
Monte-Carlo-Simulations for
tt+X-Events at the CMS-Experiment

Bachelor Thesis

Sergey Lelyakin

At the Department of Physics
Institute of Experimental Particle Physics

Reviewer: Prof. Dr. Ulrich Husemann
Second reviewer: Dr. Michael Wassmer
Advisor: Emanuel Pfeffer

Karlsruhe, 31. October 2022

ETP-Bachelor-KA/2022-11

KIT – The Research University in the Helmholtz Association www.kit.edu

This thesis has been accepted by the first reviewer of the bachelor thesis.

PLACE, DATE

. .
(Prof. Dr. Ulrich Husemann)

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

PLACE, DATE

. .
(YOUR NAME)

Contents

1 Introduction 1

2 Theoretical foundations 3
2.1 The standard model . 3
2.2 Hadron collider physics . 4

3 The CMS Experiment 5
3.1 The LHC . 5
3.2 The CMS detector . 5
3.3 Basic kinematic quantities at CMS . 6
3.4 Event reconstruction . 7

4 Simulated processes 9

5 Simulation tools 11
5.1 MadGraph . 12
5.2 MadSpin . 13
5.3 Pythia . 14
5.4 GEANT . 14
5.5 Delphes . 14
5.6 Gridpacks . 16

6 Simulation Parameters 19
6.1 Simulation Files . 19
6.2 Analysis Methods . 19
6.3 Kinematic cuts . 20

7 Results 23
7.1 Generator level comparison . 23
7.2 Initial results . 24
7.3 Lepton isolation . 27
7.4 Lepton efficiencies . 30
7.5 B-tagging efficiencies . 34
7.6 Calorimeter binning . 36
7.7 Pile-up . 39
7.8 Other deviations . 41
7.9 Application to ttH and ttZ . 45

8 Conclusion 47

Bibliography 49

vii

viii Contents

Appendix 51
A Final Delphes card . 51
B All generated histograms for all processes using the final Delphes card . . . 61

viii

1 Introduction

The discipline of particle physics studies the fundamental rules of the universe on a sub-
microscopic level. Insight into these is obtained by observing the interactions of fundamental
particles at extremely high energies. To reach such energies and to observe the processes
that occur, huge, complex and expensive arrangements of particle accelerators and detectors
have to be used. The data obtained from these can then be used to support or falsify
theories that seek to describe the laws governing those processes.

Almost just as important as the data obtained from real experiments is simulated data.
After all, due to the inherent randomness of quantum mechanical processes, obtaining
meaningful information from high-energy physics experiments is only possible by collecting
and statistically analyzing large amounts of data. To compare this to theoretical predictions,
similar amounts of data need to be simulated based on the theory to be tested.

Such simulations generally consist of three steps: The parton level, where the high-energy
quantum mechanical processes between fundamental particles are simulated using precise
analytical equations arising from underlying theory in combination with numerical methods;
the generator level, where the decay and hadronization of the parton level reaction products
are simulated; and the detector level, where the response of the experimental setup to the
reaction products is simulated.

For each of these steps, various software packages capable of performing them exist. At
the Compact Muon Solenoid (CMS) experiment, GEANT is typically used for the detector
level simulation. While this allows for highly precise simulations, it has shortcomings, most
notably the high computational cost required. In the case of applications for which high
precision plays less of a role, a potential alternative presents itself in Delphes.

The objective of this thesis is to investigate the degree to which Delphes is usable as a
substitution for GEANT, specifically in the case of tt+X events, that is, events including
the associated production of a top quark-antiquark pair and some other reaction products.
This means attempting to produce simulated data using Delphes which is as close as
possible to the simulations made using GEANT. To do so, a workflow which isolates the
effect of varying the detector level simulation is devised. Using this, all deviations between
the GEANT-based results and the Delphes-based results are investigated, an attempt is
made to determine their origin and, when possible, to mitigate them through adjusting
the configuartion of the Delphes software. By comparing the deviation between Delphes

1

2 1 Introduction

and GEANT across simulations of different parton level processes, the universality of the
findings is gauged.

This thesis begins by introducing basic theoretical concepts in chapter 2. Next, in chapter 3,
the experimental environment that is simulated is introduced. Chapter 4 gives an overview
of the simulation workflow and the software used. After that, chapter 5 details the specific
processes that are simulated and chapter 6 gives a technical description of the analysis
parameters. Finally, chapter 7 presents the results of the research, and chapter 8 concludes
the thesis by summarizing the work and giving an outlook towards further research.

2

2 Theoretical foundations

This chapter briefly describes the theoretical basis necessary for understanding the physical
processes investigated in this thesis. As these fundamentals constitute the basis of all
modern particle physics, plenty of literature exists which describes them in far greater
depth and detail than is done here. One such work which can corroborate most of the
information found in this chapter is [1].

2.1 The standard model

The standard model of particle physics is a theoretical model which forms the basis for all
modern particle physics. Its predictions historically show good agreement with experimental
data and it has predicted many discoveries of the late 20th and early 21st centuries, one of
the most famous examples being the experimental discovery of the Higgs boson in 2012 [2,
3] which was predicted theoretically in 1964 [4–6].

Despite this, it should be noted that the standard model cannot describe all of physics.
Most notably, it does not describe gravity in any way, being limited to only the other three
fundamental forces. Further evidence for the incompleteness of the standard model include,
among others, neutrino oscillations, which contradict the idea of massless neutrinos, and
dark matter, for which the standard model offers no particle it could be identified with.
Nevertheless, the standard model proves completely sufficient for the purposes of this thesis.

The standard model gives a description of elementary particles and their interaction via
the electromagnetic, weak and strong forces based on theoretical symmetries in the model.

The fundamental forces work via exchange particles called gauge bosons. These are spin-1
particles that include the gluons, the photon, as well as the 𝑍- and 𝑊 ±-bosons. Gluons are
exchange particles of the strong force. They have no mass or electromagnetic charge, but
they do have color charge, which enables strong interactions between the gluons themselves.
Photons are exchange particles of the electromagnetic force. They have no mass or charge,
allowing the electromagnetic force to function at long distances. 𝑍- and 𝑊 ±-bosons are
exchange particles of the weak interaction. Due to their high mass, the weak interaction
only occurs at short distances.

To explain the properties of the weak interaction, the standard model unifies the elec-
tromagnetic and weak interaction into the electroweak interaction and introduces the

3

4 2 Theoretical foundations

Higgs-mechanism. As a consequence of this, the existence of a spin-0 Higgs boson is
predicted.

Besides the bosons, the standard model includes spin-1
2 particles called fermions, along

with a corresponding antiparticle for each of them. These consist of six quarks: the up-,
down-, strange-, charm-, bottom- and top-quarks, three charged leptons: the electron,
muon and tauon, and three neutrinos, one corresponding to each charged lepton.

Quarks possess mass, electromagnetic charge, color charge and a weak isospin, allowing
them to interact through all three interactions. Due, in part, to the self-interaction of
gluons, a phenomenon known as confinement disallows the existence of non-zero color
charge on macroscopic scales. This means that quarks can never be observed in isolation,
but rather, form composite particles called hadrons. Any attempt to separate quarks from
one another (such as imparting very high energies to them in a collider) results in a new
quark-antiquark pair being generated from the strong field between them, thus producing
two new hadrons.

Charged leptons possess mass, electromagnetic charge and a weak isospin, but no color
charge, thus being subject to only the electromagnetic and weak interactions.

Neutrinos, finally, possess no mass, electric charge or color charge, and can thus only
interact weakly.

Each of these fermions has a corresponding antiparticle of equal mass but, if applicable,
opposite quantum numbers.

The specific reactions allowed between these particles can be derived based on so-called
Feynman rules arising from the theory, and can be visualized using Feynman diagrams.

While the standard model gives qualitative predictions for all of this, a number of free
parameters related to particle masses and coupling strengths of certain interactions remain,
and must be determined experimentally. The ability to measure these in different ways
and obtain consistent results is a major validation test for the standard model.

2.2 Hadron collider physics
The hadrons which are made to collide with each other in a hadron collider are not
elementary particles. Instead, they consist of many partons. In the case of protons which
are used in the events investigated in this thesis, these are three valence quarks, gluons
arising from the strong interaction between them, as well as temporary quark-antiquark
pairs called sea quarks which can appear from a gluon.

When a proton-proton collision actually happens in a hadron collider, in almost all cases,
only two individual partons actually interact with one another. To determine which
kind of particle these are and what momentum they carry during the interaction, parton
distribution functions (PDFs) are used which give the probability of finding a given parton
with a given fraction of the proton’s momentum. These PDFs are not derived from theory
and must be determined experimentally, most commonly using electron-proton scattering.
They are further dependent on the magnitude of the momentum transfer in the scattering
process, although this dependency is described analytically.

These PDFs have another use: The main high-energy hard process which is typically
most interesting in a collider experiment must be separated from the soft low-energy sub-
processes, such as collinear gluon radiation, happening at the same time. This separation is
achieved using the factorization theorem [7], which includes the effects of the soft processes
in the PDFs, while separating them from the hard process, allowing the latter to be
calculated in perturbation theory as an isolated interaction between two partons.

4

3 The CMS Experiment

While this work deals only with simulations explicitly, these simulations ultimately aim to
mimic the processes at a real hadron collider experiment: The Compact Muon Solenoid
(CMS) detector at the Large Hadron Collider (LHC). This chapter aims to briefly describe
the relevant technical aspects behind these.

3.1 The LHC
The LHC is a synchrotron-type particle accelerator with a circumference of 27 km, located
at the European Organization for Nuclear Research (CERN). It is capable of generating
proton-proton collisions at center-of-mass energies of up to over 13 TeV at four points along
its circumference.

A detector is placed at each of these points: These are ALICE, ATLAS, CMS and LHCb.
Each of these detectors serves a slightly different purpose and is thus built in a different
way. CMS, the detector relevant for this work, is described in the next section.

The total instantaneous luminosity of the LHC, which describes the number of potential
collision events per unit of time and area, is designed to reach 1034 cm−2s−1, although
twice as much was reached in reality. In practice, this translates into an actual frequency
of events happening of over 1 GHz [8, 9].

3.2 The CMS detector
The CMS detector surrounds the collision points from all sides. It has a barrel-like shape,
with two distinct parts: The barrel part which detects reaction products with largee
scattering angles, and the two endcaps which detect almost collinear reaction products. A
slice through the barrel part is shown in figure 3.1.

The innermost part of the detector consists of a tracking system. This allows for the tracking
of the flight paths of any charged particle. Outside is the electromagnetic calorimeter
(ECAL). It is designed to detect, stop, and measure the energy of electrons and photons.
Behind the ECAL there is a hadronic calorimeter (HCAL) which does the same to any
hadronic reaction products. All of that is encased inside a superconducting solenoid which
produces a magnetic field inside the detector. This field allows to determine the sign of
a particle’s electric charge and the magnitude of its transverse momentum based on the

5

6 3 The CMS Experiment

Figure 3.1: A slice of the CMS detector, including the various sub-detectors and the
expected behaviour of different particles inside the detector. [10]

curvature of its flight path through the tracker. Outside the solenoid, finally, there is the
muon system designed to detect muons, which pass through all aforementioned elements
almost unimpeded. A more detailed description of the detector is found in [11].

3.3 Basic kinematic quantities at CMS
The convention for defining the coordinate axes in the CMS detector has the 𝑥-axis pointing
towards the center of the LHC accelerator ring, the 𝑦-axis pointing straight up, and the
𝑧-axis along the beam axis. In this coordinate system, a particle’s kinematic properties
can be described using its 4-momentum (𝑝𝑥, 𝑝𝑦, 𝑝𝑧, 𝐸)𝑇 . For practical purposes, it is often
useful to use the transverse momentum 𝑝T, the pseudorapidity 𝜂, the azimuthal angle 𝜑,
and the mass 𝑚. The transverse momentum is the momentum in the direction orthogonal
to the 𝑧-axis:

𝑝T =
√︁

𝑝2
𝑥 + 𝑝2

𝑦. (3.1)

The pseudorapidity is a measure of the particle’s inclination along the beam axis, defined
as

𝜂 = − ln tan
(︂

𝜃

2

)︂
, (3.2)

where 𝜃 is the angle between the momentum 3-vector 𝑝 and the 𝑧-axis. Thus, 𝜂 is 0 when
𝑝 is orthogonal to the beam axis and approaches infinity or negative infinity as 𝑝 becomes
closer to the beam axis.

The azimuthal angle is calculated in cylinder coordinates around the 𝑧-axis. The particle’s
mass can be calculated as

𝑚 =
√︁

𝐸2 − 𝑝2. (3.3)

Another two relevant observables are Δ𝑅 for a pair of objects and the invariant mass
𝑚inv for any group of objects. The former is the cartesian distance of two objects in the

6

3.4 Event reconstruction 7

𝜂-𝜑-plane. Note that the cylindricall symmetry of the coordinate system must be considered
properly when calculating this. The latter is the total energy of a group of objects in its
own center-of-mass frame.

3.4 Event reconstruction
Determining the actual final-state particles of the event from the detector data is done
using the particle-flow algorithm [12]. Broadly speaking, five different kinds of particles
are distinguished: Electrons are detected in the ECAL and have a matching track in the
tracker system. Photons are detected in the ECAL but do not have a track. Muons pass
the calorimeters almost unimpeded and are thus detected only by the tracker and the muon
system. Charged hadrons leave a track and are detected in the HCAL, although they may
also deposit a minor fraction of their energy inside the ECAL. Neutral hadrons, finally,
leave no track and are detected inside the HCAL.

High-energy quarks that result from a hard process are unstable and radiate gluons, which
themselves produce further quark-antiquark pairs. At lower energies, due to the confinement
mechanism described in section 2.1, these quarks hadronize into particles with neutral color
charge. These are not necessarily stable and may decay further. In total, a single parton
that is a product from the hard interaction typically produces a large number of separate
hadrons reaching the detector. The momenta of such a group of hadrons, however, will be
correlated. Thus, these hadrons may be algorithmically clustered into so-called jets to give
approximate information on the original reaction products. At CMS, the specific algorithm
used for this clustering is anti-𝑘𝑡 [13].

Another procedure to obtain information on the reaction products which is relevant to this
thesis is b-tagging. Jets originating from bottom quarks can be distinguished from other
jets based on the kinematic properties of the decay products, most notably the larger decay
vertex offsets arising due to the comparatively long decay times of hadrons containing
b-quarks. At CMS, this is done using the neural network based DeepJet algorithm [14].
The result of the algorithm is a number (“tag”) between 0 and 1 assigned to each jet which
indicates the network’s confidence in the jet being a b-jet.

7

4 Simulated processes

The specific events which are investigated in this thesis are the production of a top quark-
antiquark pair together with a bottom quark-antiquark pair, called ttbb processes, in
proton-proton collisions at the LHC at a center of mass energy of 13 TeV.

Investigations of this process are interesting due to the inherent complexity of modeling it,
as it involves the two heaviest of the standard model quarks. Additionally, general ttbb
events constitute a large irreducible background in analyses of ttH(bb) events. These are
events in which a top quark-antiquark pair is produced together with a Higgs boson, which
subsequently decays to a bottom quark-antiquark pair (figure 4.1), and they are a notable
channel for Higgs boson production [15].

Figure 4.1: Example of a leading-order Feynman diagram for the ttH(bb) process, including
subsequent top quark decays.

As this research is intended for being used for differentiating ttH events from ttbb events,
ttH is also investigated for comparison with ttbb. Additionally, ttZ processes are also
simulated due to their inherent similarity to ttH, with all relevant Feynman diagrams being
identical save for a substitution of H bosons for Z bosons.

While it is common practice to separate all these processes into dilepton, single-lepton
and full hadronic channels based on the decay modes of the W bosons that originate from
the top quark decay, this is not done in this thesis, meaning that the simulations used

9

10 4 Simulated processes

consider all these channels simultaneously. The methodology used, however, remains fully
applicable to these more specific channels.

10

5 Simulation tools

Aside from Delphes, the simulation tools used in this thesis are standard for high energy
particle physics simulations at CMS. Furthermore, they are the same tools used to create
the simulations which this thesis uses as a reference to compare its results to.

When simulating a process in high energy particle physics, there are several stages the
simulation goes through, each performed by a largely separate piece of software, as illustrated
in figure 5.1.

Figure 5.1: Illustration for the broad-scale data flow during the event generation process in
this thesis: general steps at the top, specific software used below.

The first stage is the Monte-Carlo event generation stage. Here, parton-level events
are generated using Monte-Carlo techniques. The result of this step are the kinematic
parameters of the products, which, in the case of the ttbb process, are a top quark, a top
antiquark, a bottom quark and a bottom antiquark. In this thesis, MadGraph5_aMC@NLO
[16] (hereafter referred to as MadGraph) is used for this step (section 5.1).

The second stage deals with decaying heavy partons, that is, top quarks, and massive bosons.
While technically optional, separating this step from the next allows for the retainment
of much of the accuracy that would be lost when using methods of the subsequent step

11

12 5 Simulation tools

for these decays. At the same time, separating it from the Monte-Carlo step allows for a
significant reduction in required computation time. In this thesis, MadSpin [17] is used,
which is a module built into MadGraph (section 5.2).

The third stage simulates the hadronization processes of the resulting partons (“parton
shower”), simulating their decays down to hadrons and leptons which are stable on detector
scale. In this thesis, PYTHIA 8 [18] is employed for this step (section 5.3).

The fourth and final stage, as well as the one which the primary focus of this thesis
lies on, simulates the response of the detector to the many particles generated in the
previous stages. Here, this thesis considers two different software tools: GEANT [19–21]
and Delphes [22]. GEANT directly simulates the way each individual particle interacts
with the detector material. While this is very accurate, it is also quite slow (section 5.4).
Delphes, on the other hand, simulates the detector by using simple response functions
which give a probability of detection by a tracker or an energy fraction deposited inside a
calorimeter based only on a particle’s basic kinematic parameters. While much faster, the
accuracy of this approach naturally suffers (section 5.5). The main objective of this thesis
is investigating how close to the results produced by GEANT one can get by only using
Delphes on the sample case of the tt+X events detailed in chapter 4.

5.1 MadGraph

This section is based on [16], the standard reference for the current version of MadGraph.

MadGraph is the main software package used for the event generation in this thesis. It was
designed specifically with user friendliness and automation in mind, such as to allow a user
to be able to effectively generate events without having a particularly deep understanding
of the underlying theory. Especially when the intention is to generate events within the
boundaries of the standard model, just knowing the structure of the event and the basic
MadGraph syntax is sufficient knowledge for running a rudimentary event generation.
Correspondingly, only a surface-level overview of MadGraph’s capabilities is given here.

The fundamental idea behind MadGraph is the use of meta-code which takes a physics
model and a process to simulate and constructs code that, in turn, actually integrates the
probabilities of the process happening in any given way and generates the events based on
them. Thanks to the generality of this approach, this single software package is capable of
simulating arbitrary processes in a wide variety of physics models at both leading-order
(LO) and next-to-leading-order (NLO) of QCD (quantum chromodynamics) perturbation
theory.

Given a Lagrangian, which is a formal description of particles and interactions in a physics
model, MadGraph is capable of deriving Feynman rules for creating Feynman diagrams.
From these, matrix elements which describe the transition probabilities between initial
and final states of the system can be derived for computation using basic Monte-Carlo
methods. It should be noted, however, that this alone is not sufficient for NLO computation
due to ultra violet counter terms, which require further terms to be supplied separately.
Fortunately, for the purposes of this thesis, everything needed is supplied with the standard
installation of MadGraph, as it remains fully within the standard model.

12

5.2 MadSpin 13

This entire process is completely automated, with the user merely needing to supply the
basic input parameters. Using the specific case of a ttbb process as an example, after
initiating MadGraph, only four commands are necessary:

import model loop_sm-ckm
generate p p > t t~ b b~ [QCD]
output <output_name>
launch

The first line tells MadGraph which physics model to use, in this case, one of the NLO
versions of the standard model supplied by the standard installation.

The second line tells MadGraph what specific process to simulate. The basic syntax consists
of a list of input particles (in this case, two protons), followed by “>”, followed by a list of
output particles (here, top quark, top antiquark, bottom quark, bottom antiquark, in that
order). The “[QCD]” option tells MadGraph to perform the simulation at NLO. There are
various other possible syntactical measures to specify the process further, allowing, among
other things, to specify final-state decays, exclude or force the inclusion of certain particles,
or merge several processes into one simulation. Those will not be discussed here as they
have seldomly or never been used during this specific work. A proper basic documentation
for them can be found in [16].

The third line specifies the output directory for the simulation and initiates the actual
generation of the meta-code for the event generation.

The final line initiates the integration and event generation.

While the minimum effort necessary to generate something useful for this work is, as shown,
very minimal, MadGraph offers many options to adjust the process to one’s needs, most of
which will not be used or even mentioned here.

Upon initiating the “launch” command, one will be prompted to adjust several basic
options, though the program will continue after a timeout regardless. Part of these options
is the inclusion of MadSpin, Pythia or Herwig for showering, Delphes or PGS for detector
simulation, and MadAnalysis for analyzing the final result. Thus, most of the generation
process can be performed entirely inside MadGraph. Conversely, however, for example,
if one is interested in the intermediate results, it is possible to separate all of these into
separate steps, as well as to separate the cross-section integration from the event generation.

Next, the user will be prompted to adjust configuration text files called cards which hold
parameters relevant for the generation. The two most important cards are the run_card
and the parameter_card. The run_card contains information such as the number of events
to generate, the desired precision of the integration, the parton distribution functions to
use, as well as the options for customizing the basic program flow the user was prompted
about before. The parameter_card, on the other hand, contains free parameters of the
physics model, most notably particle masses and coupling strengths. Beyond these two,
additional cards exist for MadSpin and showering options.

5.2 MadSpin
When considering the decay of heavy particles, specifically massive bosons and top-quarks,
in the standard model, certain non-trivial effects (in particular, spin correlation) emerge
which cannot be adequately simulated by regular showering algorithms. In principle, it is
possible to let these decays be simulated accurately during the event generation step by

13

14 5 Simulation tools

MadGraph, however, this would mean a high final-state multiplicity for the process, and
thus unreasonably high computation times. MadSpin allows to alleviate this dilemma. It
allows for a sufficiently good approximation in most cases, including those interesting for
this work, while requiring only a fraction of the computation time that would be needed
for an exact simulation. Once again, the theoretical details are of little importance for the
end user, and will thus not be discussed here. They are detailed in [17].

In this thesis, MadSpin is used exclusively in conjunction with MadGraph, where all
parameters relating to MadSpin can be set in the madspin_card. Primarily, these are
simply the decays that are allowed for simulation, written in the very same syntax as the
MadGraph process syntax.

5.3 Pythia
Pythia is a software package for generating high energy collision events. For a more detailed
overview, refer to [18]. Historically, it began as an implementation of the Lund string
model of hadronization. It has since expanded to the point of being capable of simulating
the entirety of an event, including parton showering, initial and final state radiation, and
even, albeit only at LO precision, the hard processes at the core of the event. It remains
standard practice, however, to supply the result of the hard interaction from an external
source, in the case of this work, MadGraph.

An event in Pythia is represented by the event record, which is a table of all particles
involved in the event, including their basic kinematic properties along with information
on the relations between particles. The process of filling this event record occurs in three
stages: The process level, which simulates the hard scattering process, and is, in this work,
taken over by MadGraph, the parton level, which simulates the decay of individual partons
into a parton shower, and the hadron level, which simulates the effects of QCD confinement
and reduces the parton shower to stable QCD-singlets (hadrons).

Once again, the specifics of any given simulation using the software can be adjusted using
a large number of parameters, most of which are of little interest to this specific work.
Depending on the use case, Pythia can be more of a software library than a single program.
Given the specific setup used in this thesis, however, showering using Pythia can be included
directly in MadGraph by turning on the option in the run_card, and some basic parameters
can be adjusted in the shower_card.

5.4 GEANT
GEANT is a standard tool for detector simulation at CMS. Its fundamental idea is to
directly simulate the interaction between particles and detector material. While this
produces good results, it is quite slow.

The objective of this thesis is to approximate results produced by GEANT as closely as
possible using Delphes. While pre-existing simulations using GEANT which are available in
the CMS database are used for reference, GEANT is not actually used for event production
in this work.

5.5 Delphes
The standard reference for Delphes 3, which is the current major version of Delphes used
here, is [22].

14

5.5 Delphes 15

Just like GEANT, Delphes is used for simulating the detector response to an event. In
contrast to GEANT, it does so not by simulating, in great detail, how particles interact
with the detector material, but instead, uses response functions which return the estimated
detector response based on the kinematic parameters of a particle. This is inherently less
precise, but it is much faster. Seeing how close one can feasibly get using Delphes to the
“optimum” given by GEANT is the central question of this thesis.

Delphes has a modular structure. It consists of several modules (C++ programs that each
perform a small part of the necessary calculations) which can be combined in a user-defined
way using a configuration text file called a card. A card begins with a “set ExecutionPath”
section which defines the order in which modules will be executed. This is followed by
the definition of all the modules used. Such a definition consists of an indication of the
type of module this is, out of a limited selection given by Delphes, a declaration of the
module name used by the ExecutionPath, and the main body which defines all necessary
parameters for the module.

Among these parameters are typically one or more input arrays, given as source/name,
where source is the name of the module whose output this input is and name is the
name given to that module’s output. For many but not all modules, an output array
name is also defined. The elements of these arrays used by Delphes are general “objects”
which may or may not have certain properties such as basic kinematic parameters, a PDG
code (a number identifying the type of particle, see [23]), and a number of possible tags.
These “objects” can, in any specific case, represent individual particles, jets or calorimeter
towers, but Delphes does not know of such distinction. Individual modules, however, may
produce unexpected or meaningless results if the input objects do not match the module’s
expectation.

Aside from these arrays, the parameters of a module are actual parameters which customize
the operation performed by the module. Typically, these can be integers, floats, booleans,
or mathematical expressions using basic kinematic parameters of the input. The specific
parameters used depend on the specific module type and are mostly self-explanatory.

Some of the module types most relevant to this work are as follows:

Efficiency: Takes an input array of arbitrary objects and an efficiency formula which
gives a probability depending on kinematic parameters. Produces an output array which
contains each entry of the input with the probability given by the efficiency formula.

SimpleCalorimeter: Takes an input particle array and an input particle track array and
produces the response of calorimeter towers. Customizable in terms of 𝜑-𝜂-bins, expected
energy fraction detected by particle and precision of the measurement.

Isolation: Takes an array of “candidates” and an array of “noise”. Selects those candidates
for which the total transverse momentum of the noise in a cone around it is within a given
range of ratios compared to its own transverse momentum. This is used to determine which
leptons or photons to consider isolated, as opposed to being part of a jet. In such a case,
the candidates would be the final-state leptons or photons, and the noise would be the
non-leptonic energy flow measured by the HCAL and ECAL.

FastJetFinder: Takes an input array of particles or calorimeter towers and finds jets
among them. Can use several different jet finding algorithms, but this thesis is exclusively
using anti-𝑘𝑡 [13]. Can customize input parameters necessary for the algorithm, as well as
some basic cuts.

JetFlavorAssociation: Given an array of jets, an array of all particles and an array of
unstable partons, matches parton flavor to jets based on their kinematic properties.

15

16 5 Simulation tools

BTagging: Adds b-tags to input array based on flavor-dependent efficiency formula given.

Although it is theoretically possible to combine these and other modules in any conceivable
way, the general structure for a real detector simulation is relatively rigid. Figure 5.2
illustrates a configuration akin to the ones used throughout this work, although with some
simplifications.

First, the ParticlePropagator module propagates generator level particles through the
detector’s magnetic field and separates them by type. Next, for electrons, muons and
charged hadrons a tracker response is simulated using Efficiency modules and a sta-
tistical inaccuracy is added using MomentumSmearing modules. After this, the two types
of calorimeters are simulated. Together with several PdgCodeFilter modules, this pro-
duces several different types of energy flow arrays. From these, electrons and photons
are reconstructed using Efficiency modules, whereas for muons, the tracker output is
used directly. From there, Isolation modules select those particles that are sufficiently
isolated from the remaining energy flow. In parallel to that, jets are reconstructed using
FastJetFinder, their energy is adjusted using EnergyScale, and b-tagging is performed.
The latter is done by first matching the generated jets to generator level unstable partons
using a JetFlavorAssociation module before simulating the inaccuracy of real b-tagging
procedures using a BTagging module. Finally, the UniqueObjectFinder module ensures
that none of the high-level objects are counted twice. The TreeWriter module (not shown)
can then write any of the arrays used in the procedure to a ROOT [24] file.

Note that this example omits several parts of the procedure that are commonly included,
such as generator level jets or pile-up. Conversely, some parts shown can be omitted in a
real simulation depending on the use case.

To use Delphes, while it is possible to use it directly from inside MadGraph, using a
standalone version is preferred in this thesis for reasons discussed in the next section.
Delphes has several executables to deal with different input file formats, the one used here
is DelphesHepMC which takes HepMC [25] files as input. The command to run Delphes is
as follows:

./DelphesHepMC delphes_card.tcl output.root input.hepmc

Here, output.root is the name of the output ROOT file Delphes will generate, input.hepmc
is the name of the HepMC input file, and delphes_card.tcl is the text file that is the
delphes card which customizes the detector simulation.

5.6 Gridpacks
While it would be possible to generate the neccessary tt+X events starting from only
the programs described, potentially even without ever leaving MadGraph, the number of
adjustable parameters is very large. This means that extreme care would need to be taken
to ensure all running parameters are equivalent to those used by the existing GEANT-using
simulated events in the CMS database which the events generated here are to be compared
to.

A far easier and more reliable method to achieve the same is using CMS gridpacks. In
the CMS database, every simulated event file is linked to the procedure used to generate
it. Generally, this means a single so-called fragment file and a single console command.
By adjusting the console command to stop short of performing the detector simulation,
one is able to produce generator level events with the exact same running parameters as

16

5.6 Gridpacks 17

the original event file. The fragment file, in the cases that are of interest to this work,
is a Python file containing a reference to a “gridpack” which is responsible for running
the MadGraph and MadSpin parts of the simulation, as well as a set of parameters for
Pythia. The gridpack is simply an archive containing a full installation of MadGraph,
with the preparation needed before generating events, that is, the generation of Feynman
diagrams and the integration part, already done. By unpacking it and executing a shell
script also included in the archive, events with reliably equivalent generation parameters
can be generated.

The result of this process is a ROOT file in a format specific to the standard CMS software
workflow, which is actually just a wrapper around the HepMC file produced by Pythia. As
Delphes does not understand this format, a small separate program is needed to extract
the original HepMC file so it can be given to Delphes to perform the custom detector
simulation.

17

18 5 Simulation tools

Figure 5.2: Illustration for a possible configuration in Delphes. Boxes represent modules,
with their type as the first line and their name as the second. Arrows represent
object arrays processed by the modules.

18

6 Simulation Parameters

6.1 Simulation Files
The GEANT-using event files which are used for the three processes considered in this
thesis can be found under the following names in the CMS database:

643000 events from
"/RunIISummer20UL17NanoAODv9/
TTbb_4f_TTToSemiLeptonic_TuneCP5-Powheg-Openloops-Pythia8/
NANOAODSIM/106X_mc2017_realistic_v9-v1/"
for ttbb,

628464 events from
"/RunIISummer20UL18NanoAODv9/
ttHJetTobb_M125_TuneCP5_13TeV_amcatnloFXFX_madspin_pythia8/
NANOAODSIM/106X_upgrade2018_realistic_v16_L1v1-v1/"
for ttH, and

512000 events from
"/RunIISummer20UL18NanoAODv9/
TTZToBB_TuneCP5_13TeV-amcatnlo-pythia8/NANOAODSIM/
106X_upgrade2018_realistic_v16_L1v1-v2/"
for ttZ.

The Delphes events are generated by using the corresponding gridpacks for generator
level event generation and applying Delphes using several Delphes cards, the specifics of
which are detailed in the results section. The Delphes installation used is obtained by
auto-installing Delphes from within a standalone MadGraph version 2.9.9 installation. The
total number of events generated is 4412073 for ttbb, 2697764 for ttH and 5000000 for ttZ.

6.2 Analysis Methods
Both the pre-existing GEANT events and the Delphes results are ROOT files, however, the
specific format differs, mainly by field names. To compare these, a set of three self-written
programs is used.

The first of these is a Python program which extracts the relevant data from the ROOT
files using the uproot Python package and stores them in a consistent ad-hoc format. The

19

20 6 Simulation Parameters

second is a C++ program that reads the output of the first and performs calculations to
extract the desired kinematic observables from the raw data. It is written in such a way
as to allow for flexibility in terms of the desired output parameters. Its output is a file
containing raw 32-bit floats which is used by the third program to generate histograms
using the matplotlib-pyplot Python library.

The specific kinematic observables used in this work are listed in table 6.1. It is based, in
large part, but not entirely, on the list used in [15]. It should further be noted that all of
these parameters can also be evaluated at generator level in addition to the detector level,
some of which will be used to gain further insight into what is happening at detector level.

6.3 Kinematic cuts
In practice, it is often useful to not consider certain high-level objects, particularly those
with low transverse momentum or very high pseudorapidity, as the information on those is
often unreliable and not very interesting.

In this work, all such selection criteria based on the object kinematics (“kinematic cuts”)
are dominated by those applied at the analysis stage, thus guaranteeing the equivalence
in terms of cuts between the Delphes and GEANT simulations. Unless stated otherwise,
these are 𝑝T > 30 GeV and |𝜂| < 2.5 for all high-level objects.

20

6.3 Kinematic cuts 21

Table 6.1: Kinematic observables.
parameter description
𝑁Jet Jet multiplicity in an event.
𝑝T,Jet Transverse momentum of jets (equation (3.1)).
𝜂Jet Pseudorapidity of jets (equation (3.2)).
𝜑Jet Azimuthal angle of jets.
𝑚Jet Invariant mass of jets (equation (3.3)).
𝐸Jet Jet energy.
𝑁BJet B-jet multiplicity in an event.
𝑝T,BJet Transverse momentum of b-jets (equation (3.1)).
𝜂BJet Pseudorapidity of b-jets (equation (3.2)).
𝜑BJet Azimuthal angle of b-jets.
𝑚BJet Invariant mass of b-jets (equation (3.3)).
𝐸BJet B-jet energy.
𝑁𝑒 Electron multiplicity in an event.
𝑝T,𝑒 Transverse momentum of electrons (equation (3.1)).
𝜂𝑒 Pseudorapidity of electrons (equation (3.2)).
𝜑𝑒 Azimuthal angle of electrons.
𝑁𝜇 Muon multiplicity in an event.
𝑝T,𝜇 Transverse momentum of muons (equation (3.1)).
𝜂𝜇 Pseudorapidity of muons (equation (3.2)).
𝜑𝜇 Azimuthal angle of muons.
𝐻𝑇,all Scalar sum of all jet and lepton transverse momenta in an event.
𝐻𝑇,Jet Scalar sum of all jet transverse momenta in an event.
𝐻𝑇,BJet Scalar sum of all b-jet transverse momenta in an event.
Δ𝑅(𝑏𝑏)average Average distance between any two b-jets in the 𝜂-𝜑-plane in an event.
Δ𝑅(𝑏𝑏)closest Distance in the 𝜂-𝜑-plane of the two closest b-jets in an event.
Δ𝑅(𝑏𝑏)leading Distance in the 𝜂-𝜑-plane of the two leading b-jets in an event.
𝑚(𝑏𝑏)closest Invariant mass of the two closest b-jets in an event.
𝑚(𝑏𝑏)leading Invariant mass of the two leading b-jets in an event.
𝑝T(𝑏𝑏)closest Total transverse momentum of the two closest b-jets in an event.
𝑝T(𝑏𝑏)leading Total transverse momentum of the two leading b-jets in an event.
𝑝T,1stBJet Transverse momentum of the leading b-jet in an event.
𝑝T,2ndBJet Transverse momentum of the second b-jet in an event.
𝑝T,3rdBJet Transverse momentum of the third b-jet in an event.
𝑝T,4thBJet Transverse momentum of the fourth b-jet in an event.

21

7 Results

After performing a generator level comparison between the results produced by Delphes and
those produced by GEANT in section 7.1, the detector level study starts with observing
the ttbb simulation results produced by the default Delphes CMS card supplied with the
Delphes installation and identifying flaws in section 7.2. After this, potential causes and
remedies for these inaccuracies are investigated in sections 7.3-7.8. Finally, after adjusting
the Delphes card accordingly, it is applied to both ttH and ttZ samples to infer how well
the conclusions made on the basis of ttbb transfer to other processes in section 7.9.

7.1 Generator level comparison
As both the GEANT and Delphes samples use the same procedure to produce their
generator level events, it is to be expected that both final samples contain statistically
equivalent information. To verify this, basic kinematic parameters for jets, b-jets, electrons
and muons on generator level are plotted and compared.

For selecting b-jets on generator level, the flavor association field of generator level jets
is used directly. It is worth noting that the default Delphes CMS card does not perform
flavor association on generator level, requiring a corresponding adjustment of adding a
second JetFlavorAssociation module to the workflow to be made.

Theoretically, the generator level information should be equivalent between Delphes and
GEANT save for statistical variations, because the generator level simulation is exactly
identical. The aggregation of generator level particles into generator level jets, however, is
performed during the detector simulation. Thus, the only observables which may potentially
be different between the two samples are those which are connected to jets. The jet finding
algorithm, however, is also the same (anti-𝑘T), meaning that that the jet observables,
too, should be equivalent. In fact, reality matches these expectations (figures B.35-B.54).
Unfortunately, however, significant deviations are observed when considering the b-jet
multiplicity (figure 7.1).

Delphes produces significantly more events with very high b-jet multiplicities. As the
parameters for all jets show no such deviation, this implies that the jet flavor association
algorithm subtly differs between Delphes and GEANT. This is unfortunate, especially
because events with high b-jet multiplicity are highly interesting for analyses such as [15].
Unfortunately, the flavor association module in Delphes lacks any parameters to adjust in
order to attempt to remedy this issue.

23

24 7 Results

Figure 7.1: Histogram of the multiplicity of b-jets on generator level for ttbb events,
normalized to an integral of 1.

7.2 Initial results
The natural starting point for this analysis is the result produced by the default Delphes
CMS card. While this card is indeed the default, it makes no claim to being particularly
accurate. In fact, deviations from the “target” result produced by GEANT can be observed
within all but a few of the kinematic observables considered. The only parameters which
immediately yield near-flawless results are 𝜂𝜇 and 𝜑𝜇 (figures 7.2 and 7.3).

All other parameters show statistically significant deviations from the target. These will
each be discussed in detail separately in sections 7.3-7.8. Nevertheless, most qualitative
properties remain intact. For example, minor, wide peaks in the jet mass distributions
at vector boson and top quark masses (figure 7.4), or the distinctive shape of the Δ𝑅(𝑏𝑏)
distributions are clearly distinguishable.

24

7.2 Initial results 25

Figure 7.2: Histogram of the muon pseudorapidity distribution for ttbb events, using the
default Delphes card, normalized to an integral of 1.

Figure 7.3: Histogram of the muon azimuthal angle distribution for ttbb events, using the
default Delphes card, normalized to an integral of 1.

25

26 7 Results

Figure 7.4: Histogram of the invariant mass of jets distribution for ttbb events, using the
default Delphes card, normalized to an integral of 1.

26

7.3 Lepton isolation 27

7.3 Lepton isolation
One of the most noticeable deviations occurs for electrons and muons at low 𝑝T. Seemingly,
Delphes significantly underestimates the number of leptons with low transverse momenta
(figures 7.5 and 7.6).

Figure 7.5: Histogram of the electron transverse momentum distribution for ttbb events,
using the default Delphes card and without accounting for isolation, normalized
to an integral of 1.

An investigation has shown, however, that this problem lies not with Delphes or the Delphes
card, but rather, with the analysis: The output which Delphes generates for leptons only
contains isolated electrons and muons, whereas the GEANT sample contains all leptons.
When considering leptons as high level objects, it is useful to separate those that occur as
part of a hadronic showering process, and thus become part of a jet, from those that occur
as direct products of the hard process or from early decays of unstable partons, and are
thus “isolated” from jets. Delphes does this by using a dedicated module to filter the array
of detected leptons. GEANT calculates so-called isolation variables for each lepton instead,
and leaves the filtering to subsequent analysis programs. Thus, the Delphes output, unlike
GEANT, does not contain non-isolated leptons.

Simply turning off the corresponding “Isolation” modules in Delphes almost completely
remediates this issue. However, this produces some problems for the jet-finding procedure
in Delphes. While it is not difficult to adjust the Delphes card in such a way as to fix both
issues, the choice taken here is slightly different: Instead of adjusting the Delphes card, the
analysis procedure is adjusted to incorporate lepton isolation variables and use them to
discard non-isolated leptons from the GEANT samples. This makes sense insofar as that
the isolated leptons are the only ones most further analyses would be interested in.

Of note here are the specific isolation criteria applied, as they are different from those in
the default Delphes card: A relative isolation parameter of 𝐼rel = 0.12 within a Δ𝑅 = 0.3
cone for electrons (as well as photons, although photons are not explicitly investigated in
this work), and a relative isolation parameter of 𝐼rel = 0.25 within a Δ𝑅 = 0.4 cone for
muons. This means that the total 𝑝T of all non-lepton particles within that cone around
an isolated lepton should not exceed the product of 𝐼rel with the 𝑝T of the isolated lepton.

27

28 7 Results

Figure 7.6: Histogram of the muon transverse momentum distribution for ttbb events, using
the default Delphes card and without accounting for isolation, normalized to
an integral of 1.

These criteria are applied consistently to both GEANT and Delphes simulations, however,
they are not entirely equivalent to the standard criteria used at CMS due to a limitation
by Delphes which requires the isolation variable to be a constant. This may have a small
effect on the jet reconstruction procedure, although, if it exists, it appears to be negligible.

The results, shown in figures 7.7 and 7.8, are satisfactory.

28

7.3 Lepton isolation 29

Figure 7.7: Histogram of the electron transverse momentum distribution for ttbb events,
using the final Delphes card and accounting for isolation, normalized to an
integral of 1.

Figure 7.8: Histogram of the muon transverse momentum distribution for ttbb events, using
the final Delphes card and accounting for isolation, normalized to an integral
of 1.

29

30 7 Results

7.4 Lepton efficiencies
While the 𝑝T-distribution for leptons is satisfactory after the changes described in section
7.3, this is not the case for 𝜂𝑒 (figure 7.9) or the multiplicities for both flavors of leptons
(figures 7.10 and 7.11).

Figure 7.9: Histogram of the electron pseudorapidity distribution for ttbb events, using the
default Delphes card, normalized to an integral of 1.

In the case of 𝜂𝑒, the gap between the detector barrel and end-cap at approximately 𝜂 = 1.5
is not properly simulated. Additionally, the overall detection efficiency appears to be
underestimated in the end-cap region. Clearly, this is an issue with the electron efficiency
formula used by the default Delphes CMS card.

Using an alternative efficiency formula found in [26] (see “ElectronEfficiency” in sec-
tion A in the Appendix) instead significantly improves the result (figure 7.12). The
𝑝T-distribution appears largely unaffected, and thus not worsened.

The gap is now properly accounted for, although the number of detected electrons is
still overestimated inside the gap. The end-cap regions are also improved, though the
deviations remain clear. This result could likely be further improved by conducting a
separate investigation into the true efficiency formulas of the CMS detector as predicted by
the GEANT simulation, but this lies beyond the scope of this work.

The other problem related to lepton efficiencies is the disparity between lepton multiplic-
ities in the GEANT and Delphes samples. The observation that Delphes significantly
underestimates the number of leptons detected has been made before [27].

This appears to be a problem inherent to Delphes itself. Even when the relevant efficiencies
are set to the perfect value of 1.0 which should be impossible in a real detector, Delphes
produces too few electrons and muons. Turning off lepton isolation in addition to that
reveals that GEANT produces more leptons on detector level than there are on generator
level (figure 7.13). There appear to be two possible sources for these leptons: Fake leptons,
that is, non-lepton particles mistakenly identified as leptons, and secondary particles, that
is, leptons originating from interactions between generator level particles and the detector
materials. Neither effect can be simulated by Delphes, and may thus be responsible for the

30

7.4 Lepton efficiencies 31

Figure 7.10: Histogram of the electron multiplicity for ttbb events, using the default Delphes
card, normalized to an integral of 1.

observed discrepancy. While another possible source for leptons beyond those present on
generator level is pile-up, this is unlikely to be the main issue here due to the findings of
section 7.7.

31

32 7 Results

Figure 7.11: Histogram of the muon multiplicity for ttbb events, using the default Delphes
card, normalized to an integral of 1.

Figure 7.12: Histogram of the electron pseudorapidity distribution for ttbb events, using
the final Delphes card, normalized to an integral of 1.

32

7.4 Lepton efficiencies 33

Figure 7.13: Histogram of the muon multiplicity for ttbb events, using the Delphes card
with perfect muon efficiency and tracker efficiency, and no muon isolation,
normalized to an integral of 1.

33

34 7 Results

7.5 B-tagging efficiencies
The 𝑝T,BJet distribution shows a significant deviation from the target (figure 7.15). Crucially,
this deviation is significantly larger than the deviation of 𝑝T,Jet (figure 7.14). This suggests
that the simulation of b-tagging in Delphes is inaccurate.

Figure 7.14: Histogram of the jet transverse momentum distribution for ttbb events, using
the default Delphes card, normalized to an integral of 1.

The b-tagging procedure in Delphes functions on a simple basis: A jet is associated with an
unstable parton, and the b-tag rate is given as a mapping of parton flavor to tag or mistag
rate. In the default card, this includes the b-tagging efficiency for bottom-flavored jets, the
mistag rate for charm-flavored jets, and the default mistag rate for all other flavors.

These formulas can easily be adjusted to reflect reality better than they do by default. In
this work, this has been done based on [28] (see “BTagging” in section A in the Appendix).
The binwise tag rates from figure 4 of [28] are used as the bottom-flavor efficiency, and a
flat mistag rate of 0.18 is chosen for charm-flavored jets based on figures 2 and 3 of [28].
The result is shown in figure 7.16.

Overall, an improvement has been achieved. However, the discontinuity of the binwise
efficiency function shows, especially at 𝑝T,BJet = 75 GeV. Further research is necessary to
optimize the function further.

34

7.5 B-tagging efficiencies 35

Figure 7.15: Histogram of the b-jet transverse momentum distribution for ttbb events,
using the default Delphes card, normalized to an integral of 1.

Figure 7.16: Histogram of the b-jet transverse momentum distribution for ttbb events,
using the final Delphes card, normalized to an integral of 1.

35

36 7 Results

7.6 Calorimeter binning
Looking at the distributions of 𝜂Jet (figure 7.17) and 𝜑Jet (figure 7.18), as well as, to a
lesser extent, those of 𝜂BJet and 𝜑BJet, a periodicity can be observed in the Delphes sample.
While its amplitude is small, this is clearly unnatural, especially for the 𝜑 distributions.

Figure 7.17: Histogram of the jet pseudorapidity distribution for ttbb events, using the
default Delphes card, normalized to an integral of 1.

Investigating this periodicity closer shows that it aligns with the HCAL tiling used by the
Delphes card. Evidently, the aggregation of particle momentum and energy into calorimeter
towers is imperfect in Delphes. While the “SimpleCalorimeter” module has an option to
smear the location of tower centers, it is on in the default Delphes card and insufficient
for fully mitigating the effect. Turning it off, as would be expected, makes the periodicity
more pronounced.

By reducing the size of the 𝜂-𝜑-bins used by Delphes, this problem can be fully mitigated
(figures 7.19 and 7.20). Naturally, however, this makes the tower-based information produced
by Delphes completely incompatible with real data. Thus, whether such adjustment is
worth it in any given case depends on the situation. The plots in the appendix do use this
adjustment as this work only concerns itself with high-level objects.

36

7.6 Calorimeter binning 37

Figure 7.18: Histogram of the jet azimuthal angle distribution for ttbb events, using the
default Delphes card, normalized to an integral of 1.

Figure 7.19: Histogram of the jet pseudorapidity distribution for ttbb events, using the
final Delphes card, normalized to an integral of 1.

37

38 7 Results

Figure 7.20: Histogram of the jet azimuthal angle distribution for ttbb events, using the
final Delphes card, normalized to an integral of 1.

38

7.7 Pile-up 39

7.7 Pile-up
Pile-up is the process of multiple hadron collisions happening simultaneously in the
collider, with every collision other than the highest-energy one being treated as background
noise. While there are ways to significantly reduce the effect this has on the final data
algorithmically, a certain distortion remains. This process is simulated by GEANT, but not
by the default Delphes card. The possibility of including pile-up is offered by Delphes, and
the default installation comes with a card for CMS which includes a simulation of pile-up.

The pile-up simulation in Delphes consists of adding the pile-up to the generator level input
in the very beginnning of the simulation and subtracting its estimated effects on detector
level at the end. Adding the pile-up is done using the PileUpMerger module, which takes an
external file containing generator level events which are common for proton-proton collisions
at the given center-of-mass energy of 13 TeV. A few other parameters define the mean
number of pile-up events (in this case, 50) as well as the spread of the events in time and
along the beam axis. The subtraction is performed by the JetPileUpSubtractor module
which reduces the transverse momentum by the average expected transverse momentum
originating from pile-up in the jet’s area.

After applying the adjustments discussed in the previous sections to this pile-up card, it is
used to gauge the effects pile-up has on the simulation. The results are mixed: While the
agreement of the jet 𝑝T distributions is improved significantly (figure 7.21), jet multiplicity
is underestimated much more than previously (figure 7.22) and a significant portion of the
jets are calculated to have negative masses (figure 7.23), which is not physical.

Figure 7.21: Histogram of the jet transverse momentum distribution for ttbb events, using
a Delphes card which includes pile-up, normalized to an integral of 1.

Further worth noting is that, while pile-up did increase the number of detector-level leptons
in the Delphes samples, the effect is approximately an order of magnitude smaller than the
discrepancy discussed in section 7.4.

Due to the dubious effects which including pile-up had on the result, it was decided not to
include it for the remaining study.

39

40 7 Results

Figure 7.22: Histogram of the jet multiplicity for ttbb events, using a Delphes card which
includes pile-up, normalized to an integral of 1.

Figure 7.23: Histogram of the jet invariant mass distribution for ttbb events, using a
Delphes card which includes pile-up, normalized to an integral of 1.

40

7.8 Other deviations 41

7.8 Other deviations
Several further issues remain entirely unresolved.

One of these is the 𝜑-asymmetry of the detector. As can be most clearly seen in the 𝜑BJet
distribution (figure 7.24), the detection efficiency is slightly reduced in a certain direction
(towards the center of the accelerator ring, approximately 40 ∘ up). As Delphes is not
designed to work with non radially symmetric situations, it is incapable of simulating this.
Attempting to mediate this would require changing the code of Delphes, which goes beyond
the scope of this thesis.

Figure 7.24: Histogram of the b-jet azimuthal angle distribution for ttbb events, using the
final Delphes card, normalized to an integral of 1.

Another issue is the inaccuracy in the jet mass plots (figures 7.25). Overall, it appears
that the entire distribution is shifted by about 5 GeV. Potentially, this can be remedied by
adjusting the “EnergyScale” module which adjusts jet energies. However, due to the lack
of a clear alternative formula to use and the relatively minor impact of such adjustment,
this is not attempted here.

Further, the multiplicities of jets and b-jets deviate from the target significantly (figures
7.26 and 7.27). The overabundance of events with high b-jet multiplicity can be attributed
to the same discrepancy found on generator level, discussed in section 7.1. The origin of
all other discrepancies remains unclear.

Finally, when looking at the Δ𝑅(𝑏𝑏) distributions (figure 7.28), while most features appear
to be modeled accurately, there is a noticeable overabundance of close pairs of b-jets. One
feasible hypothesis is that this is related to the overabundance of events with high b-jet
multiplicity, as more b-jets in an event mean less distance between them, on average. This
hypothesis is supported by the fact that this discrepancy remains even on generator level
(figure 7.29).

41

42 7 Results

Figure 7.25: Histogram of the jet invariant mass distribution for ttbb events, using the
final Delphes card, normalized to an integral of 1.

Figure 7.26: Histogram of the jet multiplicity for ttbb events, using the final Delphes card,
normalized to an integral of 1.

42

7.8 Other deviations 43

Figure 7.27: Histogram of the b-jet multiplicity for ttbb events, using the final Delphes
card, normalized to an integral of 1.

Figure 7.28: Histogram of the average Δ𝑅 of b-jet pairs for ttbb events, using the final
Delphes card, normalized to an integral of 1.

43

44 7 Results

Figure 7.29: Histogram of the average Δ𝑅 of b-jet pairs for ttbb events at generator level,
using the final Delphes card, normalized to an integral of 1.

44

7.9 Application to ttH and ttZ 45

7.9 Application to ttH and ttZ
After adjusting the Delphes card based on the ttbb simulation, it is now applied to ttH and
ttZ simulations. As the detector properties and the specific process investigated should be
almost completely independent from one another, the expectation is that the deviations
between GEANT and Delphes samples will be the same independent of the specific process.

This expectation indeed holds up well. For most of the kinematic observables considered,
the alignment of the GEANT-Delphes factor between the three processes is perfect or
almost perfect save for statistical deviations (figure 7.30 as an example, section B of the
appendix contains similar histograms for all observables considered).

Figure 7.30: Histogram of the b-jet transverse momentum distribution for ttbb, ttH and
ttZ events, using the final Delphes card, normalized to an integral of 1.

The one exception are lepton multiplicities (figures 7.31 and 7.32). While ttH and ttZ
align very well with one another, they do not align quite as well with ttbb, likely because
the event topologies of ttH and ttZ are very similar, whereas ttbb differs significantly
from both, likely due to including a much wider array of event topologies, including many
Feynman diagrams without an analogon in ttH and ttZ. Because the lepton multiplicities
are also the observables for which the deviations between GEANT and Delphes remain the
largest, it is likely that the deviations between ttbb, ttH and ttZ are related to this.

45

46 7 Results

Figure 7.31: Histogram of the electron multiplicity for ttbb, ttH and ttZ events, using the
final Delphes card, normalized to an integral of 1.

Figure 7.32: Histogram of the muon multiplicity for ttbb, ttH and ttZ events, using the
final Delphes card, normalized to an integral of 1.

46

8 Conclusion

Simulations of collider events are an integral part of modern particle physics research. At
the CMS experiment at the CERN LHC, it is standard for the detector simulation to be
performed using the GEANT software package. This, however, may not be ideal under
certain circumstances due to its resource-intensiveness. For certain applications with lower
requirements to the precision of final results, the open-source software Delphes can be
better suited.

This thesis seeks to investigate the feasibility of using Delphes for certain specific processes.
Under consideration are processes with an associated production of a top quark-antiquark
pair together with either a bottom quark-antiquark pair, a Higgs-boson or a Z-boson.

After considering the tools used for the simulation and devising a workflow which allows
for maximum isolation of the discrepancies in detector simulation software from the event
generation and the parton showering simulation, a comparison between the results is
performed for ttbb processes.

A generator level comparison verifies the fact that, save for statistical variation, both
softwares deal with equivalent particle-level information, while at the same time uncovering
a discrepancy in the flavor association algorithms used for generator level jets.

A comparison on detector level identifies many discrepancies. Attempts are made to
remedy each identified problem individually. Some, especially problems with handling
lepton and photon isolation, are successfully mitigated, others, such as suboptimal efficiency
formulas, only in a limited capacity. Yet others are found to be caused by fundamental
insufficiencies in Delphes, most notably the lack of lepton misidentification simulation,
the lack of secondary particles simulation, and an inconsistency between the jet flavor
association algorithms of Delphes and GEANT.

An attempt is made to include pile-up in the simulation. While results are promising in
some areas, they are associated with highly inadequate results in other areas.

Overall, the results are workable, with basic kinematic observable distributions deviating
by at most 10 % in relevant sections.

Next, the Delphes simulation is applied to ttH and ttZ processes. The results show that
most relative deviations between Delphes and GEANT do not depend on the specific
process simulated, at least not in the case of the processes considered in this work. From

47

48 8 Conclusion

this, one can conclude that most of the deviations that remain can be further reduced by
adjusting numerical parameters for Delphes more precisely.

Noteworthy for an outlook towards future research are the two issues which are responsible
for significant deviations in this work while being properties of Delphes itself, rather than
being something that can be adjusted through configuration. The first is the jet flavor
association algorithm. It may prove worthwhile to investigate the discrepancies between
Delphes and GEANT in this regard more closely, and potentially create a method to
mitigate them. As this discrepancy is present on generator level, where the actual detector
simulation has yet to take effect, it is likely that such an adjustment is possible, though
it will likely require changing the internal code of Delphes. The second is the simulation
of particle misidentification. According to [22], the creation of a new Delphes module for
this is possible in principle. Third is the simulation of secondary interactions and particles,
although it is unclear if and how this could be implemented in Delphes.

A further avenue for improvements to this work’s results is to derive more accurate efficiency
formulas, especially for leptons and b-tagging. While an improvement from the default
efficiencies has been achieved here, noticeable deviations remain.

The investigation of Delphes’ capabilities to simulate pile-up is rather basic in this thesis.
As part of the results here show notable promise, and as pile-up increases in importance
with increasing collider luminosities, finding a way to circumvent the problems encountered
in this work can be a highly valuable objective.

Finally, investigating the effect of various selection criteria on the simulation can be
beneficial. While this is not done here due to the high degree of independence of the
detector simulation from the generator level simulation, a possibility of unexpected findings
remains and should be investigated.

48

Bibliography

[1] B. Povh. Particles and Nuclei : An Introduction to the Physical Concepts. Ed. by
K. Rith et al. Berlin, Heidelberg, 2015.

[2] G. Aad et al. “Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC”. In: Physics Letters B 716.1
(Sept. 2012), pp. 1–29. doi: 10.1016/j.physletb.2012.08.020.

[3] S. Chatrchyan et al. “Observation of a new boson at a mass of 125 GeV with the
CMS experiment at the LHC”. In: Physics Letters B 716.1 (Sept. 2012), pp. 30–61.
doi: 10.1016/j.physletb.2012.08.021.

[4] F. Englert and R. Brout. “Broken Symmetry and the Mass of Gauge Vector Mesons”.
In: Phys. Rev. Lett. 13 (9 Aug. 1964), pp. 321–323. doi: 10.1103/PhysRevLett.13.
321.

[5] P. W. Higgs. “Broken Symmetries and the Masses of Gauge Bosons”. In: Phys. Rev.
Lett. 13 (16 Oct. 1964), pp. 508–509. doi: 10.1103/PhysRevLett.13.508.

[6] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. “Global Conservation Laws
and Massless Particles”. In: Phys. Rev. Lett. 13 (20 Nov. 1964), pp. 585–587. doi:
10.1103/PhysRevLett.13.585.

[7] J. C. Collins, D. E. Soper, and G. Sterman. “Factorization of Hard Processes in
QCD”. In: (2004). doi: 10.48550/ARXIV.HEP-PH/0409313.

[8] S. Fartoukh et al. LHC Configuration and Operational Scenario for Run 3. Tech. rep.
Geneva: CERN, 2021. url: http://cds.cern.ch/record/2790409.

[9] V. Khachatryan et al. “The CMS trigger system”. In: Journal of Instrumentation
12.01 (Jan. 2017), P01020–P01020. doi: 10.1088/1748-0221/12/01/p01020.

[10] S. R. Davis. Interactive Slice of the CMS detector. 2016. url: https://cds.cern.
ch/record/2205172.

[11] S. Chatrchyan et al. “The CMS Experiment at the CERN LHC”. In: JINST 3 (2008),
S08004. doi: 10.1088/1748-0221/3/08/S08004.

[12] F. Beaudette. “The CMS Particle Flow Algorithm”. In: Proceedings of the CHEF2013
Conference. arXiv, 2014. doi: 10.48550/ARXIV.1401.8155.

[13] M. Cacciari, G. P. Salam, and G. Soyez. “The anti-𝑘𝑡 jet clustering algorithm”. In:
Journal of High Energy Physics 2008.04 (Apr. 2008), pp. 063–063. doi: 10.1088/1126-
6708/2008/04/063.

[14] M. Stoye and on behalf of the CMS collaboration. “Deep learning in jet reconstruction
at CMS”. In: Journal of Physics: Conference Series 1085 (Sept. 2018), p. 042029.
doi: 10.1088/1742-6596/1085/4/042029.

[15] E. Pfeffer. “Studies on tt+bb production at the CMS experiment”. MA thesis.
Karlsruhe Institute of Technology (KIT), 2021. url: https://publish.etp.kit.
edu/record/22046.

49

https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.48550/ARXIV.HEP-PH/0409313
http://cds.cern.ch/record/2790409
https://doi.org/10.1088/1748-0221/12/01/p01020
https://cds.cern.ch/record/2205172
https://cds.cern.ch/record/2205172
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.48550/ARXIV.1401.8155
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1742-6596/1085/4/042029
https://publish.etp.kit.edu/record/22046
https://publish.etp.kit.edu/record/22046

50 Bibliography

[16] J. Alwall et al. “The automated computation of tree-level and next-to-leading order
differential cross sections, and their matching to parton shower simulations”. In:
Journal of High Energy Physics 2014.7 (July 2014). doi: 10.1007/jhep07(2014)079.

[17] P. Artoisenet et al. “Automatic spin-entangled decays of heavy resonances in Monte
Carlo simulations”. In: Journal of High Energy Physics 2013.3 (Mar. 2013). doi:
10.1007/jhep03(2013)015.

[18] C. Bierlich et al. A comprehensive guide to the physics and usage of PYTHIA 8.3.
2022. doi: 10.48550/ARXIV.2203.11601.

[19] S. Agostinelli et al. “Geant4—a simulation toolkit”. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 506.3 (2003), pp. 250–303. issn: 0168-9002. doi: https://doi.
org/10.1016/S0168-9002(03)01368-8.

[20] J. Allison et al. “Geant4 developments and applications”. In: IEEE Transactions on
Nuclear Science 53.1 (2006), pp. 270–278. doi: 10.1109/TNS.2006.869826.

[21] J. Allison et al. “Recent developments in Geant4”. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 835 (2016), pp. 186–225. issn: 0168-9002. doi: https://doi.
org/10.1016/j.nima.2016.06.125.

[22] J. de Favereau et al. “DELPHES 3: a modular framework for fast simulation of a
generic collider experiment”. In: Journal of High Energy Physics 2014.2 (Feb. 2014).
doi: 10.1007/jhep02(2014)057.

[23] R. L. Workman et al. “Review of Particle Physics”. In: PTEP 2022 (2022), p. 083C01.
doi: 10.1093/ptep/ptac097.

[24] R. Brun and F. Rademakers. “ROOT - An Object Oriented Data Analysis Framework”.
In: AIHENP’96 Workshop, Lausane. Vol. 389. 1996, pp. 81–86.

[25] M. Dobbs and J. B. Hansen. “The HepMC C++ Monte Carlo event record for High
Energy Physics”. In: Computer Physics Communications 134.1 (2001), pp. 41–46.
issn: 0010-4655. doi: https://doi.org/10.1016/S0010-4655(00)00189-2.

[26] S. Zenz. CMS "short-term" version of Delphes - starting with ECFA_v2. https:
//github.com/sethzenz/Delphes. 2015. (Visited on 10/04/2022).

[27] J. Hornung. “Studien zur schnellen Ereignissimulation mit Delphes”. BA thesis.
Karlsruhe Institute of Technology (KIT), 2021. url: https://publish.etp.kit.
edu/record/22082.

[28] E. Bols et al. “Jet flavour classification using DeepJet”. In: Journal of Instrumentation
15.12 (Dec. 2020), P12012–P12012. doi: 10.1088/1748-0221/15/12/p12012.

50

https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1007/jhep03(2013)015
https://doi.org/10.48550/ARXIV.2203.11601
https://doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1109/TNS.2006.869826
https://doi.org/https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/10.1007/jhep02(2014)057
https://doi.org/10.1093/ptep/ptac097
https://doi.org/https://doi.org/10.1016/S0010-4655(00)00189-2
https://github.com/sethzenz/Delphes
https://github.com/sethzenz/Delphes
https://publish.etp.kit.edu/record/22082
https://publish.etp.kit.edu/record/22082
https://doi.org/10.1088/1748-0221/15/12/p12012

Appendix

A Final Delphes card
set ExecutionPath {
ParticlePropagator
ChargedHadronTrackingEfficiency
ElectronTrackingEfficiency
MuonTrackingEfficiency
ChargedHadronMomentumSmearing
ElectronMomentumSmearing
MuonMomentumSmearing
TrackMerger
ECal
HCal
Calorimeter
EFlowMerger
EFlowFilter
PhotonEfficiency
PhotonIsolation
ElectronFilter
ElectronEfficiency
ElectronIsolation
ChargedHadronFilter
MuonEfficiency
MuonIsolation
MissingET
NeutrinoFilter
GenJetFinder
GenMissingET
FastJetFinder
FatJetFinder
JetEnergyScale
JetFlavorAssociation
GenJetFlavorAssociation
BTagging

51

52 8 Appendix

TauTagging
UniqueObjectFinder
ScalarHT
TreeWriter
}

module ParticlePropagator ParticlePropagator {
set InputArray Delphes/stableParticles
set OutputArray stableParticles
set ChargedHadronOutputArray chargedHadrons
set ElectronOutputArray electrons
set MuonOutputArray muons
set Radius 1.29
set HalfLength 3.00
set Bz 3.8
}

module Efficiency ChargedHadronTrackingEfficiency {
set InputArray ParticlePropagator/chargedHadrons
set OutputArray chargedHadrons
set EfficiencyFormula { (pt <= 0.1) * (0.00) +

(abs(eta) <= 1.5) * (pt > 0.1 && pt <= 1.0) * (0.85) +
(abs(eta) <= 1.5) * (pt > 1.0) * (0.97) +

(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 0.1 && pt <= 1.0) * (0.85) +
(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 1.0) * (0.90) +
(abs(eta) > 2.5) * (0.00)}
}

module Efficiency ElectronTrackingEfficiency {
set InputArray ParticlePropagator/electrons
set OutputArray electrons
set EfficiencyFormula { (pt <= 0.1) * (0.00) +

(abs(eta) <= 1.5) * (pt > 0.1 && pt <= 1.0) * (0.85) +
(abs(eta) <= 1.5) * (pt > 1.0 && pt <= 1.0e2) * (0.97) +
(abs(eta) <= 1.5) * (pt > 1.0e2) * (0.99) +

(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 0.1 && pt <= 1.0) * (0.85) +
(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 1.0 && pt <= 1.0e2) * (0.90) +
(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 1.0e2) * (0.95) +
(abs(eta) > 2.5) * (0.00)}
}

module Efficiency MuonTrackingEfficiency {
set InputArray ParticlePropagator/muons
set OutputArray muons
set EfficiencyFormula { (pt <= 0.1) * (0.00) +

(abs(eta) <= 1.5) * (pt > 0.1 && pt <= 1.0) * (0.998) +
(abs(eta) <= 1.5) * (pt > 1.0) * (0.9998) +

(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 0.1 && pt <= 1.0) * (0.98) +
(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 1.0) * (0.98) +
(abs(eta) > 2.5) * (0.00)}
}

52

A Final Delphes card 53

module MomentumSmearing ChargedHadronMomentumSmearing {
set InputArray ChargedHadronTrackingEfficiency/chargedHadrons
set OutputArray chargedHadrons
set ResolutionFormula {(abs(eta) <= 0.5) * (pt > 0.1) * sqrt(0.06^2 + pt^2*1.3e-3^2) +

(abs(eta) > 0.5 && abs(eta) <= 1.5) * (pt > 0.1) * sqrt(0.10^2 + pt^2*1.7e-3^2) +
(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 0.1) * sqrt(0.25^2 + pt^2*3.1e-3^2)}

}

module MomentumSmearing ElectronMomentumSmearing {
set InputArray ElectronTrackingEfficiency/electrons
set OutputArray electrons
set ResolutionFormula {(abs(eta) <= 0.5) * (pt > 0.1) * sqrt(0.03^2 + pt^2*1.3e-3^2) +

(abs(eta) > 0.5 && abs(eta) <= 1.5) * (pt > 0.1) * sqrt(0.05^2 + pt^2*1.7e-3^2) +
(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 0.1) * sqrt(0.15^2 + pt^2*3.1e-3^2)}

}

module MomentumSmearing MuonMomentumSmearing {
set InputArray MuonTrackingEfficiency/muons
set OutputArray muons
set ResolutionFormula {(abs(eta) <= 0.5) * (pt > 0.1) * sqrt(0.01^2 + pt^2*1.0e-4^2) +

(abs(eta) > 0.5 && abs(eta) <= 1.5) * (pt > 0.1) * sqrt(0.015^2 + pt^2*1.5e-4^2) +
(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 0.1) * sqrt(0.025^2 + pt^2*3.5e-4^2)}

}

module Merger TrackMerger {
add InputArray ChargedHadronMomentumSmearing/chargedHadrons
add InputArray ElectronMomentumSmearing/electrons
add InputArray MuonMomentumSmearing/muons
set OutputArray tracks
}

module SimpleCalorimeter ECal {
set ParticleInputArray ParticlePropagator/stableParticles
set TrackInputArray TrackMerger/tracks
set TowerOutputArray ecalTowers
set EFlowTrackOutputArray eflowTracks
set EFlowTowerOutputArray eflowPhotons
set IsEcal true
set EnergyMin 0.5
set EnergySignificanceMin 2.0
set SmearTowerCenter true
set pi [expr {acos(-1)}]
set PhiBins {}
for {set i -180} {$i <= 180} {incr i} {

add PhiBins [expr {$i * $pi/180.0}]
}
for {set i -85} {$i <= 86} {incr i} {

set eta [expr {$i * 0.0174}]
add EtaPhiBins $eta $PhiBins

}

53

54 8 Appendix

set PhiBins {}
for {set i -180} {$i <= 180} {incr i} {

add PhiBins [expr {$i * $pi/180.0}]
}
for {set i 1} {$i <= 84} {incr i} {

set eta [expr { -2.958 + $i * 0.0174}]
add EtaPhiBins $eta $PhiBins

}
for {set i 1} {$i <= 84} {incr i} {

set eta [expr { 1.4964 + $i * 0.0174}]
add EtaPhiBins $eta $PhiBins

}
set PhiBins {}
for {set i -18} {$i <= 18} {incr i} {

add PhiBins [expr {$i * $pi/18.0}]
}
foreach eta {-5 -4.7 -4.525 -4.35 -4.175 -4 -3.825 -3.65 -3.475 -3.3 -3.125 -2.958

3.125 3.3 3.475 3.65 3.825 4 4.175 4.35 4.525 4.7 5} {
add EtaPhiBins $eta $PhiBins

}
add EnergyFraction {0} {0.0}
add EnergyFraction {11} {1.0}
add EnergyFraction {22} {1.0}
add EnergyFraction {111} {1.0}
add EnergyFraction {12} {0.0}
add EnergyFraction {13} {0.0}
add EnergyFraction {14} {0.0}
add EnergyFraction {16} {0.0}
add EnergyFraction {1000022} {0.0}
add EnergyFraction {1000023} {0.0}
add EnergyFraction {1000025} {0.0}
add EnergyFraction {1000035} {0.0}
add EnergyFraction {1000045} {0.0}
add EnergyFraction {310} {0.3}
add EnergyFraction {3122} {0.3}
set ResolutionFormula {(abs(eta) <= 1.5) *

(1+0.64*eta^2) * sqrt(energy^2*0.008^2 + energy*0.11^2 + 0.40^2) +
(abs(eta) > 1.5 && abs(eta) <= 2.5) *

(2.16 + 5.6*(abs(eta)-2)^2) * sqrt(energy^2*0.008^2 + energy*0.11^2 + 0.40^2) +
(abs(eta) > 2.5 && abs(eta) <= 5.0) *

sqrt(energy^2*0.107^2 + energy*2.08^2)}
}

module SimpleCalorimeter HCal {
set ParticleInputArray ParticlePropagator/stableParticles
set TrackInputArray ECal/eflowTracks
set TowerOutputArray hcalTowers
set EFlowTrackOutputArray eflowTracks
set EFlowTowerOutputArray eflowNeutralHadrons
set IsEcal false
set EnergyMin 1.0

54

A Final Delphes card 55

set EnergySignificanceMin 1.0
set SmearTowerCenter true
set pi [expr {acos(-1)}]
set PhiBins {}
for {set i -180} {$i <= 180} {incr i} {

add PhiBins [expr {$i * $pi/180.0}]
}
for {set i 1} {$i <= 440} {incr i} {

set eta [expr { -4.4 + $i * 0.02}]
add EtaPhiBins $eta $PhiBins

}
set PhiBins {}
for {set i -9} {$i <= 9} {incr i} {

add PhiBins [expr {$i * $pi/9.0}]
}
foreach eta {-5 -4.7 -4.4 4.7 5} {

add EtaPhiBins $eta $PhiBins
}
add EnergyFraction {0} {1.0}
add EnergyFraction {11} {0.0}
add EnergyFraction {22} {0.0}
add EnergyFraction {111} {0.0}
add EnergyFraction {12} {0.0}
add EnergyFraction {13} {0.0}
add EnergyFraction {14} {0.0}
add EnergyFraction {16} {0.0}
add EnergyFraction {1000022} {0.0}
add EnergyFraction {1000023} {0.0}
add EnergyFraction {1000025} {0.0}
add EnergyFraction {1000035} {0.0}
add EnergyFraction {1000045} {0.0}
add EnergyFraction {310} {0.7}
add EnergyFraction {3122} {0.7}
set ResolutionFormula {(abs(eta) <= 3.0) * sqrt(energy^2*0.050^2 + energy*1.50^2) +

(abs(eta) > 3.0 && abs(eta) <= 5.0) * sqrt(energy^2*0.130^2 + energy*2.70^2)}
}

module PdgCodeFilter ElectronFilter {
set InputArray HCal/eflowTracks
set OutputArray electrons
set Invert true
add PdgCode {11}
add PdgCode {-11}
}

module PdgCodeFilter ChargedHadronFilter {
set InputArray HCal/eflowTracks
set OutputArray chargedHadrons
add PdgCode {11}
add PdgCode {-11}
add PdgCode {13}

55

56 8 Appendix

add PdgCode {-13}
}

module Merger Calorimeter {
add InputArray ECal/ecalTowers
add InputArray HCal/hcalTowers
set OutputArray towers
}

module Merger EFlowMerger {
add InputArray HCal/eflowTracks
add InputArray ECal/eflowPhotons
add InputArray HCal/eflowNeutralHadrons
set OutputArray eflow
}

module PdgCodeFilter EFlowFilter {
set InputArray EFlowMerger/eflow
set OutputArray eflow
add PdgCode {11}
add PdgCode {-11}
add PdgCode {13}
add PdgCode {-13}
}

module Efficiency PhotonEfficiency {
set InputArray ECal/eflowPhotons
set OutputArray photons
set EfficiencyFormula { (pt <= 10.0) * (0.00) +

(abs(eta) <= 1.5) * (pt > 10.0) * (0.9635) +
(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 10.0) * (0.9624) +
(abs(eta) > 2.5) * (0.00)}
}

module Isolation PhotonIsolation {
set CandidateInputArray PhotonEfficiency/photons
set IsolationInputArray EFlowFilter/eflow
set OutputArray photons
set DeltaRMax 0.3
set PTMin 0.5
set PTRatioMax 0.12
}

module Efficiency ElectronEfficiency {
set InputArray ElectronFilter/electrons
set OutputArray electrons
set EfficiencyFormula { (pt <= 4.0) * (0.00) +
(abs(eta) <= 1.45) * (pt > 4.0 && pt <= 6.0) * (0.50) +
(abs(eta) <= 1.45) * (pt > 6.0 && pt <= 8.0) * (0.70) +

56

A Final Delphes card 57

(abs(eta) <= 1.45) * (pt > 8.0 && pt <= 10.0) * (0.85) +
(abs(eta) <= 1.45) * (pt > 10.0 && pt <= 30.0) * (0.94) +
(abs(eta) <= 1.45) * (pt > 30.0 && pt <= 50.0) * (0.97) +
(abs(eta) <= 1.45) * (pt > 50.0 && pt <= 70.0) * (0.98) +
(abs(eta) <= 1.45) * (pt > 70.0) * (1.0) +
(abs(eta) > 1.45 && abs(eta) <= 1.55) * (pt > 4.0 && pt <= 10.0) * (0.35) +
(abs(eta) > 1.45 && abs(eta) <= 1.55) * (pt > 10.0 && pt <= 30.0) * (0.40) +
(abs(eta) > 1.45 && abs(eta) <= 1.55) * (pt > 30.0 && pt <= 70.0) * (0.45) +
(abs(eta) > 1.45 && abs(eta) <= 1.55) * (pt > 70.0) * (0.45) +
(abs(eta) >= 1.55 && abs(eta) <= 2.0) * (pt > 4.0 && pt <= 10.0) * (0.75) +
(abs(eta) >= 1.55 && abs(eta) <= 2.0) * (pt > 10.0 && pt <= 30.0) * (0.85) +
(abs(eta) >= 1.55 && abs(eta) <= 2.0) * (pt > 30.0 && pt <= 50.0) * (0.95) +
(abs(eta) >= 1.55 && abs(eta) <= 2.0) * (pt > 50.0 && pt <= 70.0) * (0.95) +
(abs(eta) >= 1.55 && abs(eta) <= 2.0) * (pt > 70.0) * (1.0) +
(abs(eta) >= 2.0 && abs(eta) <= 2.5) * (pt > 4.0 && pt <= 10.0) * (0.65) +
(abs(eta) >= 2.0 && abs(eta) <= 2.5) * (pt > 10.0 && pt <= 30.0) * (0.75) +
(abs(eta) >= 2.0 && abs(eta) <= 2.5) * (pt > 30.0 && pt <= 50.0) * (0.85) +
(abs(eta) >= 2.0 && abs(eta) <= 2.5) * (pt > 50.0 && pt <= 70.0) * (0.85) +
(abs(eta) >= 2.0 && abs(eta) <= 2.5) * (pt > 70.0) * (0.85) +
(abs(eta) > 2.5) * (0.00)}
}

module Isolation ElectronIsolation {
set CandidateInputArray ElectronEfficiency/electrons
set IsolationInputArray EFlowFilter/eflow
set OutputArray electrons
set DeltaRMax 0.3
set PTMin 0.5
set PTRatioMax 0.12
}

module Efficiency MuonEfficiency {
set InputArray MuonMomentumSmearing/muons
set OutputArray muons
set EfficiencyFormula { (pt <= 2.0) * (0.00) +
(abs(eta) <= 2.40) * (pt > 2.0 && pt <= 3.0) * (0.51) +
(abs(eta) <= 2.40) * (pt > 3.0 && pt <= 4.0) * (0.85) +
(abs(eta) <= 2.40) * (pt > 4.0 && pt <= 11.0) * (0.93) +
(abs(eta) <= 2.40) * (pt > 11.0 && pt <= 50.0) * (0.96) +
(abs(eta) <= 2.40) * (pt > 50.0 && pt <= 70.0) * (0.98) +
(abs(eta) <= 2.40) * (pt > 70.0) * (1.00) +
(abs(eta) > 2.40) * (0.00)}
}

module Isolation MuonIsolation {
set CandidateInputArray MuonEfficiency/muons
set IsolationInputArray EFlowFilter/eflow
set OutputArray muons
set DeltaRMax 0.4
set PTMin 0.5

57

58 8 Appendix

set PTRatioMax 0.25
}

module Merger MissingET {
add InputArray EFlowMerger/eflow
set MomentumOutputArray momentum
}

module Merger ScalarHT {
add InputArray UniqueObjectFinder/jets
add InputArray UniqueObjectFinder/electrons
add InputArray UniqueObjectFinder/photons
add InputArray UniqueObjectFinder/muons
set EnergyOutputArray energy
}

module PdgCodeFilter NeutrinoFilter {
set InputArray Delphes/stableParticles
set OutputArray filteredParticles
set PTMin 0.0
add PdgCode {12}
add PdgCode {14}
add PdgCode {16}
add PdgCode {-12}
add PdgCode {-14}
add PdgCode {-16}
}

module FastJetFinder GenJetFinder {
set InputArray NeutrinoFilter/filteredParticles
set OutputArray jets
set JetAlgorithm 6
set ParameterR 0.4
set JetPTMin 10.0
}

module Merger GenMissingET {
add InputArray NeutrinoFilter/filteredParticles
set MomentumOutputArray momentum
}

module FastJetFinder FastJetFinder {
set InputArray EFlowMerger/eflow
set OutputArray jets
set JetAlgorithm 6
set ParameterR 0.4
set JetPTMin 10.0
}

58

A Final Delphes card 59

module FastJetFinder FatJetFinder {
set InputArray EFlowMerger/eflow
set OutputArray jets
set JetAlgorithm 6
set ParameterR 0.8
set ComputeNsubjettiness 1
set Beta 1.0
set AxisMode 4
set ComputeTrimming 1
set RTrim 0.2
set PtFracTrim 0.05
set ComputePruning 1
set ZcutPrun 0.1
set RcutPrun 0.5
set RPrun 0.8
set ComputeSoftDrop 1
set BetaSoftDrop 0.0
set SymmetryCutSoftDrop 0.1
set R0SoftDrop 0.8
set JetPTMin 200.0
}

module EnergyScale JetEnergyScale {
set InputArray FastJetFinder/jets
set OutputArray jets
set ScaleFormula {sqrt((2.5 - 0.15 * (abs(eta)))^2 / pt + 1.0)}
}

module JetFlavorAssociation JetFlavorAssociation {
set PartonInputArray Delphes/partons
set ParticleInputArray Delphes/allParticles
set ParticleLHEFInputArray Delphes/allParticlesLHEF
set JetInputArray JetEnergyScale/jets
set DeltaR 0.4
set PartonPTMin 1.0
set PartonEtaMax 2.5
}

module JetFlavorAssociation GenJetFlavorAssociation {
set PartonInputArray Delphes/partons
set ParticleInputArray Delphes/allParticles
set ParticleLHEFInputArray Delphes/allParticlesLHEF
set JetInputArray GenJetFinder/jets
set DeltaR 0.4
set PartonPTMin 1.0
set PartonEtaMax 2.5
}

module BTagging BTagging {
set JetInputArray JetEnergyScale/jets

59

60 8 Appendix

set BitNumber 0
add EfficiencyFormula {0} {0.01}
add EfficiencyFormula {4} {0.18}
add EfficiencyFormula {5} {(pt <= 75.0) * (0.76) +

(pt > 75.0 && pt <= 150.0) * (0.83) +
(pt > 150.0 && pt <= 225.0) * (0.85) +
(pt > 225.0 && pt <= 300.0) * (0.85) +
(pt > 300.0 && pt <= 375.0) * (0.82) +
(pt > 375.0 && pt <= 450.0) * (0.79) +
(pt > 450.0 && pt <= 525.0) * (0.79) +
(pt > 525.0 && pt <= 600.0) * (0.78) +
(pt > 600.0 && pt <= 675.0) * (0.76) +
(pt > 675.0 && pt <= 750.0) * (0.73) +
(pt > 750.0) * (0.66)}

}

module TauTagging TauTagging {
set ParticleInputArray Delphes/allParticles
set PartonInputArray Delphes/partons
set JetInputArray JetEnergyScale/jets
set DeltaR 0.4
set TauPTMin 1.0
set TauEtaMax 2.5
add EfficiencyFormula {0} {0.01}
add EfficiencyFormula {15} {0.6}
}

module UniqueObjectFinder UniqueObjectFinder {
add InputArray PhotonIsolation/photons photons
add InputArray ElectronIsolation/electrons electrons
add InputArray MuonIsolation/muons muons
add InputArray JetEnergyScale/jets jets
}

module TreeWriter TreeWriter {
add Branch Delphes/allParticles Particle GenParticle
add Branch TrackMerger/tracks Track Track
add Branch Calorimeter/towers Tower Tower
add Branch HCal/eflowTracks EFlowTrack Track
add Branch ECal/eflowPhotons EFlowPhoton Tower
add Branch HCal/eflowNeutralHadrons EFlowNeutralHadron Tower
add Branch GenJetFinder/jets GenJet Jet
add Branch GenMissingET/momentum GenMissingET MissingET
add Branch UniqueObjectFinder/jets Jet Jet
add Branch UniqueObjectFinder/electrons Electron Electron
add Branch UniqueObjectFinder/photons Photon Photon
add Branch UniqueObjectFinder/muons Muon Muon
add Branch FatJetFinder/jets FatJet Jet
add Branch MissingET/momentum MissingET MissingET
add Branch ScalarHT/energy ScalarHT ScalarHT
}

60

B All generated histograms for all processes using the final Delphes card 61

B All generated histograms for all processes using the final
Delphes card

Figure B.1: Histogram of 𝑁Jet.

Figure B.2: Histogram of 𝑝T,Jet.

61

62 8 Appendix

Figure B.3: Histogram of 𝜂Jet.

Figure B.4: Histogram of 𝜑Jet.

62

B All generated histograms for all processes using the final Delphes card 63

Figure B.5: Histogram of 𝑚Jet.

Figure B.6: Histogram of 𝐸Jet.

63

64 8 Appendix

Figure B.7: Histogram of 𝑁BJet.

Figure B.8: Histogram of 𝑝T,BJet.

64

B All generated histograms for all processes using the final Delphes card 65

Figure B.9: Histogram of 𝜂BJet.

Figure B.10: Histogram of 𝜑BJet.

65

66 8 Appendix

Figure B.11: Histogram of 𝑚BJet.

Figure B.12: Histogram of 𝐸BJet.

66

B All generated histograms for all processes using the final Delphes card 67

Figure B.13: Histogram of 𝑁𝑒.

Figure B.14: Histogram of 𝑝T,𝑒.

67

68 8 Appendix

Figure B.15: Histogram of 𝜂𝑒.

Figure B.16: Histogram of 𝜑𝑒.

68

B All generated histograms for all processes using the final Delphes card 69

Figure B.17: Histogram of 𝑁𝜇.

Figure B.18: Histogram of 𝑝T,𝜇.

69

70 8 Appendix

Figure B.19: Histogram of 𝜂𝜇.

Figure B.20: Histogram of 𝜑𝜇.

70

B All generated histograms for all processes using the final Delphes card 71

Figure B.21: Histogram of 𝐻𝑇,all.

Figure B.22: Histogram of 𝐻𝑇,Jet.

71

72 8 Appendix

Figure B.23: Histogram of 𝐻𝑇,BJet.

Figure B.24: Histogram of Δ𝑅(𝑏𝑏)average.

72

B All generated histograms for all processes using the final Delphes card 73

Figure B.25: Histogram of Δ𝑅(𝑏𝑏)closest.

Figure B.26: Histogram of Δ𝑅(𝑏𝑏)leading.

73

74 8 Appendix

Figure B.27: Histogram of 𝑚(𝑏𝑏)closest.

Figure B.28: Histogram of 𝑚(𝑏𝑏)leading.

74

B All generated histograms for all processes using the final Delphes card 75

Figure B.29: Histogram of 𝑝T(𝑏𝑏)closest.

Figure B.30: Histogram of 𝑝T(𝑏𝑏)leading.

75

76 8 Appendix

Figure B.31: Histogram of 𝑝T,1stBJet.

Figure B.32: Histogram of 𝑝T,2ndBJet.

76

B All generated histograms for all processes using the final Delphes card 77

Figure B.33: Histogram of 𝑝T,3rdBJet.

Figure B.34: Histogram of 𝑝T,4thBJet.

77

78 8 Appendix

Figure B.35: Histogram of 𝑁Jet on generator level.

Figure B.36: Histogram of 𝑝T,Jet on generator level.

78

B All generated histograms for all processes using the final Delphes card 79

Figure B.37: Histogram of 𝜂Jet on generator level.

Figure B.38: Histogram of 𝜑Jet on generator level.

79

80 8 Appendix

Figure B.39: Histogram of 𝑚Jet on generator level.

Figure B.40: Histogram of 𝐸Jet on generator level.

80

B All generated histograms for all processes using the final Delphes card 81

Figure B.41: Histogram of 𝑁BJet on generator level.

Figure B.42: Histogram of 𝑝T,BJet on generator level.

81

82 8 Appendix

Figure B.43: Histogram of 𝜂BJet on generator level.

Figure B.44: Histogram of 𝜑BJet on generator level.

82

B All generated histograms for all processes using the final Delphes card 83

Figure B.45: Histogram of 𝑚BJet on generator level.

Figure B.46: Histogram of 𝐸BJet on generator level.

83

84 8 Appendix

Figure B.47: Histogram of 𝑁𝑒 on generator level.

Figure B.48: Histogram of 𝑝T,𝑒 on generator level.

84

B All generated histograms for all processes using the final Delphes card 85

Figure B.49: Histogram of 𝜂𝑒 on generator level.

Figure B.50: Histogram of 𝜑𝑒 on generator level.

85

86 8 Appendix

Figure B.51: Histogram of 𝑁𝜇 on generator level.

Figure B.52: Histogram of 𝑝T,𝜇 on generator level.

86

B All generated histograms for all processes using the final Delphes card 87

Figure B.53: Histogram of 𝜂𝜇 on generator level.

Figure B.54: Histogram of 𝜑𝜇 on generator level.

87

	Contents
	1 Introduction
	2 Theoretical foundations
	2.1 The standard model
	2.2 Hadron collider physics

	3 The CMS Experiment
	3.1 The LHC
	3.2 The CMS detector
	3.3 Basic kinematic quantities at CMS
	3.4 Event reconstruction

	4 Simulated processes
	5 Simulation tools
	5.1 MadGraph
	5.2 MadSpin
	5.3 Pythia
	5.4 GEANT
	5.5 Delphes
	5.6 Gridpacks

	6 Simulation Parameters
	6.1 Simulation Files
	6.2 Analysis Methods
	6.3 Kinematic cuts

	7 Results
	7.1 Generator level comparison
	7.2 Initial results
	7.3 Lepton isolation
	7.4 Lepton efficiencies
	7.5 B-tagging efficiencies
	7.6 Calorimeter binning
	7.7 Pile-up
	7.8 Other deviations
	7.9 Application to ttH and ttZ

	8 Conclusion
	Bibliography
	Appendix
	A Final Delphes card
	B All generated histograms for all processes using the final Delphes card

