector (KLM), which uses an alternating structure of iron plate absorbers and resistive
plate chambers and scintillator detectors to measure the energy loss of these long-lived
particles.

These sub-detectors produce large amounts of raw measurement data, which are not directly
usable. Elaborate reconstruction algorithms transform the raw data to physical quantities
like momenta and energies. In the case of the Belle II experiment, these algorithms are part
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of the Belle analysis software framework (Basf2) [6]. This framework combines all methods
for data unpacking, simulation, reconstruction, and analysis.

2.2. Monte Carlo Analysis
A critical principle in natural sciences is the neutrality of the results from the scientists’
expectations. Meaning the experiment should be independent of any expectations. Es-
pecially in collider physics, the principle of a so-called blind-analysis is crucial as only
a few facilities in the world could potentially reproduce or falsify results. Blind means
that the complete analysis is first performed without looking at the actual signal. Collider
physics typically tests the analysis on computer-generated data, also called Monte Carlo
(MC) before the analysis switches to actual experimental data. To get these MC events,
the desired events are simulated, converted into the detector’s response using complex
simulations and subsequently fed through the reconstruction algorithms.

As the production of these events is computationally expensive, the Belle II collaboration
offers pre-produced samples for different standard processes in different experiment stages.
This thesis considers continuum and generic B samples corresponding to 100 fb−1 of the
early phase 3 detector geometry with corresponding background levels (2020-2022).

Continuum Background: SuperKEKB is tuned to produce as many B-mesons as possible
with the center-of-mass energy at Υ(4S). Nevertheless, the majority of the events are
non-B-events. Many of the unwanted events like Bhabha scattering or bremsstrahlung are
already rejected by the triggers of the detector [5]. The remaining continuum processes for
this analysis contain e+e− → qq̄ (q = u, d, c, s) decays.

B-Samples: This category of Background contains all Υ(4S) → BB̄ decays split into two
categories. On the one side, the charged samples contain the Υ(4S) → B+B− decays, and
on the other side, the mixed samples consist of Υ(4S) → B0B̄0.

The signal samples studied here are privately generated from the previous thesis considering
ALP masses from ma = 0.175GeV c−2 to 4.6GeV c−2 with exclusions of the η and η′

resonances [?] This work considers signal samples with an ALP mass above the η′ resonance
(ma > 1.01GeV c−2) to avoid irreducible background. Furthermore, the training data set
for the neural network (NN) contains only 30 of the masses from this range, leaving 4
masses for evaluation. This choice is motivated by testing the interpolation power of the
trained classifier for untrained mass hypotheses.

2.3. Analysis Variables
From the reconstructed decay information, multiple physical quantities are calculated.
A critical challenge in an analysis is to choose variables that are a good starting point
to discriminate between signal and background events. Although modern multivariate
analysis methods like NN can use minor differences and correlations in the signal and
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background distributions to find some representation of the data that separates signal
from background, they possibly can not learn one from completely identical distributions.
Furthermore, variables with different distributions for signal and background can provide
a better starting point for the NN. An additional challenge comes with using too many
features. As the dimension of the input space grows with each feature, significantly more
samples are required for a higher number of variables. This "Curse of dimensionality"
leads to keeping the input dimension small yet remaining the most discriminating power.
Chapter 3, which focuses on NN and their use in particle physics, gives more details about
the applied analysis techniques.

2.3.1. Kinematic Variables

The primary use of kinematic variables is to discriminate B events from continuum back-
grounds. Two essential quantities for this are the beam-energy constrained mass Mbc and
the energy difference ∆E [5].

The beam-energy constrained mass is defined by

Mbc =

√
E∗2

Beam − p⃗∗B
2, (2.1)

where E∗
Beam denotes the beam energy in the center-of-mass frame and p⃗∗B the momentum

vector of the B-meson candidate. Another commonly used variable is the energy difference

∆E = E∗
B − E∗

Beam. (2.2)

These are the main quantities to discriminate correctly reconstructed B mesons from
continuum background events and missreconstructed Bs. Other kinematic variables can be
derived directly from the energies and momenta of the photon and kaon candidates:

• EKaon Kinetic energy of the Kaon candidate.

• pKaon Momentum of the Kaon candidate.

• pT
Kaon Transverse component of the kaon candidates momentum with respect to the

forward beam direction.

• E
γ
l Energy of the lower energetic photon.

• E
γ
h Energy of the higher energetic photon.

Also, the combination of the photon energies and momenta gives the possibility to derive the
invariant diphoton mass or center-of-mass energy Mγγ . For correctly reconstructed photons
originating from an ALP decay, this value should be equal to the ALP mass and have a
peaking structure resulting from relativistic energy conservation. However, background
events display an isotropic distribution of Mγγ .

2.3.2. Topological Variables

Additional variables can be derived from the event topology in the detector. Firstly, cosθROE
B

is the cosine of the angle between the B-meson candidates thrust axis and the rest of the
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event (ROE) thrust. This quantity is uniformly distributed for B-events because the mesons
are produced almost at rest. qq̄ events, on the other hand, are produced with higher kinetic
energies resulting in a jet-like structure of the whole event. This manifests in cosθROE

B
peaking at a value of one [5].
Another popular category of topological variables is the Fox-Wolfram-Moments Hl [7].
These moments combine the momenta p⃗i of each particle in an event with the angles
between them θi,j to identify jet-like events. For a set of N particles, the lthFox-Wolfram
moment is defined by

Hl =
N∑
i,j

= |p⃗i| · |p⃗j | · Pl(cos θi,j), (2.3)

with the lth Legendre polynomial [5]. This analysis exclusively uses the normalized second
moment

R2 =
H2

H0
, (2.4)

as a variable to express event isotropy.



3. Neural Networks and their Use in Particle
Physics

McCulloch and Pitts introduced the idea of NNs in 1943 [8]. Advancement in mathematical
methods and computing power eventually brought their breakthrough. By now, neural
networks perform data analysis and forecast tasks in many fields of science, economy, and
society, which classical analysis methods or humans can not achieve.
This chapter introduces how NN especially fully connected feed-forward networks can
achieve such performances. Furthermore, it describes possible challenges during the training
and their solutions.

3.1. The Basic Unit: A Node

The most fundamental building block is a so-called node or neuron, which takes multiple
input values and maps them onto a number [9].

To achieve this behavior, a neuron takes the inputs X = (x1, x2, . . . xm) and passes it
through a linear function

u(w1, w2, . . . wm, b) =
m∑
i=1

xiwi + b, (3.1)

to obtain an intermediate output value u. In this calculation, the so-called weights wi and
biases b are not fixed a priori. For the actual output y, an non-linear activation function
f(u) is applied. There are multiple possible activation functions to choose from, which can
later influence the learning performance. Fig. 3.1 shows the sigmoid and hyperbolic tangent
activation functions used in Punzi-net. Where the sigmoid function is defined as

σ(x) =
1

1 + e−x . (3.2)

3.2. From the Neuron to the Net

NNs consist of many neurons linked together in a specific way. These connections improve
generalization power and the ability to learn complex correlations.

9
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Figure 3.1.: Display of the shapes of the considered activation functions: hyperbolic tangent
and sigmoid.
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The first step toward the actual NN is to pass the output of a neuron as an input into
another neuron. This would give a chain of two nodes in series. Each step in this serial
structure is called a layer and the count of these layers is the depth [10].

Another possibility is to align multiple nodes in parallel to share the same inputs but with
individual weights and biases, resulting in different outputs. This number of parallel nodes
is also called layer width.

The combination of these two methods, building multiple layers with multiple nodes each,
results in complex structures where several inputs are passed into the linear weighted sum
and activated repeatedly. This nested structure is a so-called fully connected feed-forward
NN which is a crucial part of this analysis.

To introduce the mathematical formalism of machine learning, the n neurons of one layer
share the m-dimensional input vector X⃗ = (x1, x2, . . . xm)T, while their output is the
n-dimensional vector

Y⃗ = f

(
Ŵ X⃗ + b⃗

)
. (3.3)

With the weights in the shape of the matrix Ŵ and the biasses as b⃗.

The network mathematically performs multiple subsequent matrix multiplication and
activation steps to compute the output value or vector. This subsequent processing of input
data through the NN is called forward pass.

3.3. Training the Network

By now, the NN is still in a static state. To go the final step toward actual learning,
the network needs some time evolution to upgrade itself. This thesis uses the so-called
supervised training for learning.

To perform supervised training, it is mandatory to have not just a data set of multiple
input variable vectors {X⃗i} but also the correct output values for these inputs {ỹi}. One
choice for the target values would be to assign the value of 1 to all signal samples and 0 to
every background sample. The NN can now process an input vector X⃗i resulting in the
network’s predicted output yi.

A so-called loss function provides a metric to compute the deviation to the desired output
ỹi. One reasonably common choice is the binary cross entropy loss (BCE), defined by

L = −(y log(ỹ) + (1− y) log(1− ỹ)), (3.4)

however, there are different functions applicable as loss functions. Chapter 4 presents a
novel metric based on a function associated with the Punzi figure of merit as a loss function
to outperform classical analyses [2]. Furthermore, additional weights, also called input
weights W , adjust the influence of each sample on the loss calculation. These can correct
for asymmetries in the data set, e. g. between the total number of signal and background
events, to give each group the same weight during training.
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Another way to formalize the loss function is as a function of the weight matrix Ŵ and
bias vector b⃗ from Eq. (3.3) of each layer in the network. Respectively the output can be
written as a function of the set of all weights and biasses, as well can the loss function

L(Ŵ1.Ŵ2, . . . Ŵn, b⃗1, b⃗2, . . . b⃗n). (3.5)

In order to get the best possible result, the loss function has to be minimized with respect
to each weight and bias. This minimization is analytically unsolvable as the number of
parameters is too high and the exact shape of the loss function is unknown. Therefore,
different numerical algorithms are used for this optimization. A straightforward example
is the gradient descent algorithm, in which the gradient of the loss function is calculated
for the given parameter point. 1 This gradient vector indicates the direction of the highest
downhill slope in the loss curve with respect to the training parameters. The learning rate
determines the step size of the optimization for the update step, which calculates the new
parameters in the direction of the gradient vector.

Stochastic gradient descent (SGD) improves the computationally slow gradient descent
algorithm by reducing the calculation steps. To do so, the data set is split into so-called
batches and the gradient calculation and parameter updates are performed on each batch.
One complete pass of the whole data set through optimization is also called an epoch. As
the network should learn and improve its prediction, the loss value should fall in a usually
exponential shape and converge if the learning is finished.

Optimization algorithms that use momentum and drag further improve SGD. These Mo-
mentum algorithms work like a ball rolling down a hill. Gradient changes are not entirely
adapted in the optimization, but the algorithm maintains its momentum.

The main advantage of using momentum is that such algorithms are less likely to become
trapped in local minima. A disadvantage of momentum-based algorithms are oscillations
around the minimum value resulting in slower convergence. One of the implementations of
momentum gradient descent is the adaptive moment estimation (ADAM) algorithm [11].

3.4. Hyperparameters and their Optimization

In the previous sections, many NN features have been mentioned but were not precisely
quantified. Parameters like depth, width, learning rate, or the particular choice of the
optimizer and activation functions have one thing in common they are arbitrary and
untrainable. As these values can significantly influence a network’s performance, they are
also referred to as hyperparameters.

In practice, the effect of the hyperparameters on the training is large: they can change the
behaviour of the network from training in seconds to training in hours; from finding an
excellent solution to not learning at all. Therefore, finding a proper set of hyperparameters
suitable for the NN task is crucial. This search can be done by hand or by special programs.

1Mathematicaly the gradient ∇f(x⃗) shows the direction of steepest rise for a given point. In terms of
NNs, it is common to invert the gradient definition to show the direction of the steepest descent.
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Programs like Optuna perform this optimization more or less automatically by scanning
the hyperparameter space for the best solution [12].

As these programs have their own so-called second-degree hyperparameters, like which
parameters they should scan or in which value range they should search for each parameter,
they must be used carefully. Furthermore, there comes a tough decision between the time
consumption of the search on the one hand and the bias that it might miss the optimal
set by keeping the scan space too small on the other hand. Especially since the network
needs to train one or multiple times for each checked hyperparameter setup, the search can
become quite time-consuming for larger numbers or parameters.

3.5. Training Challenges

As implied multiple times in the previous sections, training a NN can fail in different ways.
A major challenge is the so-called overtraining or overfitting, which occurs when the network
trains too long or is too complex. After the actual differences have been learned, the network
starts to learn differences specific to the training data set. Therefore the network will
perform worse if challenged to evaluate other data. A common monitoring technique is the
so-called validation loss which calculates the loss on an untrained data set. The validation
data set is disjoint from the training set but from the same underlying distribution. If
overtraining occurs, the loss on the training data set falls or stagnates while the validation
loss rises. To cope with overtraining in cases where the training loss already shows a good
convergence, it is usually enough to stop the training earlier, which means reducing the
number of epochs. However, if overtraining occurs very early, the hyperparameter setup
has to be tested again.

Another challenge is that the NN does not train at all. This could occur in two cases.
Firstly, the network learns much too slowly, resulting in an early stagnation of the loss.
The network could train at an increased learning rate. Secondly, it is also possible that the
network architecture is unsuitable for learning the difference between the input features,
which requires an improved architecture. Thirdly, input features show too few differences
for the network to find a reasonable classification.

A network that fails to train could also originate from a too high learning rate. As the
learning rate indicates the step size in the optimization, the network is not optimized to
its optimum configuration in this case. Instead, the optimization oscillates around the
minimum. This can be solved by using a lower learning rate or a so-called learning rate
scheduler. The scheduler changes the learning rate at a given condition. One example could
be to reduce the learning rate by a factor if the loss does not reduce for a given number of
epochs.





4. Implementation of the Punzi-Loss
Function into the ALP Search

This thesis aims to implement the minimal detectable cross-section from Eq. (4.6) as a loss
function in a NN to perform the signal extraction in the search for B± → K±a, a → γγ. To
do so, the work uses the Punzi-net implementation [2]. This Chapter explains the Punzi-net
implementation for the e+e− → µ+µ−Z ′ search, as well as the basics of implementing NNs
with PyTorch.

4.1. Minimal Detectable Cross-Section and Punzi Figure of
Merit

Figures of merit (FOMs) are functions used to quantify performances. e. g. a metric for the
performance of a classifier, like a NN output, which assigns signal and background events
to values between zero and one. In this case, a figure of merit can calculate the optimal
selection keeping as much signal as possible but also rejecting most background.
One realization is the Punzi figure of merit which is derived by the minimal detectable
cross-section of a Poisson distributed process.
In statistical analysis, hypothesis tests are a commonly used method to make probabilistic
statements about probed aspects of a given distribution. These tests are used in multiple
scientific fields, e. g. checking the psychosocial influence of the Covid-19 pandemic [13] or if
the observed excess in the background distribution is significant enough to be considered a
newly detected particle.
For a new particle search, the hypotheses to test are, on the one hand, the zero hypothesis
H0, which represents the absence of signal events. On the other hand, the test hypothesis
Hm that Sm signal counts above the background level B are present for a given set of
parameters m. The Poisson probability density functions of these hypotheses are [14]

p(n|H0) =
e−BBn

n!
,

p(n|Hm) =
e−B−Sm(B + Sm)n

n!
. (4.1)

From these distributions, the required number of signal events Smin to accept the signal
hypothesis at a given confidence level can be expressed as [14]

Smin = a
√
B + b

√
B + Smin. (4.2)

15
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To get the actual needed minimal number of signal counts, we can solve the equation for
Smin

Smin =
b2

2
+ a

√
B +

b

2

√
b2 + 4a

√
B + 4B. (4.3)

The further introduction of the detected signal counts as a function of the integrated
luminosity L, cross-section σ and signal efficiency ϵ via Smin = ϵLσmin leads to the term for
the minimal detectable cross-section

σmin =
b
2

2 + a
√
B + b

2

√
b2 + 4a

√
B + 4B

ϵL
. (4.4)

The desired selection should minimize the detectable cross-section with respect to the
selection. This minimum is the Punzi figure of merit

PFOM =
ϵ

a
2 +

√
B
. (4.5)

To obtain the optimal selection, one usually must maximize this equation concerning the
selection variable and only take what is left on either the right- or left-handed side of the
selection.
In the derivation of Eq. (4.2), only the first order of the gaussian approximation is considered.
Extending the calculation to the following order is possible to adapt the asymmetries in
the Poisson tails better. This correction leads to a slightly different cross section [14]

σcorr.
min =

a
2

8 + 9b
2

13 + a
√
B + b

2

√
b2 + 4a

√
B + 4B

ϵL
. (4.6)

4.2. Neural Networks in Python
As multiple sectors of industry or research commonly use the concept of NNs for many
data science tasks, different packages implement the general processes for machine learning
described in Chapter 3 for many programming languages. One standard and recent
implementation developed by a subgroup of Facebook is PyTorch [15]. PyTorch strongly
focuses on creating a powerful yet easy-to-use framework for broad machine learning
applications. As this package is also used for signal extraction in this thesis, the methods
to implement a NN are briefly summarized.
The basic workflow for machine learning in PyTorch consists of the following steps according
to Chapter 3. 1

1. Definition of the model as a python class. This already fixes the hyperparame-
ters for width, depth, and activation functions. By inheriting from the build in
torch.nn.Module class, PyTorch can transfer many common routines automatically
onto the new NN class. To be the starting point for the NN workflow, the class only
needs an __init__ method defining the shape of the architecture, and a forward(x)
method. The forward command processes the inputs x through the network’s layers
and activation functions.

1This brief history of a PyTorch workflow is not meant as a complete tutorial. For beginners, the
website of the PyTorch team offers tutorials following clear and practical examples under https:
//pytorch.org/tutorials/.

https://pytorch.org/tutorials/
https://pytorch.org/tutorials/
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2. Preparing the data to be readable for PyTorch. Input data and target arrays typically
are NumPy [16] arrays. As PyTorch can not read this datatype, they are converted
into torch tensor with the torch.from_numpy command. PyTorch tensors also offer
essential functionalities for machine learning, like specifying the device used for
calculations. Therefore, the tensors can be moved to a specific device via .to(device),
which will most commonly either be CPU or GPU.

3. Initialize the desired loss function and optimizer. Many of which are already imple-
mented to PyTorch’s torch.optim classes.

4. Perform the actual training loops over epochs and, if desired, batches as plain Python
for-loops. Before each output calculation, the saved gradients of the network have
to be reset with optimizer.zero_grad. Then the networks output for the input
tensor X can be calculated via the intuitive net(X) call. The calculation of the loss
value for a batch or epoch is similarly intuitive, which then can perform the gradient
calculation and backpropagation with the tensor.backward() method and stores the
gradients internally. To perform the actual update step of the parameters based on
the gradients and the optimizer defined in the beginning, optimizer.step is used.

5. For Using the trained model, the evaluation can be done equally to the one in the
training loop, but as no gradients are necessary anymore, the torch.nograd and
tensor.detach methods must be used. Furthermore, PyTorch offers the ability to
save and load the trained network parameters, as training can be time-consuming or
results must be repeatable.

These steps summarize the workflow to implement NNs with PyTorch as a starting point
to understand the following implementation of Punzi-net event selection.

4.3. Previous Implementation of Punzi-loss in the e+e− →
µ+µ−Z′ Search

The previous work [2] implements the minimal detectable cross section as a loss function for a
NN. This network, called Punzi-net, performs the event classification in the e+e− → µ+µ−Z ′

search at Belle II. The resulting algorithm is implemented into python and PyTorch as
the Punzi-net package. 2. The package provides a complete toolkit for data preparation,
pretraining on the BCE-loss, final training on the Punzi-loss, and analysis tools.
Besides the PyTorch workflow for training described in Section 4.2, the package offers
several functions grouped into four sub-packages.

4.3.1. Preparation Functions

The preparation section contains all necessary functions for data and network preparation.
The set_weights() function sets the input weights for the NN training. These weights are
used in the loss calculation to adjust how much influence each sample has on the calculations.
For the three simulated background types τ+τ−, µ+µ−, and e+e−µ+µ− the background is

2The code of Punzi-net is open source and can be found along with some examples under https:
//github.com/feichtip/punzinet.

https://github.com/feichtip/punzinet
https://github.com/feichtip/punzinet
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weighted with the inverse integrated luminosity by type. The signal is then weighted such
that the sum over the signal weights equals that of the background. The function adds
these values to the event variables, which are stored in a pandas DataFrame [17] object
which is a particular file type to store and process more extensive data.

Furthermore, the bin_widths an set_range_index functions allocate the events to mass
bins around the generated Z ′ masses by the reconstructed mass. For each event, the function
stores the lowest and highest bin index in which the event occurs in the data frame. During
this, the events occurring in zero bins, equal to events outside the signal range, are removed
from the data set.

4.3.2. Functions Associated with the Punzi Figure of Merit

The first function of the figure of merit subclass gen_sparse_matrices processes the bin
indices from above into matrices to later calculate the signal efficiency and background
events. These indices are then converted into matrices with the dimension length of the data
set times the number of mass bins. To encode if the event in column i can be detected in
mass bins j, the matrix contains a one at position (i, j). Vice versa, each entry for a bin in
which the event is not detected contains zero. In total, the function returns two matrices, one
containing the signal events and one with background only. These matrices are filled mainly
with zeros and only a few ones. For these so-called sparse matrices, it is better to store
only nonzero entries and their positions to avoid flooding the memory with thousands of ze-
ros. Different Python packages like SciPy [18] already offer dedicated classes for this purpose.

The actual punziloss function then calculates the loss value, using the sparse matrices
for signal σ̂S and background σ̂B from above. To calculate the loss according to Eq. (4.4),
the matrices must be combined with the networks output vector Y⃗ and inputs weights w⃗
to get the signal efficiency ϵ⃗ and background events B⃗ for each trained mass. They are
implemented as

ϵ⃗ =
σ̂S · Y⃗
nS

,

B⃗ = σ̂B · (Y⃗ ◦ w⃗), (4.7)

where ◦ denotes the elementwise or Hadamard product defined by (u⃗ ◦ v⃗)i = uivi and · is
the common matrix multiplication. This way of implementing the signal efficiencies and
background events as weighted sums has the advantage of being differentiable concerning
the network parameters, which is necessary for backpropagation [2].
Based on signal efficiency and background events, the loss is calculated using the corrected
minimal detectable cross section from Eq. (4.6) via the punzisensitivity function.

In addition, two functions for applying selections are provided. fixed_cut selects at a
fixed given output value. Secondly, the optimal_cut function performs the selection which
achieves the maximum Punzi figure of merit (Eq. (4.5)).
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4.3.3. Training Functions

The training subclass contains the methods to perform the two training routines. At first,
the bce-training function which performs the BCE pretraining according to Section 4.2.

Secondly, the punzi-training function performs the actual training on the minimal de-
tectable cross-section loss, which was implemented above. With this change, the procedure
also follows the workflow described in Section 4.2. To visualize the performance, the output
classifier for signal and background can be plotted against the mass in two-dimensional
histograms.

4.4. Deploying Punzi-net into the Axion-Like Particle Analysis

This thesis extends the existing and previously mentioned Punzi-net code to achieve
compatibility with existing data frames from the ALP analysis. Additionally, several
functionalities to monitor the training process and evaluate output performance are added
to the workflow.

4.4.1. Data Preparation

The previous ALP analysis provides MC samples split into different files for the background
and each generated mass. Furthermore, the MC events do not contain a candidate selection,
meaning that each event has multiple candidates. For the sake of simplicity, this work
applies a random candidate selection. In the random candidate selections, for each unique
index and event type, one event is randomly chosen. The candidate selection involves
iterating through all event indices, which makes the process time costly. Therefore, the
candidate selection is performed separately and the results are saved to files.

The load_df and read_edges functions where added to the punzinet package to read
the candidate selected samples for specified masses. To determine the mass bins, this
analysis uses quantiles of double-sided crystal ball fits in Mγγ . These bins are calculated by
integrating the fit function from the mean value to the right. The Mγγ value at which the
integral contains 99% of the total area on this side is used as the selection. The left-handed
selection is calculated similarly [1]. As the double-sided crystal ball function is asymmetric,
the resulting Mγγ selection for each mass bin is also asymmetric. This is implemented in
the changed set_range_index function.

Furthermore, the input data is reweighted to account for the background processes’ different
cross-sections σ. The resulting weights for the background type i are calculated by

wBkg
i =

LT

Liσi
. (4.8)

The signal weights for each ALP mass m are also changed to account for different recon-
struction efficiencies using the generated number of events NGen and the reconstructed
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number Nm to

wSig
m =

NGen
Nm

. (4.9)

Furthermore, the signal weights are rescaled such that the sum of the signal weights is equal
to those of the background weights.

4.4.2. Tailor the Training Routines

As described in Chapter 3, a validation loss is a commonly used tool to monitor obvious
overtraining. The implementation of a validation loss in the BCE pretraining is similar to
the regular procedure described in Section 4.2. The validation loss is calculated at the end
of each epoch for the complete validation data set.

For the Punzi-training, the validation loss is more challenging than for the pretraining,
mainly since the background event term depends strongly on the data set length. Many
efforts to correct this issue, e. g. the introduction of scaling factors or the change of input
weights for different data sets, do not achieve reasonable behaviour. Finally, a batched
training and validation for Punzi-loss introduces a common norm factor, as the same batch
size can be used for both calculations.
Batching the data for each epoch (as in the BCE training) would require calculating the
sparse matrices for signal and background again, which is a time costly computation.
Therefore the batches in the Punzi-training are chosen to be static to save runtime by only
calculating the matrices once. This procedure is motivated in the Punzi-net paper, which
also presents batched Punzi-training [2]. 3

4.4.3. Output and Evaluation Functions

Some additional functions are implemented to better evaluate the NN’s output compared
to the two-dimensional histograms offered by Punzi-net. First, a one-dimensional histogram
is added for visualization of the output distribution. Although this version can not show
output differences through the mass range, the one-dimensional case is preferred as it looks
much clearer and is easier to understand. Furthermore, in the one-dimensional version,
the background types are split to visualize better which of the different backgrounds is
challenging for the network.

The actual shapes of the Punzi figure of merit curves from Eq. (4.5) or other figures
of merits can be calculated via the PunziCuts function. In difference to the Punzi-net
implementation for signal efficiency and background events, this function uses a more
straightforward implementation of these quantities, which aims to compare with [1]. To
calculate the signal efficiency, the signal events surviving the selection for a given mass
hypothesis are divided by the generated events for this hypothesis. An additional factor

3The code to perform this training is not publicly available via the GitHub repository. Therefore we
contacted the corresponding author Paul Feichtinger, who provided us with the actual Punzi-training
function, which was then adapted further.
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corrects for the fact that due to the division into training and validation data sets, each
set should contain less generated signal. This procedure then gives the percentage of
detected signal events with respect to the generated number. Additionally, background
events for each hypothesis are calculated as the number of remaining non-ALP events after
the selection in the corresponding mass window.
The function also calculates the optimal selection based on the maximum figure of merit
value or for a fixed output value and the total remaining background events and signal
efficiency resulting from that selection. Fixed selections are necessary when the intermediate
region of the output classifier is almost completely depleted and most events are classified as
zero or one. In these cases, the figures of merit offer no meaningful selection value as their
curves are mostly dominated by statistical fluctuations of the output in the intermediate
regions. Therefore it is necessary to perform a selection at a specified output position, whose
numerical value has only a minor effect on the resulting values due to the low population.





5. Implementation Results

This chapter summarizes the performances Punzi-net achieves and compares them with the
previous (cut-based) analysis method in [1].

It first presents the results of training two different architectures on the initial variables
used in the previous analysis. This approach studies if Punzi-net can achieve similar signal
efficiencies and background rejections as the previous analysis and if improved architectures
and hyperparameters can improve the performance.

Secondly, it presents the training on an additional set of input features. This set leaves the
variables Mbc and ∆E out of the training to use them for fitting in the subsequent analysis.

5.1. Training on the Initial Set of Features
The main branch of this work uses the same variables as in the previous analysis, shown in
Table 5.1 [1].

The expectation is that the variation between kinematic and topological variables can
greatly suppress the continuum background. B background, on the other hand, is expected
to be more challenging as only the energy of the lower energetic photon E

γ
lshows separation.

5.1.1. Input Feature Distributions

Histograms of each input feature for different masses visualize the initial separation of
the signal and different backgrounds. As a compromise between the number of plots

Table 5.1.: The main variables used for training Punzi-net. This variable set was adapted
from the previous cut-based analysis [1] to compare with the Punzi-net directly.

Feature Variable Name
1 Mbc
2 ∆E
3 E

γ
l

4 cosθROE
B

5 R2

23
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and overview of the mass space, this thesis displays the plots only for three masses
ma ∈ {1.510GeV c−2, 3.010GeV c−2, 4.510GeV c−2}. Figs. 5.1 to 5.3 displays the input
distribution for the medium one of those masses, the other two are displayed in Appendix A.1.

• The Mbc distribution for the B events shows peaks at the rest mass of the B mesons.
Continuum events show no peak as the e+e− → qq̄ decay involves no B meson.

• ∆E shows a flat distribution for continuum events. While the B events feature a
peak at zero. For higher ALP masses, the ∆E distributions show prominent left tails
due to shower leakage in the ECL for the higher energetic photons [1].

• The energy of the lower energetic photon E
γ
l peaks at zero for the background events,

whereas the signal distribution shows a wide peak at a value rising with the ALP
mass. As this peak overlaps with the background peak at zero for low masses, the
separation power of this variable increases for higher masses [1].

• The cosθROE
B is isotropic for B events due to the low thrust. In contrast, it clearly

peaks at one for the continuum events due to their high boost.

• R2 shows a Gaussian shape for the continuum samples due to their jet-like structure,
while it is shifted towards zero for the B events.

In conclusion, the variables show great differences between continuum and B events. The
separation between B background and signal events is only present in the photon energy
E

γ
l .
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Figure 5.1.: These plots display the distributions of the input features Mbc and ∆E used in the
main branch of the analysis. The histograms display the variables split by background
types for the ALP mass ma = 3.010GeV c−2. The filled background curves for an
integrated luminosity of 100 fb−1 per type are stacked while the signal is unstacked
in an arbitrary norm. Similar plots for the additional masses of 1.510GeV c−2 and
4.510GeV c−2 are displayed in Appendix A.1.
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Figure 5.2.: These plots display the distributions of the input features E
γ
l and cosθROE

B used in the
main branch of the analysis. The histograms display the variables split by background
types for the ALP mass ma = 3.010GeV c−2. The filled background curves for an
integrated luminosity of 100 fb−1 per type are stacked while the signal is unstacked
in an arbitrary norm. Similar plots for the additional masses of 1.510GeV c−2 and
4.510GeV c−2 are displayed in Appendix A.1.
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Figure 5.3.: This plot displays the distributions of the input feature R2 used in the main branch
of the analysis. The histograms display the variable split by background types for
the ALP mass ma = 3.010GeV c−2. The filled background curves for an integrated
luminosity of 100 fb−1 per type are stacked while the signal is unstacked in an arbitrary
norm. Similar plots for the additional masses of 1.510GeV c−2 and 4.510GeV c−2 are
displayed in Appendix A.1.
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5.1.2. Punzi-net Training with the First Architecture

The first approach for a hyperparameter setup is to use the original architecture proposed
in the Punzi-net paper. Table 5.2 describes this architecture. Batch sizes, learning rates,
and epochs for the training and pretraining are selected manually to train well with the
given architecture.

Selecting the hyperparameters, as shown, leads to a good convergence in the pretraining
loss (Fig. 5.4a) towards a low value without any signs of overtraining. The final training on
the minimal detectable cross-section loss in Fig. 5.4b also shows good convergence without
overtraining.
Fig. 5.5a displays the output classifier histogram after the final training. The histogram
shows separation between signal and background, although few background samples feature
high output values. These background events will remain after the selection due to the
high output values. Furthermore, many signal samples feature a low output value close
to zero. These signal events with a wrong predicted output will be removed by selections
resulting in a lower signal efficiency. A similar histogram is also generated for untrained
masses (Fig. 5.5b), which shows similar behaviour as the trained masses. This result for
the untrained masses is not only strong evidence for proper training without overfitting but
also a validation of the good generalization proposed by the Z ′ search [2].

The output classifier histograms are suitable for visualizing the separation of the signal
from the different background types. However, they can not visualize or even quantify the
performance for the different masses. Therefore, another test motivated by the original
Punzi-net paper [2] is performed. On the same data set, ten networks are independently
trained with the same hyperparameters. The multiple repetitions help to see instabilities in
training, which might occur due to an insufficient set of parameters. Over these ten passes,
the achieved signal efficiency and remaining background events are calculated after a fixed
selection at an output value of 0.8. The selection of the numerical value 0.8 is motivated
by including the region where the number of signal counts is rising towards the peak at
one and to also exclude as much background as possible. This results in one efficiency and
background value for each pass and each mass. For visualization, Fig. 5.6 shows the results
averaged over the passes with their Gaussian standard deviations as error bars.

For signal efficiency, the shape of the curve is expected as the signal efficiency is highest for
the medium masses while it drops for the outer masses. The deviation of the results also
increases for outer masses, while it is almost zero for the medium mass range. Furthermore,
the interpolation power on untrained masses can be clearly seen. The efficiency values
for the untrained masses align well with the trained ones. The remaining background
events after the selection also show a rise toward the medium masses. In comparison to the
signal efficiency curve, the background events curve fluctuates more. The interpolation for
untrained masses shows a considerably high deviation. Nevertheless, the intervals are still
inside the value range for the trained masses.

This setup achieves a maximal signal efficiency of 19.5 ± 0.4% at an ALP mass of
3.510GeV c−2 with 19± 1 remaining background events.
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Table 5.2.: Overview of hyperparameters for the small architecture. The network architec-
ture and activation functions are adopted from the Punzi-net publication that
uses a similar architecture for four input features. The learning rate, epochs,
and batch size for pretraining and final training are selected to train well with
the given architecture.

(a) Architecture

Layer Activation Number of Nodes
Input tanh 5

1 tanh 10
2 tanh 5
3 sigmoid 1

(b) Training hyperparameters

Name Value
Pretraining Batch Size 512

Pretraining Epochs 100
Pretraining Learning Rate 0.005

Training Batch Size 4096
Training Epochs 100

Training Learning Rate 0.0001
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(b) Training Punzi-loss curves

Figure 5.4.: The training and validation loss curves for training Punzi-net on the initial set
of variables with the small architecture. Both pretraining and training show a
nominal convergence without obvious overtraining. The BCE-loss converges at
a value of approximately 0.12 while the final training on the minimal detectable
cross-section converges to ca. 60.
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(b) Output for untrained masses

Figure 5.5.: The Plots show the output classifier distribution of Punzi-net for the trained
masses (a) and untrained masses (b) on a logarithmic scale. The trained masses
show a good background rejection with few background events with high output
values close to one. The untrained masses show seemingly more background
with high output values. The signal classification shows a high number of
signals correctly classified at output values of approximately one, but also has
some signals misidentified with medium or low output values.
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Figure 5.6.: The plots show the performance of the small Punzi-net architecture on the orig-
inal variable set. To obtain the signal efficiency (a) and number of background
events (b), the network trains ten times and the results after selecting output
values greater than 0.8 are averaged over the ten different trainings. The signal
efficiency displays a smooth curve rising from 5% to a maximum value of about
20% for the medium masses. The untrained mass hypotheses align well with
the curve of the trained masses. The remaining background events after the
selection displays a similar shape, rising from 0 towards 30 for the medium
masses and decreasing again for the high masses. Although in comparison to
the signal curve, it varies more. The untrained masses feature a high standard
deviation for the number of background events.
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5.1.3. Training with an Improved Architecture

Different architectures are tested to check if the results of Punzi-net are improvable. During
the studies, the trend was that deeper and wider networks tend to perform better. This can
be explained by their bigger generalization qualities [19]. Out of the tested architectures,
the one displayed in Table 5.3 performs the best on the original set of variables. This
setup trains sufficiently with the same set of hyperparameters as the smaller architecture
according to the loss curves (Fig. 5.7). Compared to the previous setup, this one shows two
main differences in the loss curves:

1. Lower loss values: In comparison, the bigger architecture converges to lower loss
values, representing fewer errors in the output classification.

2. Validation loss below training loss: The validation loss curve is well below the
training loss in the first 30 epochs of the final training. This might be due to statistical
fluctuations in this particular training or come from the procedure of loss calculation.
As the validation loss is only calculated at the end of each epoch, the network has
trained the whole dataset before the validation loss is calculated. At the same time,
the training loss is averaged over all batches in the epoch. Therefore, the training
loss picks up the changes in the network during the whole epoch. In contrast, the
validation loss only uses the last and commonly best iteration of the NN.

The output classifiers in Fig. 5.8 strengthen the assumption that the new setup can
outperform the previous one. The distributions for trained and untrained masses show
fewer background events in the medium output value regions. In addition, more signal is
classified with an output value near 1.
The result of the ten training test in Fig. 5.9 is also encouraging, as the resulting maximum
signal efficiency is 24.6± 0.2% at a background level of 13± 3 for a mass of 3.510GeV c−2,
which is an improvement over the result from the first architecture (Section 5.1.2).

These results show that better architectures can improve performance. Furthermore, these
outcomes are probably not the best ones possible, as the parameter optimization was done
manually and not every parameter could be tested.
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Table 5.3.: Overview of hyperparameters for the enlarged architecture. According to the
approximation theorem, this should improve the performance. [19] To obtain
this architecture, tests with different architectures and hyperparameters are
performed manually, and the best-found configuration is selected.

(a) Architecture

Layer Activation Number of Nodes
Input tanh 5

1 tanh 16
2 tanh 32
3 tanh 32
4 tanh 8
5 tanh 4
6 sigmoid 1

(b) Training hyperparameters

Name Value
Pretraining Batch Size 512

Pretraining Epochs 100
Pretraining Learning Rate 0.005

Training Batch Size 4096
Training Epochs 100

Training Learning Rate 0.0001



5.1. Training on the Initial Set of Features 35

0 20 40 60 80 100

Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
C

E
 P

re
tr

a
in

in
g

 L
o

ss

Belle II (Simulation)∫
L dt = 100 fb−1

Training Loss

Validation Loss

(a) BCE pretraining loss curves

0 20 40 60 80 100

Epoch

50

100

150

200

250

300

350

P
u

n
zi

 L
o

ss

Belle II (Simulation)∫
L dt = 100 fb−1

Training Loss

Validation Loss

(b) Training Punzi-loss curves

Figure 5.7.: These plots show the training and validation loss curves for the training on
the original set of variables with the enlarged architecture. The pretraining
loss displays fast convergence to a value of 0.12 after about 40 epochs. Final
training on the Punzi-loss also converges to a low value of approximately 40.
Both trainings show no obvious signs of overtraining.
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Figure 5.8.: The plots show the output distribution of Punzi-net in the improved setup
for the trained masses (a) and untrained masses (b). Both show very few
background events with high output classifier values. Furthermore, both plots
display good signal classification with few signal events in the medium mass
regions and peaks at output values of one and zero.
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(b) Background events

Figure 5.9.: The plot shows the performance of the enlarged Punzi-net architecture on
the original variable set. To obtain the signal efficiency (a) and background
events (b), the network trains ten times and the results after a fixed selection
at an output greater 0.8 are averaged. The signal efficiency this setup achieves
averaged over all masses is 19±5% at a background level of 10±7. The untrained
masses show large uncertainties in the background events plot compared to the
trained ones.
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5.2. Training on Additional Variables

These features are motivated by leaving Mbc and ∆E out of the feature set to use them in the
proceeding analysis. Table 5.4 shows the feature set used for training. This set is only one
of the possible combinations of the additional variables from Chapter 2. Figs. 5.10 and 5.11
display the distributions of the new input features for the medium mass of 3.010GeV c−2

while the distributions for the lower and higher masses are displayed in Appendix A.2. The
distribution of the features R2, cosθROE

B , and E
γ
l which are used previously are in Figs. 5.2

and 5.3 and Appendix A.1.

• The distributions of R2, Eγ
l , and cosθROE

B are already described in Section 5.1. Of
them, only E

γ
l shows separation between B background and signal events.

• E
γ
h shows a broad peak for signal samples, similar to E

γ
l . For the background events,

E
γ
h takes broader Gaussian-shaped distributions.

• The signal in EKaon shows a plateau at lower energies for higher ALP masses. This
inverse connection can be explained by relativistic energy conservation, as the creation
of the ALP requires most of the B mesons energy, leaving less kinetic energy for the
kaon. The backgrounds again show broader distributions.

• The kaon’s transverse momentum pTKaon shows the same behaviour as EKaon.

Besides the clear separation between continuum and B events, this feature set shows
separation between B background and signal in more variables than the previous set.

Table 5.4.: This table shows the additional features set of 6 variables, with the purpose of
leaving Mbc and ∆E out of the training variables.

Feature Variable Name
1 R2

2 E
γ
l

3 E
γ
h

4 EKaon
5 cosθROE

B
6 pTKaon
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(b) EKaon

Figure 5.10.: These plots display the distributions of the additional input feature set tested. The
histograms display the variables E

γ
h and EKaon split by types for the ALP mass

ma = 3.010GeV c−2. The filled background curves are stacked while the arbitrary
norm signal is unstacked. Equivalent plots for the additional masses of 1.510GeV c−2

and 4.510GeV c−2 are displayed in Appendix A.2.
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(a) pTKaon

Figure 5.11.: This plot displays the distributions of the additional input feature set tested.
The histograms display the variable pTKaon split by types for the ALP mass
ma = 3.010GeV c−2. The filled background curves are stacked while the arbitrary
norm signal is unstacked. Equivalent plots for the additional masses of 1.510GeV c−2

and 4.510GeV c−2 are displayed in Appendix A.2.
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5.2.1. Training on the New Feature Set

Despite the fact that the new variables bring additional information and apparent differ-
ences in the distributions, Punzi-net, in the current state, seems not to learn a sufficient
representation of them. During the training of the enlarged architecture from Table 5.3
many deteriorations were seen.
In pretraining, the network has a high error rate which manifests in high loss values through
the training. Compared to the previous variable set which converged at a BCE loss of
approximately 0.12 (Fig. 5.7a), the new variables lead to a convergence at approximately
0.25 shown in Fig. 5.12a.
Furthermore, challenges in learning influence the neural networks output histograms in
Fig. 5.13. These already show a high level of misclassified background with output values
greater than 0.8, while the signal loss is also more extensive than before. Training the neural
network ten times and averaging the results for signal efficiency and background events
(Fig. 5.14) quantifies these deductions. The background curve shows the high number of
remaining background events with up to 75 events at ma = 2.8GeV c−2.

Fig. 5.14a shows that the resulting signal efficiency is also lower compared to the case where
only the initial variables were used in the training. The training achieves a maximum signal
efficiency 13.3± 0.8% at a mass of 3.210GeV c−2 and a background level of 76± 9 events.
An additional indication of insufficient training is the generalization to untrained masses.
Notably, the signal efficiency shows this behaviour, with the untrained masses falling short
behind the trained ones. Further tests on this feature set can provide additional insight as
to whether or not the challenges observed when training this feature set are native to the
features themselves or if they can be solved by further optimization.
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(b) Training Punzi-loss curves

Figure 5.12.: These plots show the training and validation loss curves for the training on the
additional set of variables with the enlarged architecture. The pretraining on
the BCE-loss function converges to around 0.26 with a step between epoch 30
and 45. The training on the Punzi-loss function displays smooth exponential
shape conversion to a value of 150. During the final 40 epochs, the validation
loss rises slightly over the training loss, which could be a sign of overtraining.
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(b) Output for untrained masses

Figure 5.13.: The plots show the output distribution of Punzi-net in the improved setup for
the trained masses (a) and untrained masses (b) with the additional set of
parameters. The background histograms feature a high number of background
events with medium and high output classifier values leading to lower signal
purities. The signal distributions display a high number of signal counts with
low output values.
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(b) Background events

Figure 5.14.: The plots display the performance of the enlarged Punzi-net architecture on
the additional variable set. The network trains ten times to obtain the signal
efficiency (a) and background events (b) and the results after a fixed selection
at 0.8 are averaged. The signal efficiency this setup achieves averaged over all
masses is 9± 3% at a background level of 35± 25. The background events
remaining after the selection again display a maximum for the medium masses
at approximately 80 events and a fluctuating reduction for smaller and larger
masses down to 0 events. Untrained masses feature higher standard deviations
in the background events, compared to the trained ones. The achieved signal
efficiency curve shows the known shape for the trained masses rising from
about 5% to 15% for the medium masses and falling down to around 10%
for high masses. Untrained masses have a signal efficiency that does not align
with the ones for trained masses.



6. Conclusion and Outlook

This thesis presents an improved method for candidate selection in the search for the new
physics signature of the B± → K±a, a → γγ decay at Belle II. To implement Punzi-net
into the B± → K±a, a → γγ analysis, this thesis applies changes to the data preparation
(mainly through data loading) and candidate selection. Furthermore, this thesis implements
validation loss for pretraining and training to monitor performance and check for overtrain-
ing. The modifications contain a batched training for the final training on the minimal
detectable cross-section. Additionally, this thesis adds further functions for visualization
and quantification of the neural network’s classification performance.

In this state, the network achieves signal efficiencies of 10% to 25% with a background
reduction to less than 30 events for an integrated luminosity of 100 fb−1. Furthermore, tests
with untrained masses show a good interpolation capability for Punzi-net, strengthening
the hypothesis from the previous use in the e+e− → µ+µ−Z ′ search that Punzi-net can
interpolate well to untrained masses [2].

Additionally, this thesis performs basic hyperparameter studies. A possible improvement in
the hyperparameter handling could be the implementation of an automated optimization
procedure, e. g. a grid search in the hyperparameter space. A more streamlined imple-
mentation of Punzi-net, which is easy to use and runnable on a computing grid, would
significantly improve the capabilities for automated optimization and future analyses.
The extended hyperparameter studies could also probe the hyperparameters for the addi-
tional feature set, which is challenging for the current implementation.
Additionally, the Punzi-net selection could be established together with a previous or subse-
quent selection by another classifier. For example, a first network is trained for continuum
suppression and a second dedicated network for B background suppression.

This thesis examines promptly decaying axion-like particles above the η′ resonance. Further
studies should also look at non-zero lifetimes and lower masses to probe if the novel approach
is also applicable in these regions.
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Figure A.1.: These plots display the distributions of the input features used in the main branch of
the analysis. The histograms display the variables Mbc and ∆E split by types for
the ALP mass ma = 1.510GeV c−2. The filled background curves are shown stacked
while the signal in arbitrary norm is unstacked.
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Figure A.2.: These plots display the distributions of the input features used in the main branch of
the analysis. The histograms display the variables E

γ
l and cosθROE

B split by types for
the ALP mass ma = 1.510GeV c−2. The filled background curves are shown stacked
while the signal in arbitrary norm is unstacked.
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(a) R2

Figure A.3.: This plot displays the distributions of the input features used in the main branch
of the analysis. The histograms display the variable R2 split by types for the ALP
mass ma = 1.510GeV c−2. The filled background curves are shown stacked while the
signal in arbitrary norm is unstacked.
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Figure A.4.: These plots display the distributions of the input features used in the main branch of
the analysis. The histograms display the variables Mbc and ∆E split by types for
the ALP mass ma = 4.510GeV c−2. The filled background curves are shown stacked
while the signal in arbitrary norm is unstacked.
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Figure A.5.: These plots display the distributions of the input features used in the main branch of
the analysis. The histograms display the variables E

γ
l and cosθROE

B split by types for
the ALP mass ma = 4.510GeV c−2. The filled background curves are shown stacked
while the signal in arbitrary norm is unstacked.
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(a) R2

Figure A.6.: This plot displays the distributions of the input features used in the main branch
of the analysis. The histograms display the variable R2 split by types for the ALP
mass ma = 4.510GeV c−2. The filled background curves are shown stacked while the
signal in arbitrary norm is unstacked.
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Figure A.7.: These plots display the distributions of the additional input feature set tested. The
histograms display the variables E

γ
h and EKaon split by types for the ALP mass

ma = 1.510GeV c−2. The filled background curves are stacked while the arbitrary
norm signal is unstacked.
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Figure A.8.: These plots display the distributions of the additional input feature set tested.
The histogram displays the variable pTKaon split by types for the ALP mass ma =
1.510GeV c−2. The filled background curves are stacked while the arbitrary norm
signal is unstacked.
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Figure A.9.: These plots display the distributions of the additional input feature set tested. The
histograms display the variables E

γ
h and EKaon split by types for the ALP mass

ma = 4.510GeV c−2. The filled background curves are stacked while the arbitrary
norm signal is unstacked.
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Figure A.10.: These plots display the distributions of the additional input feature set tested.
The histogram displays the variable pTKaon split by types for the ALP mass ma =
4.510GeV c−2. The filled background curves are stacked while the arbitrary norm
signal is unstacked.
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(b) Training Punzi-loss curves

Figure B.1.: These plots show the training and validation loss curves for the training on
the additional set of variables with the small architecture. The loss during
pretraining converges rapidly to a value of ca. 0.32 after 30 epochs. During the
final training, the loss converges to approximately 350. The validation loss rises
over the training loss after 50 epochs which can be evidence for overtraining.
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(b) Output for untrained masses

Figure B.2.: The plots show the output distribution of Punzinet in the original architecture
for the trained masses (a) and untrained masses (b) with the additional set of
parameters. The background histograms show very high numbers of background
events classified as medium values, and a noticeable peak at a classifier of 1
which should be mostly populated by signal events. The classification of the
signal events shows a high number of events classified with low background
values which leads to a lower signal efficiency after applying the selection.
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Figure B.3.: The plot shows the performance of the small Punzinet architecture on the
additional variable set. To obtain the signal efficiency (a) and background
events (b) the network trains 10 times and the results after a fixed selection at
an output value of 0.8 are averaged. The signal efficiency this setup achieves
averaged over all masses is 9 ± 3% at a background level of 80 ± 50. The
histogram of the signal efficiency shows a maximum of 13% for the medium
masses with a descent down to 3% for the outer masses. Untrained masses again
do not align with the trained ones. The background events curve features a
similar shape with a maximum of approximately 160 events and high deviations
for the untrained masses.
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