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1. Introduction

It has been a long road from „apple“ to „plum pudding“ to „celebrity walking through a
crowd“, yet the scientific community is still not satisfied with the outcome. Developed in the
late 20th century [1], the Standard Model (SM) is currently the most complete description
of elementary particle physics. This theory combines three of the four known elementary
forces to describe the fundamental interactions of particles and gives rise to their measured
masses. Despite its great success in predicting many observations, the SM leaves the physics
community with open questions, theoretical puzzles, and experimental anomalies.

Physicists around the world are developing, studying, and probing extensions of the SM
to account for theoretical and experimental discrepancies, such as Dark Matter, baryon
asymmetry, the hierarchy problem and the anomalous muon magnetic moment. In search
for answers, scientists explore various techniques in two directions. On the one hand, heavy
New Physics (NP) could arise at or above the TeV scale. Resulting particles can be probed
by direct decays in high-energy colliders like the LHC [2] and future projects like the FCC [3]
or indirectly in low-energy experiments like Belle II [4]. On the other hand, NP could
present itself in the form of light particles with very small couplings to the SM particles.
The impact of this new particles could be directly measurable in the MeV to GeV range [5]
at high intensity accelerator-based experiments.

One highly motivated and popular set of models in the search for light NP are Axion
Like Particles (ALPs). They arise as pseudo Nambu-Goldstone-bosons of theories with
a spontaneously broken Peccei-Quinn symmetry that is anomalous under the SM gauge
symmetry. An experimental sector that has yet to be thoroughly probed includes models
where the ALP directly couples to the SU(2)L W gauge boson [6]. This opens up the
possibility of studying flavour-changing neutral current transitions such as b → s, which
lead to one-loop B± → K±a decays. Depending on the model, ALP mass, and coupling,
the ALP will decay into two photons, and therefore, give rise to the B± → K±a, a→ γγ
signature with displaced ALP decays.

This thesis performs a sensitivity study in the search for the B± → K±a, a→ γγ signature
based on Belle II Monte Carlo (MC) samples corresponding to an integrated luminosity of
100 fb−1. The analysis includes signal yield scans of the invariant di-photon mass (Mγγ)
distribution in the range of 0.175GeV/c2 to 4.600GeV/c2 for eight different ALP lifetimes
between 0.0 cm to 50.0 cm. Finally, the resulting sensitivity is compared to a similar search
for B± → K±a, a→ γγ on data collected by the BABAR experiment in [7].
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2 1. Introduction

Chapter 2 presents an overview of the theoretical foundations by shortly discussing spon-
taneous breaking of global symmetries and introducing chiral anomalies in the Standard
Model. Subsequently, the chapter will discuss Axions as a solution to the strong CP problem
and will also introduce ALP models. Chapter 3 outlines the experimental setup, such
as the SuperKEKB accelerator and the Belle II experiment, and the analysis framework.
Chapter 4 presents the reconstruction acceptance and preselection studies and discusses
the optimized candidate selection. Chapter 5 discusses the Mγγ fit and scan procedure as
well as the calculation of the sensitivity. Lastly, Chapter 6 concludes this thesis and gives
an outlook on future steps of this analysis.



2. Theoretical Foundations

This chapter outlines the theoretical foundations for understanding NP models involving
ALPs. The first discussion in Section 2.1 includes the concept of spontaneous symmetry
breaking with a focus on global symmetries in quantum field theories. Subsequently, chiral
anomalies are briefly introduced in Section 2.2. Finally, Section 2.3 combines the results of
the first two sections in order to reach an understanding of the strong CP problem and
shines light on a popular solution, the Axion, and its generalization in the form of ALP
models.

2.1. Spontaneous Breaking of Global Symmetries

A fundamental concept in quantum field theories is spontaneous symmetry breaking. It is
very accommodating for the description of observed natural concept patterns with effective
field theories. In contrast to explicit symmetry breaking, which causes the Lagrangian
never to retain the same structure at any given field configuration, spontaneous symmetry
breaking leaves the Lagrangian invariant under the symmetry but in the ground state. This
section summarizes the key aspects of spontaneous symmetry breaking of global symmetries
and one of its substantial consequences for physics: Goldstone bosons. The following is
based on the discussions in [8, 9].

Consider a theory that is characterized by a Lagrangian L[ϕn, ∂µϕn] which is a functional
built only of quantum fields ϕn and its first derivatives. A continuous global symmetry can
be expressed as a variation of the fields in the form of

ϕn → ϕn + αfn(ϕ), (2.1)

where α is a small parameter and fn is an arbitrary function of the quantum fields ϕn
1.

To leave the action insensitive to these variations, the Lagrangian should also be invariant
under the transformation, which leads to the equation

δL
δα

=
∑
n

([
∂L
∂ϕn

− ∂µ
∂L

∂(∂µϕn)

]
δϕn
δα

+ ∂µ

[
∂L

∂(∂µϕn)

δϕn
δα

])
= 0. (2.2)

1An often used example is the variation in the form of ϕ → e
−iα

ϕ which can be expanded for small α.
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4 2. Theoretical Foundations

Under the assumption that the fields satisfy the equation of motion, the second square
bracket in Eq. (2.2) becomes the defining condition of the Noether current ∂µJ

µ = 0, with

Jµ =
∑
n

∂L
∂(∂µϕn)

δϕn
δα

. (2.3)

To highlight the importance of this statement, consider the associated conserved charge

Q =

∫
d3xJ0(x) =

∫
d3x

∑
n

∂L
∂ϕ̇n

δϕn
δα

, (2.4)

in combination with the canonically conjugated fields πn = ∂L/∂ϕ̇n and the canonical
commutator relations [ϕn(x⃗), πm(y⃗)] = iδ3(x⃗ − y⃗)δnm. Putting everything together, it is
apparent that the conserved current generates the symmetry transformation:

[Q,ϕn(y⃗)] = −iδϕn(y⃗)
δα

. (2.5)

As a result, spontaneous symmetry breaking arises in the presence of an unstable symmetric
vacuum state with Q |Ω⟩sym = 0 and a charged, stable vacuum with Q |Ω⟩asym ̸= 0. Under
consideration of the commutation relation between the Hamiltonian and the conserved
charge [H,Q] = 0 and a vacuum with energy H |Ω⟩ = E0 |Ω⟩, it follows directly that

HQ |Ω⟩ = [H,Q] |Ω⟩+QH |Ω⟩ = E0Q |Ω⟩ , (2.6)

where the state Q |Ω⟩ degenerates the ground state. Now, it is always possible to find a
constant field configuration ϕ0n that minimizes the underlying potential of the Lagrangian

∂V

∂ϕn

∣∣∣∣
ϕ
0
n

= 0, (2.7)

and corresponds to a new massless particle, the Goldstone boson of the spontaneously
broken, continuous global symmetry. To see that the resulting particle is massless, one must
consider the eigenvalues of the second coefficient in the Taylor expansion of the potential

m2
ij =

∂2V

∂ϕi∂ϕj

∣∣∣∣∣
ϕ
0

. (2.8)

For the sake of simplicity, let the quantum fields remain constant such that only the
potential has to be invariant under the given transformation in Eq. (2.1). This simplifies
the condition in Eq. (2.2) to

fn(ϕ)
∂V

∂ϕn
= 0. (2.9)
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The next step is to take the derivative with respect to ϕn and set the field configuration to
the one that minimizes the potential:

∂fn(ϕ)

∂ϕm

∣∣∣∣
ϕ
0
n

∂V

∂ϕn

∣∣∣∣
ϕ
0
n

+ fn(ϕ
0
n)

∂2V

∂ϕm∂ϕn

∣∣∣∣∣
ϕ
0
n

= 0. (2.10)

The left-hand side of Eq. (2.10) vanishes due to the minimum of the potential. Therefore,
the right-hand side represents an eigenvalue equation that states that in the non-trivial
case (fn(ϕ

0
n) ̸= 0), all eigenvalues, i. e. all masses, must be zero.

2.2. Chiral Anomalies in the Standard Model

Another essential aspect in the discussion of symmetries in quantum field theories is
anomalies. A symmetry of a theory is called anomalous if it is broken by quantum effects,
e.g. chiral anomalies, which will be the main focus of this section. Generally, anomalies
in the SM can be categorized into three groups. Gauge anomalies describe anomalous
symmetries which are connected to gauge bosons. Without a symmetry, the Noether current
is not conserved, which leads to problems in theories where this current couples to massless
bosons. Consequently, this kind of anomaly should not be present in a unitary quantum
field theory. Anomalies in scale invariances are called trace anomalies. An example of
this is the scale invariance of massless quantum chromodynamics (QCD), which is broken
by loop effects. Lastly, global anomalies generally do not lead to inconsistencies since no
particles couple to the unconserved Noether currents. A significant anomaly is baryon
number violation, one of the Sakharov conditions, necessary to explain the observed matter-
antimatter asymmetry in the universe. The following will explain chiral anomalies using
an example and state the most important results for the next section, omitting lengthy
calculations based on the discussion in [9].

An excellent example of chiral anomalies can be seen in the Lagrangian of quantum
electrodynamics,

L = ψ̄(i/∂ − e /A−m)ψ (2.11)
= ψ̄L(i/∂ − e /A)ψL + ψ̄R(i/∂ − e /A)ψR −mψ̄LψR −mψ̄RψL, (2.12)

where ψL/R = 1
2(1∓ γ5)ψ represent the left-/right-handed fields. In the massless limit this

Lagrangian is invariant under two global symmetries of the form

ψ → eiαψ, ψ → eiβγ5ψ. (2.13)

The resulting Noether currents are the vector current, which corresponds to the symmetry
under which the right- and left-handed fields transform equivalently, and the axial current,
which corresponds to the symmetry under which the chiral fields transform with opposite
charge:
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Jµ = ψ̄γµψ, Jµ5 = ψ̄γµγ5ψ. (2.14)

By taking the derivatives of these currents

∂µJ
µ = 0, ∂µJ

µ5 = 2imψ̄γ5ψ, (2.15)

it is apparent that classically the vector current is conserved. On the other hand, the axial
current is only conserved in the massless limit. This observation can be interpreted as
additional three-point loop contributions in the presence of a constant background field Fµν

⟨A| ∂µJ
µ5 |A⟩ = − e2

16π2
εµναβFµνFαβ. (2.16)

Note that Eq. (2.16) is independent of the mass. Thus, in the case m = 0, the axial current
would not vanish. However, Eq. (2.15) implies that for m = 0 the axial current is classically
conserved. This contradiction can only be resolved if the chiral symmetry is anomalous.

This type of anomaly can be studied for symmetries involving three currents. For an
arbitrary symmetry group Ga ×Gb ×Gc, the axial currents will look like

∂µJa
µ =

∑
fL

A(Rl)−
∑
fR

A(Rr)

 dabc
g2

128π2
εµναβF b

µνF
c
αβ, (2.17)

where A(R) is the anomaly coefficient for a fermion in representation R and dabc is the
anomaly constant that summarizes the contributing triangle diagrams. Furthermore, it
becomes clear that global symmetries can only contribute physically in connection with
two other gauge groups since the εµναβFµνFαβ term must be present. An example of this
structure could be the combination of a general, anomalous and spontaneously broken
U(1)X and the SM SU(3)C QCD symmetry group. In a field basis where only the Goldstone
boson G transforms under the global symmetry as

G→ G+ αfG, (2.18)

with α being the U(1)X transformation parameter and fG the Goldstone boson decay
constant, the divergence of the Noether current predicts terms in the form of

∂µJU(1)X
µ =

∂L
∂(∂µG)

δ(∂µG)

δα︸ ︷︷ ︸
=0

+
∂L
∂G

δG

δα︸︷︷︸
=fG

. (2.19)

In comparison with the resulting anomaly term
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∂µJU(1)X
µ =

∑
fL∈3

XfL
−
∑
fR∈3

XfR


︸ ︷︷ ︸

=2N

g2

64π2
εµναβGA

µνG
A
αβ, (2.20)

where GA are the gauge field strengths, it emerges that if a global symmetry is spontaneously
broken and anomalous under some gauge symmetry, the associated Goldstone bosons couple
to the gauge field strengths proportional to the anomaly. Hence, Eq. (2.21) can be added
to the Lagrangian of the underlying theory, leading to a measurable, physical Goldstone
boson.

LG = N
g2

32π2
G(x)

fG
εµναβGA

µνG
A
αβ (2.21)

2.3. Axions and Axion Like Particles

The SM is a widely accepted theory since it predicts and explains most observations in
particle physics. Yet, it leaves the community with open questions, theoretical puzzles and
experimental anomalies. Scientists build new models and additions to the SM to account
for these discrepancies. This section will briefly discuss one of the theoretical puzzles, the
strong CP problem, and a possible solution for it, the Axion [10]. The later part of the
section will then discuss ALPs, which are very similar to the Axion except for the fact that
they do not solve the strong CP problem.

As seen in the previous section, under chiral transformations of fermions in the form of
ψ → eiθγ

5

ψ, a CP and P violating term can be added to the Lagrangian,

LQCD = θQCD
g2s

64π2
εµναβGA

µνG
A
αβ. (2.22)

This term can be shifted under U(1)A field transformations of the form

uL → eiαuL, uR → e−iαuR, (2.23)

where u are up-type quark fields, and equivalently for down-type quarks. Eq. (2.23) leads
to additional terms to the Lagrangian

∆L = 2α
g2s

64π2
εµναβGA

µνG
A
αβ, (2.24)

resulting in a total additional term

Lθ̄ = θ̄
g2s

64π2
εµναβGA

µνG
A
αβ. (2.25)
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Here, θ̄ = θQCD + 2α is a basis independent measure of strong CP violation, since chiral
rotations only shift a phase between θQCD and α. Under consideration of the mass terms in
the Lagrangian, the α phase can be expressed through the Yukawa mass matrices as 2α =
arg detMuMd, which makes θ̄ a physical parameter under the assumption detMuMd ̸= 0.
An important consequence of this additional CP violating term is the generation of a neutron
electric dipole moment dN which arises through an additional pion-neutron coupling ḡπNN

shown in Fig. 2.1. The comparison between the theoretical prediction for the neutron
electric dipole moment in [9] with dN = (5.2 × 10−16 cm)θ̄ and the newest measurement
in [11], which places the upper limit at |dN | < 1.8× 10−26 cm (90% C.L.), reveals the strong
CP problem: CP violation in the strong sector with |θ̄| < 10−10 is much smaller than in
the electroweak one.

n n

p

π− π−

ḡπNN gπNN

Figure 2.1.: Strong CP violation induces additional pion nucleon interactions in form of the
displayed loop with both CP conserving gπNN an CP violating coupling ḡπNN .
These interactions lead to a non-vanishing neutron electric dipole moment.

A possible solution to the strong CP problem is to eliminate the CP violating contribution
by introducing a dynamical field that cancels the dependence between θ̄ and the neutron
electric dipole moment [10, 12,13]. This can be achieved by introducing an additional U(1)
– so-called „Peccei-Quinn“ (PQ) – symmetry that is spontaneously broken and anomalous
under the QCD gauge group. According to Eq. (2.21), this would result in a physical field
with a particle, the so-called Axion, which is associated to fluctuations around the vacuum
expectation value. The Axion shifts under the PQ transformation as a→ a+ αfPQ, where
α is the symmetry parameter and fPQ corresponds to the scale where the PQ symmetry is
broken. The combination of the CP violating term in Eq. (2.25) and the anomaly term
from Eq. (2.21) for the U(1)PQ symmetry results in a total contribution of

L =

(
θ̄ + 2N

a(x)

fPQ

)
g2s

64π2
εµναβGA

µνG
A
αβ. (2.26)

In the chiral limit, mu = md, and fa = fPQ/2N , one can now find that the vacuum energy
is dependent on the Axion and the θ̄ parameter,

Va = F 2
πm

2
π cos

(
θ̄ − a(x)

fa

)
, (2.27)

and is minimized for ⟨a⟩ = faθ̄, which solves the strong CP problem. Expanding the
vacuum energy, it is apparent that even though it is a Goldstone boson the Axion has a
finite mass which can be approximated to
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ma ≈ mπFπ

2fa
= 6.2µeV

(
1012 GeV

fa

)
. (2.28)

It is crucial to notice that the relation between the decay constant and the mass defines
the QCD Axion. However, a generalization of the model, in the form of an additional,
spontaneously broken and anomalous PQ symmetry, can be made and is motivated by
theories beyond the SM [14]. The resulting particles, namely ALPs, in general, do not fulfil
this particular relation between mass and decay constant and therefore do not solve the
strong CP problem. With an additional, massive pseudo-Goldstone boson with potentially
weak couplings to the SM fields, many models can be built and probed. An especially
interesting theory [15] arises if the ALP a couples predominantly to the electroweak SM
gauge bosons:

L =
1

2
(∂µa)(∂

µa)− 1

2
m2

aa
2 − cB

4fa
aεµναβBµνBαβ − cW

4fa
aεµναβW i

µνW
i
αβ. (2.29)

ALP couplings to SM fermions and gluons are neglected at this point since they are strongly
constrained by additional flavour changing neutral current (FCNC) decays [16,17]. This
thesis focuses mainly on the effective model for ALP couplings to SM W bosons as discussed
in [6]. For energies E ≪ MW , the coupling can be part of FCNC transitions leading
to B → Ka decays as shown in Fig. 2.2. Such decays can be probed at high energy
e+e− → Υ(4S) colliders with a possible sensitivity for the ALP mass up to ma ≤ 5GeV/c2.
In the case of ma < 2MW , the ALP will decay dominantly into two photons. Therefore, the
B± → K±a, a→ γγ signature becomes very attractive to study since the SM background
is minimal.

b s

a

u/c/t

W
gaWW

Figure 2.2.: FCNC down-type quark transitions can produce ALPs with a dominant coupling
gaWW to SM W bosons in loop processes.





3. Experimental Setup

The third chapter outlines the key aspects of the experimental setup for this analysis.
Section 3.1 introduces the asymmetric e+e− collider in Tsukuba, Japan, and Section 3.2
mentions the most important components of the Belle II sub-detectors used in this analysis.
Subsequently, Section 3.3 gives an overview of the software tools used in this analysis.
Lastly, Section 3.4 explains the MC samples and discusses their production.

3.1. The SuperKEKB Accelerator
One possible way to search for NP is using existing colliders. While the LHC experiments use
center-of-mass energies at the TeV scale for their probes, KEK, the Japanese High-Energy
Accelerator Research Organisation, has operated e+e− accelerators at the Υ(4S) resonance
since 1998. These so-called B factories provide an excellent environment for high precision
measurements of rare decays and CP violation, which is crucial for understanding the
slightest deviations from the SM through higher-order processes or new, weakly coupling
particles. The current setup in Tsukuba, Japan, is SuperKEKB [18] which is an asymmetric
e+e− collider, mainly operating at center-of-mass energy of

√
s = 10.58GeV which is

slightly above the Υ(4S) resonance. Fig. 3.1 shows the energy of the two beams that leads
to e+e− → Υ(4S) processes, which then decay in about 96% to BB̄ pairs [19]. This mode
produces B+B− pairs with a probability of about 51.4%. Besides the mentioned Υ(4S)
resonance, it is possible to run the experiment in the entire energy range between Υ(1S) and
Υ(6S). The SuperKEKB collider targets an instantaneous luminosity of 8× 1035 cm−2 s−1,
which is 40 times the amount of the predecessor, KEKB, and leads to an integrated
luminosity target of 50 ab−1. This goal is achieved by squeezing the beam size at the
Interaction Point (IP) with additional focusing quadrupole magnets and doubling the beam
currents.

3.2. The Belle II Detector
Fig. 3.1 shows the location of the Belle II detector [4] in the Tsukuba experimental hall. Like
its predecessor, the Belle detector, the current detector is a general-purpose high-energy
spectrometer specifically built to record outgoing data of an asymmetric e+e− B factory. To
recover as many particle signatures as possible with a solid angle coverage in an asymmetric
system, Belle II is built by a series of layers of particle detectors arranged around the IP and
accounting for the boost of the Final State Particles (FSP). Fig. 3.2 shows the arrangement
of the different sub-detectors, which are shortly introduced in the following.

11



12 3. Experimental Setup

Figure 3.1.: This schematic view of the SuperKEKB collider shows the main accelerator
parts. The low emittance gun produces an electron beam which is accelerated
in the linac and hits the new positron target. Both beams are led to the storage
system and are accelerated in opposite directions, as indicated by the coloured
arrows. The figure is adapted from [20].

Figure 3.2.: This schematic view of the Belle II detector shows short summaries of the most
commonly used detector parts. The figure is adapted from [21].
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Tracking System
Belle II’s tracking system consists of three different sub-detectors. The innermost
tracking is performed by one layer of silicon Pixel Detectors (PXD) and four additional
layers of double-sided Silicon Vertex Detectors (SVD). With a total diameter of
348mm, they can measure the decay vertices of primary particle decays and are
therefore crucial for the measurement of CP violation in mixing. The next layer is
the Central Drift Chamber (CDC), a gas-filled, cylindrical wire chamber. It consists
of 56 differently arranged layers of wires with a smaller distance between each layer
closer to the IP. The outermost reach of the CDC is 113 cm and has a polar angle
acceptance of 17° to 150°. With these properties, the CDC is ideal for measuring the
trajectories and momenta of charged particles while also providing the energy loss
measurement for these particles, which is crucial in their Particle Identification (PID).

Particle Identification
An essential group of sub-detectors in B factories are systems for the PID. While the
CDC already provides good information with the help of the energy loss, especially for
particles with a lower momentum, the main PID information for Belle II is collected in
the Time-of-Propagation (TOP) detector and by the Aerogel Ring-imaging Cherenkov
(ARICH) system in the forward region. The TOP detector consists of 16 modules
arranged in a barrel form around the CDC. Each module is a quartz radiator in which
charged particles will emit cones of Cherenkov light. These are then reflected towards
the readout electronics at the end surface of the quartz bars. The likelihood for each
particle type is then calculated by the (x, y) coordinates of the readout plates and
precise timing information. The ARICH detector in the forward end-cap of the Belle
II spectrometer uses a similar principle. The key differences are an aerogel radiator
and an expansion volume between the radiator and the photon detectors where the
Cherenkov photons can form rings. The backward end-cap does not provide PID
information besides the CDC.

Electromagnetic Calorimeter (ECL)
The calorimeter of Belle II is the first sub-detector to measure neutral particles’
properties. With this goal in mind, its main tasks are efficient photon detection with
a precise energy measurement and angular position approximation. For this purpose,
CsI(Tl) were chosen for the barrel region while pure CsI crystals are installed in
the end caps. CsI(Tl) maintains a high photon stopping power while delivering a
substantial light output for a photo-diode readout system. A single crystal has an
average front face surface of 6 cm × 6 cm, a length of about 30 cm (16.1 radiation
lengths) and is covered by µm-thin Teflon, aluminium and mylar foils. The roughly
3m long barrel section consists of 6624 crystals in 29 different shapes, which are
tilted towards the IP as shown in Fig. 3.3 and have an inner radius of 125 cm. In
combination with the 2112 end-cap crystals in 69 shapes, the ECL has an total polar
reach of 12.4° < θ < 155.1° excepted for two ∼ 1° gaps between the barrel and the
end-caps.

KL and Muon Detector (KLM)
The last sub-detector layer, the KLM system, consists of alternating iron plates and
active detector materials in the form of glass-electrode resistive plate chambers. The
iron plates serve two purposes. On the one hand, they function as magnetic flux
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Figure 3.3.: This schematic view of the ECL shows a cross-section of the detector in one
ϕ plane and the θ plane of the end-caps. All crystals are tilted towards the
asymmetric IP. The figure is adapted from [22].

return for the 1.5T solenoid, which is positioned after the ECL and on the other hand
as shower material for KL mesons which do not deposit all their energy in the ECL.
Other weakly interacting particles, like muons, can be reconstructed by the energy
deposition in the active detector materials.

3.3. Analysis Software

Belle II, as a high-energy physics experiment, produces a huge amount of data. To keep
process structures as consistent as possible, the collaboration created the Belle II Analysis
Software Framework (basf2) [23]. This framework creates the possibility of simulating
MC events, unpacking raw detector data, and performing reconstructions such as track
fitting and clustering. It also provides several tools for an efficient post-reconstruction
analysis up to the level of mass-constrained fits and pre-trained MVA weights. basf2 is
accessible through Python interfaces via packages built by chains of efficiently programmed
C++ modules. Most commonly, the user creates a steering file that will declare a basf2 path
that stores the configured basf2 modules in a linear order. Each module in the path is
processed upon execution. This file format contains variables for each reconstructed event
for further offline analysis.

Most offline analyses include extracting certain parameters by fitting statistical models
to distributions of given variables. Over the years, many tools have been developed to
accomplish this task. zfit [24] is one of the most recent developments in this area.
This tool provides a minimalist Python interface designed for model manipulation and
sampling of distributions. With the use of TensorFlow [25], zfit opens up the possibility for
parallelisation and makes the procedures scalable for large datasets. Due to the specialisation
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in manipulating Probability Density Functions (PDF) and the design of zfit, it does not
include further statistical analysis methods. Therefore, the task of computing statistical
limits is performed with the use of hepstats [26].

3.4. Analysis of Monte Carlo Samples

It has become common practice in modern physics to first study possible outcomes of an
experiment via simulations before looking at measured data. This method forces the analyst
to understand the detector thoroughly and not mistake technical artefacts as (new) signals.
Especially the search for New Physics at high precision colliders requires a vast amount of
care since the effects that make the difference for discovery are very subtle compared to
Standard Model processes. The Belle II collaboration makes a big effort to streamline the
process of MC production and provides most of the necessary samples for analyses. This
analysis uses and produces MC samples corresponding to the so-called early-phase 3 setup
of the detector, which considers the general state of the detector in the run periods between
early 2020 and 2022. For this purpose, this [27] basf2 release is used to be comparable
with the run-independent MC14 campaign.

The background of the studied signature, B± → K±a, a → γγ, can be split into two
groups. Firstly, irreducible, same final state backgrounds of the rare Standard Model decays
B± → K±h, h→ γγ, where h = π0, η, η′ are the neutral pseudoscalar mesons1, contribute
in the form of peaking structures at the positions of the respective Mγγ . Secondly, due to
this being an untagged analysis, any other combination of K±γγ as FSP produces a flat
background in the studied Mγγ range. Consequently, the following Belle II MC samples are
considered background samples, while the contributions from leptonic decays e+e− → l+l−

(l = e, µ, τ) are neglected2.

Belle II MC Samples
(
100 fb−1

)
Generic Samples
These events contain all decays with b → u, d, s, c transitions. The samples are
most commonly split into two categories. So-called charged samples contain all
Υ(4S) → B+B− decays, while the mixed samples consist of the Υ(4S) → B0B̄0

events. The decays are produced by EvtGen [28] which is controlled by a decay
table that is filled with all considered decays, their branching ratios and the decay
amplitudes.

Continuum Samples
Even though the SuperKEKB operates at a center-of-mass energy slightly above the
Υ(4S) resonance, only about a third of all hadronic events are the desired BB̄ decays.
Therefore, the dominant background are the so-called continuum processes which
involve decays in the form of e+e− → qq̄ (q = u, d, s, c). These qq̄ events are generated
by KKMC [29] and the hadronisation is performed with the help of PYTHIA8.2 [30].

1The contribution of ηc is neglected at this point due the small branching ratio O(10
−7

) [19] in the
B

± → K
±
h, h → γγ process.

2This choice was made after a private discussion with the argument that these final states do not contribute
significantly. Before proceeding further with the analysis, the respective MC samples will be added.
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Privately Generated Signal Samples

Depending on the ALP mass and the underlying model, the ALP can have a non-
vanishing lifetime. This thesis proposes a sensitivity to couplings of long-lived ALP
decays up to cτa ≤ 50 cm. For this purpose, the primary decay of the signal signature
B± → K±a is produced with EvtGen and the ALP decay a → γγ is displaced
randomly using an exponential decay function according to

r = − ln
(
x[0,1]

)
cτaγβ, (3.1)

where r is the displacement in the detector, x[0,1] an uniformly distributed random
number and γ and β the particle boost factors. Beam background corresponding to
the expected amount in early-phase 3 is added. This analysis uses two sets of MC
signal samples with parameters according to Table 3.1. The first set was used for
general studies and the second set for computing the final results.

Table 3.1.: Overview of the ALP parameter space used in the different sets of
glsmc signal samples

Set ALP mass ma in GeV/c2 ALP lifetime in cm Nevents per sample

1 0.10, 1.00, 2.00, 3.00, 4.00, 4.50 0.00, 1.00, 10.00, 20.00, 5× 103

30.00, 40.00, 50.00
2 [0.175, 4.60] in steps of 0.1 0.00, 1.00, 5.00, 10.00, 5× 104

excluding η and η′ 20.00, 30.00, 40.00



4. Candidate Selection

This chapter discusses the experimental attributes of the B± → K±a, a→ γγ decay and
presents the candidate selection for reconstructed events. The first discussions in Section 4.1
regard the general acceptance of the signal signature by studying the detector response to
the signal FSP. Section 4.2 outlines the applied preselection on the signal decay products
to ensure a good reconstruction quality. Finally, Section 4.3 discuss in detail the candidate
selection with the application of the Punzi Figure of Merit (PFOM).

4.1. Reconstruction Acceptance

The first step in investigating signatures of New Physics decays at colliders is to estimate the
number of detectable signal events. After the ALP events are simulated by the generators
described in Section 3.4, a detector simulation with Geant4 [31] is performed to mimic
the response of the Belle II detector to the FSP. The following discussions distinguish
two different levels of particle information. First, the generator information indicates the
variable values of particles before the detector simulation, e.g. reconstructed particles
will show the energy with which they were generated by the event generator and not the
measured energy. Second, the detector level will express the reconstructed information
about particles as the detector would do. In the previous example, the reconstructed energy
of a particle will most commonly be lower than the generated energy due to technical
limitations of the detector.

A possible metric to describe the acceptance A of events is

A =
NTrue

NMC
, (4.1)

where NTrue is the number of correctly reconstructed events and NMC is the number of
generated events. The definition of correctly reconstructed events is ambiguous and will
differ in the following discussions. Primarily, it is derived by checking the MC PDG value
(mcPDG) of a particle or its mother particle or a combination of both. The investigations
in this section are based on the smaller set of MC signal samples, as described in Table 3.1,
and therefore NMC will always be set to 5000. Section 4.1.1 outlines the different reasons for
the acceptance loss in the individual regions of the ALP mass and lifetime, and Section 4.1.2
briefly discusses the kaon acceptance.

17
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4.1.1. Photon Acceptance

The displaced neutral a → γγ decay in the B± → K±a event leads to a significant
reconstruction acceptance loss in both low and high ALP mass regions for higher lifetimes.
Fig. 4.1 shows the total acceptance of the a→ γγ decay where the correct mcPDG values
define the correct reconstruction for the neutral mother particle, i. e. the neutral mother
and the mother of both photons must match the ALP. Samples with an ALP lifetime of
cτa = 0.0 cm show that about 20% to 30% of the generated events cannot be reconstructed
which is caused by either one or both photons being outside the detecot acceptance.
Generally, higher lifetime samples show, dependent on the ALP mass, a decreasing detector
acceptance. The dependence of acceptance on lifetime arises mainly from the ALP decays,
which boost the photons. This subsection first discusses the substantial acceptance loss for
light ALPs. It will then give an overview of the general decay kinematics that lead to lower
detector acceptance for all considered mass- and lifetime points and close with remarks on
the lifetime dependence in the higher ALP mass region.
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Figure 4.1.: This plot displays the a → γγ acceptance for different ALP masses and
lifetimes. Uncertainties on the acceptance calculation are of the order of
O(10−2) and therefore are not visible due to the large y-scale. The acceptance
shows at least 20% loss of all generated events after the event reconstruction.
Additionally, high dependence on the ALP lifetime can be observed for masses
ma ≤ 2.0GeV/c2 and ma ≥ 4.0GeV/c2.

Due to the assumed exponential lifetime of the ALP and the high ALP boost for masses
below roughly half the B meson energy, the actual position of the ALP decay can be far
greater than the underlying ALP lifetime, as shown by Eq. (3.1). Fig. 4.2 illustrates the
x and y coordinates of the ALP decay position extracted at the generator level. Note,
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that the the inner radius of the ECL is indicated in Fig. 4.2a and Fig. 4.2b. Thus, it is
evident that boosted ALPs can escape the detector before decaying into two photons and
therefore cannot be detected. In the scope of this thesis, the inefficiency to these decays
is not specifically treated but left to dedicated future analyses which consider invisibly
decaying ALPs [32].
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Figure 4.2.: These plots show the generated ALP’s x and y coordinates for 500 events for
three different ma samples. The black square demonstrates the inner ECL
radius in the barrel region if decay vertices lie beyond it. Considering the decay
position of the ALP, it is apparent that low mass ALP decay beyond the ECL
acceptance.

In addition to the ALPs potentially leaving the detector before decaying to measurable
FSP, two more sources of acceptance loss occur for all mass and lifetime hypotheses. First,
even if the photons are produced within potential ECL acceptance, they can escape by
either missing the polar angle acceptance of the ECL or by propagating into the gaps of the
detector. Second, either one or both photons are misreconstructed as another particle or as
one photon because their opening angle was not large enough to be detected as two isolated
photons. Before discussing these cases, it is important to notice the kinematics of the events.
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Only the polar angle distribution will be considered to avoid overcomplicating the following
discussion since most differences arise here due to the asymmetric beam. Also, both FSP
are sorted by their energy and will be denoted as γh for the higher energetic and γl for the
lower energetic photon. Fig. 4.3 displays the generated polar angle θGen distributions for
both photons for cτa = 0.0 cm. Differences for the higher lifetimes hypotheses are small
at the generation level since the angular distribution is independent of the decay position.
The shown distributions follow a typical two-body decay structure. For light ALPs, as in
Fig. 4.3a, both photons follow the boost of the ALP and therefore propagate in a very
similar direction. Photons from higher mass ALPs, Fig. 4.3f, emerge more back-to-back like
in the detector since the ALP is produced approximately at rest in the B meson system,
which only carries the non-trivial asymmetric boost from the beam energy difference. The
back-to-back like structure can be noticed by the simultaneous low θGen values for the γh,
and high values for γl since the asymmetry of the beams boosts the particles in the forward
direction. In between the two extreme cases, a superposition of both applies to the polar
distribution of the photons.

Coming back to the acceptance loss, it is now apparent, by the polar ECL acceptance
indicated in Fig. 4.3, that for each MC signal sample, independent of the mass and lifetime
hypothesis, some photons will not be in the ECL acceptance and therefore can not be
reconstructed. In the sense of missing photons due to their kinematics, other limitations
are the gaps between the barrel region and the end-caps and the ability to distinguish
two photons in neighbouring clusters. Fig. 4.4a shows the generation level information for
the ma = 3.0GeV/c2 samples with cτa = 0.0 cm of not correctly reconstructed events, i. e.
events where the mcPDG information could not be matched to the correct particles. At
around 31° and 131°, straight lines are visible which correspond to the gaps between different
ECL regions. Fig. 4.4b shows the not correctly reconstructed events for a mass hypothesis
of ma = 0.1GeV/c2 where the ALP and therefore the photons are strongly boosted. Some
of the displayed events are in the close vicinity of the shown diagonal, which indicates the
same θGen values for both photons. Most of these are probably not reconstructed as two
isolated photons due to their resulting clusters in the ECL being too close in cases where
the ϕ distance is also very small. The major energy deposition is in neighbouring or even
the same crystal. Regarding Fig. 4.4b, under the right circumstances, all events with a
distance of equal or less than two bins, which corresponds to an angular distance of 3°1,
can be affected. This thesis does not correct the misreconstruction of close energy clusters,
which is the subject of ongoing investigations.

Before concluding the photon acceptance discussion, one last region of acceptance loss in
conjunction with the lifetime of an ALP exists for high ALP masses. While this region is
not yet fully understood, some remarks can be made. Under consideration of the previous
discussion of not correctly reconstructed events, Fig. 4.5 shows a significant difference in the
density of misreconstructed events inside the ECL acceptance for the lifetimes cτa = 0.0 cm
and cτa = 50.0 cm at ma = 4.5GeV/c2. In this exact case, the number of not correctly
reconstructed events cτa = 50 cm is about a factor two higher than for the cτa = 0.0 cm
hypothesis. Almost half of these events can be traced to the case that only the lower
energetic photon could not be reconstructed, which means that the mcPDG information of

1
3° is roughly the mean distance between two crystals, strongly depending on the region and position in
the ECL.
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Figure 4.3.: This plot series shows the generated polar angle distributions of the ALP
photons, sorted by their energy, for different ma. The red squares indicate the
polar acceptance of the ECL. On the one side, light ALPs are highly boosted,
which leads to the same direction emerging of the photons. On the other side,
heavy ALPs are only boosted by the asymmetric beam energy, and there the
photons show a back-to-back like appearance in the detector.

the higher energetic photon and the ALP is correct. Checking the mcPDG information of
this particle and its mother (genMotherPDG) in Fig. 4.6 gives rise to the hypothesis that
one of the ALP photons underwent pair-conversion in the detector, and one of its remnants
can be detected. This is based on the fact that most of the incorrectly reconstructed FSP
are either electrons or positrons based on their mcPDG information, and most mother
particles are photons that are connected to the ALP. The photons and pions in Fig. 4.6b and
the electrons/positrons as mothers in Fig. 4.6d could occur as other or multiple transitions
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Figure 4.4.: These plots show the generated polar angle distributions of the ALP photons
for misreconstructed events. Using the example of ma = 3.0GeV/c2 and
cτa = 0.0 cm, (a) displays photons that are missed since they are beyond the
ECL acceptance and in the gaps between the barrel region and the end-caps. In
the case of light ALPs, (b) shows that the majority of not correctly reconstructed
photons have very similar polar distribution which, in combination with a similar
azimuthal distribution, can lead to indistinguishable clusters in the ECL.

of the initial photon. Other cases where the high energetic photon or both photons are
misreconstructed do not occur as often as the missing lower energetic photon. Keep in mind,
even if this hypothesis is true, it still would only account for half of the difference between
cτa = 0.0 cm and cτa = 50.0 cm. The other half is subject to ongoing investigations.
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(b) cτa = 50.0 cm

Figure 4.5.: The θGen distributions of not correctly reconstructed photons for ma =
4.5GeV/c2 are shown in this plots. These distributions show about twice
as many events in the case of cτa = 50.0 cm compared to cτa = 0.0 cm. Most
of these events arise in the ECL acceptance.
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Figure 4.6.: These four plots compare mcPDG information of the lower energetic photon
in cases where it is not correctly reconstructed. The higher energetic photon
and the ALP are correctly reconstructed. The number of events for the FSP
own mcPDG value and the mother particle, denoted as genMotherPDG, are
shown for an ALP hypothesis of ma = 4.5GeV/c2 with cτa = 0.0 cm and
cτa = 50.0 cm. Note that in this case, that γl does not indicate that the particle
is necessary a photon.

4.1.2. Kaon Acceptance

In contrast to long-lived and highly boosted neutral decays to photons, the influence of
the kaon in B → Ka on the acceptance is much smaller and easier to understand. With
the initial goal of studying CP violation, the Belle II detector was perfectly designed for
kaons. Thus, the acceptance of these particles is maximized. This subsection discusses the
significant two aspects responsible for the acceptance loss shown in Fig. 4.7 where correctly
reconstructed kaons are those where the mcPDG information about its sister particle is
correct.

To explain the general acceptance loss for kaons in all ALP mass and lifetime signal MC
samples, it is sufficient to consider the kinematics of the kaons. The following discussed
properties are independent of the assumed ALP lifetime, and therefore all differences
regarding these are random. The kaon’s angular distributions do not change significantly
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Figure 4.7.: This plots displays the kaon acceptance. It shows a loss in the range of 8% to
10% over all signal MC samples. Additionally, a decrease for high ALP masses
is observed.

for different ALP masses. The kaon is mostly boosted according to the asymmetric beam
energies, which results in a slight forward boost. Therefore, most of the kaons will be inside
the CDC acceptance, which is the limiting factor for the general reconstruction efficiency
of the kaon. Later in Section 4.2, this thought will be revisited and the PID information
considered. Fig. 4.8 shows the polar angular distribution of the kaon for the smallest
and highest considered masses and all corresponding lifetimes. Events contributing to the
acceptance loss will mostly be outside the indicated CDC acceptance.

One noticeable aspect of the kaon acceptance loss for samples with ALP masses ma ≥
4.0GeV/c2 in Fig. 4.7. The momentum the kaon can accumulate in the decay of the
B± meson explains this behaviour. Simplistically, the B± provides roughly half of the
center-of-mass energy, which is slightly more than 5GeV. Most of this energy is used to
produce a heavy ALP, which leaves some kaons with insufficient transverse momentum to
leave the CDC, where they could be identified as kaon. The inability to leave the CDC is
caused by the strong magnetic field surrounding the inner detector parts, which causes the
charged particle to turn in a circular motion before reaching the outer detector regions.
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Figure 4.8.: The generated kaon polar distributions is shown in these plots for MC samples
with an ALP mass of ma = 0.1GeV/c2 and ma = 4.5GeV/c2. The kaon is
mostly forward boosted in the detector, with minor differences between different
ALP mass hypotheses. The CDC polar angle aceptance is indicated by red
lines. Events outside the CDC acceptance will not be reconstructed due to the
lack of track and PID information.

4.2. Preselection of the Final State Particles

The next step in the analysis preparation is to reduce the number of reconstructed events.
Only the number of correctly reconstructed events in the previous subsection is of interest. In
reality, the used Mini Data Summary Tables (mDST) files carry a lot more data since every
particle combination in the detector that matches the signal FSP signature is reconstructed
for each event. Hence, each event has many possible candidates, especially if the FSP
consists of photons, which are commonly mimicked by the beam background. To increase
the reconstruction purity while maintaining high efficiency, the Belle II community provides
recommendations for empiric preselections. This subsection discusses the selections for the
FSP based on the same reconstructions for the neutral a→ γγ decay and the kaon as in
Section 4.1. To study the influence of different selections on the signal events, the efficiency
ϵ is used

ϵ =
NPass

NReco
, (4.2)

where NReco is the number of correctly reconstructed events and NPass is the number of
correctly reconstructed events that pass the selection. This efficiency is evaluated in bins of
the measured momentum for the respective FSP. Therefore, the higher energetic and lower
energetic photon are discussed separately. The momentum distributions for these particles
are displayed in Appendix C.1.

The first variables of interest consist of the energy of the reconstructed photons. Beam
background processes lead to multiple, mostly low energetic energy depositions in ECL
crystals produced by secondary interactions with no charged track association. In contrast
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to photons from the beam background, the deposited energy of the reconstructed ALP
photons is well known and, in most of the signal samples, higher than the empiric threshold
of Eγ > 50MeV in other analyses. Fig. 4.9a and Fig. 4.9c show that even for small ALP
masses the higher energetic photon nearly always has events with an energy E

γ
h > 0.5GeV.

Only a negligible amount of events in Fig. 4.9b and Fig. 4.9d do not pass the energy selection
for ALPs with ma ≤ 1.0GeV/c2. All other mass and lifetime samples do not show an
efficiency loss.
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Figure 4.9.: These plots show the photon efficiency for light ALP MC samples in bins of
the photon momenta with the applied selection E

γ
l > 0.05GeV. This selection

does not effect the efficiency of the higher energetic photons since they show
an minimal energy of E

γ
h > 0.5GeV. However, an efficiency loss is observable

in low momentum bins for lower energetic photons.

Another commonly used variable in the preselection of photons is the ratio E1/E9, where
E1 is the central crystal energy, the crystal with the highest energy deposition for the
reconstructed particle and E9, the energy of the 3× 3 crystals around the central crystal.
As previously mentioned, beam background can induce multiple hits in ECL crystals. In
the case of a beam background photon, E1/E9 would be small since those particles do not
hit the face of the crystal but from a direction not originating in the IP and therefore do
not carry substantial transverse momentum. The selection of E1/E9 > 0.4 can exclude
such events. However, in the case of displaced ALPs, photons from signal events also do
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not necessarily originate from the IP; therefore, this selection will consistently lead to lower
efficiency. Fig. 4.10 summarizes the total effect for the ma = 2.0GeV/c2 hypothesis; other
mass hypotheses show similar efficiency losses. The majority of the higher energetic photons
shows an efficiency loss up to 5% in some bins with only small differences for different
ALP lifetimes. While the efficiency loss of lower energetic photons from ALPs with smaller
lifetimes is comparable to the one for higher energetic photons, events with higher lifetimes
show a total loss of up to 10% in some bins.
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Figure 4.10.: These plots show the photon efficiency for the ma = 2.0GeV/c2 ALP hypothe-
ses in bins of the photon momenta with the applied selection E1/E9 > 0.4. A
minor efficiency loss can be observed for both photons in all momentum bins.
This loss increases for lower energetic photons in samples with higher ALP
lifetimes.

An essential part of the photon reconstruction is that no track can be associated with
the energy deposition in the ECL. A selection on the reconstructed polar angle θγ can be
applied to exclude charged particles from outside the tracking acceptance. More precisely,
the photons need to be inside the so-called CDC acceptance, where charged particles can
be tracked, which requires the reconstructed polar angle to be 17° < θγ < 150°. Obviously,
with Fig. 4.3 in mind, this selection will affect all signal samples and nearly equally for both
photons. Fig. 4.11 displays the effect of the selection on the samples with an ALP mass
of ma = 4.5GeV/c2, where the photons are mostly back-to-back scattered in the detector,
and ma = 0.1GeV/c2, where both photons are highly boosted. Other ALP mass samples
show comparable results between these two cases.

Fig. 4.12 summarizes the preselection of the photons by displaying the total acceptance
under consideration of all selections. In comparison to the acceptance before applying the
preselection in Fig. 4.1, only a minor loss can be ascertained. However, the number of
reconstructed events is reduced to a third of its original quantity.
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Figure 4.11.: These four plots display the efficiency loss in bins of the photon momenta for
high and low ALP mass samples with an applied CDC acceptance selection.
Under consideration of the photon polar distribution, the efficiency shows
the expected result for photons that are boosted in regions with no CDC
information.



4.2. Preselection of the Final State Particles 29

1 0 1 2 3 4 5
ma (GeV/c2)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
ce

pt
an

ce

Belle II (Simulation)
c a (cm)

0.0
1.0
10.0
20.0

30.0
40.0
50.0

Figure 4.12.: This graphic displays the total a→ γγ acceptance with the applied preselection.
In comparison to the reconstruction acceptance with no selections, the photon
acceptance decreases by about 10% for all signal MC samples.
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Most of the following kaon preselection targets a good track quality. Additionally, this
subsection will conclude the definition of PIDK and a small discussion concerning its
selection strength. To fully understand the upcoming plots, one needs to visualize again
the reconstructed kaon momentum given in Appendix C.1. In contrast to the efficiency
binned in the photon momentum, the reconstructed kaon momentum has more outliers,
and the plots will look nosier than the previous ones. However, relevant changes can only
be observed in momentum bins where the majority of the events are situated in Fig. C.3.

The good track quality selection for kaons can be divided into two groups. On the one side,
charged particle tracks are required to originate close to the IP for good vertex fits. This
criterion is not of utmost importance for this analysis, where no vertex fit is performed.
However, the selection can still be applied since the B± → K±a signature generates the
kaon at the B± decay position. On the other side, the same argument for the polar angle
distribution from the previous discussion applies to the kaon. To ensure reasonable PID
information and momentum reconstruction, the kaon can be required to be inside the CDC
acceptance and have a minimal number of hits in the CDC (NCDC Hits). The distance to the
IP is mainly measured by the polar coordinates. Thus, the hadron expert group recommends
a transverse distance of |dr| < 2 cm and along the beam direction of |dz| < 4 cm. The most
significant influence of these selections can be observed for events with high ALP masses,
in which case some kaons do not have enough momentum to leave well detectable traces.
Fig. 4.13 shows that for ma = 4.5GeV/c2 some momentum bins display an efficiency loss
in the high and low momentum region. These lost events will be most commonly outside
the CDC acceptance and, therefore, are not good candidates for the analysis. Other mass
points show similar effects in their respective momentum bins.
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Figure 4.13.: These plots show the kaon efficiency in bins of its momentum under consider-
ation of the IP selections for |dr| and |dz|. An efficiency loss is observable in
weakly populated momentum regions.

Concerning the second part of ensuring a good track quality, standard selections are the
criteria that the charged particles are inside the polar angle CDC acceptance and a minimal
number of registered wire hits NCDC Hits > 20 can be associated to the particle’s track.
Fig. 4.14a shows the expected efficiency loss for ma = 2.0GeV/c2 in high and low kaon
momentum bins where the particle propagated either mainly in the forward or backward
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direction and therefore was never inside the CDC acceptance. Simultaneously, Fig. 4.14b
displays for the same ALP mass hypothesis the influence of the NCDC Hits selection where
the impact is more visible on the events in the outer momentum regions. Most probably,
these kaons propagated through the CDC but left it before leaving the required amount
of hits. In the inner momentum regions, a loss of about 5% per momentum bin can be
observed. This loss will be maximal for kaons with a lower momentum, as in Fig. 4.14c,
due to the inability to ionise the gas inside the CDC.
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Figure 4.14.: This plot collection shows the effect of CDC acceptance and NCDC Hits se-
lections on the reconstructed kaon efficiency for various ALP mass samples.
The CDC acceptance selection results in an efficiency loss for kaons strongly
boosted in the forward or backward direction of the detector. This loss is
more pronounced for the NCDC Hits selection since it excludes events with a
lowe transversal momentum.

The last commonly used preselection variable is the so-called kaon ID (PIDK). This quantity
is a measure of the PID probability of a reconstructed particle. It is calculated via the
likelihood ratios of being the desired particle and the sum of likelihoods for all particles. In
the case of the kaon, the ratio is

PIDK =
LK

Le + Lµ + Lπ + LK + Lp + Ld
, (4.3)
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where for a given track, the likelihood assuming the kaon mass hypothesis is compared
to that of electrons, muons, pion, protons and deuterons. Usually, the likelihoods are
extracted from the collected information of all sub-detectors. However, at this time, the
SVD is excluded from the calculation due to the lack of SVD PDFs and their validation
for all particles. Commonly, if an analysis aims for high purity and has high statistics
samples, a selection of PIDK > 0.5 is the typical choice. Applying this selection on the
reconstructed kaons in this analysis leads to a maximal loss of up to 40% for central
momentum bins in the case of samples with ma = 0.1GeV/c2 and about 30% for higher
mass, e. g. ma = 4.0GeV/c2. Fig. 4.15 shows the efficiency loss for low and high ALP mass
samples.
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(b) ma = 4.5GeV/c2 – PIDK > 0.5

Figure 4.15.: These plots display the efficiency loss in bins of the kaon momentum for the
PIDK > 0.5 selection. As explained in detail explained in the corresponding
text, the efficiency loss is highly correlated with the detector region the kaon
can propagate to and the kaon’s momentum.

The efficiency loss per momentum bin creates visible structures. It can be best explained
with the help of a low ALP mass sample, e. g. Fig. 4.15a, respectively Fig. 4.16 which shows
the median PIDK of all correctly reconstructed kaons in bins of the reconstructed polar
angle θK and the momentum pK . Starting from the low momentum kaons, the particles
propagate mostly into the end-cap of the detector, where no additional PID information
can be collected due to the absence of PID detectors in this region. At this point, most of
the PID information is accumulated by the CDC and only a small fraction by the TOP
detector. More PID information can be collected with rising momentum since more kaons
hit the barrel region. At around pK ≈ 2.4GeV/c nearly all kaons hit the TOP detector
and the PID information is satisfyingly good. However, higher momentum causes the PID
information to fall until reaching a local minimum before it rises again. The later rise is
induced by kaons with a high momentum which are mostly propagating into the forward
direction where the ARICH can provide good PID information. This region is clearly visible
in Fig. 4.16 for pK ≳ 3.0GeV/c and θK ≲ 30°; excluding the last θK bin. In between
the two PID peaks is a region where specific combinations of momentum and direction
of the kaon lead to Cherenkov cones inside the TOP quartz bars that do not reflect fully
inside the bars, which leads to a smaller number of detectable photons and therefore for
less PID information provided by the TOP. With this effect in mind, this analysis chooses
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a significantly smaller PIDK selection of PIDK > 0.002 to accumulate as many kaons as
possible and simultaneously exclude events with negligible PID information, leading to a
significant reduction of reconstructed signatures. Fig. 4.17 displays the remaining efficiency
loss for the high and low ALP mass samples.
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Figure 4.16.: This 2D histogram displays the median PIDK value in dependence of the
kaon momentum and polar angle distribution. The PIDK value is significantly
lower in the backward direction and for specific steering angle, momentum
combinations.

Finally, Fig. 4.18 summarizes the preselection of the kaons, and therefore the FSP, by
displaying the total acceptance under consideration of all selections. In comparison to the
acceptance before applying the preselection in Fig. 4.7, a more significant acceptance loss
can be observed than previously for the photons, especially for the high ALP mass samples.
Nevertheless, all applied kaon selections are empirically probed and lead to a good purity
and efficiency ratio while reducing the number of reconstructed particles by about 80%.
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(b) ma = 4.5GeV/c2 – PIDK > 0.002

Figure 4.17.: These plots display the efficiency loss in bins of the kaon momentum for
the PIDK > 0.002 selection. This selection leads to a significantly smaller
efficiency loss but comes with the risk of reconstructing misidentified charged
particles.
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Figure 4.18.: This plot shows the total kaon acceptance with the applied preselection. In
comparison to the reconstruction acceptance with no selections, the kaon
acceptance decreases by about 15% to 20% for all signal MC samples with
an increasing loss for higher ALP masses.

4.3. Selection Optimization
In contrast to SM precision analyses, where the candidate selection can be based on a-priori
expectations, a search for NP phenomena ideally needs to be open to the parameters of the
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new theory, e. g. mass and lifetime. [33] proposes an axiomatic approach in the search of a
signal with unknown parameters. The main goal of this approach is to determine sets of
selections that have maximal discovery or limit setting potential in counting experiments.
This analysis uses the PFOM to optimize selections for every signal MC sample independently
and shows smooth transitions of the PFOM in between samples. Later, the signal extraction
in Chapter 5 interpolates the selections and performs a bump hunt in Mγγ . Section 4.3.1
outlines the considered variables which will be used for selecting signal events. Subsequently,
Section 4.3.2 describes the signal shape in detail and demonstrates a possible way to
calculate the signal range. Finally, Section 4.3.3 performs the optimization of selections
with the help of the PFOM.

The following introduction of the PFOM is based on the works of [33]. The general idea is
based on the assumption that the search for a new signal is a simple counting experiment,
where n is the Poisson distributed number of observed events, which is determined by
the expectation of the number of background events B and signal events Sm, where m
represents the dependency on the signal model parameters. In the case of H0 being the
hypothesis of no new signal that is either accepted or rejected in favour of the hypothesis
Hm for a new signal with parameters m, the number of observed events is distributed
according to

p(n|H0) =
Bn

n!
e−B, (4.4)

p(n|Hm) =
(B + SM )n

n!
e−(B+Sm). (4.5)

It is easy to see that the relevant condition for measuring a non-zero Sm is an observation
n > nmin, where nmin is determined by B and the significance level α. In the case of
no discovery, the limit will be set by the power of the test in dependence on the model
parameters m and a in advance chosen Confidence Level (CL)

1− βα(m) ≥ CL. (4.6)

This inequality can be translated, together with the condition to observe n > nmin, in
case of present signal, to the condition Sm ≥ Smin, where Smin is characterized by the
significance α, the false-negative probability β and the number of background events B.
Furthermore, [33] proposes to parametrize Smin in the form of

Smin = a
√
B + b

√
B + Smin, (4.7)

where a and b are the number of standard deviations corresponding to Gaussian tests at α
and β. Together, with the idea that B and Sm both depend on a selection of variables t, it
is the general task to find, for a set of parameters m, the selection t that maximizes the
sensitivity of the experiment. In other words, after solving Eq. (4.7) for Smin, the best t is
determined by solving for each m the inequality
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Sm(t) ≥ b2

2
+ a
√
B(t) +

b

2

√
b2 + 4a

√
B(t) + 4B(t). (4.8)

In the simple case, where the selection efficiency ϵ(t) is independent of the signal parameters
m, such that the number of signal events can be rewritten as Sm(t) = ϵ(t)Lσm, where L is
the integrated luminosity, and σm the cross section of new processes, a minimal detectable
cross section will be the defining quantity in the search for an optimal selection t. Optimizing
Eq. (4.8) for the maximal sensitivity (minimal detectable cross section) leads to the PFOM
which maximum will give the best selection t. With the choice of a = b, the PFOM is an
elementary quantity:

PFOM =
ϵ(t)

a
2 +

√
B(t)

. (4.9)

This analysis will maximize Eq. (4.9) for a set of selections on experimental observables for
each signal MC sample independently. The general procedure on one signal sample is to
maximize the PFOM for one variable, apply this selection and move on to optimising the
PFOM of the following variable.

4.3.1. Observables and Final Preselections

Optimizing the PFOM, as it is done in this analysis, is a so-called cut-based approach in the
candidate selection. Each variable will have one or two selections that will determine which
variable range is sensitive to the signal. Obviously, this approach has a strict limitation
which is the correlation of different variables. Furthermore, not every variable will have the
same signal selection strength. Thus, the final selection depends on the chosen variables and
the order in which their respective optimal selections were determined. Within the scope of
this thesis, several different observables were inspected, mainly variables that are in close
relation to the ones chosen in [7]. However, the final choice of observables in this analysis is
reduced to only five observables, where all of them are strongly physically motivated with a
high separation power. The relatively small number of variables, which contribute to the
selection, is justified by the strength the selection can have. After applying the first few
optimized selections, the number of events can be so low that all following selections will
be optimized based on single random events. At this point, the selections become biased
towards fluctuations. Additionally, the number of background events is too small such
that further analysis steps cannot be performed reliably. This aspect is also discussed in
Section 5.2. This subsection will describe the observables used for the PFOM optimization,
examine their correlations and close with remarks on final preselections on the B± → K±a,
a→ γγ events.

B meson kinematics
Physics analysis at B-factories, like Belle II, possess the advantage of a clear initial state
which is the BB̄ pair, respectively the B meson as mother particle to the analyzed decay
tree. This well-known prerequisite permits a unique way of selecting signal candidates over
background. The B-physics community adapted two observables, the beam-energy con-
strained mass Mbc and the energy difference ∆E, from simple principles. The reconstructed
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energy of all FSP in a B decay EB has to correspond to the initial energy of the beam
EBeam which is about half the center-of-mass energy. Consequently, the difference

∆E = E∗
B − E∗

Beam, (4.10)

where the star denotes the center-of-mass frame, peaks around zero for events originating
from B decays. 4.19a displays the ∆E distribution for correctly reconstructed B± → K±a,
a → γγ events with an ALP mass of ma = 4.5GeV/c2. Due to the high energy photons,
that induce shower leakage in the ECL crystals, the ∆E distribution shows a left tail which
is less dominant for lower ALP mass samples. Continuum background events, as shown
in Fig. 4.19c for continuum and generic samples2 corresponding to 100 fb−1, are uniformly
distributed with a rising slope to the left side. The second observable is motivated by the
invariant mass definition for the B mesons but substitutes the B energy with the energy of
the beam

Mbc =

√
E∗2

Beam − p⃗∗2B , (4.11)

where p⃗B is the momentum of the B meson. Fig. 4.19b displays Mbc for correctly recon-
structed signal events and shows a peak at the position of the B meson mass, which is
absent in the case of continuum background in Fig. 4.19d. The distribution of Mbc gets
wider for signal samples with a higher lifetime due to the worse p⃗B resolution caused by
the photons. Section 4.3.2 discusses this in detail.

Continuum Suppression
As discussed in Section 3.4 and visible in Fig. 4.19, the so-called continuum background is
a major background source in the reconstruction of B decays. A key difference between
e+e− → qq̄ and e+e− → Υ(4S) → BB̄ events is the overall event topology which allows
separating the events. While the BB̄ pair is produced nearly at rest, only with a non-trivial
boost according to the asymmetric beam-energies, the continuum events form a back-to-back
jet-like structure in the center-of-mass frame, as illustrated in Fig. 4.20. This analysis uses
two observables to distinguish between the signal B± decay and the continuum background.
One of these variables is the normalized second Fox-Wolfram moment R2. Fox-Wolfram
moments Hk, which are defined as

Hk =
∑
i,j

|p⃗i||p⃗j |
E2

Event

Pk(cos θi,j), Rk =
Hk

H0
, (4.12)

where p⃗i denotes the momentum of the i-th particle in the event, Pi is the i-th Legendre
polynomial and EEvent the energy of the event, describe the spatial distribution of particles
in an event. Back-to-back, two jet-like structures will take on R2 values closer to 1 as in
Fig. 4.21c. In contrast, spherical events will take on lower values as displayed in Fig. 4.21a
for ma = 3.0GeV/c2 which has a topological evenly distributed event shape. Higher and

2These samples are reconstructed with very loose selections added to the preselection on Mbc and ∆E
which will be explained later in this subsection.
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Figure 4.19.: These four plots display the distributions of Mbc and ∆E for reconstructed
events of exemplary signal samples (top) and of continuum and generic back-
ground (bottom).

lower ALP masses take on higher R2 values due to the boost of the photons. The other event
shape variable in the selection is the angle cos(TBTO) between the thrust vectors of the
reconstructed B meson and the Rest of Event (ROE), which is the name for all remaining
tracks and energy depositions in this event. The thrust vector T⃗ points into the direction
for which the sum of the momenta p⃗i projections of all particles in the event is maximized.
Events that produced BB̄ pairs will have a low momentum in the center-of-mass frame,
which results in an even distribution of cos(TBTO), as shown in Fig. 4.21b. Continuum
events, in Fig. 4.21d, with a strong back-to-back like structure will peak for high cos(TBTO)
values.

Photon Energy
The last selection variable is the energy of the lower energetic photon. For background
events, this observable clearly peaks at 0, as displayed by Fig. 4.22c. Signal events will
have a broader distribution of this energy at a position dependent on the ALP mass of the
sample. In the case of low mass samples, as displayed in Fig. 4.22a for ma = 0.1GeV/c2,
the separation power is low. However, for higher ALP masses, i. e. ma ≥ 1.0GeV/c2, the
efficiency loss per E

γ
l bin for rising E

γ
l is lower than the

√
B loss per E

γ
l bin which results

in a good separation power. Fig. 4.22b illustrates the separation potential in the case of
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Figure 4.20.: This graphic displays the different event topology for continuum and BB̄
events. Figure adapted from [34].

ma = 3.0GeV/c2 which is easier to see. Section 4.3.3 discusses this topic in detail. The
choice of E

γ
l over E

γ
h is due to discussed separation power. With the preselection and the

following small Mbc and ∆E selection, for both background and signal, higher energetic
photon have an energy of at least Eγ > 1.0GeV and very similar distributions which causes
the PFOM to be monotonically decreasing.

Correlations
As explained in the introduction to this section, the general workflow of the PFOM
optimization on one MC sample is to determine the maximal PFOM for a variable selection,
apply this selection to the sample and then proceed with the following variable. This linear
procedure is susceptible to the correlations of the chosen variables and, therefore, on the
order of their selection optimization. Practically, by approaching minimal background,
only the values of the selections for two correlated variables will change in the case of
interchanging their order in the optimization process. After applying both selections, the
resulting signal efficiency or the number of background events should be equal. A profound
understanding of the correlations is necessary to understand this outcome fully.

The observables Mbc and ∆E are naturally correlated due to common inputs such as the
energy/momentum of the photons in the final state. Especially when effects such as shower
leakage or spatial reconstruction of the photons dominate the distributions of Mbc and ∆E,
a clear selection becomes more challenging. In general, events with low energetic photons
and no displacement, as shown for correctly reconstructed events in Fig. 4.23a, will lead
to an only moderate correlation, which in turn gets more apparent for high ALP mass
samples with larger displacement, as in Fig. 4.23b. Since most of the events in Fig. 4.23
are distributed in close vicinity, a tight selection for both variables, which is preferred by
the maximal PFOM, will ideally not influence the final signal efficiency and the number of
background events.
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Figure 4.21.: These four plots display the distributions of R2 and cos(TBTO) for recon-
structed events of exemplary signal samples and of continuum and generic
background.

Two highly correlated observables are the ones to suppress the continuum background. Both
R2 and cos(TBTO) variables express topological quantities of an event that connects them
naturally. As previously explained, high and low ALP mass samples will share common
values for both variables and therefore show similar correlation, as shown for the low mass
case in Fig. 4.24a. For samples with masses in between the outer cases, where the events
are mostly spherical, the correlation shown in Fig. 4.24b is slightly but not significantly
different. In both cases, a selection on either observable will heavily influence the optimal
selection value for the following variable. However, since the selections will affect the same
events, the result of the optimized selection is ideally equal.

All other combinations of the here shown observables show insignificant correlations. The
energy of the lower energetic photon is slightly correlated with Mbc, ∆E and R2 since it
is the input parameter for all three variables. The most noticeable accidental correlation
exists for very spherical events, e. g. ma = 3.0GeV/c2 in Fig. 4.25, for high values of the
energy for the lower energetic photon. In this case, all three FSP have nearly identical
energies and, therefore, will spread evenly in the detector, which leads to a low R2 value.

Final Preselection
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Figure 4.22.: These three plots display the distributions of E
γ
l for reconstructed events

of exemplary signal samples, of continuum and generic background and the
combination of both.
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Figure 4.23.: These 2D histograms demonstrate the distributions of ∆E over Mbc for
correctly reconstructed events in two signal samples. The plot in (a) displays a
light and promptly decaying and (b) a heavy and long-lived ALP sample. The
correlations of both variables increases with higher ALP mass and lifetime.
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Figure 4.24.: These 2D histograms demonstrate the distributions of cos(TBTO) over R2 for
correctly reconstructed events in two signal samples. The plot in (a) displays
an ALP sample with a less spherical event topology while (b) presents a more
spherical case. In both cases, the observables are highly correlated.
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Figure 4.25.: This 2D histogram shows the distributions of E
γ
l over R2 for correctly re-

constructed events in the ma = 3.0GeV/c2 and cτa = 10.0 cm sample. The
displayed correlation is caused by the nearly perfectly spherical event topology
in cases where both photons and the kaon share equal energies.

All the reconstructed events in this subsection and the following chapter have additional
preselections common for B-decay analysis. Most of the following selections are empirically
approved by the community and are subject to minimal examples in basf2. The first
selections targets the obvious background events which did not originate from correctly
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reconstructed B-decays: Mbc > 5.2GeV and |∆E| < 0.4. These selections will exclude
mostly continuum and misidentified, combinatorial background. The second set of selections
targets the previously mentioned ROE. In the case of this analysis, the ROE contains the
other B meson in the Υ(4S) decay and additional tracks and clusters from beam-induced or
other background processes. So-called ROE masks, which are a group of selections, exclude
events in the ROE that do not pass the selection. The here used ROE mask contains the
selections NCDC Hits > 0, p∗ ≤ 3.2GeV/c and p > 0.05GeV/c. By applying the preselection
from Section 4.2 and the Mbc and ∆E selections, the used ROE mask does not have a
significant influence on reconstructed events. However, the mask is necessary to calculate
the continuum suppression observables, which use the ROE and are therefore also applied
to the reconstructed events. Fig. 4.26 displays the total acceptance of the B± → K±a,
a → γγ signal signature. The total acceptance loss is a non-trivial combination of the
loss by the preselection on the photons in Fig. 4.12, which dominates the loss for different
lifetime samples, the kaons in Fig. 4.18, which reduces the acceptance, especially for heavy
ALP samples, and the here discussed preselection on the B± decay.
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Figure 4.26.: This plot shows the total B± → K±a, a → γγ acceptance with the applied
preselection for the photons, the kaon, Mbc and ∆E. The signal signature
displays a total acceptance of 50% to 60% for prompt ALP mass samples.
Additionally, the acceptance decreases with higher ALP lifetime samples as
discussed for the photon acceptance.

4.3.2. Signal Range

To perform the PFOM optimization as efficiently as possible, choosing a region in which the
signal efficiency is already enriched is advantageous. One possible choice is selecting a signal
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range in Mγγ and only maximising the PFOM on events inside this range. The selection
and definition of such a range are ambiguous, yet the optimization outcome should ideally
not depend on it. Due to the photons in the final state of the neutral a→ γγ decay, the
Mγγ picks up a sizeable left tail for displaced ALP hypotheses which makes the definition
of a practical signal range challenging. Firstly, this subsection explains the appearance of
the left tail in Mγγ for long-lived ALPs. Secondly, it will discuss a commonly used method
to correct momentum misreconstruction of neutral particles in the final state. Lastly, the
signal range calculation is discussed.

Energy Ei and momentum p⃗i are the necessary parameters to calculate the invariant mass
minv of a set of particles via

m2
inv =

(∑
i

Ei

c2

)2

−

∣∣∣∣∣∑
i

p⃗i
c

∣∣∣∣∣
2

. (4.13)

In the case of calculating the invariant mass of photons, which are massless, the momentum
vector p⃗γ is determined by the energy Eγ and the spatial detection in the detector. The
only way to measure these quantities with the Belle II detector is by the one crystal
layered ECL. Thus, the observables are the reconstructed cluster energy EReco and cluster
spherical coordinates (θReco, ϕReco). Since the deposited energy directly reconstructs the
cluster energy in the ECL cluster, it does not contribute significantly to the shape of Mγγ .
Displaced photons are likely not to hit the face side of crystals, which leads to potentially
larger ECL clusters. However, the energy spread into several crystals caused by not-frontal
hits is negligible due to the number of radiation lengths per crystal. The difference between
reconstructed and generated energy of a photon is mostly very low and tends to reconstruct
the energy lower than the generated energy. This can be seen for the lower energetic photon
in Fig. 4.27 for correctly reconstructed events3 in the ma = 3.0GeV/c2, cτa = 50.0 cm
ALP sample. Other mass and lifetime samples show similar results with smaller differences
compared to lower energetic and slightly larger differences to higher energetic photons.

The reconstruction of the momentum vector is significantly less precise. Due to the absence
of a tracking system for neutral particles, such as multiple calorimeter layers, it is unfeasible
to measure the accurate direction the particles originated from. Each crystal has a known
position relative to the (0, 0, 0) point of the detector, which is combined with the actual IP
position to determine the spherical coordinates. In the case of photons, which arise from
displaced ALP decays, this method will always lead to wrong values for the coordinates as
displayed for a planar example decay in Fig. 4.28.

In total, three different cases exist for the reconstruction of θγ and ϕγ and are summarized in
Fig. 4.29 for the lower energetic photon. Promptly decaying ALPs are correctly reconstructed
since the method of calculating the coordinates is applicable. In the detector, evenly
distributed displaced photons have the largest over- and underestimation in reconstructing
the spherical coordinates. Photons from heavy ALPs are mostly back-to-back oriented.
Therefore the reconstruction will lead to smaller values of θ since the photons hit the
detector at a flatter angle than anticipated.

3These events correspond to the reconstruction in Section 4.1 and Section 4.2 with applied photon
preselection.
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Figure 4.27.: This 2D histogram displays the distributions of generated over reconstructed
E

γ
l for correctly reconstructed events in the ma = 3.0GeV/c2 and cτa =

50.0 cm sample. The comparisons shows a good agreement between both
energy distributions with a slight tendency to reconstruct the energy of the
photon to lower values.

Promptly decaying ALPs with a good spherical reconstruction of the photons momentum
lead to an approximately Gaussian-like distribution of Mγγ , as shown in Fig. 4.30a, with
a slight shift of the peak to the left. The peak shift appears due to the photon energy
calibration being performed on a single photon. ALPs with non-zero lifetimes, i. e. a
displaced photon production vertex, will broaden the distribution of the invariant mass
in the form of a left tail which is more significant for higher displacements. A common
analytical description for the shape in Fig. 4.30b is a double-sided Crystal Ball distribution
which is defined as

f(x;µ, σ, αl, nl, αr, nr) =


Al

(
Bl − x−µ

σ

)−nl for x−µ
σ < −αl,

e
− (x−µ)

2

2σ
2 for − αl ≤ x−µ

σ ≤ αr,

Ar

(
Br − x−µ

σ

)−nr for x−µ
σ > αr,

(4.14)

with Al/r =

(
nl/r

αl/r

)−nl/r

e−
α
2
l/r
2 ,

Bl/r =
nl/r

αl/r
− αl/r,
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Reconstructed

Generated

Figure 4.28.: This graphic illustrates the inner part of the detector and the generated and
reconstructed event topology of the a→ γγ decay. The displayed sub-detector
components are the silicon trackers (orange), CDC (grey), ARICH (pink),
TOP (light-blue), ECL (purple) and the solenoid (dark-blue). Due to the
inability to track neutral particles in the detector, the angular distribution of
displaced neutral decays is always misreconstructed.

where µ and σ correspond to the mean and standard deviation of the Gaussian peak structure,
αl/r > 0 determines the position of the transition between Gaussian and exponential
distribution and nl/r ∈ N+ are the power of the exponential tails.

The mass constrained fit is commonly used to correct for momentum resolution effects in
B decays with neutral particles in the final state. This fit is a special case of the global
decay chain vertex fitting [35] algorithms developed at Belle II. The general idea behind the
proposed method is to fit the entire decay tree, in this case, the B± → K±γγ, by minimizing
the distance between the measurement and a given hypothesis under consideration of the
measurement uncertainty. This distance can be formulated as a set of equations that
express the desired constraint depending on the measured four-vectors of all FSP and
intermediate decays. In the case of B± → K±γγ, with only one charged track, the only
option is to constrain the FSP positions and momenta to the nominal mass of the B±

meson. The fit will adjust the FSP momentum-four-vectors to reduce the distance between
the reconstructed B± four-vector scalar and the PDG value of the B± mass. Updating
the four-momentum vector of the photons with the mass constrained fit reduces the tails
of Mγγ distributions. Heavy ALP mass samples achieve the best fit results due to the
photons contributing significantly to the momentum and energy. Therefore, effects on the
Mγγ distributions from displaced ALP decays depend strongly on the ALP mass. For
example, samples with an ALP mass of ma = 2.0GeV/c2 show a significant narrowing of
Mγγ in Fig. 4.31a for prompt decays but only a minor effect on highly displaced samples in
Fig. 4.31b due to the large discrepancy for the reconstruction of the momentum direction.
This changes significantly for samples with a mass of ma = 4.0GeV/c2. Here, also the
displaced samples in Fig. 4.31c show excellent results by the mass constrained fit.

Applying mass constrained fits on the B± reconstructions can significantly reduce the width
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(a) ma = 0.1GeV/c2, cτa = 0.0 cm
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(b) ma = 2.0GeV/c2, cτa = 50.0 cm
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(c) ma = 4.5GeV/c2, cτa = 20.0 cm

Figure 4.29.: These 2D histograms demonstrate the distributions of generated over recon-
structed θ

γ
l for correctly reconstructed events in three different cases. The

plot in (a) displays the correct reconstruction for promptly decaying ALPs.
Contrary, the plots in (b) and (c) show the misreconstruction of θ

γ
l for dis-

placed ALP events with an uniform polar distribution and a back-to-back like
a→ γγ decay.

and asymmetry of Mγγ . However, the definition of a signal range in Mγγ is only reliable if
it can account for the remaining asymmetry. The signal range definition presented here is
based on the double-sided Crystal Ball distribution since it was chosen to represent the
asymmetric shape best. First, an unbinned maximum likelihood fit is performed to extract
the double-sided Crystal Ball PDF from the Mγγ events. Second, the extracted µ parameter
marks the center of the PDF, which is split in half at the position of µ. Lastly, strongly
inspired by the general Interquartile Range (IQR) definition, the right bound of the signal
range is calculated by integrating the PDF from the µ value to the Mγγ value right of it,
which contains 99% of the area enclosed by the right part of the PDF; analogously for the
calculation of the left bound. Fig. 4.32a displays the result of this procedure for a MC
signal sample with an ALP mass of ma = 3.21GeV/c2 and a lifetime of cτa = 50 cm from
the second set4 of signal MC samples. The majority of the correctly reconstructed events
lie within the asymmetric bounds of the so-called IQR(1,99) signal range. One limitation to
the presented method of signal range calculation is the agreement between the Mγγ shape
and the double-sided Crystal Ball PDF, which is strongly influenced by the number of
not reconstructed events. In the case of light ALPs with a high boost, i. e. ALPs leaving

4Refer to Table 3.1.
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Figure 4.30.: These plots present the Mγγ distributions for two different ALP lifetimes
samples with a mass of ma = 2.0GeV/c2. Samples with a low ALP lifetime
show a clear Gaussian-like peak, while high lifetime samples shown a long left
tail in theMγγ distribution due to the larger spatial reconstruction discrepancy.

the detector before decaying, the Mγγ shape can differ significantly from the double-sided
Crystal Ball description, as can be seen in Fig. 4.32b. To reliably fit the Mγγ shape for all
mass and lifetime hypotheses, the number of free parameters for the double-sided Crystal
Ball distribution is reduced to four by fixing both n parameters. This method is a common
technique since the α, and n parameters are highly correlated as both adjust the exponential
tails. The parameters are set to empirically determined values of nl = 7 respectively nr = 2.
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Figure 4.31.: These plots display theMγγ distributions before and after the mass constrained
fit for three different signal MC samples. The mass constrained fit influences
the Mγγ shape more with higher ALP mass as can be seen in comparison of
the ma = 2.0GeV/c2 samples in the plots in (a) respectively (b) and (c).
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(a) ma = 3.21GeV/c2, cτa = 50.0 cm (b) ma = 0.63GeV/c2, cτa = 50.0 cm

Figure 4.32.: These plots present the Mγγ distributions, a double-sided Crystal Ball model
fit for these events and the signal range calculation for two highly displaced
ALP signal samples. High ALP mass samples show good agreement with the
analytical description of the double-sided Crystal Ball PDF, while the low
ALP mass samples display deviations from it. These deviations arise through
ALP events that do not decay in the detector acceptance.
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4.3.3. Punzi Figure of Merit

Determining a good set of selections with the help of the PFOM is a typical optimization
problem. The goal is to use a set of observables to find the selection that excludes the
most background while keeping the signal efficiency as high as possible. This makes the
optimization an iterative process that must be adapted to the requirements. The PFOM
itself determines two critical aspects in applying the following algorithm. One of the aspects
is the direct consequence of the

a

2
term in the denominator in Eq. (4.9). Consequently, the

PFOM can be maximal for zero background events, leading to selections that exclude a
large portion of the signal before the signal efficiency decreases significantly. Another aspect
is the previously mentioned selection power of an observable, which is proportional to ϵ/

√
B.

This is a useful insight since it can help find good observables for the optimization. For
example, if the number of signal events and background events decreases linearly with a
tighter selection of an observable, then the PFOM will not have a distinguished maximum.
As a result, the used observable can be discarded. Additionally, a profound understanding of
the used observables is advantageous for interpreting the suggested selections and possibly
adapting them. This subsection will first explain the used algorithm to find a set of
selections, then show the intermediate steps between different observables for an example
MC sample and conclude with the candidate selection results.

The following algorithm is used to determine the candidate selection based on a set of
observables on each ALP mass and lifetime MC sample. The selection variables are not
mass constrain fitted.

1. Apply signal range selection determined by the asymmetric IQR(1,99) bounds based
on the mass constrain fitted Mγγ distribution

2. Exclusion of the irreducible background regions for π0, η, η′ according to Table 4.1

3. Calculate PFOM in bins of a given observable range with the number of standard
deviations set to a = 5 for discovery and the efficiency ϵ definition

ϵ =
NSignal

NMC
, (4.15)

where NSignal corresponds to the number of events in the MC signal sample and NMC

is the number of generated events

4. Choose observable selection value at the position of the PFOM maximum

5. Check if suggested observable selection violates preferred physically motivated limits,
if so, set selection value to preferred value

6. Apply selection on MC sample and start at 3. for next variable

The displayed algorithm is applied to the observables in the order from top to bottom
in Table 4.2. As previously stated, the order of the observables plays a crucial role
in the optimisation result. Interchanging the order of highly correlated variables can
change the selection values but ideally leads to similar results. However, interchanging not
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Table 4.1.: This table displays the excluded Mγγ ranges for the particles that form the
irreducible background in the B± → K±γγ decay.

Particle Excluded Mγγ range in GeV/c2

π0 [0.100, 0.175]
η [0.450, 0.630]
η′ [0.910, 1.010]

Table 4.2.: This table outlines the order of the observables in the PFOM algorithm. Addi-
tionally, it displays the scanned range which is split into 500 selection steps.

Observable Range of Bins Comparison Operator

Mbc [5.25, 5.30]GeV/c2 >
∆E [0.00, 0.10]GeV <
∆E [-0.40, 0.00]GeV >
R2 [0.00, 1.00] <
cos(TBTO) [0.00, 1.00] <
E

γ
l [0.00, 2.50]GeV >

correlated variables can lead to different excluded events and therefore have an impact on
the resulting signal efficiency and the number of background events. To better control this
difference, it is practical to select correlated variables directly after one another and not
mix between highly correlated groups. For this analysis, different orders have been tested,
and ultimately, this order has been selected due to a good performance and a reasonable
physical motivation. The following example shows the PFOM calculation steps for each
variable in the ma = 1.31GeV/c2, cτa = 20 cm MC sample.

A key motivation in the choice of the observable order is to first exclude as many events
as possible without reducing the signal efficiency drastically. For this reason, motivated
by the discussion in Section 4.3.1, a selection on Mbc begins with the exclusion targeted
on events that likely do not originate from a B meson decay. Fig. 4.33b shows a good
separation power by a clear peak in the PFOM which looses, on the one hand, about 30%
signal efficiency, whereas, on the hand, it excludes about 60% of the background which is
also indicated by Fig. 4.33a.

The following selection variable, ∆E, follows the same motivation as the Mbc selection.
Additionally, selections on ∆E exclude misidentified kaons since the particle hypothesis is
included in the energy calculation of the particle. Since the selection on ∆E is split into
two parts, for values smaller and larger than zero, the first selection will always show a low
separation power, as seen in Fig. 4.34b, due to the background events on the other side of
∆E = 0GeV. As a result, the second selection will always seem to have a more significant
impact, displayed by the clear PFOM peak in Fig. 4.34d. Interchanging the order of these
selections has no significant effect on the fully optimized selection. A physically motivated



4.3. Selection Optimization 53

(a) Mbc Distribution (b) Mbc PFOM

Figure 4.33.: These two plots display the PFOM, signal efficiency and the number of
background events distribution and indicate the best selection in the observable
distribution for Mbc in one signal MC sample. The selection for Mbc shows a
clear optimum in the PFOM.

reason to choose the displayed order is that more background events occur for negative ∆E
values.

Even after reducing the number of background events by 90%, the continuum background
still dominates the reconstructed events, as can be seen in Fig. 4.34c. For this reason, the
next selection optimization observables are for continuum suppression. Here again, a change
of the order between R2 and cos(TBTO) does not significantly change the final selection result
due to excluding the same events. The first selection on one of the continuum suppression
variables reduces the number of background events drastically due to the extremely high
selection power displayed in Fig. 4.35b. Simultaneously, about half the signal events are
also excluded, resulting from the PFOM denominator. Consequently, a hard limit is put on
the selection for R2, which does not allow for selections with R2 < 0.25. For the displayed
case in Fig. 4.35c, nearly no events are left to be excluded by a cos(TBTO) selection, which
is also visible in the plateau in Fig. 4.35d. However, cos(TBTO) is not excluded from the
optimization to possibly exclude events in samples with less spherical ALP decays. As an
outlook, the continuum suppression can be improved by the use of boosted decision trees
trained specifically for the continuum background rejection on a larger set of continuum
suppression variables. Additionally, advanced machine learning methods could be used
further to improve the continuum suppression, so-called Deep Continuum Suppression, as
shown in [36].

The last candidate selection variable is the energy of the lower energetic photon. It shows a
good separation power in Fig. 4.36b since the minimal energy of the photons is determined
by the B± → K±a, a→ γγ kinematics. However, E

γ
l is chosen last due to the steep linear

reduction in signal efficiency, which always leads to a significant loss of signal events.

Fig. 4.37 shows the final selection results for all ALP mass and lifetime samples. Most
5This value is the result of private discussions with a continuum suppression expert and justified that even

for perfectly reconstructed spherical events this would drastically reduce the number of signal events.



54 4. Candidate Selection

(a) ∆E Distribution (b) ∆E PFOM

(c) ∆E Distribution (d) ∆E PFOM

Figure 4.34.: These four plots display the PFOM, signal efficiency and the number of
background events distribution and indicate the best selection in the observable
distributions for negative and positive values in ∆E. The selection for negative
∆E values displays a clear optimum in the PFOM due to the previous selection
on the positive values. Therefore, an interchange of the order of the selection
leads to similar results.

of the selections are within the expectations, which can be deduced from Section 4.3.1
and the previous example. The optimal selection for Mbc tends to lower values for higher
lifetimes due to the broader Mbc distribution caused by the misreconstructed photon
spatial coordinates . The selections are approximately identical for positive values of ∆E
throughout all mass and lifetime points. In contrast, negative values require a loser selection
with rising lifetime due to the calibration of the photon energy. R2 selections are dependent
on the mass of the ALP sample. High and low ALP mass samples cause higher R2 values
due to the boost of the photons. Thus, the selection for these samples is looser. The
selection for more spherical events is tighter and does not go below R2 < 0.2 as required,
resulting in a very loose cos(TBTO) selection since most of the continuum events are already
excluded. In ALP mass regions where the R2 selection is looser, the cos(TBTO) selection is
tighter due to remaining continuum events. Lastly, optimal E

γ
l selections are slightly above

the kinematic allowed minimum photon energy with respect to the ALP mass. Fig. 4.37e
shows isolated outliers which are caused by the absence of sufficient events in the sample
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(a) R2 Distribution (b) R2 PFOM

(c) cos(TBTO) Distribution (d) cos(TBTO) PFOM

Figure 4.35.: These four plots display the PFOM, signal efficiency and the number of
background events distribution and indicate the best selection in the observable
distributions for R2 and cos(TBTO). The selection for R2 shows a good
separation power between signal and background events with a high loss in
signal efficiency.

after applying the previous selections.

Fig. 4.38 summarizes the final candidate selection results by displaying the overall signal
efficiency and the number of background events for all ALP mass and lifetime samples.
Generally, the efficiency mirrors the shape of the acceptance in Fig. 4.26 with lower values
for light and heavy ALP samples. Contrary to the acceptance, the separation between
lifetimes is more apparent for the signal efficiency, which can be explained by the different
Mbc and ∆E selections for different lifetime samples. These selections are looser for higher
lifetimes, yet, to achieve a comparable signal efficiency for samples with lower lifetimes,
they should be even looser. Loosening the Mbc and ∆E selections would lead to more
background events, which is not the goal of this candidate selection. Fig. 4.38b displays the
expected number of background events in the signal range for 100 fb−1, considering only
continuum and generic background. The number of background events increases with the
lifetime hypothesis of the MC samples, which is expected due to the significant larger signal
ranges. In conclusion, the optimization of the PFOM shows a good background rejection
for promptly decaying ALPs while maintaining a signal efficiency between 10% to 20%
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(a) E
γ
l Distribution (b) E

γ
l PFOM

Figure 4.36.: These two plots display the PFOM, signal efficiency and the number of
background events distribution and indicate the best selection in the observable
distribution for E

γ
l . The selection for E

γ
l shows a good separation power and

reduces the number of background events drastically.

over the whole ALP mass range. The signal efficiency decreases for higher lifetimes, e. g.
1% to 10% in the case of cτa = 50 cm where the B± → K±a, a → γγ kinematics causes
low signal efficiency. Improvements could be possibly achieved by constructing not yet
considered observables with a clearer separation power between signal and background
events. Especially interesting is the implementation of an MVA based continuum suppression
to keep more signal events while still excluding the dominating continuum background.
Furthermore, [37] proposes an MVA based ansatz for the use of the PFOM where the figure
of merit acts as loss function and generalises well for untrained mass hypotheses. This
method should be tested for the case of different lifetime hypotheses.
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(a) Mbc (b) ∆E

(c) R2 (d) cos(TBTO)

(e) E
γ
l

Figure 4.37.: This plot series presents the final selection values for all observables in all
signal MC samples. Excluding some outliers, nearly selections are within
physical expectations.
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(a) Efficiency (b) Background

Figure 4.38.: These two plots display the resulting signal efficiency (a) and number of
background events (b) for all signal MC samples after applying the previously
shown selections.



5. Signal Extraction

The last analysis chapter discusses the scan of Mγγ and shows exclusion limits for the
B± → K±a, a → γγ branching ratio in case no signal is found. Section 5.1 explains the
intermediate steps between optimizing the selection with PFOM on MC and performing a
thin stepped scan of Mγγ . Subsequently, Section 5.2 describes the signal + background fit on
the continuum and generic MC samples. Finally, as preparation for the case of no significant
signal yield excess in data, Section 5.3 will show the expected limit on the branching ratio
Br(B → Ka)× Br(a→ γγ), which rejects the signal + background hypothesis.

5.1. Scan Preparation
To ensure that no signal events are overlooked when scanning the invariant mass Mγγ , the
distance between neighbouring mass hypotheses must be minimal. Since the width of the
signal event distribution is not clearly defined, this analysis uses half the smallest Gaussian
standard deviation of all signal shapes. As a result, in the case of New Physics events at
any position in Mγγ , they will be scanned, even if they lie between two mass hypotheses.
Producing enough signal MC samples to fulfil the mass hypothesis distance requirements
is impractical. Thus, the signal shape and region, the optimal candidate selection and
the anticipated signal efficiency must be calculated by interpolating the acquired results
from signal MC samples. The interpolation is performed over all ALP mass samples and
separately for each lifetime hypothesis. Section 5.1.1 discusses the interpolation results for
the fit range and the optimized selection values. These interpolation results are then used
to recalculate and interpolate the signal efficiency and the Mγγ signal shape parameters in
Section 5.1.2.

The interpolation of the results of Chapter 4 is not subject to any specifications. The
primary motivation of the methods used here is to create a smooth transition between the
different mass points. For this reason, if needed, any strong outliers are first removed from
the results to be interpolated. Polynomials then interpolate the remaining results. For the
explanation of the two intermediate interpolation steps, {yi} represents the result to be
interpolated and {xi} the generated ALP mass.

Outliers in {yi} are determined by the distance to their nearest neighbors. For each yi, the
distances dj,i to its neighbours, j = i+ 1 and j = i− 1, is calculated by

dj,i =

∣∣yj − yi
∣∣

∆y
, (5.1)

59



60 5. Signal Extraction

where ∆y corresponds to the median of the absolute differences between the values of {yi}.
If both distances dj,i are larger than a number f , the result yi is considered an outlier
and therefore not interpolated. For the first two and last two yi in {yi}, the distance to
the nearest two neighbours is calculated, and if either of these distances is larger than
f , the yi are considered outliers. The number f is empirically determined for each set of
interpolations. For the here shown interpolations that require the exclusions of outliers, a
value of f = 30 is chosen.

The interpolation of a polynomial model to the remaining {yi} is performed by minimizing
an unscaled χ2-function

χ2 =
∑
i

(
P (xi, {cj})− yi

)2
, (5.2)

where P (xi, {cj}) corresponds to the polynomial model and {cj} are the set of coeffi-
cients for the polynomial terms. The following interpolations uses Chebyshev polynomials
P (xi, {cj}) =

∑
j cjTj(xi) of the first kind which are defined as

Tn(cos θ) = cos(nθ). (5.3)

The benefit of Chebyshev polynomials is their orthonormal property which decorrelates
the coefficients in the polynomial model. As a result, the coefficient values are stable for
different orders of polynomials. Adding polynomials that do not benefit in the expectation
description will ideally not lead to coefficients significantly different from zero.

5.1.1. Fit Range and Candidate Selection

Section 4.3.2 calculates an asymmetric signal range IQR(1,99) to enclose 99% of the signal
events in the Mγγ distribution. To perform a scan of Mγγ for signal events, each signal
hypothesis fit requires a similar definition for the fitted range in Mγγ . This so-called fit
range needs to include the full signal range and enough background events to determine a
background PDF. For this reason, the asymmetric fit range IQR(1,99) × 10 is defined as ten
times the signal range. More precisely, the upper bound of IQR(1,99) × 10 is ten times the
difference between the upper value of the signal range and the corresponding double-sided
Crystal Ball parameter µ added to µ; analogously for the lower bound. In total, the upper
and lower bounds of the fit range are:

max(IQR(1,99) × 10) = µ+ (max(IQR(1,99))− µ)× 10, (5.4)

min(IQR(1,99) × 10) = µ− (µ− min(IQR(1,99)))× 10. (5.5)

The fit range is calculated for each signal MC sample individually. For the interpolation,
no outlier detection is applied. However, lower bounds of IQR(1,99) × 10 are set to zero if
they are calculated to be negative values in Mγγ . Fig. 5.1 shows the interpolation between
different ALP mass hypotheses with a lifetime of cτa = 5.0 cm. The upper fit range bound
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is interpolated by a polynomial of second order. First-order polynomials are primarily
sufficient for all lifetime samples, yet, the second-order is added to account for a slight
bending trend towards higher ALP masses. A fourth-order polynomial is interpolated
to account for the distributions of the lower fit range bounds, which are dependent on
the lifetime of the samples. The choice of a fourth-order polynomial is mainly motivated
by higher lower bound values towards higher ALP masses which are caused by the mass
constrained fit. Other lifetime samples show similar results to Fig. 5.1. Deviations between
the originally calculated IQR(1,99)× 10 values and the interpolated values are not significant
for two reasons. First, the loss of signal events is improbable due to the large range. Second,
it is practical to cut the fit range off at the bounds of the irreducible background, which is
explained in Section 5.2.

Figure 5.1.: This plot displays the interpolation of the fit range IQR(1,99) × 10 over all
ALP mass samples with a lifetime of cτa = 5.0 cm. Upper fit range bounds
are interpolated by a polynomial of the second order and lower bounds by a
fourth-order polynomial. The lower bounds only can have minimal value of
zero.

The interpolation of the optimized selections in Section 4.3.3 uses the outlier exclusion to
make the interpolation less susceptible to selections that do not fit to their neighbouring
mass hypothesis as in Fig. 4.37e. The interpolations use polynomials of the third order to
account for different selection distributions for all observables. Using the cτa = 10.0 cm as
an example, Fig. 5.2 displays the interpolation results for the selections of Mbc and ∆E.
Therefore, the selections and their interpolations can be very tight, resulting in only very
few background events due to the high separation power between signal and background
events. As a result, for all lifetime samples, the selections for Mbc and ∆E are not set to
the interpolated values, but rather Mbc > 5.27GeV/c2 and −0.15GeV < ∆E < 0.10GeV.
These selections allow for a few more background events while not influencing the signal
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events significantly. The largest impact, regarding the signal event exclusion, can be observed
by selections for ∆E < 0GeV on high ALP mass samples with lifetimes cτa ≥ 10.0 cm as
Fig. 5.2c implies.

(a) Mbc (b) ∆E > 0GeV

(c) ∆E < 0GeV

Figure 5.2.: These three plots display the third-order polynomial interpolation of the Mbc
and ∆E selections over all ALP masses for samples with a lifetime of cτa =
10.0 cm. For the further analysis, these interpolations ar enot taken into account,
rather the selections are set to Mbc > 5.27GeV/c2 and −0.15GeV < ∆E <
0.10GeV.

Fig. 5.3 shows the interpolation results for the remaining selection variables R2, cos(TBTO)
and E

γ
l . Here, the interpolated values will be used for the following discussion. Differences

between the optimized selections and interpolated results can significantly impact the signal
efficiency in cases where the interpolated selection is tighter. In the here presented example
for samples with an ALP lifetime of cτa = 10.0 cm, this occurs twice. Firstly, for higher
ALP masses, the interpolated R2 selection is tighter in Fig. 5.3a, which occurs only for
the cτa = 10.0 cm samples. Secondly, Fig. 5.3b shows a tighter selection on cos(TBTO)
for lower ALP masses, which can be observed for all signal MC samples. Outliers cause
tighter selections in the respective ALP mass regions in the displayed cases. However, these
results are still used in the following analysis since no better agreement on the interpolation
parameters could be found that simultaneously kept the interpolation for all ALP mass and
lifetime samples as coherent. Possible improvements can be achieved by a higher density of
signal MC samples in the high and low ALP mass regions, allowing for better interpolations.
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(a) R2 (b) cos(TBTO)

(c) E
γ
l

Figure 5.3.: These three plots display the third-order polynomial interpolation of the R2,
cos(TBTO) and E

γ
l selections over all ALP masses for samples with a lifetime of

cτa = 10.0 cm. The interpolations for R2 and cos(TBTO) a significantly tighter
selection in high respectively low ALP mass regions than calculated with the
help of the PFOM.

5.1.2. Signal Efficiency and Signal Shape

Setting a limit on the branching ratio of decays requires the knowledge of the corresponding
signal efficiency. Furthermore, in this analysis, the signal efficiency is a function of the
New Physics model parameters or rather their respective selection, as explained in Sec-
tion 4.3. Therefore, the efficiency is recalculated for each signal MC sample according to
the interpolated selections in the interpolated fit range IQR(1,99) × 10.

Fig. 5.4 shows the recalculated signal efficiency values in the fit range for all signal MC
samples. In comparison to Fig. 4.38, the distributions of the efficiency values for the
same ALP lifetime samples show a smooth transition between different ALP masses. The
previously mentioned tighter selection on R2, caused by the interpolation, for cτa = 10.0 cm
shows the expected loss of efficiency for higher ALP mass samples in comparison to the
cτa = 5.0 cm and cτa = 20.0 cm. For the interpolation of the signal efficiencies, fourth-
order polynomials are chosen. Fig. 5.5 displays the interpolated signal efficiency for
the cτa = 20.0 cm samples. Here, differences between interpolation and the calculated
values should be as small as possible since the interpolated values are directly used for
the branching ratio calculation. Due to the smooth transitions between the ALP mass
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samples for ma ≥ 1.01GeV/c2, the differences are minimal. For smaller ALP masses, the
differences are larger. More MC samples between the ALP mass hypotheses could improve
the interpolation.

Figure 5.4.: This plot shows the recalculated signal efficiency for all ALP signal MC samples
in IQR(1,99) × 10 after the application of the interpolated selections. The
efficiency shows smooth transitions between neighbouring ALP mass samples
and a decrease with increasing ALP lifetime.

The last step in preparing the Mγγ scan is determining the expected signal shape for each
signal hypothesis. As already stated in Section 4.3.2, an analytical description of the signal
shape can be achieved by the parameters of the double-sided Crystal Ball distribution.
To determine the parameters, the interpolated signal selection is applied to every signal
MC sample, and the Mγγ distribution is fitted in the respective fit range IQR(1,99) × 10.
Subsequently, the parameters are interpolated between the different ALP mass hypotheses.
The fit procedure is similar to the signal range extraction in Section 4.3.2: use of an extended
double-sided Crystal Ball model to extract the signal yield, and an unbinned maximum
likelihood loss. The signal yield does not influence the shape parameter determination.
Fig. 5.6 displays the Mγγ fit for the ma = 1.51GeV/c2, cτa = 30.0 cm MC sample. The
fitted signal yield is converted to the B± → K±γγ cross section by assuming a luminosity
of 100 fb−1 and the signal efficiency is set to the interpolated value. Consequently, the
signal efficiency is slightly overestimated since the resulting cross section should yield 500 fb
(50’000 generated signal events).

Fig. 5.7 summarizes the fitted double-sided Crystal Ball parameters. The µ parameter
differs slightly from the underlying ALP mass hypotheses with a small bias towards smaller
values due to the shift towards smaller values of the Mγγ signal peak. Later stages of the
analysis, outside the scope of this thesis, will correct this bias with linearity tests. The σ and
αl parameters generally show smooth transitions between ALP mass hypotheses, with only
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Figure 5.5.: This figure presents the interpolation of the signal efficiency for all signal
samples with an ALP lifetime of cτa = 20.0 cm. A fourth-order polynomial is
used for the interpolation.

a small number of outliers that can be excluded before the interpolations. Contrary to that,
αr shows chaotic distributions, especially for ALP masses ma ≤ 3.0GeV/c2. No specific
outlier exclusion can be performed for this parameter. As a result, instead of interpolating
the αr parameter for each lifetime separately, the median overall mass samples will be used
for the signal hypotheses. This will result in a slightly wrong signal shape. However, no
other procedure will lead to better results due to the high correlation between the α and
σ parameters. For example, suppose the αr parameter is set to a fixed value, like it is
done with the n parameters, and not fitted. In that case, one or both of the remaining
parameters will have a chaotic distribution since they are determining the shape. Finally,
the µ, σ and αl parameters are interpolated, after excluding the outliers, for each ALP
lifetime hypothesis with polynomials of the second order.
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Figure 5.6.: This plot displays the Mγγ distribution for the ma = 1.51GeV/c2, cτa =
30.0 cm signal sample after the application of the interpolated selection. The
Mγγ is fitted by an extended double-sided Crystal Ball model and the pull is
calculated and displayed in the bottom part of the plot.



5.1. Scan Preparation 67

(a) µ (b) σ

(c) αl (d) αr

Figure 5.7.: These four plots present the fitted double-sided Crystal Ball parameters for all
signal MC samples. The parameters µ, σ and αl are interpolated by second-
order polynomials for the following analysis. Due to the chaotic distribution of
αr, the median of each lifetime is used for further calculations.
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5.2. Invariant Di-Photon Mass Fits

The last major task in this thesis is the extraction of a signal yield for the B± → K±a,
a→ γγ signature over the considered Mγγ range. For this purpose, all previous results are
combined to form signal + background ALP mass hypotheses in steps of 2.5MeV/c2 for
eight different lifetimes. These ALP hypotheses are fitted on the continuum and generic MC
samples. This subsection explains the Mγγ scan procedure and discusses the fit strategy.

The first step of the Mγγ scan is the determination of the different signal + background
hypotheses. For this purpose, the Mγγ interval 0.175GeV/c2 to 4.600GeV/c2 is split in
equidistant steps of 2.5MeV/c2, which corresponds to the smallest interpolated σ double-
sided Crystal Ball parameter. These scan points inMγγ are used to calculate the interpolated
values for the fit range IQR(1,99) × 10, the signal shape parameters µ, σ, αr, αl, and the
selection values for Mbc, ∆E, R2, cos(TBTO), and E

γ
l . Due to the small shift of µ to lower

values in ma, the µ parameter is used in the next step to determine if a hypothesis is inside
the exclusion regions of π0, η, η′. Subsequently, all hypotheses for which the µ parameter is
inside the intervals in Table 4.1 are excluded. This procedure is performed for every lifetime
hypothesis separately.

The next step is the fit of all ALP hypotheses on the 100 fb−1 continuum and generic MC
samples. Therefore, a signal + background PDF is formed by the sum of the extended
signal and background PDFs for each scan point. On the one hand, the signal PDF consists
of the double-sided Crystal Ball PDF S(Mγγ), with fixed parameters corresponding to the
interpolated values, and the signal yield Nsig. On the other hand, Chebyshev polynomials
are used to estimate the background PDF B(Mγγ ; {xi}) in combination with the yield
Nbkg. Polynomials of the third-order are used to model the background distribution. This
choice is motivated by the observation that in fits, where only the background PDF is
used, the first-order coefficient is the most dominant. For some scan points, higher-order
polynomial coefficients are significantly different from zero, especially in the low and high
ALP mass regions, while in between these regions, they are mostly compatible with zero.
The reason for the non-zero contribution in weakly populated regions is that additional
polynomial orders only lead to overfitting of the events. Therefore, third-order polynomials
are chosen to compromise between enough orders to model regions with only a small number
of background events and to keep the fits as stable as possible for all ALP mass and lifetime
hypotheses. In total, each scan point will be defined by the extended PDF

P (Mγγ ;Nsig, Nbkg, x1, x2, x3) = NsigS(Mγγ) +NbkgB(Mγγ ;x1, x2, x3), (5.6)

where Nsig, Nbkg, x1, x2 and x3 are the free fit parameters. The only non-technical limitation
on the fit parameters is that the signal yield is required to be positive. Furthermore, an
unbinned negative log-likelihood is used as a loss function. Due to the left tail of the signal
Mγγ distribution, the fit range can span over one or several exclusion limits, resulting
in unstable fits in cases where single events beyond the exclusion lead to an insufficient
background estimation. This fit behaviour is favoured by the low number of background
events and the use of the unbinned likelihood that has no information gain from regions
with no events. As a result, the fit region of ALP hypotheses is redefined in dependence of
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the double-sided Crystal Ball µ value. If the µ value is between two exclusion regions, the
fit region is set to the bounds of the exclusion regions. If the µ value is on the right side of
all exclusions in Mγγ , the interpolated IQR(1,99) × 10 is used for the fit region, where the
lower bound is set to the upper η′ exclusion bound if it is less than the exclusion bound. To
ensure stable fits for this fit region determination, the π0, η, η′ bounds are slightly reduced,
as displayed in Table 5.1, in comparison to the previously shown exclusion regions. The
number of additional events arising from the irreducible background is still small enough
to be considered by the background PDF. In Section 5.3, the full intervals in Table 4.1
are excluded. More stable fits could be achieved by using larger MC samples, where the
appearance of single events is less common. Additionally, with larger samples, using a
binned likelihood loss function may become more practical. In this case, the loss function
considers weakly populated or empty bins in Mγγ .

Table 5.1.: This table displays the excluded Mγγ ranges for the particles that form the
irreducible background in the B± → K±γγ decay. In contrast to the previously
shown exclusion regions, these are slightly smaller to ensure better fit stability.

Particle Excluded Mγγ range in GeV/c2

π0 [0.100, 0.155]
η [0.470, 0.610]
η′ [0.930, 9.990]

Each extracted signal yield N̂sig in the scan of Mγγ is tested against a zero background
hypothesis to determine the significance Z0 with which the so-called null hypothesis can
be rejected. In the case of no significant excess, which corresponds to five sigmas, an
upper limit is calculated for the signal + background hypothesis. The limit calculation is
explained in Section 5.3. The significance calculation in this thesis uses the test statistic q0
for discoveries of a positive signal yield [38]. In this case, the test statistic is defined as

q0 =

 −2 ln
L(Nsig=0,θ̂

′)
L(Nsig=N̂sig,θ̂)

for N̂sig ≥ 0,

0 for N̂sig < 0,
(5.7)

where θ̂ corresponds to the best estimators for the remaining free parameters at the extracted
signal yield N̂sig and similar θ̂′ to best estimators for the hypothesis of Nsig = 0. In the
asymptotic approximation [38], where the test statistic q0 follows a χ2 distribution for
one degree of freedom, the p0 value simply calculates as p0 = 1− Φ(

√
q0), where Φ is the

cumulative Gaussian distribution function. As a result, the significance Z0 is calculated as

Z0 = Φ−1(1− p0) =
√
q0. (5.8)

Fig. 5.8 displays examples of the most common fit results with non-zero signal yield. High
and low ALP mass regions show very few background events in the case of 100 fb−1 samples,



70 5. Signal Extraction

which results in weakly populated fit regions and a challenging background estimation with
polynomials. Fig. 5.8b displays a fit in the region between the η and η′ exclusion for a
signal hypothesis with a high ALP lifetime. In these cases, upward fluctuations in the
significance may arise more often due to the long left tailed signal shape that, apart from
the peak in Mγγ , mimics the background structure. Lastly, Fig. 5.8c shows a fit result in
between the high and low ALP mass regions where the number of background events allows
for good background estimation. Additionally, these signal samples show the highest local
significance with 3.01σ over all ALP hypotheses.

Fig. 5.9 shows the extracted fit results for the example of the cτa = 20 cm hypotheses. White
gaps between the scan point results indicate that the fit for these scan points failed and,
therefore, are not considered in the further analysis. The number of failing fits increases for
scans of higher lifetimes but is small enough to be neglected. As discussed for Fig. 5.8b,
it is clear to see that for low ALP masses, the fitted signal yield fluctuates upwards, as
in Fig. 5.9a, for higher lifetimes due to the wide signal shape. For higher ALP masses,
where more background events occur in combination with a broad fit region and a narrow
signal shape, the frequency of upwards fluctuations in the signal yield decreases due to the
mass constrained fit. Fig. 5.9c displays that the first-order polynomial coefficients strongly
fluctuate in between the exclusion regions. However, they are mostly significantly different
from zero for ALP masses ma ≥ 1.01GeV/c2. In contrast to that, both higher-order
polynomial coefficients are comparable with zero for ma ≥ 1.01GeV/c2, except for the high
ALP mass region, where the number of events is very low. Other ALP lifetime scans show
comparable fit results with smaller extracted signal yields for lower lifetimes and vice versa.
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(a) ma = 0.305GeV/c2, cτa = 1.0 cm (b) ma = 0.820GeV/c2, cτa = 20.0 cm

(c) ma = 2.255GeV/c2, cτa = 1.0 cm (d) ma = 4.525GeV/c2, cτa = 30.0 cm

Figure 5.8.: This figure displays four different Mγγ signal + background fits on background
MC samples. The signal hypotheses PDFs are described in the text. Plots (a)
and (d) illustrate fits in the high and low ALP mass regions where the Mγγ fit
regions are only weakly populated. Additionally, plot (b) shows a fit in between
the η and η′ exclusion region, where the small fit window leads to the effect that
the signal shape of hypotheses with high ALP lifetimes mimics the background
distribution. Lastly, plot (c) presents a fit with a large fit region and sufficient
background event population for a good background shape estimation.
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(a) Nsig (b) Nbkg

(c) x1 (d) x2

(e) x3

Figure 5.9.: This plot series displays the signal + background fit parameter results for
all ALP masses in the cτa = 20 cm scan. The fit uncertainties are indicated
by green bars. The signal yield in (a) shows that it is mostly overestimated
in between the exclusion regions due to very wide signal shape. With some
exceptions in the low and high ALP mass regions, the polynomial coefficient
fit results display that the second- and third-order coefficients are mostly
compatible with zero.
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5.3. Sensitivity and Limits

In the case that the scan in Mγγ on real data does not show any significant excess, as in
Section 5.2, an upper limit is calculated on the signal yield Nsig. This upper limit indicates
the value of Nsig for which the signal + background hypothesis still would be rejected for a
given CL. Similar to the significance calculation, the likelihood ratio is used to compute the
test statistic qNsig

[38] for the upper limit calculation

qNsig
=

 −2 ln
L(Nsig,θ̂

′)
L(Nsig=N̂sig,θ̂)

for N̂sig ≤ Nsig,

0 for N̂sig > Nsig.
(5.9)

The upper limit is the Nsig value that solves pNsig
= 1 − CL, where in this thesis the

CL is set to 90%. The p-value is again calculated in the asymptotic approximation
pNsig

= 1 − Φ
(√

qNsig

)
and interpolated in an array of different Nsig. Furthermore, the

sensitivity in the upper limit calculation is the expected (median) significance with which
the Nsig at the CL is rejected in favour of the background-only hypothesis. Practically, [38]
proposes in the asymptotic approximation, where ZNsig

=
√
qNsig

, that the median of the
test statistic qNsig

can be approximated by its Asimov value qNsig,A
. The Asimov data used

in this case is defined as the evaluation of the underlying PDF in its definition range, i. e.
the fit range defined for the fit, such that its best estimators correspond to the estimators of
the true fit. Hence, qNsig,A

is calculated according to Eq. (5.9), substituting the likelihood
L by the likelihood evaluated for the Asimov data.

For better comparison with similar analyses, the extracted expected and observed upper
limits are recalculated to the branching ratios of the signal signature Br(B → Ka)×Br(a→
γγ). The branching fraction for this process is defined as

Br(B → Ka)× Br(a→ γγ) =
Nsig

2NBB̄Br(Υ(4S) → B+B−)ϵsig
, (5.10)

where NBB̄ is the number of BB̄ events corresponding to the analyzed sample, the Υ(4S) →
B+B− branching ratio is 51.4%, as stated in Section 3.1, and ϵsig denotes the interpolated
signal efficiency for the respective signal hypothesis.

Fig. 5.10 displays the observed upper limits as well as the expected result and its error bands
for the scans with an ALP lifetime hypothesis of cτa = 0.0 cm. The upper limit is distributed
uniformly for all scanned ALP mass points, where the ALP mass is approximated by the
interpolated double-sided Crystal Ball parameter µ. A linearity test can correct deviations
due to this approximation. In the vicinity of the π0, η, η′ exclusion borders, the limits
are slightly weaker in comparison to the neighbouring scan points. These weaker limits
originate from challenging fits, where the fit region excludes events that are in the signal
range. Extending the fit region of signal hypotheses wider than Table 5.1 suggests leads to
more irreducible background events in the fit region, which makes the approximation of
a polynomial background model insufficient. A possible improvement could be achieved
by additionally modelling the irreducible background. Furthermore, for high ALP mass



74 5. Signal Extraction

Figure 5.10.: This plot displays the calculated expected and observed CLs90 upper limits
on the branching ratio Br(B → Ka)× Br(a→ γγ) for all ALP masses with a
lifetime of cτa = 0.0 cm. The Mγγ scan shows a sensitivity between 3× 10−7

and 7 × 10−7 for the branching ratio. The observed upper limits fluctuate
strongly for high and low ALP masses and are slightly weaker in the vicinity
of the π0, η, η′ exclusion regions.

hypotheses, the frequency of observed upper limit fluctuations increases due to narrow
signal shapes caused by the mass constrained fit.

Using the example of cτa = 20.0 cm, Fig. 5.11 shows the calculated upper limit for scans
with higher ALP lifetime hypotheses. In comparison to the cτa = 0.0 cm Mγγ scan, the
sensitivity is generally lower. Additionally, two significant differences are apparent in the
distribution of the limit. Firstly, the sensitivity decreases significantly between excluded
irreducible background regions and the right side of the η′ exclusion. This decrease could
not be resolved in the scope of this thesis and should definitely be subject to further
investigations. Comparing the reduction of the sensitivity to Fig. 5.5, which displays the
efficiency of the cτa = 20.0 cm samples, the same structure can be observed in between
the exclusion regions, which makes the signal efficiency anti-correlated to the limit. A
possible starting point is to increase the number of signal MC samples in between the
exclusions, to understand the efficiency distribution, and to scan Mγγ on different MC
samples with possibly more statistically significant numbers of events. Secondly, also
in between the excluded π0, η, η′ regions, the expected upper limit calculations show an
approximately oscillating structure. This structure could either be caused by the same effect
that is responsible for the first observation, or it could be a limitation of the asymptotic
approximation. The latter hypothesis is based on the early stages of the analysis, where
an insufficient amount of Asimov data evaluation points caused the same structure in
other ALP mass regions. However, the present structure of the expected limit between
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the excluded regions could not be resolved by additional Asimov evaluation points. A
frequentistic upper limit calculation with the help of toy MC samples should be performed
in a future analysis to verify the expected upper limit.

Figure 5.11.: This plot displays the calculated expected and observed CLs90 upper limits
on the branching ratio Br(B → Ka)× Br(a→ γγ) for all ALP masses with a
lifetime of cτa = 20.0 cm. White gaps in between neighbouring scan points
indicate unsuccessful fits. Compared to the cτa = 0.0 cm scan, this scan
shows an over all weaker limit. Additionally, the upper limit shows for masses
ma ≤ 1.2GeV/c2 yet to be explained structures in both the expected and
observed upper limit.

Fig. 5.12 summarizes the calculated observed upper limits of Br(B → Ka)× Br(a→ γγ)
for all ALP lifetime and mass hypotheses. As previously seen, the upper limit sensitivity
decreases with higher lifetime. The distribution of fluctuations for different lifetimes is
very similar, indicating that the selection and signal shape interpolations are coherent for
both ALP parameters. In addition to the previously discussed observations on the upper
limit, Fig. 5.12 displays one more limitation of the upper limit calculation. The scans for
very light ALP masses in cτa = 1.0 cm and very heavy ALP masses in cτa = 30.0 cm and
cτa = 40.0 cm show very high sensitivity in comparison to neighbouring scan points. All
three scan regions have in common that the number of events is very low Nevents ∼ O(10)
which indicates that the asymptotic approximation for upper limit calculation could be
invalid in these cases. Toy MC studies should verify the upper limit calculation in very
weakly populated regions in a future analysis. Additionally, in weakly populated areas,
a counting experiment approach could be more convenient than the proposed model in
Eq. (5.6).

The following steps should be performed to finalize the analysis. Several linearity tests
need to be carried out to investigate the fit and interpolation procedure. This subsection
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Figure 5.12.: This plot summarizes the observed CLs90 upper limits on the branching ratio
Br(B → Ka)× Br(a → γγ) for all scanned ALP masses and lifetimes. The
scans indicate upper limits of about 5×10−7 for promptly decaying and about
4× 10−6 to 2× 10−5 for long-lived ALPs on the branching ratio.

used the interpolated double-sided Crystal Ball µ parameter equivalently to the ALP mass.
Considering that the interpolated µ parameter is slightly shifted to lower values in Mγγ

biases the prediction for the ALP mass. A linearity test for the signal yield extraction needs
to be carried out concerning the fit quality. Especially the weakly populated regions could
show small deviations between sampled and extracted signal yield. Furthermore, more signal
MC samples between the π0, η, η′ regions are necessary to study these regions more intensely
and improve the quality of the interpolations. The asymptotic approximation, which is
used in this analysis, to calculate significances and upper limits, should be tested by toy
MC studies specifically in weakly populated regions. Additionally, systematic uncertainties
need to be assessed and included into the fit procedure. These uncertainties will consider
the signal efficiency and the signal and background shapes. Uncertainties for the signal
efficiency, which include the track reconstruction, PID, luminosity and ECL calibration,
are provided by the Belle II collaboration. To estimate the uncertainties on the signal and
background shape, the Mγγ fits need to be performed under the assumption of different
PDF models and the difference to the here extracted yields calculated. Lastly, the local
significance needs to be recalculated regarding the look-elsewhere effect [39].

Under consideration of the final steps that need to be performed to conclude the sensitivity
study of the B± → K±a, a → γγ signature on Belle II MC samples, the analysis can be
compared to [7]. This analysis expanded the long-lived ALP search from the lifetimes
cτa ≤ 10.0 cm to cτa ≤ 50.0 cm. Furthermore, this long-lived ALP search extended the
investigated ALP mass fromma ≤ 2.5GeV/c2 to the full sensitive range ofma ≤ 4.6GeV/c2.
In direct comparison to the analyzed data corresponding to an integrated luminosity of
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424 fb−1 in [7], this analysis presents a comparable sensitivity on 100 fb−1 MC samples.
Extending this analysis on an identical data volume should lead to similar results.





6. Conclusion and Outlook

This thesis presents a sensitivity study in the search for the NP signatureB± → K±a, a→ γγ
considering prompt and long-lived ALPs. The analysis probes signal yields in the Mγγ

distribution in the sensitive mass range ma ∈ [0.175, 4.600]GeV/c2, excluding irreducible
background regions, for eight different ALP lifetimes cτa ≤ 50 cm. In preparation for an
analysis on Belle II data, upper limits on the branching ratio are estimated on Belle II MC
samples equivalent to 100 fb−1.

A long-lived ALP in the B± → K±a, a→ γγ decay results in displaced neutral decays with
photons in the final state. Intending to understand the final state, this analysis performs an
acceptance study for the a→ γγ decay and outlines the limitations of the search. For the
case of light ALPs, constraints on the acceptance arise from the ALP’s high boost. First,
promptly decaying ALPs lead to highly boosted photons that can be misreconstructed due to
inseparable energy depositions in the ECL clusters. Second, long-lived ALPs predominantly
decay outside the detector due to the assumption of an exponential lifetime. Both topics;
reconstruction of overlapping ECL clusters and invisibly decaying ALPs, are subject to
ongoing investigations. In case of heavy ALPs, an acceptance loss for long-lived ALPs is
observed. However, this loss is not fully understood and should be investigated in the next
stage of the analysis.

In order to perform a candidate selection, this thesis optimizes a cut-based selection by
maximizing the PFOM for a set of observables. The optimization procedure is performed
independently for signal MC samples of all ALP mass and lifetime parameters. Final
selection values can be smoothly interpolated between the simulated ALP mass points for
fixed ALP lifetimes to perform the scans in Mγγ . The application of the PFOM algorithm
results in a signal efficiency of 10% to 20% for promptly decaying ALPs and up to 10%
for ALPs with a lifetime of cτa = 50 cm. Simultaneously, the number of background events
is reduced to less than 50 events for the prompt case and below 300 events for the highly
displaced samples. Extensions to this analysis should be based on more signal MC samples
for mass regions between the π0, η, η′ exclusion regions due to their challenging interpolation.
Apart from more signal samples, improvements could be achieved by applying an MVA-
based continuum suppression. Additionally, [37] proposes an MVA-based approach to the
PFOM optimization that could simplify the procedure by a well-performing generalisation
to untrained mass hypotheses.

To build a variety of signal ALP hypotheses in the sensitive Mγγ range, the candidate
selection and the expected signal efficiency and shape are interpolated for masses without
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simulated MC samples. Subsequently, for each ALP lifetime, a scan of Mγγ is performed
in steps of 2.5MeV/c2. The signal is modelled by an extended double-sided Crystal Ball
distribution with fixed parameters, while an extended third-order Chebyshev polynomial
model is chosen to approximate the background. In order to extract the signal yield, the
sum of the extended PDFs is fitted with the unbinned maximum likelihood method on
Belle II continuum and generic MC samples equivalent to an integrated luminosity of
100 fb−1. Additionally, an expected and observed upper limit is calculated in the asymptotic
approximation for each scan point, which concludes this thesis.

To finalize the analysis, the fit procedure needs to be validated by linearity tests, and the
asymptotic limit calculation needs to be approved by a frequentistic approach. Furthermore,
fits in weakly populated regions in Mγγ could be better investigated with a counting
experiment approach. To be comparable to similar analyses, systematic uncertainties need
to be assessed and the look-elsewhere effect has to be considered. Additionally, leptonic
background samples e+e− → l+l− should be included and the Mγγ scan performed on the
500 fb−1 MC samples.

Lastly, keeping the finalizing steps in mind, the thesis results can be compared to the
search performed on the BABAR data set of 424 fb−1 [7]. Considering the difference in the
used MC sample statistics, the approach developed in this thesis achieves a comparable
result, which will lead to a similar sensitivity in the case of an equally large data set.
Additionally, this thesis expands the search for long-lived ALPs from ma ≤ 2.5GeV/c2 to
the full sensitive range of ma ≤ 4.6GeV/c2 and for the ALP lifetime from cτa ≤ 10.0 cm
to cτa ≤ 50.0 cm. The presented analysis estimates CLs90 upper limits on the branching
ratio Br(B → Ka)×Br(a→ γγ) in the range of 5× 10−7 for promptly decaying and about
4× 10−6 to 2× 10−5 for long-lived ALPs.
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ḡπNN . These interactions lead to a non-vanishing neutron electric dipole
moment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2. FCNC down-type quark transitions can produce ALPs with a dominant
coupling gaWW to SM W bosons in loop processes. . . . . . . . . . . . . . . 9

3.1. This schematic view of the SuperKEKB collider shows the main accelerator
parts. The low emittance gun produces an electron beam which is accelerated
in the linac and hits the new positron target. Both beams are led to the
storage system and are accelerated in opposite directions, as indicated by
the coloured arrows. The figure is adapted from [20]. . . . . . . . . . . . . . 12

3.2. This schematic view of the Belle II detector shows short summaries of the
most commonly used detector parts. The figure is adapted from [21]. . . . . 12

3.3. This schematic view of the ECL shows a cross-section of the detector in one
ϕ plane and the θ plane of the end-caps. All crystals are tilted towards the
asymmetric IP. The figure is adapted from [22]. . . . . . . . . . . . . . . . . 14

4.1. This plot displays the a → γγ acceptance for different ALP masses and
lifetimes. Uncertainties on the acceptance calculation are of the order of
O(10−2) and therefore are not visible due to the large y-scale. The acceptance
shows at least 20% loss of all generated events after the event reconstruction.
Additionally, high dependence on the ALP lifetime can be observed for
masses ma ≤ 2.0GeV/c2 and ma ≥ 4.0GeV/c2. . . . . . . . . . . . . . . . . 18

4.2. These plots show the generated ALP’s x and y coordinates for 500 events for
three different ma samples. The black square demonstrates the inner ECL
radius in the barrel region if decay vertices lie beyond it. Considering the
decay position of the ALP, it is apparent that low mass ALP decay beyond
the ECL acceptance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3. This plot series shows the generated polar angle distributions of the ALP
photons, sorted by their energy, for different ma. The red squares indicate
the polar acceptance of the ECL. On the one side, light ALPs are highly
boosted, which leads to the same direction emerging of the photons. On the
other side, heavy ALPs are only boosted by the asymmetric beam energy,
and there the photons show a back-to-back like appearance in the detector. 21

81



82 A. List of Figures

4.4. These plots show the generated polar angle distributions of the ALP photons
for misreconstructed events. Using the example of ma = 3.0GeV/c2 and
cτa = 0.0 cm, (a) displays photons that are missed since they are beyond the
ECL acceptance and in the gaps between the barrel region and the end-caps.
In the case of light ALPs, (b) shows that the majority of not correctly recon-
structed photons have very similar polar distribution which, in combination
with a similar azimuthal distribution, can lead to indistinguishable clusters
in the ECL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5. The θGen distributions of not correctly reconstructed photons for ma =
4.5GeV/c2 are shown in this plots. These distributions show about twice as
many events in the case of cτa = 50.0 cm compared to cτa = 0.0 cm. Most of
these events arise in the ECL acceptance. . . . . . . . . . . . . . . . . . . . 22

4.6. These four plots compare mcPDG information of the lower energetic photon
in cases where it is not correctly reconstructed. The higher energetic photon
and the ALP are correctly reconstructed. The number of events for the FSP
own mcPDG value and the mother particle, denoted as genMotherPDG, are
shown for an ALP hypothesis of ma = 4.5GeV/c2 with cτa = 0.0 cm and
cτa = 50.0 cm. Note that in this case, that γl does not indicate that the
particle is necessary a photon. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.7. This plots displays the kaon acceptance. It shows a loss in the range of 8%
to 10% over all signal MC samples. Additionally, a decrease for high ALP
masses is observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.8. The generated kaon polar distributions is shown in these plots for MC samples
with an ALP mass of ma = 0.1GeV/c2 and ma = 4.5GeV/c2. The kaon
is mostly forward boosted in the detector, with minor differences between
different ALP mass hypotheses. The CDC polar angle aceptance is indicated
by red lines. Events outside the CDC acceptance will not be reconstructed
due to the lack of track and PID information. . . . . . . . . . . . . . . . . . 25

4.9. These plots show the photon efficiency for light ALP MC samples in bins
of the photon momenta with the applied selection E

γ
l > 0.05GeV. This

selection does not effect the efficiency of the higher energetic photons since
they show an minimal energy of E

γ
h > 0.5GeV. However, an efficiency loss

is observable in low momentum bins for lower energetic photons. . . . . . . 26

4.10. These plots show the photon efficiency for the ma = 2.0GeV/c2 ALP hy-
potheses in bins of the photon momenta with the applied selection E1/E9 >
0.4. A minor efficiency loss can be observed for both photons in all momen-
tum bins. This loss increases for lower energetic photons in samples with
higher ALP lifetimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.11. These four plots display the efficiency loss in bins of the photon momenta for
high and low ALP mass samples with an applied CDC acceptance selection.
Under consideration of the photon polar distribution, the efficiency shows
the expected result for photons that are boosted in regions with no CDC
information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



83

4.12. This graphic displays the total a→ γγ acceptance with the applied preselec-
tion. In comparison to the reconstruction acceptance with no selections, the
photon acceptance decreases by about 10% for all signal MC samples. . . . 29

4.13. These plots show the kaon efficiency in bins of its momentum under consid-
eration of the IP selections for |dr| and |dz|. An efficiency loss is observable
in weakly populated momentum regions. . . . . . . . . . . . . . . . . . . . . 30

4.14. This plot collection shows the effect of CDC acceptance and NCDC Hits
selections on the reconstructed kaon efficiency for various ALP mass samples.
The CDC acceptance selection results in an efficiency loss for kaons strongly
boosted in the forward or backward direction of the detector. This loss is
more pronounced for the NCDC Hits selection since it excludes events with a
lowe transversal momentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.15. These plots display the efficiency loss in bins of the kaon momentum for the
PIDK > 0.5 selection. As explained in detail explained in the corresponding
text, the efficiency loss is highly correlated with the detector region the kaon
can propagate to and the kaon’s momentum. . . . . . . . . . . . . . . . . . . 32

4.16. This 2D histogram displays the median PIDK value in dependence of the kaon
momentum and polar angle distribution. The PIDK value is significantly
lower in the backward direction and for specific steering angle, momentum
combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.17. These plots display the efficiency loss in bins of the kaon momentum for
the PIDK > 0.002 selection. This selection leads to a significantly smaller
efficiency loss but comes with the risk of reconstructing misidentified charged
particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.18. This plot shows the total kaon acceptance with the applied preselection. In
comparison to the reconstruction acceptance with no selections, the kaon
acceptance decreases by about 15% to 20% for all signal MC samples with
an increasing loss for higher ALP masses. . . . . . . . . . . . . . . . . . . . 34

4.19. These four plots display the distributions of Mbc and ∆E for reconstructed
events of exemplary signal samples (top) and of continuum and generic
background (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.20. This graphic displays the different event topology for continuum and BB̄
events. Figure adapted from [34]. . . . . . . . . . . . . . . . . . . . . . . . . 39

4.21. These four plots display the distributions of R2 and cos(TBTO) for recon-
structed events of exemplary signal samples and of continuum and generic
background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.22. These three plots display the distributions of E
γ
l for reconstructed events

of exemplary signal samples, of continuum and generic background and the
combination of both. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.23. These 2D histograms demonstrate the distributions of ∆E over Mbc for
correctly reconstructed events in two signal samples. The plot in (a) displays
a light and promptly decaying and (b) a heavy and long-lived ALP sample.
The correlations of both variables increases with higher ALP mass and lifetime. 41



84 A. List of Figures

4.24. These 2D histograms demonstrate the distributions of cos(TBTO) over R2 for
correctly reconstructed events in two signal samples. The plot in (a) displays
an ALP sample with a less spherical event topology while (b) presents a
more spherical case. In both cases, the observables are highly correlated. . . 42

4.25. This 2D histogram shows the distributions of E
γ
l over R2 for correctly

reconstructed events in the ma = 3.0GeV/c2 and cτa = 10.0 cm sample.
The displayed correlation is caused by the nearly perfectly spherical event
topology in cases where both photons and the kaon share equal energies. . . 42

4.26. This plot shows the total B± → K±a, a→ γγ acceptance with the applied
preselection for the photons, the kaon, Mbc and ∆E. The signal signature
displays a total acceptance of 50% to 60% for prompt ALP mass samples.
Additionally, the acceptance decreases with higher ALP lifetime samples as
discussed for the photon acceptance. . . . . . . . . . . . . . . . . . . . . . . 43

4.27. This 2D histogram displays the distributions of generated over reconstructed
E

γ
l for correctly reconstructed events in the ma = 3.0GeV/c2 and cτa =

50.0 cm sample. The comparisons shows a good agreement between both
energy distributions with a slight tendency to reconstruct the energy of the
photon to lower values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.28. This graphic illustrates the inner part of the detector and the generated
and reconstructed event topology of the a→ γγ decay. The displayed sub-
detector components are the silicon trackers (orange), CDC (grey), ARICH
(pink), TOP (light-blue), ECL (purple) and the solenoid (dark-blue). Due to
the inability to track neutral particles in the detector, the angular distribution
of displaced neutral decays is always misreconstructed. . . . . . . . . . . . . 46

4.29. These 2D histograms demonstrate the distributions of generated over recon-
structed θ

γ
l for correctly reconstructed events in three different cases. The

plot in (a) displays the correct reconstruction for promptly decaying ALPs.
Contrary, the plots in (b) and (c) show the misreconstruction of θ

γ
l for

displaced ALP events with an uniform polar distribution and a back-to-back
like a→ γγ decay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.30. These plots present the Mγγ distributions for two different ALP lifetimes
samples with a mass of ma = 2.0GeV/c2. Samples with a low ALP lifetime
show a clear Gaussian-like peak, while high lifetime samples shown a long left
tail in the Mγγ distribution due to the larger spatial reconstruction discrepancy. 48

4.31. These plots display the Mγγ distributions before and after the mass con-
strained fit for three different signal MC samples. The mass constrained
fit influences the Mγγ shape more with higher ALP mass as can be seen in
comparison of the ma = 2.0GeV/c2 samples in the plots in (a) respectively
(b) and (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.32. These plots present the Mγγ distributions, a double-sided Crystal Ball model
fit for these events and the signal range calculation for two highly displaced
ALP signal samples. High ALP mass samples show good agreement with
the analytical description of the double-sided Crystal Ball PDF, while the
low ALP mass samples display deviations from it. These deviations arise
through ALP events that do not decay in the detector acceptance. . . . . . 50



85

4.33. These two plots display the PFOM, signal efficiency and the number of back-
ground events distribution and indicate the best selection in the observable
distribution for Mbc in one signal MC sample. The selection for Mbc shows
a clear optimum in the PFOM. . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.34. These four plots display the PFOM, signal efficiency and the number of
background events distribution and indicate the best selection in the ob-
servable distributions for negative and positive values in ∆E. The selection
for negative ∆E values displays a clear optimum in the PFOM due to the
previous selection on the positive values. Therefore, an interchange of the
order of the selection leads to similar results. . . . . . . . . . . . . . . . . . 54

4.35. These four plots display the PFOM, signal efficiency and the number of
background events distribution and indicate the best selection in the observ-
able distributions for R2 and cos(TBTO). The selection for R2 shows a good
separation power between signal and background events with a high loss in
signal efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.36. These two plots display the PFOM, signal efficiency and the number of back-
ground events distribution and indicate the best selection in the observable
distribution for E

γ
l . The selection for E

γ
l shows a good separation power

and reduces the number of background events drastically. . . . . . . . . . . 56
4.37. This plot series presents the final selection values for all observables in all

signal MC samples. Excluding some outliers, nearly selections are within
physical expectations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.38. These two plots display the resulting signal efficiency (a) and number of
background events (b) for all signal MC samples after applying the previously
shown selections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1. This plot displays the interpolation of the fit range IQR(1,99) × 10 over all
ALP mass samples with a lifetime of cτa = 5.0 cm. Upper fit range bounds
are interpolated by a polynomial of the second order and lower bounds by a
fourth-order polynomial. The lower bounds only can have minimal value of
zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2. These three plots display the third-order polynomial interpolation of the
Mbc and ∆E selections over all ALP masses for samples with a lifetime
of cτa = 10.0 cm. For the further analysis, these interpolations ar enot
taken into account, rather the selections are set to Mbc > 5.27GeV/c2 and
−0.15GeV < ∆E < 0.10GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3. These three plots display the third-order polynomial interpolation of the R2,
cos(TBTO) and E

γ
l selections over all ALP masses for samples with a lifetime

of cτa = 10.0 cm. The interpolations for R2 and cos(TBTO) a significantly
tighter selection in high respectively low ALP mass regions than calculated
with the help of the PFOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4. This plot shows the recalculated signal efficiency for all ALP signal MC
samples in IQR(1,99) × 10 after the application of the interpolated selections.
The efficiency shows smooth transitions between neighbouring ALP mass
samples and a decrease with increasing ALP lifetime. . . . . . . . . . . . . . 64



86 A. List of Figures

5.5. This figure presents the interpolation of the signal efficiency for all signal
samples with an ALP lifetime of cτa = 20.0 cm. A fourth-order polynomial
is used for the interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6. This plot displays the Mγγ distribution for the ma = 1.51GeV/c2, cτa =
30.0 cm signal sample after the application of the interpolated selection. The
Mγγ is fitted by an extended double-sided Crystal Ball model and the pull is
calculated and displayed in the bottom part of the plot. . . . . . . . . . . . 66

5.7. These four plots present the fitted double-sided Crystal Ball parameters
for all signal MC samples. The parameters µ, σ and αl are interpolated
by second-order polynomials for the following analysis. Due to the chaotic
distribution of αr, the median of each lifetime is used for further calculations. 67

5.8. This figure displays four differentMγγ signal + background fits on background
MC samples. The signal hypotheses PDFs are described in the text. Plots
(a) and (d) illustrate fits in the high and low ALP mass regions where the
Mγγ fit regions are only weakly populated. Additionally, plot (b) shows a fit
in between the η and η′ exclusion region, where the small fit window leads to
the effect that the signal shape of hypotheses with high ALP lifetimes mimics
the background distribution. Lastly, plot (c) presents a fit with a large fit
region and sufficient background event population for a good background
shape estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.9. This plot series displays the signal + background fit parameter results for
all ALP masses in the cτa = 20 cm scan. The fit uncertainties are indicated
by green bars. The signal yield in (a) shows that it is mostly overestimated
in between the exclusion regions due to very wide signal shape. With some
exceptions in the low and high ALP mass regions, the polynomial coefficient
fit results display that the second- and third-order coefficients are mostly
compatible with zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.10. This plot displays the calculated expected and observed CLs90 upper limits
on the branching ratio Br(B → Ka)×Br(a→ γγ) for all ALP masses with a
lifetime of cτa = 0.0 cm. The Mγγ scan shows a sensitivity between 3× 10−7

and 7× 10−7 for the branching ratio. The observed upper limits fluctuate
strongly for high and low ALP masses and are slightly weaker in the vicinity
of the π0, η, η′ exclusion regions. . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.11. This plot displays the calculated expected and observed CLs90 upper limits
on the branching ratio Br(B → Ka)× Br(a→ γγ) for all ALP masses with
a lifetime of cτa = 20.0 cm. White gaps in between neighbouring scan points
indicate unsuccessful fits. Compared to the cτa = 0.0 cm scan, this scan
shows an over all weaker limit. Additionally, the upper limit shows for masses
ma ≤ 1.2GeV/c2 yet to be explained structures in both the expected and
observed upper limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.12. This plot summarizes the observed CLs90 upper limits on the branching ratio
Br(B → Ka)× Br(a→ γγ) for all scanned ALP masses and lifetimes. The
scans indicate upper limits of about 5 × 10−7 for promptly decaying and
about 4× 10−6 to 2× 10−5 for long-lived ALPs on the branching ratio. . . . 76



87

C.1. This plot series displays the reconstructed momenta of γh in correctly recon-
structed a→ γγ events in the signal samples. . . . . . . . . . . . . . . . . . 92

C.2. This plot series displays the reconstructed momenta of γl in correctly recon-
structed a→ γγ events in the signal samples. . . . . . . . . . . . . . . . . . 93

C.3. This plot series displays the reconstructed momenta of correctly reconstructed
kaons in the signal samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94





B. List of Tables

3.1. Overview of the ALP parameter space used in the different sets of glsmc
signal samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1. This table displays the excluded Mγγ ranges for the particles that form the
irreducible background in the B± → K±γγ decay. . . . . . . . . . . . . . . . 52

4.2. This table outlines the order of the observables in the PFOM algorithm.
Additionally, it displays the scanned range which is split into 500 selection
steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1. This table displays the excluded Mγγ ranges for the particles that form
the irreducible background in the B± → K±γγ decay. In contrast to the
previously shown exclusion regions, these are slightly smaller to ensure better
fit stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

89





C. Appendix

C.1. Reconstructed Momenta for the Finale State Particles

91



92 C. Appendix

0.5 1.0 1.5 2.0 2.5 3.0 3.5
p h (GeV/c)

0

50

100

150

200

En
tri

es
 / 

(0
.0

32
0 

Ge
V/

c) Belle II (Simulation)

ma = 0.1 GeV/c2

c a (cm)
0.0
1.0
10.0
20.0

30.0
40.0
50.0

(a) ma = 0.1GeV/c2

0.5 1.0 1.5 2.0 2.5 3.0 3.5
p h (GeV/c)

0

50

100

150

200

250

En
tri

es
 / 

(0
.0

33
6 

Ge
V/

c) Belle II (Simulation)

ma = 1.0 GeV/c2

c a (cm)
0.0
1.0
10.0
20.0

30.0
40.0
50.0

(b) ma = 1.0GeV/c2

1.0 1.5 2.0 2.5 3.0 3.5 4.0
p h (GeV/c)

0

50

100

150

200

250

300

En
tri

es
 / 

(0
.0

37
3 

Ge
V/

c) Belle II (Simulation)

ma = 2.0 GeV/c2

c a (cm)
0.0
1.0
10.0
20.0

30.0
40.0
50.0

(c) ma = 2.0GeV/c2

1.0 1.5 2.0 2.5 3.0 3.5 4.0
p h (GeV/c)

0

50

100

150

200

250

300

En
tri

es
 / 

(0
.0

35
6 

Ge
V/

c) Belle II (Simulation)

ma = 3.0 GeV/c2

c a (cm)
0.0
1.0
10.0
20.0

30.0
40.0
50.0

(d) ma = 3.0GeV/c2

1.0 1.5 2.0 2.5 3.0 3.5
p h (GeV/c)

0

50

100

150

200

250

300

350

En
tri

es
 / 

(0
.0

29
0 

Ge
V/

c)

Belle II (Simulation)

ma = 4.0 GeV/c2

c a (cm)
0.0
1.0
10.0
20.0

30.0
40.0
50.0

(e) ma = 4.0GeV/c2

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
p h (GeV/c)

0

100

200

300

400

500

600

En
tri

es
 / 

(0
.0

40
2 

Ge
V/

c) Belle II (Simulation)

ma = 4.5 GeV/c2

c a (cm)
0.0
1.0
10.0
20.0

30.0
40.0
50.0

(f) ma = 4.5GeV/c2

Figure C.1.: This plot series displays the reconstructed momenta of γh in correctly recon-
structed a→ γγ events in the signal samples.
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Figure C.2.: This plot series displays the reconstructed momenta of γl in correctly recon-
structed a→ γγ events in the signal samples.



94 C. Appendix

0 1 2 3 4 5
pK

Gen (GeV/c)
0

50

100

150

200

250

300

350

400

450

En
tri

es
 / 

(0
.0

50
5 

Ge
V/

c) Belle II (Simulation)

ma = 0.1 GeV/c2

c a (cm)
0.0
1.0
10.0
20.0

30.0
40.0
50.0

(a) ma = 0.1GeV/c2

0 1 2 3 4 5
pK

Gen (GeV/c)
0

50

100

150

200

250

300

350

400

En
tri

es
 / 

(0
.0

50
5 

Ge
V/

c) Belle II (Simulation)

ma = 1.0 GeV/c2

c a (cm)
0.0
1.0
10.0
20.0

30.0
40.0
50.0

(b) ma = 1.0GeV/c2

0 1 2 3 4 5
pK

Gen (GeV/c)
0

100

200

300

400

500

En
tri

es
 / 

(0
.0

50
5 

Ge
V/

c) Belle II (Simulation)

ma = 2.0 GeV/c2

c a (cm)
0.0
1.0
10.0
20.0

30.0
40.0
50.0

(c) ma = 2.0GeV/c2

0 1 2 3 4 5
pK

Gen (GeV/c)
0

100

200

300

400

500

600

En
tri

es
 / 

(0
.0

50
5 

Ge
V/

c) Belle II (Simulation)

ma = 3.0 GeV/c2

c a (cm)
0.0
1.0
10.0
20.0

30.0
40.0
50.0

(d) ma = 3.0GeV/c2

0 1 2 3 4 5
pK

Gen (GeV/c)
0

100

200

300

400

500

600

700

800

900

En
tri

es
 / 

(0
.0

50
5 

Ge
V/

c) Belle II (Simulation)

ma = 4.0 GeV/c2

c a (cm)
0.0
1.0
10.0
20.0

30.0
40.0
50.0

(e) ma = 4.0GeV/c2

0 1 2 3 4 5
pK

Gen (GeV/c)
0

200

400

600

800

1000

1200

1400

En
tri

es
 / 

(0
.0

50
5 

Ge
V/

c) Belle II (Simulation)

ma = 4.5 GeV/c2

c a (cm)
0.0
1.0
10.0
20.0

30.0
40.0
50.0

(f) ma = 4.5GeV/c2

Figure C.3.: This plot series displays the reconstructed momenta of correctly reconstructed
kaons in the signal samples.
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