
Deep Continuum Suppression
with Predictive Uncertainties at

the Belle II Experiment

Lars Sowa

Masterthesis

27th July 2021

Institute of Experimental Particle Physics (ETP)

Reviewer: Prof. Dr. Ulrich Husemann
Second reviewer: Prof. Dr. Günter Quast

Editing time: 22nd June 2020 – 27th July 2021

ETP-KA/2021-9

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Deep Continuum Suppression
mit Vorhersage von

Unsicherheiten am Belle II
Experiment

Lars Sowa

Masterarbeit

27. Juli 2021

Institut für Experimentelle Teilchenphysik (ETP)

Referent: Prof. Dr. Ulrich Husemann
Korreferent: Prof. Dr. Günter Quast

Bearbeitungszeit: 22. Juni 2020 – 27. Juli 2021

ETP-KA/2021-9

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer unverändert oder mit Abänderungen entnommen wurde.

Karlsruhe, 27. Juli 2021

. .
(Lars Sowa)

Contents

1. Introduction 1

2. The Standard Model 3

3. The Belle II Experiment 7
3.1. Motivation . 7
3.2. SuperKEKB . 8
3.3. The Belle II Detector . 8
3.4. Belle Software Framework . 10

4. Continuum Suppression 11
4.1. Continuum . 11
4.2. Variables . 12
4.3. Previous Work on Continuum Suppression 15

5. Multivariate Analysis Methods 19
5.1. Neural Networks . 19
5.2. Self-Attention . 24
5.3. Three Streamer . 28
5.4. Probability Calibration Methods . 30
5.5. Deep Ensembles . 32
5.6. Distance Correlation . 36

6. Applied Continuum Suppression 39
6.1. Dataset . 39
6.2. Preprocessing . 40
6.3. Figure of Merit . 41
6.4. Reproduction of Previous Work . 41
6.5. Three Streamer Model . 42
6.6. Ensemble of Three Streamers . 44
6.7. Ensemble Decorrelation with Distance Correlation 49

7. Summary and Outlook 57

A. Continuum Suppression Features 65
A.1. Event Shape Variables . 65
A.2. Cluster Candidate Features . 75

VII

VIII Contents

A.3. Track Candidate Features . 79

1. Introduction

The Standard Model of particle physics is a highly successful yet unfortunately incomplete
description of nature. Thus, one of the most important challenges of modern particle physics
is to test this model and to search for new physics in high precision measurements. B
mesons are excellent candidates for such tests. The SuperKEKB collider in Japan accelerates
electrons and positrons which collide at an energy of 11 GeV aiming to produce B meson
pairs. One of the most prominent achievements at SuperKEKB was the contribution to the
measurement of the complex phase φ of the Standard Model by the Belle collaboration [1,2].
Today, the successor collaboration Belle II continues and expands this work.

To analyse the properties of a B meson, it gets recombined from its decay daughters.
Since there are a lot of background events that mimic the signature of a B meson, it is
important to suppress these events. This suppression is called Continuum Suppression and
in the Belle II collaboration is performed with traditional machine learning algorithms,
like Boosted Decision Trees (BDT). However, today there are newer and more promising
deep learning methods available which motivate an extension of the current Continuum
Suppression to a Deep Continuum Suppression (DCS). Such methods were tested in previous
work, which showed, that BDT can be outperformed by Multilayer Perceptrons (MLPs) [3].

This work aims to further improve the DCS. Specifically, the MLP is used as a starting
point to improve three points:

Firstly, an MLP needs a fixed order for input particles. In previous work, this is solved
by sorting approaches, but these are potential sources of errors. Therefore, this thesis
presents a reliable, self-attention-based input mechanism which allows for invariance under
the particle order.

Secondly, to guarantee certainty about the prediction of deep learning models, there is a
high interest in models with predictive uncertainties. This is addressed using the concept
of Deep Ensembles [4] to predict uncertainties of continuum classifications.

Finally, the use of vertex information for the training of a model leads to a bias in
certain analysis variables. Since this could lead to falsification of further studies, a Distance
Correlation [5] is used to decorrelate the Continuum Suppression model from third variables.

The structure of this work is as follows: in Chapter 2 an introduction to the Standard Model
is given. Chapter 3 gives an overview of the Belle II experiment including its motivation,
detector, and the SuperKEKB collider. The Continuum Suppression and its current status

1

2 1. Introduction

is explained in Chapter 4. Chapter 5 gives an overview of multivariate analysis methods
and explains mechanisms to improve the DCS. These mechanisms are tested and discussed
in Chapter 6. At the end, a summary and an outlook is given in Chapter 7.

2. The Standard Model

The most essential model for modern particle physics was developed in the latter half of
the twentieth century and is known as the Standard Model (SM). With the SM nearly all
phenomena in particle physics can be described. Therefore, deviations from the SM are
usually the gateway to new physics. Therefore, it is crucial to understand the SM and to
determine its parameters by experiments. An overview of the SM is given in Figure 2.1. In
general one can distinguish the particles of the SM in fermions and force-carrying bosons.
These and their interactions are described below.

Fermions are particles with half-integer spin and are further divided into quarks and
leptons. There are three generations of quarks with one positively charged quark (up,
charm, top) and one negatively charged quark (down, strange, bottom) per generation.
These quark types are often referred to as flavors. Leptons are just like quarks divided
in three generations. But in contrast, there is one charged and one neutral particle per
generation. The charged particles are the electron, muon, and tau. Each of these has a
associated neutrino partner which has no charge.

Bosons are integer spin particles and act as force mediators between particles. The SM
includes three of the four fundamental forces of physics: the weak force, the electromagnetic
force, and the strong force. The gravitational force is not covered in the SM.

• The strong force is described by quantum chromodynamics. It describes the
interaction between quarks via gluons, which therefore are the mediators of strong
interactions. This force is described by quantum chromodynamics (QCD). Here
every quark has a color flavor assigned: red, green, or blue (including anticolors for
anti-quarks). Quarks can only be stable in a group with a neutral overall color (for
example red and anti-red or red, green, and blue) similar to color combinations in
art. Gluons carry more than one color which allows quarks exchanging colors by the
strong interaction. If all gluon exchanges in a quark group result in a neutral overall
color, then the strong force holds them in a stable state which we see as particles
such as protons. These color rules are called confinement. As a consequence of these
rules, color charged particles cannot be isolated. If two color charged particles are
removed from each others, at a certain point it becomes energetically more favorable
to create a new quark-antiquark pair. If a Υ(4S) resonance decays in a back-to-back
bb̄ pair, then confinement enforces it to produce a uū pair for example. These can
enter a stable state with the b quarks in form of a B meson pair BB̄.

3

4 2. The Standard Model

• The electromagnetic force couples only to charged fermions, which excludes
neutrinos from electromagnetic interactions. The mediator herefore is the photon
γ which is massless and can therefore travel with the speed of light. The range of
electromagnetic interactions is infinite, but its strength decreases by ∝ 1

r
2 .

• The weak force is exchanged by W± and Z boson couplings within ranges of
≤ 10−15m. These bosons couple only on quarks and leptons. By providing charged
W± boson couplings, the weak force is the only one, which allows quarks to change
their flavor with certain probabilities. These flavor transition probabilities are given
by the unitary Cabibbo Kobayashi Maskawa (CKM) matrix. In modern flavor physics,
it is a central aspect to determine and validate the properties of the CKM matrix
and its elements.

• The SM is completed by the Higgs, which is the only spin 0 boson and was recently
discovered at the Large Hadron Collider in 2012 [6]. The Higgs boson is a excitation
of the so-called higgs field. This field allows for massive W± and Z bosons, through
mutual interactions. This is known as Higgs mechanism. In addition, fermions interact
with the Higgs field, as well. This interaction is known as Higgs Yukawa coupling,
which also explains massive fermions in the SM.

Currently, we assume that all particles predicted by the SM have been discovered. Neverthe-
less, there are open questions that cannot be explained by the Standard Model. For example,
it is known that there must be Dark Matter in our Universe [8], but such particles could
not be observed yet. Another actual example is that experiments measured oscillations
in the neutrino sector [9,10]. Such observations show that there is still a lot of unknown
physics that has to be discovered and explained.

5

Figure 2.1.: Illustration of the Standard Model. On the left hand side quarks (purple) and
leptons (green) are shown. On the right hand side, one can see vector bosons
and the scalar Higgs boson. For each particle, the mass (or mass limits), the
electromagnetic charge, and the spin of the particle is shown. Taken from [7]

3. The Belle II Experiment

The Belle II experiment is the successor of the Belle experiment and was founded in 2008.
The experiment is part of the High Energy Accelerator Research Organization (KEK) which
runs the SuperKEKB collider in Tsukuba, Japan. The Belle II experiment started its data
taking in 2018 and aims to achieve an integrated luminosity of 50 ab−1 which would be 50
times more data than the Belle experiment collected.

This chapter gives a short introduction to the Belle II experiment. Section 3.1 gives a short
review of motivation of the Belle and Belle II experiments. The SuperKEKB collider is
explained in Section 3.2 and Section 3.3 gives a short overview over the Belle II detector.
Section 3.4 gives a short insight into the Belle II analysis software framework.

3.1. Motivation

In 1964, Cronin and Fitch published a groundbreaking observation of charge parity violation
(CPV) in a kaon system [11]. This result was not compatible with the SM back in the days,
because it only counted two quark generations, and only three quarks were experimentally
discovered (up, down, strange). This changed in 1973 when Kobayashi and Maskawa
published their approach of a SM with three quark generations, which introduced a complex
phase in the SM allowing for CPV [12]. After the discoveries of the charm and bottom quark,
there was a high interest to verify the theory of Kobayashi and Maskawa by measuring the
complex phase φ1 of the CKM matrix. To do this one needs to evaluate the interference of
an oscillating meson system. At that time, the B meson, consisting of a bottom quark and
a lighter quark, had been recently discovered. This provides an ideal candidate to measure
such interference. Among other things, the B meson has a relative long lifetime which is
needed in a CPV study to resolve the path differences between the two decaying B mesons.

Taking advantage of such B mesons the Belle [1, 2] and BaBar [13] experiments were able
to measure the complex phase φ1 in 2008, whereupon Kobayashi and Maskawa received the
Nobel prize in physics. In the same year, the Belle II collaboration was founded and the
detector upgraded, aiming for 40 times higher luminosity than its predecessor. Achieving
this high luminosity at a low energy scale makes the collaboration the frontier of precision
measurements of rare decays. This allows for an effective search for new physics like B
anomalies, axion-like particles in the dark sector, or lepton flavor violation [14,15].

7

8 3. The Belle II Experiment

19.4%

BB
16.1%

ττ

28.2%uū

7%

dd̄

6.6%

ss̄

22.7%

cc̄

Figure 3.1.: Relative and hadronic cross sections of e−e+ collisions at the Υ(4S) resonance.
Data from [18]

3.2. SuperKEKB

SuperKEKB [16] is an electron-positron collider located in Tsukuba, Japan. This collider
is an upgrade of the former KEKB collider [17], which was constructed for the Belle
experiment and had its first collisions in 2018. SuperKEKB is equipped with a linear
collider to accelerate electrons and positrons and inject them to two storage rings. The
low energy ring (LER) stores positrons with an energy of 4GeV while the high energy ring
(HER) stores electrons at 7GeV. The beams are supposed to produce e− + e+ → Υ(4S)
mesons and therefore collide at its production threshold of 10.58GeV [18]. Important
background processes that need to be suppressed are shown in Figure 3.1 and discussed in
Section 4.1. Due to the high decay width of Υ(4S) → BB̄ above 96%, SuperKEKB is a
typical B-factory.

The asymmetry of the beam energies leads to a boosted center-of-mass (CMS) frame of the
produced Υ(4S) which facilitates the measurement of the decay vertex difference of the B
mesons.

In 2020, SuperKEKB ran at a luminosity of 3.1×1034cm−2s−1 which is the highest achieved
by a collider until then [19].

3.3. The Belle II Detector

The Belle II detector is built in several layers around the interaction point as illustrated in
Figure 3.2. Due to the asymmetric beam energies which result in a boosted CMS reference
frame, the detector design is asymmetric as well. In the following, the detector parts are
described from the inside to the outside. More detailed information can be found in [20].

The two-layer pixel detector (PXD) is located 14mm around the interaction point and is
based on the DEPFET [21] technology. To get a high resolution of charged-particle tracks,
its silicon pixels are sized between 50 × 50µm. The track reconstruction is additionally

3.3. The Belle II Detector 9

Figure 3.2.: Illustration of the Belle II detector. Taken from [22]

supported by the silicon vertex detector (SVD) based on double-sided strip detectors.
Together PXD and SVD build the vertex detector (VXD).

The central drift chamber (CDC) is used to determine trajectories. To do so the detector is
filled with a Helium-Methane mixture while its wires are arranged in the z-direction (axial
layer). To derive information about the z component of the particles, every second layer is
slightly rotated (stereo layer).

The time-of-propagation detector (TOP) and the Aerogel Ring-Imaging Cherenkov detector
(ARICH) are used for the particle identification (PID), especially for the discrimination of
kaons and pions. The TOP detector is in the barrel region and uses patterns in reflected
Cherenkov photons for the PID. In contrast to that, the ARICH detector is located in the
endcap and relies on direct measurement of the Cherenkov angle.

The electromagnetic calorimeter (ECL) consists of thallium-doped cesium iodide CsI(Tl)
crystals to detect electromagnetic clusters from photons and electrons. To capture as many
photons as possible the ECL consists of a barrel part, a backward and a forward endcap.

The ECL is wrapped in a superconductiong coil generating a magnetic field of 1,5T to
force charged particles in a curved trajectory which allows a deduction of their momentum
and charge.

The K0
L and muon detector (KLM) is the outermost detector part consisting of alternating

layers of iron plates and active material specialized to measure hadronizing K0
L. Since

muons are minimal ionizing particles they are the only charged candidates that traverse the
ECL and can be identified by their charged track in the KLM.

10 3. The Belle II Experiment

3.4. Belle Software Framework

To analyze Belle II data usually the Belle II Analysis Software Framework II (BASF2) [23]
is used. The software packages are written in C++ and Python including third-party code
like ROOT [24]. The collected Belle II data during a Monte Carlo (MC) campaign or
a detector run is saved as a dataset consisting of raw track, cluster, and other detector
information.

In order to reconstruct particles from a dataset the user has to create a Python steering file.
By importing BASF2, a path is created to which single analysis modules can be appended.
For example, particle candidates can be reconstructed from the dataset and cuts can be
applied. Such an analysis path gets executed by BASF2 for each event in the dataset.
Thanks to this method BASF2 allows effective usage of complicated analysis techniques
with minimal effort for Belle II members.

During the reconstruction, there are often many events that mimic the signal process and
need to be filtered out. The main source of these are so-called continuum events that should
be suppressed in analyses. To do so BASF2 includes a continuum suppression module that
currently works with Boosted Decision Trees. However, in the actual machine learning
field, newer and more promising methods are available. In the course of this work, some
new methods are explained in Section 5.2, Section 5.5, and Section 5.6 and presented in
Chapter 6.

4. Continuum Suppression

During the reconstruction of a signal process in a Belle II analysis, incorrect recombinations
are unavoidable and often dominate over the actual decay process of interest. These
events are called background events and have a similar detector signature to signal events.
Therefore, they are difficult to suppress. Since it is the aim of a physics analysis to achieve
the highest signal purity possible it is crucial to suppress these events. To do so, a so-called
Continuum Suppression (CS) is performed. This chapter is based on the information
of [15, 25].

4.1. Continuum

SuperKEKB runs at the Υ(4S) resonance to produce as many B meson pairs as possible.
However, not every electron-positron collision produces an Υ(4S). Even after signal recon-
struction, there are many events whose final states mimic the kinematic signature of a signal
event and do not contain B meson pairs. It is difficult to identify these events, however, it
is necessary to suppress them in order to achieve high signal purities.

The biggest background contribution comes from Bhabha scattering e++e− → γ → e++e−

with a cross section 300 times higher than the one for Υ(4S) production [15]. Bhabha
scattering and other lepton pair productions like µ+µ− are cut away by the trigger system
with high efficiency.

Background events that cannot be suppressed by the trigger are suppressed by the Continuum
Suppression. These contributions arise from e+ + e− → qq̄ (q = u, d, c, s) light flavor
productions. As mentioned, lepton-pair-productions are negligible for the Continuum
Suppression.

Taus are the heaviest leptons and the only ones who can decay hadronically, for example
τ− → ντW

−(→ qq̄). Therefore, taus contribute to the hadronic background and have to be
included in the Continuum Suppression.

The total hadronic cross section of e+ + e− collisions is shown in Figure 4.1. Figure 4.1
shows the abundance of continuum events if one compares the height of the Υ(4S) peak
with the continuum. The relative cross sections for all events considered for the continuum
components are shown in Figure 3.1.

11

12 4. Continuum Suppression

Figure 4.1.: Hadronic cross section for e+ + e− collisions. The plot shows the bottonium
resonances Υ(1S), Υ(2S), Υ(3S), and Υ(4S) (marked in red) measured by
the CUSB experiment. The upper right part shows an additional plot for the
resonances measured by the CLEO experiment. Here R is defined as R = σhad

σµµ
.

Adapted from [26]

4.2. Variables
At Belle II, machine learning models, most commonly Boosted Decision Trees, are used
to suppress continuum events. The variables used to train such models are explained in
the following sections. In general, one differentiates between engineered variables (see
Section 4.2.1 and detector level variables (see Section 4.2.2). The engineered variables are
handmade and are engineered, such that they describe the features of an event which allow
to differentiate between continuum and BB̄ event. The detector variables on the other hand
are not engineered and contain detector data, such as momenta or angle information.

4.2.1. Engineered Variables

A significant difference between signal and continuum events lies in their event shapes.
This is illustrated in Figure 4.2. At SuperKEKB, the electron-positron pairs collide at a
fixed energy of 10.57 GeV. Since this energy is at the production threshold of Υ(4S), it is
produced nearly at rest. Therefore, the decaying B mesons have relatively low momenta of
p(B) ≈ 0.3 GeV. In contrast, the fermion pairs produced in continuum events have lower
masses. Due to energy conservation, this leads to higher momenta of the daughter particles
p(q) ≈ 5 GeV. This difference in the momenta is apparent if one compares the event shapes

4.2. Variables 13

Figure 4.2.: Comparison of continuum qq̄ (left) and signal event (right) shapes. Continuum
events have a characteristic back to back shape with relative high momenta
p(q) ≈ 5 GeV. Signal events usually have a spherical shape where the decay
products have a momentum of p(B) ≈ 0.3 GeV. Taken from []

of signal and continuum events. Since the B mesons are nearly at rest, their daughters
have no preferred direction and therefore decay spherically. In contrast, the two fermions
in continuum events have a clear back-to-back structure due to their high momenta and
momentum conservation.

To describe these different event shapes, the Belle and BaBar collaborations developed
a set of engineered features [25]. Some of these variables relate to the reconstructed B
meson. Others take only particles into account, that are not used for the signal candidate’s
reconstructions. These remaining particles are in the so-called Rest of Event (ROE). The
following sections give a short introduction to the event shape variables.

4.2.1.1. Thrust

The thrust concept originates from jet physics [28] but is useful for B physics as well. For
an ensemble of particles, the thrust ~T is defined as the axis which maximizes their total
momentum projection, according to

T =

∑N
i=1

∣∣∣~T · pi∣∣∣∑N
i=1 |pi|

. (4.1)

This allows calculating a separate thrust axis for the daughters of the B candidate and the
corresponding ROE particles of an event. The magnitude of these two axes is a commonly
used variable. Furthermore, the cosine between the thrust axis of the B candidate and the
one of the ROE particles is used, as well as the cosine between the thrust axis of the B
candidate and the z axis.

14 4. Continuum Suppression

4.2.1.2. CleoCones

CleoCones (also CLEO Fisher discriminants) are nine variables that describe the momentum
flow around the thrust axis of the B candidate. The first cone includes the momentum flow
within a 10◦ opening angle. Each subsequent cone covers the next 10◦ of opening angle,
resulting in a total of nine cones. The concept of CleoCones was introduced by the CLEO
collaboration [29] and was originally used for charmless B decays.

4.2.1.3. Fox Wolfram Moments

Fox and Wolfram introduced in [30] the so-called Fox Wolfram Moments (FW) to describe
event shapes in e+e− annihilations. These moments are defined as

Hk =

N∑
i,j

|~pi|
∣∣~pj∣∣Pk(cosθij) (4.2)

Rk =
Hk

H0
(4.3)

where θi,j is the angle between ~pi and ~pj and Pk the k-th Legendre polynomial. Since the
limit for vanishing particle masses is H0 = 1, the FW moments are often normalized by
Equation (4.3). In the case of two strongly collimated jets, this would result in Rk values
close to zero for odd values of k and to one for even values of k.

Furthermore, the Belle collaboration extended the FW moments to so-called Kakuno-Super-
Fox-Wolfram (KSFW) moments Hg

l,c [25]. The index g splits these into two categories:
KSFW moments where one sum runs over reconstructed B meson daughters are indicated
with g = so and on the other hand moments where both sums run over ROE particle
candidates are indicated by g = oo. Furthermore the index c denotes whether a particle
is charged (c = 0), neutral (c = 1) or missing (c = 2). A detailed description of KSFW
moments can be found in [25].

4.2.2. Detector Level Variables

The event shape variables explained in Section 4.2.1 are per-event variables. In contrast to
that, detector level (DL) variables are per-particle candidate variables. Thereby, only final
state particles are meant. These variables give information based on calorimeter clusters
and tracks. DL variables can be separated into the following groups.

Momentum variables
for tracks and clusters. These include the magnitude of the momentum, p, as well as
the azimuth angle φ, the cosine of its polar angle cos(θ), and their errors.

Cluster variables
originate from ECL information. Namely, the number of ECL crystal hits NHits and
the timing of the cluster Timing. Furthermore, the detector region of the cluster and
the energy ratio between the innermost nine crystals of the cluster and the outer 21
E9E21 are used for the Continuum Suppression. Momentum variables are also used.

4.3. Previous Work on Continuum Suppression 15

Figure 4.3.: Cluster and track candidate selection for the Deep Continuum Suppression.
The feature sets of cluster and track candidates are sorted according to their
momenta. For clusters, the first ten daughters of the B candidate and the first
ten particles in the ROE are kept. The same procedure is applied for tracks for
which the charge is also considered. Hence, the first five positive and negative
daughters of the B candidate are kept. The ROE particles are handled in the
same manner. Taken from [3]

Track variables
are derived from the track fit. These are the kaon, electron, muon, and proton
identification probabilities kaonID, electronID, muonID, and protonID. Additionally,
the number of hits in the CDC nCDCHits and the P-Value pValue of the fitted track
is used. Momentum variables are also taken into account.

Vertex variables
are a subgroup of track variables and are listed separately because they can increase
the accuracy of a classifier but can cause unwanted correlations between the classifier
output and other vertex related variables. Available variables are the azimuth angle φ
and polar angle θ, the azimuth angle between the vertex and the interaction point dφ,
the distance between the interaction point and the particle decay vertex distance as
well as the distance between the two decaying B meson candidates.

4.3. Previous Work on Continuum Suppression

The fast-developing field of machine learning offers many techniques, which can be tested
and applied for the Continuum Suppression. The current method used within the Belle II
experiment is based on the FastBDT module, an implementation of Boosted Decision
Trees [31]. As a result of the growing field of deep learning methods, the performance of
Deep Neural Networks, as well as an Adversarial Network and a relation network was tested
for a Deep Continuum Suppression in [3].

To perform a DCS a Deep Neural Network is used. In contrast to per-event variables (event
shape variables), per-particle variables (detector level (DL) and vertex (V) variables) cannot
be fed into a Neural Network in an arbitrary order. To solve this, all particle candidates

16 4. Continuum Suppression

in an event are sorted according to their momenta. Then, the candidates are separated in
groups for clusters and tracks, where the first few candidates are kept. The exact grouping
is explained by Figure 4.3. Through this procedure, the cluster and track candidates can be
fed with a fixed order into the network. This approach is performed with different variable
sets: engineered (E), detector level (DL), and vertex level variables (V). A comparison
between the performance of DNNs and BDT is made by the DCS and shown in Figure 4.4a.
As one might expect, both DNNs and BDT perform better with more information, i.e.
more input features provided. The DNNs outperform the BDT in each category, but the
advantage of DNNs decreases as more variables are added to the training.

Even if the sorting approach of the DCS solves the underlying problem of an input order, it
does not provide an optimal solution. A disadvantage is that it is vulnerable to variations in
the particle order. Such variations may arise from detection inaccuracies or from deviating
momentum distributions within the event. Furthermore, the fine groupings of the candidates
harbor the risk of throwing away important candidates in one of these groups.

It is a well-known problem in the Continuum Suppression, that the use of vertex variables
during the training leads to a bias with the classifier output. This occurs most prominently
in the ∆z distribution. ∆z is the path difference between the two decaying B mesons within
a signal event, as illustrated in Figure 4.5a. The correlation impact on the ∆z distribution
is plotted in Figure 4.5b. Such impacts on variables are not desirable, especially if the
affected variables are of importance for the underlying analyses. In the case of ∆z in CPV
studies, for instance, such a bias affects the analyses result.

To address the classifier’s correlation with vertex variables, [3] also investigated a decorrela-
tion mechanism with ∆z as a use case. To do so, an Adversarial Network (AN) approach
is chosen. This network type origins from Generative Adversarial Networks (GANs) [32].
To train a decorrelated classifier, the AN takes the classifier output as input and tries to
predict the shape of ∆z. The higher the correlation between the output and ∆z, the easier
the prediction of the shape of ∆z. If the AN is able to guess the shape of ∆z, then the
classifier gets penalized during the training.

However, such a GAN comes with many additional hyperparameters which need to be
adjusted in order to achieve suitable decorrelation results. Moreover, the use of a GAN
during the training drives up the training time and the computing requirements. In general,
simpler methods are preferable.

Finally, a so-called relation network (RN) [33] is tested in [3]. Such RNs are based on the
concept of shared weights. For this, the input features have to be organized into groups with
representative meaning, i.e. one feature group for each particle candidate. Each of these
feature groups is set in relation to each other feature group by a Multilayer Perceptron that
takes both groups as input. This procedure avoids the need to order particle candidates.
The performance of RNs with different variable sets is shown in Figure 4.4b. The RN
achieves the highest ROC AUC score of 0.9982 compared to the BDT and DNN using all
variable sets.

In general relation networks are the predecessor of self attention approaches (see Section 5.2.1)
and are now considered outdated compared to more modern methods.

4.3. Previous Work on Continuum Suppression 17

(a) Comparison between BDT and DNNs. Taken from [3]

(b) Comparison between BDT, DNNs and ANs. Taken from [3]

Figure 4.4.: Comparison of Receiver Operating Characteristic (ROC) curves. The concept
of ROC curves is explained in Section 6.3. Shown are curves for engineered (E),
detector level (DL) and vertex (V) variable sets. Additionally the corresponding
area under curve (AUC) values are given.

18 4. Continuum Suppression

(a) ∆z is the measured difference between the decay vertices of two B
mesons. Taken from [3]

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
DeltaZ in cm

0

5

10

15

20

25

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

no classifier cut
classifier cut at 90% quantile

(b) ∆z distribution. The black line shows ∆z without any classifier cut applied.
The red line shows the distribution with a classifier cut where 90% of
the signal is cut away. Both curves are normalized. As classifier a Three
Streamer model (see Section 5.3) is used. Since the distributions show only
signal events, the edgy distribution is due to low statistics.

Figure 4.5.

5. Multivariate Analysis Methods

In the last decades, knowledge in the field of particle physics has developed rapidly. Over
time, more elaborate experiments were designed and more and more data was needed to
gain new knowledge. Modern colliders are optimized to take as much data as possible and
therefore make particle physics a highly data-driven field. Consequently, it is necessary to
develop and test new and even better analysis methods to learn as much as possible from
the collected data. In the case of Continuum Suppression, traditional machine learning
approaches are the current state of the art, but there are already promising deep learning
approaches (see Section 4.3). This work uses deep learning methods to give a prediction of
whether an event is continuum or not. To do so, variables explained in Section 4.2 are used
and evaluated by Neural Network models with complex architectures.

This section gives a short overview of deep learning and explains the analysis methods
used in the scope of this work. Section 5.1 gives an overview of Neural Networks and
their training. Section 5.2 explains the attention mechanism, which is used for the Three
Streamer model in Section 5.3. To predict uncertainties, the concept of Deep Ensembles
is described in Section 5.5. Finally, a decorrelation method is explained in Section 5.6 to
provide background for mitigating bias in Section 6.7.

5.1. Neural Networks

Driven by increasing computing capacity in recent years, there was an enormous development
in the field of artificial Neural Networks (NNs). Such a network mimics the arrangement of
individual cells found in a brain, that are able to exchange input and output signals, like in
a biological brain. This chapter gives a short introduction to artificial Neural Networks. For
this, the most prominent network type, the Multilayer Perceptron, is explained in detail.

The concept of artificial neurons was introduced in the field of neuroinformatics by Frank
Rosenblatt [34], who invented the so-called Rosenblatt Perceptron. For that, he assumed
input values xi for his modeled cell which are multiplied by weights ωi. These weights
control the contributions of each input xi and have to be well-chosen (this procedure is
explained for modern NNs in Section 5.1.1). Finally the weighted inputs ωi ·xi are summed,
shifted by a bias β, and transformed by an activation function f . In the case of the
Rosenblatt Perceptron, a simple step function (see Figure 5.2c) is used to produce either

19

20 5. Multivariate Analysis Methods

one or zero as an output value. The final output y is

y = f

(
N∑
i=1

xi · ωi + β

)
. (5.1)

In order to produce smooth output values, modern Neural Networks usually use activation
functions like Rectified Linear Unit (ReLu) (see Figure 5.2b) for their neurons. Such a
neuron builds the basis for most Neural Network based models and illustrated in Figure 5.1a.

A Multilayer Perceptron is organized in multiple layers consisting of artificial neurons, as
illustrated in Figure 5.1b. The input layer comes first and takes measured data as input.
Each neuron in the input layers produces its own output based on its weights and bias.
These outputs are used as inputs for each neuron of the so-called hidden layer. An MLP
can have multiple hidden layers with an arbitrary number of neurons. The values are
passed analog through each layer. This feedforward structure is characteristic of MLPs,
which is why their layers are also called feedforward layers. Finally one can adapt equation
Equation (5.1) for the j-th neuron output y(k)j in layer k

y
(k)
j = f

(
N∑
i=1

y
(k−1)
i · ω(k)

ji + β
(k)
j

)
, (5.2)

where y0j are the input variables. The layer with the highest k is the output layer, which
produces a final MLP output.

The structure of the output layer must be adapted to the learning task. For a multinominal
classification, the MLP would have multiple output neurons, one for each class respectively.
For binary discrimination, only one output neuron is needed.

Furthermore, the activation function of the output layer must be well chosen. Classification
problems need probability similar output values between one and zero: under those circum-
stances a sigmoid function is suitable (see Figure 5.2a). In order to be able to predict all
values in the solution space, regression tasks do not need an activation function.

In order to give good predictions with an MLP, a suitable number of layers and neurons
has to be chosen. Such parameters are called hyperparameters of the network. In general,
the size and number of hidden layers regulate the capacity of information that an NN can
extract from its input data. Especially the number of hidden layers allows a network to
learn deeper relationships between them. Therefore a network with multiple hidden layers
is also called a Deep Neural Network (DNN).

If the network architecture is chosen, the weights ω(k)
ji and bias β(k)j of the layers have to

be adjusted to predict correct results. This is done during the training process, which is
explained in the following section.

5.1.1. Training

The training of a Neural Network is the process that customizes the weights ω(k)
ji and bias

β
(k)
j so that the model is able to predict target values ~y forgiven input vectors ~x. This

section gives an overview of the training based on [37,38].

5.1. Neural Networks 21

(a) Structure of a neuron. The input values xi are
multiplied with weights ωi. These are summed
up with an optional bias β and transformed by
an activation function. Taken from [35]

(b) Structure of a Neural Network. Input values
are fed in the neurons of the input layer. Each
layer takes the output values of the previous
layer as input. The last layer produces a final
output value. Taken from [36]

Figure 5.1.

But before the training, it is important to split the data available into several categories:
a training, test, and an optional validation dataset. The weight and bias adjustments
are done with the training dataset. The evaluation of the model is done on the test
dataset. It is important to separate these sets in order to ensure an uncorrelated and
meaningful evaluation of the model. The validation dataset can be used to approximate
the generalization capacity of the network or to tune hyperparameters.

To optimize the weights and bias of a network, a function is needed which quantifies the
prediction quality dependent on the network parameters ~ν, i.e. weights and bias. Such
functions are called cost or loss functions C(~ν, ~x, ~y) and use the model output NN(~x, ~ν) =
~̂y(~ν) to measure the difference to the target output ~y. An intuitive choice is the Mean
Squared Error (MSE)

C(~ν) =
1

2N

N∑
n

||~̂yn − ~yn||2. (5.3)

Especially in the case of the binary classification task, often the Binary Cross Entropy
(BCE) is chosen

C(~ν) = −
N∑
n

(
~yn − ln

(
~̂yn

)
+ (1− ~yn) · ln

(
1− ~̂yn

)
)
)
. (5.4)

To optimize the network parameters ~ν, the loss has to be minimized, which is a high
dimensional and often a non-convex problem. The basic concept of a gradient descend
optimization process is shown in the following.

Assume a simplified NN with two hyperparameters ~ν = (ν1, ν2)
ᵀ and loss function C. To

find the direction ∆~ν = (∆ν1,∆ν2)
ᵀ in which the hyperparameters have to be adjusted,

22 5. Multivariate Analysis Methods

−4 −2 0 2 4

x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
ig

m
oi

d

(a) sigmoid function y = 1

1+e
−x

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
eL

u
(b) ReLu function y = max(0, x)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0

St
ep

 F
un

ct
io

n

(c) step function y =

{
0 if x ≤ 0

1 if x > 0

3 2 1 0 1 2 3
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ta
nh

(d) hyperbolic tangent y = tanh(x)

Figure 5.2.: Illustrations of different activation functions: simoid, Rectified Linear Unit
(ReLu), step function, and hyperbolic tangent (tanh).

one has to look at changes in C:

∆C(ν1, ν2) =
∂C

∂ν1
∆ν1 +

∂C

∂ν2
∆ν2 (5.5)

= ∇C ·∆~ν. (5.6)

with the derivative ∇C(ν1, ν2) =
(
∂C
∂ν1

, ∂C∂ν2

)ᵀ
. Knowing the relationship between ∆C and

∆~ν the change in ~ν can be chosen. Using the learning rate η > 0, a common choice is

∆~ν = −η∇C. (5.7)

Combining Equation (5.7) and Equation (5.6) shows that the loss is decreasing if ∇C 6= 0
and η 6= 0

∆C = −η||∇C||2 ≤ 0. (5.8)

5.1. Neural Networks 23

The learning rate is a hyperparameter, which should be considered carefully. If η is too
large, it is possible, that the minimum can not be determined accurately enough. Learning
rates which are too small lead to exploding computing times.

In practice, it is not trivial to compute all gradients for a Neural Network and to find
appropriate adjustments for all parameters ~ν. The state of the art algorithm to compute
these gradients is the so-called backpropagation algorithm [39].

To optimize the parameters ~ν step wise, the loss function could be evaluated on a single
training datum. However, one can expect the data to have a certain degree of variability,
which would lead to a very noisy minimization. To tackle this, data are often bundled into
minibatches. Now one can use the average of the gradients for a minibatch. However, it
must be noted that too big minibatches suppress noise, which can be a hindrance, as it can
lead to the algorithm getting stuck in a local minimum.

When all the training data has been used once for the network training, a training epoch
has been completed. Neural Networks are usually trained for multiple epochs until the
training is stopped.

5.1.2. Overtraining and Early Stopping

Deep Neural Networks with multiple hidden layers have enormous capacities to extract
complex information from the used training dataset. Therefore it is possible, that the
network starts to learn properties during the training, which hold only for the training
dataset and do not exist in the validation dataset or in general. This has the consequence,
that the model is specialized on the training set and deteriorates its performance on the
test and validation sets. Such a overspecification is called overtraining.

To detect overtraining, the model has to be tested periodically after each training epoch for
example. A comparison between the performance of the model on the training set with the
one on the validation set allows one to detect overtraining. As appropriate quantity, the
loss function can be evaluated based on both sets. In general, the training loss is always
expected to be slightly lower than the validation loss. Nevertheless, the validation loss
should decrease if the training loss decreases. A typical sign of overtraining is, when the
validation loss starts to increase, while the training loss continues to decrease. At this point,
the model starts to learn structures in the training data, which are specific for the training
set and do not hold for the validation set.

A simple method to avoid overtraining is early stopping. To do so, the loss is evaluated
after each epoch on the training set and on the validation set as well. Early stopping counts
the number of epochs for which the validation loss did not undercut its minimum. If these
counts exceed a certain threshold, the training is stopped. This threshold is called early-
stopping-epochs and is another hyperparameter for the training. This counter mechanism
is necessary to allow the model to overcome local minima in the loss landscape. If the
validation loss does not improve for multiple epochs, one can be sure, that this is not due to
a local minimum, but to overtraining (or no learning progress at all). Common thresholds
for early stoppings are epochs between 10 and 15.

Depending on the size of the datasets, it is possible that the evaluations of the loss dataset
are very noisy, especially at the beginning of the training. To address this, the mean of the

24 5. Multivariate Analysis Methods

Encoder DecoderLatent
Representation

She is eating a
green apple

Sie isst einen
grünen Apfel

(a) Structure of the Transformer Model. An
input sequence is passed to the encoder
part, which produces a latent representa-
tion of the sequence. This representation
is used by the decoder part to translate it
into another language.

She is eating a green
apple

Emb. Dimension

Se
qu

en
ce

Particle
Data

Features

Pa
rti

cl
esEmbedded

Sequence
Representation

Particles with
Features

(b) Input comparison for self-attention. NLP
tasks translate each word into a quantita-
tive embedding dimension (left). There-
fore, the input has a sequence dimension
and an embedding dimension. This is ana-
log to a matrix with a dimension for par-
ticles and one for their features (right).

Figure 5.3.

last 15 epochs available can be computed, instead of considering the fluctuating validation
loss. This allows to avoid a training stop due to noise and ensures an effective early stopping
mechanism. This mechanism is used for all trainings presented in Chapter 6 to avoid
incorrect early stopping.

5.2. Self-Attention

The concept of Self-Attention originates from the field of natural language processing
(NLP). Self-attention is used here, because it allows translating a word by taking the
remaining sequence into account, instead of translating it straightforward. To do so, context
information is used.

One of the most significant papers in the field of attention is "Attention Is All You
Need" [40]. It presents a sequence translation model, the so-called Transformer, which uses
a new method to apply attention (see Section 5.2.1). Furthermore, the authors also show
that their mechanism is superior in quality and more efficient in terms of its computing
time compared to benchmark models. The model is built on an encoder-decoder structure,
as shown in Figure 5.3a. With the use of self-attention, the encoder translates the input in
a latent representation containing as much extracted information as possible. This is then
used by the decoder to produce a final output.

For the Continuum Suppression, the encoder mechanism is applied on particle candidates
to produce a latent representation of them. Due to the self-attention mechanism, this
representation includes context information between particle candidates. Producing such
a representation has two purposes: on the on hand, the self-attention mechanism is a
promising technique to extract more information from the input and therefore, to increase
the performance of the classifier. On the other hand, the context information in the latent
representation is the foundation, which allows for permutation invariance under the particle
order (see Section 5.3).

5.2. Self-Attention 25

The following sections explain building bricks of the encoder layer of the Transformer model
in a bottom-up structure. First, the basic mechanism of self-attention is explained. This is
extended to the concept of multi-head self-attention and finally, its usage in the encoder
layer is explained. The encoder layer is used for the Three Streamer model described.

5.2.1. Self-Attention Mechanism

By using the normal attention mechanism, attention is payed on specific parts of the input
sequence to find a fitting output, e.g. the model’s dictionary pays attention to the input
sequence to find the best translation in its dictionary for the considered word in the input.

In contrast, by using self-attention, a model focuses on different parts of the input to find
context information for each input element. Therefore, the input gives attention to itself,
which explains the naming of self-attention. This mechanism computes so-called attention
scores, by setting each input element into context with each other input. Such an example
is shown in Figure 5.4.

The authors of [40] use the scaled dot-product to compute attention scores. Here it holds
for the input X ∈ Rsequence×embedding, its shape will be referred to (sequence, embedding)
in the following. The sequence dimension is the size of the input to which self-attention
should be applied. For particle candidates, this corresponds to a list of candidates. The
embedding dimension describes a quantitative representation of each word in the sequence
in a higher-dimensional space. Further information about embedding can be taken from [41].
For the Continuum Suppression, this representation directly corresponds to the features of
each particle candidate. Therefore, the input must be of shape (particles, features) to make
use of self-attention in the Continuum Suppression. The adapted input shape is illustrated
in Figure 5.3b.

For self-attention, X is multiplied by three different weight matrices WQ, WK , and W V ,
these are implemented as three linear layers. The results are called query Q, key K, and
value V . Using the scaled dot-product, the attention scores are computed by

Z = softmax(
Q×KT√

dk
)V (5.9)

where dk is the size of the feature dimension of the key. The product of Q×KT produces a
so-called attention map of shape (particles, particles), which includes the attention weights.
These weights indicate the attention given from the second particle dimension to the first
one. Note that in general, the weight matrix does not have to be symmetrical. In addition,
padded particles are masked out from the attention map. The resulting matrix elements are
scaled by

√
dk and transformed with the softmax function fi(~x) = e

xi∑
i e
xi to norm its values

row wise. Finally, the resulting matrix is multiplied by V . The output Z is a matrix with
attention scores, which are row-wise normed to one. Its scores point out regions of interest,
and it is of the same shape as the input (particles, features). The scaled dot-product is
illustrated in Figure 5.5a.

The concept of self-attention is a simple, but very effective way to learn about relationships
between input elements, rather than learning about the input elements themselves. This
mechanism is the basis for the multi-head attention mechanism, described in the next
chapter.

26 5. Multivariate Analysis Methods

Figure 5.4.: In an NLP example, self-attention is used to point out attention weights for
the sequence "The FBI is chasing a criminal on the run". The betrayed word
to translate is marked in red. The attention weights given to other words
in the sequence are marked in blue tones, whereas dark tones correspond to
high weights and light tones to low weights. To translate the words, only the
sequence before is taken into account. Taken from [42]

5.2.2. Multi-Head Self-Attention

The concept of multi-head attention is to apply the attention mechanism multiple times in
parallel on the input X. This can be done for self-attention or attention in general, however
this section only considers self-attention.

According to Section 5.2.1, an attention score can be computed for a given input X of
dimension (particles, features). This is the procedure of one attention head. Multi-head
attention uses N heads on the input X. In order to do so, the feature dimension of the input
is sliced in N parts, resulting in N matrices of size (Pparticles, features/N). Each slice is
linearly transformed by weight matricesWQ

i ,W
K
i ,W

V
i , where i indicates the attention head,

and used to calculate Zi, as explained in Section 5.2.1. The results Zi are concatenated
together to the original shape of the input. After that, it is weighted with the trainable
matrix W 0

Multihead Attention(Q,K, V) = Concat(Z1, Z2, ..., ZN)W 0. (5.10)

The concept of multi-head attention is also shown in Figure 5.5b. Its advantage is that each
attention head has to attend to the information in a subspace of the feature dimension only.
This simplifies the work of the individual heads and ensures in general that information of
each feature dimension of X is present.

5.2.3. Transformer Encoder Layer

The Transformer is a sequence transduction model proposed by the authors of [40]. This
model has an encoder-decoder structure, whereby the encoder is used in this work to give
self-attention to particle candidates. An overview of the structure of the encoder layer is
shown in Figure 5.6a.

5.2. Self-Attention 27

(a) Self-attention mechanism. The input sequence is trans-
formed linearly to produce query, key, and value. The
attention score is computed by the scaled Dot-product.
Additionally, a mask is used to exclude padded values.
Adapted from [43]

(b) Illustration of multi-head attention. Query, key, and
value are proceeded by a linear layer each. Their
output is used to compute the attention score (scaled
dot-product), where specific parts can be masked
out. This mechanism can be applied by N heads in
parallel. Their outputs are finally concat together.
Taken from [44]

Figure 5.5.: Mechanisms for self-attention (a) and miltihead self-attention (b).

28 5. Multivariate Analysis Methods

As input, the encoder layer takes a matrix of shape (particles, features). The main parts of
the layer are the multi-head self-attention layer (see Section 5.2.2) and the feedforward layer.
Both of them are applied with a residual skipping connection and a layer normalization
which are explained in the next paragraphs.

Residual skipping connections [45] redirect the input of a layer and add it to its output
(see Figure 5.6a). If a Neural Network is too deep, it can happen, that the first few layers
can extract useful information from their input, but the last few layers cannot extract any
more information. If backpropagation is applied then to adjust the weights, these last
layers cause vanishing gradients. Thus, the backpropagation algorithm does not provide any
weight adjustment and the training does not work anymore. A residual skipping connection
circumvents this by allowing the next layer to access the input of the previous layer. This
has the consequence, that if a layer produces vanishing gradients, backpropagation can skip
these layers and compute useful gradients through the whole network. Therefore, residual
skipping connections are especially important to facilitate the training of deeper network
structures [45].

The encoder also contains a layer normalization [46] after the attention layer and another
one after the feedforward layer. By applying this, the layer inputs are normalized along the
layer dimension. This means, that a minibatch consisting of M events (x1, x2, ..., xM) each
with K features xm = (xm,1, xm,2, ..., xm,K) is normalized by

xm,k =
xm,k − µm
σm + ε

. (5.11)

Here µm is the mean over all features k in eventm, σm the corresponding standard deviation,
and ε a small number which is added to avoid zero divisions. This normalization aims, like
batch normalization [47], to reduce the shift in the variable distributions of the training
data compared to the test data (covariate shift). Layer normalization also leads to an
acceleration of the training process [46].

The output of the encoder layer is of the same size as its input, which allows stacking the
layers easily. Since its input is of two dimensions, the encoder layer can be used as input
for particle candidates, as explained in Section 5.3.

5.3. Three Streamer

The Three Streamer model is designed for a Deep Continuum Suppression application and
is the basis for the Deep Ensemble (see Section 5.5), which is trained in the scope of this
work. The Three Streamer is named after its three separate input data streams: event
shape data, cluster candidates, and track candidates. The model is shown in Figure 5.6b.

The event shape data consist of 30 variables available which describe the whole event.
Therefore, these are per event variables and the input for each event is of dimension (1).
These variables are used as input for a standard MLP. ECL Clusters, i.e. photon candidates,
are organized in a two-dimensional matrix of shape (Particle, Feature). In Figure 5.7a
a distribution of gamma candidates per event is shown. The input shape for gamma
candidates is set to 25. If there are fewer candidates in an event, the remaining entries

5.3. Three Streamer 29

features

features

p
a
rt
ic
le
s

p
a
rt
ic
le
s

(a) Structure of an Encoder layer. The
layer consists of a (multi-head) self-
attention module and a feedforward
layer, each is applied with residual
skipping and followed by a layer
norm. Adapted from [44]

MLP

Event Shape
Cluster

Candidates

Output

MLP

MLP
with

Attention

MLP
with

Attention

Candidates Candidates

Fe
at

ur
es

Track
CandidatesFe

at
ur

es

Features

(b) Structure of a Three Streamer model. The
model has three input streams: an MLP for
event shape data and two MLPs with an atten-
tion mechanism on particle candidates.

Figure 5.6.

are zero padded. Since there are ten features per gamma candidate, the input shape is
finally (35, 10). This holds analogously for the pion candidates with final input shape (25,
15) and corresponding Figure 5.7b. Both the gamma and the pion candidates are used as
input for an MLP with an attention approach. In detail, the Transformer Encoder layer
(see Section 5.2.3) is implemented to use self-attention on the input data. Since the output
of the encoder with shape (particles, features) should be passed to an MLP, one dimension
has to be reduced. To do so an average pooling layer with a kernel size of the particle
dimension is used to shape the output into (features).

One should note that the pooling layer provides the operation which gives permutation
invariance under the particle order. In general, applying a pooling operation to achieve
this invariance would not be effective since pooling reduces the information available. That
is the reason why multi-head self-attention is used before pooling. It is important, that
self-attention allows learning connections between the input elements and should therefore
reduce the information loss of a pooling operation.

30 5. Multivariate Analysis Methods

0 10 20 30 40 50
candidates

0.00

0.02

0.04

0.06

0.08

co
un

ts
 n

or
m

ed
 to

 a
rb

. u
ni

ts

Gamma Candidates per Event
max=49

(a) Number of gamma candidates per event.

5 10 15 20 25
candidates

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

co
un

ts
 n

or
m

ed
 to

 a
rb

. u
ni

ts

Pion Candidates per Event
max=28

(b) Number of pion candiates per event.

Figure 5.7.: Number of gamma and pion candidates per event. The underlying dataset is
described in Section 6.1.

Table 5.1.: Three Streamer architecture. The upper part lists the number of neurons per
hidden layer, the number of hidden layers, and the number of output neurons
for each MLP used in the three streams and the Head-MLP. The lower part
shows the number of layers and neurons for the encoder layers (see Section 5.2.3).
Additionally, the number of attention heads used for multi-head attention (see
Section 5.2.2) within the layers is shown.

Event Gamma Pion Head MLP
MLP Hidden Neurons 200 500 500 500
MLP Hidden Layers 3 5 5 4
MLP Output Neurons 20 20 20 1
Enc. Layers 5 5
Enc. Neurons 2000 2000
Attn Heads 10 15

Each of the three network streams produces an output of shape (20). A so-called Head
MLP uses these to produce a final output prediction between one and zero, corresponding
to whether an event is continuum or not. To do so a sigmoid activation function (see
Figure 5.2a) is used for the last neuron of the Head-MLP, for all other Neurons of the Three
Streamer the ReLu function (see Figure 5.2b) is used. Hyperparameters of the model, like
the number of layers and neurons, are determined empirically and are shown in Table 5.1.
Overall there are 4 520 686 trainable parameters.

5.4. Probability Calibration Methods

A probability calibration of a model aims to map its output values to probabilities. Since it is
a common choice for classification tasks to restrict the output of a classifier to values between
zero and one, probability calibration is supposed to map an output to its corresponding
signal probability. To evaluate the degree of calibration, a so-called reliability plot is

5.4. Probability Calibration Methods 31

evaluated. Such a plot shows the fraction of signal events plotted over the binned classifier
output. Therefore, an optimal calibration would correspond to a linear function with slope
one. Additionally, the Expected Calibration Error (ECE) [48] is a metric to quantify the
merit of calibration. With a classifier output binned in M bins with content Bm, the bin
accuracy acc(Bm), the bin confidence conf(Bm) and the ECE can be computed as:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi) (5.12)

conf(Bm) =
1

|Bm|
∑
i∈Bm

pi (5.13)

ECE =
M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| . (5.14)

Where ŷ describes the predicted class label, y the true class label, pi the signal fraction of
sample i, |Bm| the number of entries in bin m, and n the total number of samples.

To optimize the calibration of a model, probability calibration methods can be used. These
are applied after the training of a classifier and can be seen as a function which transforms
the output of the classifier. In the scope of this work, Platt calibration [49] and isotonic
calibration [50] are applied to compare the degree of calibration of a model with Platt
and isotonic calibration, and a classifier without applied calibration method. The two
mechanisms are explained in the following.

Platt Calibration
assumes predictions ŷ ∈ [−1, 1] and transforms them into the range [0, 1]. Since it
is common use to predict values ŷ ∈ [0, 1], this transformation is not necessary in
most cases. To calibrate the values ŷ to probabilities P (y = 1|ŷ), the linear function
A · ŷ +B is transformed by a sigmoid

ŷcal =
1

1 + eA·ŷ+B
, (5.15)

with fit parameters A and B. To determine these, the authors of [49] suggest to
transform the target probabilities to t+ =

N++1
N++2 and t− = 1

N−+2 for positive labels
N+ and negative ones N−. For N± →∞, this corresponds to t+ = 1 and t− = 0. By
using the BCE(ŷcal, t), a maximum likelihood fit can be performed to adjust A and
B.

Isotonic Calibration
sorts the model output according to its prediction values ŷ. Afterward, the data is
iteratively combined in groups with the constraint, that these groups build a function
with a monotonous ascending signal fraction. To do so, the Pool-Adjacent-Violators
Algorithm (PAVA) is used. Its exact definition can be taken from [50]. The prediction
values of the data is transformed to the mean prediction of the group they belong to.
An isotonic fit for the Three Streamer presented in Section 6.5 is shown in Figure 6.2.

32 5. Multivariate Analysis Methods

0.0 0.2 0.4 0.6 0.8 1.0
Output

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 S

ig
na

l

Reliability Plot TS(E+G+P)
uncalibrated, ECE=56.96%
platt, ECE=58.5%
isotonic, ECE=60.81%
perfect calibrated

Figure 5.8.: Reliability Plot for a Three Streamer model. The output values of the model
are binned to plot their signal fraction over the model output. The black line
shows a perfect calibrated model. The blue data show the calibration of the
model without a calibration method. The same model with isotonic and Platt
calibration is shown as green and orange data respectively. In addition, the the
corresponding ECE value for each model is given.

5.5. Deep Ensembles

This work uses Deep Ensembles [4] to create predictive uncertainties for continuum classifica-
tion tasks. This section explains the concept of Deep Ensembles and will give a comparison
with Bayesian Neural Networks afterward.

A Deep Ensemble is a group of deep learning models. Such approaches are especially known
from Decision Trees [51]. The individual models are either trained on subsamples of the
dataset (e.g. bagging) or depend on previous models (e.g. boosting). In contrast, each
model of a Deep Ensemble is trained individually with different initialization parameters
and on the full dataset. This leads to an ensemble of uncorrelated models trained to
achieve a high accuracy on their own. This is significant since the prediction of high-quality
uncertainties demands that the models converge to different points in the solution space
while ensuring a high accuracy at the same time. If this is given, the ensemble output is a
composition of each model output for a given input.

For regression tasks it is suitable to use an ensemble of M models, predicting the mean µm
and the standard deviation σm of the target distribution. The ensemble is then handled
like a gaussian mixture

∑M
m
N (µm,σ

2
m)

M . Therefore, it holds for the ensemble output µ and

5.5. Deep Ensembles 33

4 2 0 2 4

15

10

5

0

5

10

15

Ensemble with Adv. Epsilon=0.0001
train
pred mean test
+/- 3sigma
+/- 2sigma

(a) Ensemble of NNs trained with the negative log-likelihood
(NLL) and adversarial training. The training data (blue
dots) is implemented with heteroscedastic uncertainties
and varying densities of data points. The ensembles
output mean is shown as a red line, the 2σ and 3σ
uncertainty bands are shown in orange and blue.

(b) Sketch of Solution space. Possible solutions for the training data
are shown as a solid line, the ones for validation data as a dotted
line. Convergence modes are shown as blue dots, local uncertainties
are marked as red areas. Taken from [52]

Figure 5.9.

34 5. Multivariate Analysis Methods

its uncertainty σ2

µ =

M∑
m

µm
M

(5.16)

σ2 =

M∑
m

σ2m + µ2m
M

− µ. (5.17)

To address classification tasks, an ensemble of M models can be trained, each with one
discrimination output. As uncertainty, the upper and lower confidence level of an ensembles
prediction can be determined by evaluating the corresponding quantiles of the prediction
distribution.

Before applying a Deep Ensemble on physical data, their performance and the quality of
their uncertainties were tested. This is shown in Figure 5.9a. The toy dataset counts 300
points (blue dots) and has heteroscedastic noise, which means, that the magnitude of the
noise in y direction is dependent on x. For the data holds

y(x) = 7 · sin(x) + 3 ·
∣∣∣cos

(x
2

)∣∣∣ · N (0, 1). (5.18)

Additionally, there is a variety of the data density

x = N (−4, 0.4) +N (0, 0.3) +N (4, 0.4), (5.19)

especially the regions without data are needed to observe the reaction of the ensemble in
regions without data.

The ensemble consists of 100 MLPs. Each of them has two hidden layers with 400 neurons
to predict mean µ and variance σ2 of the toy dataset. Each network is trained individually
on the full dataset. To generate smooth uncertainty bands, small deviations ε = 0.0001
were added to the input values x+ ε (adversarial training, see [53]).

The result in Figure 5.9a shows the training data and an evaluation of the ensemble. The
2σ and 3σ uncertainty bands fit suitable in all regions with training data. As soon as the
ensemble has to predict values in regions without training examples, wider uncertainty
bands are produced. This behavior is expected in regions without training data and shows
that Deep Ensembles are excellent candidates for uncertainty predictions.

A widely used method to produce predictive uncertainties is to use Bayesian Neural Networks.
The next section explains the different principles of Bayesian Networks and Deep Ensembles.

5.5.1. Comparison with Bayesian Neural Networks

The current state of the art to produce predictive uncertainties is to use Bayesian Neural
Networks (BNNs). Due to the popularity of BNNs, this section should give a short overview
of them and compare the underlying principles with Deep Ensembles afterward. This
comparison is based on [52].

The underlying concept of BNNs is to replace the constant network weights ωkj,i by weight
distributions. For an evaluation step, each network weight is sampled from its distribution.

5.5. Deep Ensembles 35

Uncertainties are produced by evaluating the network multiple times for each input. During
the training of BNNs, the weight distributions have to be learned. This is done by
Variational Inference, a simplification of a maximum a posteriori approach, where the
weight distributions are adjusted to fit the training data. Detailed information can be taken
from [54].

The main difference between Deep Ensembles and BNNs is the way they cover possible
solutions in the solution space. This is shown in Figure 5.9b. A standard NN would cover
one optimum in the space of solutions, such convergent points are called modes. Nonetheless,
the training with variational methods leads to one mode in the solution space, too. Due to
its weight distributions, a BNN does not only cover a mode but the local area around that
(red area), which is interpreted as uncertainty. The approach of ensembles is different: since
there usually are different local optima, each model is expected to converge to a different
mode (blue dots). Instead of evaluating local uncertainties, the uncertainties of an ensemble
rise from the global distribution of modes. Overall, this leads to a coverage of multiple,
possible solutions which results in a high diversity of modes. Since a high diversity is only
desirable if there is an appropriate trade-off between diversity and accuracy, this has to be
investigated as well.

To evaluate the quality of Deep Ensembles regarding to high diversities, the authors of [52]
present a prediction diversity vs. test accuracy plot. The diversity is measured as a fraction
ddiff of different prediction values of the considered model with the baseline optimum (see
below). Since the prediction diversity depends on the accuracy of the model, the diversity
is normalized by (1− accuracy).

The example shown in Figure 5.10 is created by using a ResNet20v1 [55] trained on the
CIFAR-10 dataset [56] including 10 classes. To evaluate the performance of a single-mode
model, one is trained as a baseline optimum (green star). To access the local area around
the baseline optimum, checkpoints of the training trajectory are saved to sample new
models from these checkpoints as subspace from the baseline model (colored dots). To
do so, different sampling methods are used: random subspace (blue), dropout subspace
(yellow), simple gaussian (violet), and rank 4 gaussian (pink) sampling (see [52] for detailed
explanations).

Additionally to the baseline model and its subsampled models, multiple independent models
were trained, converging to different modes in the solution space which corresponds to
the principle of a Deep Ensemble. These models are marked as red stars. The result in
Figure 5.10 shows, that models subsampled from the baseline model, i. e. solutions in the
local area around the baseline model, seem to have a clear dependency in the diversity-
accuracy plane. All independent optima achieve a better diversity-accuracy trade-off than
the sub sampled models. This means that independently trained models can predict with
a much higher diversity by achieving at least the same test accuracy than models in the
local area of a single mode. Since it is crucial for suitable uncertainty predictions to cover a
broad range of predictions by ensuring high accuracy, this experiment proves that Deep
Ensembles are excellent candidates to predict uncertainties. This gives the motivation to
test a Deep Continuum Suppression with predictive uncertainties with Deep Ensembles.

36 5. Multivariate Analysis Methods

Figure 5.10.: Prediction diversity vs. test accuracy plot of ResNet20v1 on the CIFAR-10
dataset. Shown are different subsampling methods (colored dots) from the
training trajectory of a baseline optimum (green star). Corresponding upper
and lower limits are shown as dashed lines. Independent optima are marked
as red stars. Taken from [52]

5.6. Distance Correlation
To decorrelate a classifier output from vertex variables like ∆z (see Section 4.3), an
appropriate metric is needed to measure this correlation. This work uses Distance Correlation
(DisCo) [57] to do so this and to decorrelate the classifier from ∆z. This chapter explains
distance correlation and the way it can be used for decorrelation.

DisCo is a way to measure the correlation between two variables. In contrast to the
well-known Pearson correlation [58], which only addresses linear correlation, the concept of
DisCo allows to be sensitive on nonlinear correlations too. This ability is achieved by using
all pairwise distances. Assume two-variable samples of size N (Xi, Yi) with i = 1, 2, .., N .
Then ai,j and bi,j are the distances within each sample

ai,j = ||Xi −Xj || (5.20)
bi,j = ||Yi − Yj ||. (5.21)

Furthermore Aai,j and Bi,j are defined as

Ai,j = ai,j − ā·j − āi· + ā·· (5.22)
Bi,j = bi,j − b̄·j − b̄i· + b̄·· (5.23)

with the mean of all i for the j-th index ā·j , vice versa for āi·, and the mean for all i, j
indices ā·· (and analogue for Bi,j). Now the distance covariance can be defined as

dCov2(X,Y) =
1

N2

N∑
i=1

N∑
j=1

Ai,jBi,j . (5.24)

5.6. Distance Correlation 37

Distance correlation is defined as analog to the Pearson correlation. With the motivated
distance covariance above, it holds

dCorr2(X,Y) =
dCov2(X,Y)

dCov(X,X) · dCov(Y, Y)
. (5.25)

Distance correlation behaves like Pearson correlation: values near one indicate a strong
correlation, while values near zero indicate no correlation. Further information can be taken
from [57].

The substantial advantage of addressing nonlinear correlations too makes the distance
correlation an attractive method for decorrelation tasks. The authors of [5] use this
advantage and present a method, based on DisCo, to decorrelate a classifier output from a
certain variable. In order to do so, the dCov2(X,Y) term is added as a regularisation term
to the loss function

L′ = L+ λ · dCorr2(∆z, ŷ) (5.26)

where λ controls the strength of the decorrelation term, ∆z is the variable to decorrelate
from the classifier output ŷ. By appending the DisCo term during training, the minimization
algorithm will automatically minimize the decorrelation between the two variables, if the
parameter λ is well chosen. It is important to note, that λ is the only hyperparameter
introduced by decorrelation with DisCo. Therefore one can conclude, that the decorrelation
with DisCo enables an effective decorrelation mechanism with easy implementation.

6. Applied Continuum Suppression

After introducing a promising mechanism for the Continuum Suppression in the previous
chapter, this chapter shows an applied suppression for these methods.

First, the underlying dataset for the Continuum Suppression is explained. Next, the pre-
processing of this dataset is pointed out. To compare the results of Continuum Suppression
models, Receiver Operating Characteristic curves are explained. Next, an MLP from [3] is
reproduced to have a benchmark model. A preliminary model for a Deep Ensemble, a single
Three Streamer Model is trained and evaluated. In addition, a probability calibration test
is done. After that, an ensemble of Three Streamer models is trained to add uncertainties
to a Continuum Suppression. In the end, a Deep Ensemble using DisCo to decorrelate a
classifier output from ∆z is trained and evaluated.

6.1. Dataset

In 2017, the work of [3] introduces a Deep Continuum Suppression for the Belle II experiment.
In order to allow for a good comparison between this work and the results of [3], the dataset
used in this work is chosen to be as similar as possible to the one of its predecessor. The
dataset in [3] is built on the Monte Carlo Campaign 7 phase 3. However, since the quality
of the Monte Carlo generation is continuously improved to better model the detector data,
this work uses data from the Monte Carlo Campaign 13a (MC13a) which may differ from
campaign 7 (MC7).

The dataset consists of a signal and a background set, which were separately generated
in the scope of MC13a. As explained in Section 4.1, the background sample consists of
uū,dd̄, ss̄, cc̄, and τ+τ− events. Analogous to [3], the process B0 → K0

S(→ π+π−)π0(→ γγ)
(incl. c.c.) is chosen as signal. Therefore the signal sample only contains BB̄ events with at
least one meson decaying to K0

Sπ
0. Using BASF2, such events are reconstructed from the

background and the signal datasets, to obtain signal candidates.

For the reconstruction, only tight track and cluster candidates are considered. This implies
that in the corresponding detector regions only high energy cuts were made, leading to higher
purity of correctly reconstructed candidates. Furthermore, cuts during the reconstruction
require for π± candidates a χ2-Probability over 0.001 for the track fit. Additionally all
reconstructed π masses are restricted to 0.115 ≤ Mπ ≤ 0.152 GeV. Analogously, the
mass of the reconstructed K0

S is expected to lie between 0.48 and 0.516 GeV. Finally the

39

40 6. Applied Continuum Suppression

reconstructed B0 is allowed to have an energy difference to the theoretical B0 energy of

−0.3 < ∆E < 0.3 GeV. Its beam-energy constrained mass Mbc =

√
E2

beam

c
4 − p

2
B

c
2 is restricted

to 5.2 < Mbc < 0.53 GeV. An overview of all applied cuts is given in Table 6.1.

Besides the mentioned cuts, only clusters with at least one CDC hit and neutral particles
with a momentum of not less than 0.05 GeV are considered. Both, clusters and tracks, are
allowed to have a maximal momentum in the center-of-mass frame of 3.2 GeV.

Table 6.1.: Cuts applied during the reconstruction.

Particle Cut
B0 5.2 < Mbc < 0.53 GeV

−0.3 < ∆E < 0.3 GeV

K0
S 0.48 ≤ M

K
0
S
≤ 0.516 GeV

π0 0.115 ≤ Mπ ≤ 0.152 GeV

π± χ2
ProbFit > 0.001

0.115 ≤ Mπ ≤ 0.152 GeV

After reconstruction, the dataset retains 384 716 events with a signal-to-background ratio
of 0.636. This is less than a tenth compared to the data used in [3], where 4 914 670 events
with a signal-to-background ratio of 1.32 were available. Furthermore, the dataset used in
this work is highly imbalanced. To counter this, weights are used to sample minibatches
with an equal amount of signal and background during the training. Each plotted result
and each metric presented in this work, is produced with weighted events if not mentioned
otherwise.

After reconstruction, the dataset is split into three parts: a training set with 81% of the
data available, a validation set with 9%, and a test set with 10%. Each dataset has the
same signal-to-background fraction. The training set is used for the training of the classifier.
During this, the model is evaluated on the validation set. Since the model has not seen the
validation data, the evaluation shows a training-independent model performance and can
be used for early stopping. After training, the test set is used to determine the performance
of the model on another separate set.

6.2. Preprocessing

During preprocessing, the dataset is prepared for better training of the model. This includes
data cleaning, like deleting events produced with Not-a-Number (Nan) values which could
originate from failed vertex fits for example. Moreover, outliers in the dataset could lead to
high neuron outputs in the model and therefore lead to more difficult training. To address
this, the variable distributions of all datasets are capped to the 5 · 10−5-th quantile of the
training data. Additionally, selected variables are Yeo-Johnson [59] transformed. This aims
to change the variable distribution to a gaussian shape since it is easier for the model to

6.3. Figure of Merit 41

learn from them. The Yeo-Johnson transformation performs a power transformation for
each distribution in the data. To do so, the function ψ(λ, x) is defined as

ψ(λ, x) =



(
(x+ 1)λ − 1

)
/λ if λ 6= 0, x ≥ 0

log(x+ 1) if λ = 0, x ≥ 0

−
[
(−x+ 1)2−λ − 1

)]
/(2− λ) if λ 6= 2, x < 0

− log(−x+ 1) if λ = 2, x < 0

(6.1)

with parameter λ and the variable to transform x. With a maximum likelihood fit on
the training set, the best matching λ is determined. Next, the variable transformation is
applied in each dataset. Plots of all transformed and not transformed variables are shown
in Appendix A.

6.3. Figure of Merit

To compare different models with each other a figure of merit has to be chosen. In this
case, the Receiver Operating Characteristic curve (ROC) is a suitable choice. A ROC curve
shows the signal efficiency of a classifier over its the background rejection. To compute
these, the variables True Positives (TP), False Negatives (FN), False Positives (FP), and
True Negatives (TN) are needed. Their concept is explained in Figure 6.1. Now the True
Positive Rate (TPR) and the False Positive Rate (FPR) can be computed

TPR =
TP

TP + FN
(6.2)

FPR =
FP

FP + TN
. (6.3)

The signal efficiency directly corresponds to the TPR, whereas the background rejection is
defined as 1− FPR. As an example for different ROC curves Figure 6.3 can be considered.
Additionally, the Area Under Curve (AUC) is specified to quantify the quality of a ROC
curve.

6.4. Reproduction of Previous Work

To have a fair comparison of the models from this work with the previous work from [3],
the MLP (see Section 4.3) from [3] is reproduced as accurately as possible and evaluated
on the actual dataset from MC13a. To do so, the clusters and tracks in each event were
ranked according to their momenta in the center-of-mass frame. For clusters, the first ten
candidates of the B0 and the first ten of the ROE are kept. For tracks of B0 daughters,
the first five positively charged, and the first five negatively charged track candidates are
kept. The same holds for tracks of the ROEs. Figure 4.3 illustrates the particles selection.
If there are not enough candidates to fill out all slots, the remaining slots are zero-padded.

For the preprocessing, all variable distributions are binned in 100 bins with an equal
amount of data (equal frequency binning). In [3] is mentioned, that input variables can be

42 6. Applied Continuum Suppression

Figure 6.1.: Confusion matrix for binary classification tasks with Positive and Negative
classes (i.e. signal and continuum). True Positives (TP) and True Negatives
(TN) are correct predicted Positives and Negatives respectively. On the other
hand, False Positives (FP) and False Negatives (FN) are incorrectly classified
Positives and Negatives. Taken from [60]

normalized during the preprocessing. Since there is no information about the normalization
itself and which features to normalize, it was decided not to normalize. However, since this
work does not use a normalization either, a possible effect would show up on both models.

The architecture of the MLP has 5 hidden layers with 50 neurons each. As activation
function, the hyperbolic tangent (see Figure 5.2d) is used, the activation function of the last
neuron is a sigmoid function (see Figure 5.2a). The training is performed with minibatches
of size 500, with class weights used to ensure balanced training. To minimize the loss, the
ADAM optimizer [61] is used with a learning rate of 0.001. Finally, the training is stopped
if there was no validation loss improvement in the last ten epochs (early stopping). The
ROC curve of the MLP is shown in Figure 6.4.

6.5. Three Streamer Model

As a preliminary stage for a Deep Ensemble, this section addresses the Three Streamer
model which is explained in Section 5.3. The training of a Three Streamer, its performance
for a Continuum Suppression, and its probability calibration are shown in this section.

6.5.1. Training

For the training of the Three Streamer model, the dataset introduced in Section 6.1 is
used and preprocessed as described in Section 6.2. To calculate the loss, the Binary Cross
Entropy (see Equation (5.4)) is chosen. The Three Streamer model has, as compared to
other machine learning models, many hyperparameters to optimize. Since one of the benefits
of ADAM is the handling of high-dimensional problems, this minimization algorithm is a
suitable choice to optimize the loss of the Three Streamer model [61]. A learning rate of
10−4 is chosen. During the training, minibatches of size 500 are drawn from the training
sample, which consists of 311 653 events. Since the available dataset is imbalanced, class
weights are used to pick minibatches with equal amounts of signal and background from

6.5. Three Streamer Model 43

the training batch. During the training, the model is evaluated after each epoch on the
validation dataset. If the validation loss does not decrease for 12 epochs, the training is
stopped.

6.5.2. Separation Power

After the training, the discrimination power of the Three Streamer model is evaluated on
the test dataset. To do so, a ROC curve is plotted, and, in addition, the corresponding
AUC score is computed (see Section 6.3). Furthermore, an MLP reproduced from [3] (see
Section 6.4) is evaluated to compare the outcome of both model architectures.

The resulting ROC curves and their ROC AUC values are shown in Figure 6.3. The MLP
achieves a ROC AUC score of 0.9848. The Three Streamer model reaches an AUC score
of 0.9911 and therefore exceeds the MLP. This shows that the Three Streamer model is
more powerful than the MLP. The better performance could be due to the implemented
self-attention mechanism that probably extracts more information from the underlying
data, or to the bigger network structure of the Three Streamer in general. Overall, these
results demonstrate that the Three Streamer is a suitable candidate for the Continuum
Suppression.

6.5.3. Probability Calibration

It is important for machine learning models, that their output is interpretable. For Deep
Ensembles (see Section 5.5) in particular, it is important that the ensemble members are
probability calibrated. Non-calibrated members would have distortions in their output
values and make them incomparable with each other. In contrast, calibrated ensemble
members lead to comparable and interpretable outputs. These allow for well-calibrated
uncertainties of a Deep Ensemble. To ensure these, the model output of a Three Streamer
is compared with the output of the same model, with additional probability calibration.

The probability calibrations are performed after the training, based on the validation
dataset. This ensures an independent model evaluation on the test dataset. The calibration
methods used to do so are Platt scaling and isotonic regression (see Section 5.4). The
isotonic regression for the Three Streamer is shown in Figure 6.2. To be able to judge the
quality of the calibration, a reliability plot is made and shown in Figure 5.8. Additionally,
the ECE (see Section 5.4) quantifies the level of calibration.

The results in Figure 5.8 show that the isotonic calibration achieves an ECE of 60.81 and
the Platt calibration a score of 58.5. The model without any calibration method reaches
ECE=56.96. The reliability plot shows that the model without calibration and the one
with isotonic calibration deviate in a concave shape from the ideal calibration. The Platt
calibration has clear deviations from a perfectly calibrated model in the region between 0
and ≈ 0.6. For outputs above 0.6, the calibration performance is comparable to the model
without the calibration method.

The calibration results in Figure 5.8 show clearly that the model without any applied
calibration method outperforms the one with Platt or isotonic calibrations. Other Three
Streamer models trained in the scope for this thesis show similar results. This highly
suggests, that trained Three Streamer models are by default probability calibrated, and

44 6. Applied Continuum Suppression

0.0 0.2 0.4 0.6 0.8 1.0
model output

0.0

0.2

0.4

0.6

0.8

1.0
sig

na
l t

ru
th

Isotonic Fit

data
isotonic fit

Figure 6.2.: Isotonic fit for the Three Streamer model. The data is sorted according to
their predictions and plotted as signal or continuum (blue dots). Through
application of PAVA, the data is grouped with monotonously ascending signal
fractions.

none of the tested methods increase the degree of calibration. Therefore, Three Streamer
models are suitable candidates for uncertainty predictions with an ensemble approach. The
classification grades are nearly equal to each other, as the ROC AUC values in Figure 6.3
show.

Since the Three Streamer uses a sigmoid activation function in the output layer, it is
reasonable to assume that such models are implicitly Platt calibrated. Moreover, it is
possible that such models can perform a more effective Platt calibration. In general, these
models have more weights in the output layer and in the previous ones to fine-tune the
calibration. This could lead to better results than isotonic calibration or Platt scaling
using only two parameters. Nevertheless, to find a clear reason why Platt and isotonic
calibration do not improve the model calibration, further studies are needed. However, the
aim of the calibration tests was to ensure a high degree of probability calibration and to
compare methods for improvement. This analysis showed, that the default calibration of
the Three Streamer is superior, no calibration method tested is able to increase the degree
of probability calibration. Therefore, the Three Streamer can be directly used in a Deep
Ensemble approach.

6.6. Ensemble of Three Streamers
In order to add predictive uncertainties to the Continuum Suppression, a Deep Ensemble is
created. A motivation, an explanation on how these work and a comparison with variational

6.6. Ensemble of Three Streamers 45

0.75 0.80 0.85 0.90 0.95 1.00
signal efficiency

0.75

0.80

0.85

0.90

0.95

1.00
ba

ck
gr

ou
nd

 re
je

ct
io

n
Signal Efficiency vs. Background Rejection

AUC
Three Streamer no cal. method 0.9911

Three Streamer Platt 0.9911
Three Streamer isotonic 0.991

Figure 6.3.: Background rejection over signal efficiency for different Three Streamer models.
The Three Streamer without any applied calibration method is plotted in blue.
The same model with isotonic and Platt calibration is plotted in a green an
orange respectively. In addition the ROC AUC values are given. The models
perform identically, except of a slightly smaller AUC value of the isotonic one.

methods are given in Section 5.5. The ensemble is composed of 80 Three Streamer models,
which are explained in Section 5.3.

6.6.1. Separation Power

To evaluate the predictive performance of the Deep Ensemble, a ROC curve, and corre-
sponding AUC score are determined. The result is compared to a single Three Streamer
model and a reproduced MLP of [3] (see Section 6.4). These results are shown in Figure 6.4.

The separation power of the Deep Ensemble lies with a ROC AUC score of 0.9912 slightly
above the one of the Three Streamer with 0.9911. The MLP achieves a ROC AUC score of
0.9848 and does therefore, not perform as well as the ensemble. Furthermore, the results
show that the separation power of the ensemble increases slightly through an ensemble
effect.

6.6.2. Uncertainties

Using a Deep Ensemble allows for a Deep Continuum Suppression with predictive uncertain-
ties. In order to provide more detailed insight into the produced uncertainties, intermediate
steps are shown and discussed. After that, final results for predictive uncertainties are
presented.

To predict uncertainties for an event, each member of the ensemble is evaluated to determine
the 95% confidence levels (CLs) of the resulting distribution, as explained in Section 5.5.

46 6. Applied Continuum Suppression

0.75 0.80 0.85 0.90 0.95 1.00
signal efficiency

0.75

0.80

0.85

0.90

0.95

1.00
ba

ck
gr

ou
nd

 re
je

ct
io

n
Signal Efficiency vs. Background Rejection

AUC
Ensemble 0.9912

Three Streamer 0.9911
MLP 0.9848

Figure 6.4.: Background rejection over signal efficiency for different models. The perfor-
mance of an MLP (see Section 6.4) is plotted in green. The models designed in
the scope of this work are the Three Streamer model (black) and the Ensemble
of Three Streamers (dark red).

Such an ensemble distribution is shown for one signal and background event in Figure 6.5a.
Regarding the background event, the predictions of the ensemble members are close together,
which implies, that the modes in the solution space provide similar solutions. As a result,
the ensemble is confident about its prediction. The shape of the distribution is similar to
an exponential one. On the other side, the distribution of predictions for the signal event is
more widely dispersed. In particular, there are ensemble members above and below the
class limit of 0.5. This shows that the diversity of modes found by the ensemble, is much
higher compared to the background event. This diversity leads to wider uncertainty limits.
Therefore, the ensemble is not confident about its prediction.

In Figure 6.5b predictions and corresponding uncertainty limits are shown for 40 random
signal and background events each. The plot shows that predictions near zero or one tend
to have tighter uncertainties. The examples also suggest that predictions outside these
regions have wider uncertainty bands. Moreover, the distributions in Figure 6.5a and the
data plotted in Figure 6.5b prove, that the Deep Ensemble is able to predict asymmetric
uncertainties. This is especially beneficial for predictions near zero (or one) as in this case
the model can give wider uncertainties towards one (zero), depending on the variety of
modes the ensemble can reach.

To investigate the ability of the Deep Ensemble to predict proper uncertainties for the
Continuum Suppression, uncertainty vs. prediction plots are made. These scatter plots
show the upper and lower uncertainty limits for all events, dependent on their predicted
value. In Figure 6.6 an uncertainty vs. prediction plot with only true signal data is shown
(Figure 6.6a), Figure 6.6b shows analogously shows a plot with background data, and

6.6. Ensemble of Three Streamers 47

0.0 0.2 0.4 0.6 0.8 1.0
prediction

0

5

10

15

20

25

30

en
se

m
bl

e
co

un
ts

Ensemble Distribution
background event
signal event

(a) Ensemble evaluation on one signal event and one
background event.

0.0 0.2 0.4 0.6 0.8 1.0
prediction

40

30

20

10

0

10

20

30

40

ar
b.

 e
ve

nt
 n

um
be

r

Ensemble Uncertainty Bands
background
signal
with 95% CL

(b) Ensemble evaluation on 40 signal events and 40
background events.

Figure 6.5.: Plots for Deep Ensemble uncertainties.

Figure 6.6c finally combines both, signal and background data. All plots are made with
class weights.

Figure 6.6a shows, that the major part of the data is located in the region above 0.5
because most signal events are classified correctly. For predictions below 0.5, especially
the distribution of the upper uncertainty limits can only be recognized weakly due to low
statistics. However, an asymmetric distribution for the upper and lower uncertainty limits
can be expected. In regions near zero and one, these limits are close together, whereas the
spread widens towards predictions of 0.5. Moreover, one can recognize a minimum gap
between the upper and lower limits. This one is small for uncertainties near zero and one
and is very pronounced in between.

In general, all observations made for Figure 6.6a can be found in Figure 6.6b. Additionally,
the upper uncertainties for the background only plot cover a wider range, compared to the
lower limits of the signal plot. Figure 6.6 is a superposition of the described signal and
background plots.

The general shape of the uncertainty distributions is as expected. This means, that the
ensemble is very confident near predictions close to zero and one. Towards predictions of
0.5, both, the upper and lower, uncertainty limits get wider, implying, that the ensemble is
uncertain about its predictions.

Especially mentionable is the observed minimum gap between the limits. It indicates that
tight uncertainty bands can only be found near zero and one. A broad gap outside these
regions shows, that the ensemble has a minimum uncertainty standard here. If this would
not be the case, the ensemble could be able to make a signal prediction of 0.5 for example,
with very tight uncertainties. But a prediction of 0.5 signal probability indicates that the
ensemble cannot assign the event to a class. Tight uncertainties show, that the ensemble is
confident about its prediction of 0.5 signal probability. This would mean, that all ensemble
members give predictions near 0.5 and therefore, that they either do not have the capacity

48 6. Applied Continuum Suppression

0.0 0.2 0.4 0.6 0.8 1.0
prediction

0.0

0.2

0.4

0.6

0.8

1.0

un
ce

rta
in

ty
 (9

5%
 C

L)

Uncertainty vs. Prediction: Signal Only

101

102

103

104

to
ta

l c
ou

nt
s

(a) Signal only

0.0 0.2 0.4 0.6 0.8 1.0
prediction

0.0

0.2

0.4

0.6

0.8

1.0

un
ce

rta
in

ty
 (9

5%
 C

L)

Uncertainty vs. Prediction: Background Only

100

101

102

103

104

to
ta

l c
ou

nt
s

(b) Background only

0.0 0.2 0.4 0.6 0.8 1.0
prediction

0.0

0.2

0.4

0.6

0.8

1.0

un
ce

rta
in

ty
 (9

5%
 C

L)

Uncertainty vs. Prediction

100

101

102

103

104

to
ta

l c
ou

nt
s

(c) Signal and background

Figure 6.6.: Uncertainty vs. prediction plots for a Deep Ensemble. The x-axis shows the
predicted value (i.e. the mean) of the ensemble. On the y-axis the absolute
uncertainty limits of the ensemble shown. For this, the upper (above grey line)
and lower (under grey line) uncertainty limits for given predictions are shown
as scatter plots. Figure 6.6c shows the whole test dataset, Figure 6.6a only true
signal events, and Figure 6.6b only true background events. Since the dataset
is imbalanced, all plots are produced with class weights.

6.7. Ensemble Decorrelation with Distance Correlation 49

to classify the event or that the event is so exotic, that it does not fit in any structures
learned by the ensemble members. However, since no exotic events are used in this work,
and a Three Streamer with enough capacity is showed in Section 6.5, such predictions
would be contradictory and a minimum gap between the uncertainty limits highlights the
reliability of the ensemble.

Another noticeable point are the uncertainty ranges for background events. Here the upper
uncertainty limits have notably large ranges. This effect does not occur in the lower limits.
Such an effect shows, that there are predictions of ensemble members that differ widely from
the predicted ensemble mean for events classified as background. In this example, the variety
of different modes reached by the ensemble can be observed particularly well. Nevertheless,
these wide uncertainty ranges can be traced back to the fact that continuum events mimic
the chosen signal process. Therefore, some ensemble members cannot distinguish these
events, which leads to higher uncertainties.

In conclusion, the results in Figure 6.6 show: The ensemble is confident about its predictions
near zero and one and insecure in regions in between; a minimum gap between the uncertainty
limits underline the credibility of the uncertainty ranges; pronounced upper uncertainty limits
for background events show their similarity to signal events. Therefore, it is shown, that
Deep Ensembles are excellent candidates to predict interpretable and reliable uncertainties
for Continuum Suppression.

6.7. Ensemble Decorrelation with Distance Correlation

It is well known, that the use of vertex information in a Continuum Suppression results
in a correlation between the classifier output with vertex features, especially with ∆z. To
address this, a decorrelation mechanism using DisCo is explained in Section 5.6. In the
following section this method is applied to decorrelate a Deep Ensemble from ∆z.

6.7.1. Training

To ensure comparable results, the ensemble hyperparameters are chosen equivalent to
the one in the previous sections. Therefore, the ensemble consists of 80 Three Streamers
with architectures as explained in Section 5.3. The training is performed as described in
Section 6.5.1. In addition, the DisCo term is added to the cost function.

During the training of the individual models, it turned out that the DisCo term has an
unexpectedly strong influence on the training. The authors of [5] use values up to 600
for λ. Figure 6.7a shows the loss of a Three Streamer model with λ = 150. The figure
shows, that the model does not learn anything at all in the first few epochs. Then, the loss
abruptly falls and then continues to decrease only minimally. Such a scenario can also be
observed for other values of λ. In addition, λ should not be chosen too small, as otherwise
the decorrelation effect fails. To address this, the models are trained for ten epochs with
λ = 0. From the tenth epoch, λ is step-wise increased by three in each epoch. This allows
the model to first converge to a minimum and then slowly reduce the correlation. This
approach is motivated by [62]. A result of this training procedure is shown in Figure 6.7b.
It can be seen, that the training is more stable although λ reaches values up to 300.

50 6. Applied Continuum Suppression

0 10 20 30 40 50 60 70
epoch

0.3

0.4

0.5

0.6

0.7

cr
os

s e
nt

ro
py

 lo
ss

Training and Validation Loss
validation
training
15-val-mean
early stopping

(a) λ is set to 150 from the beginning.

0 20 40 60 80 100
epoch

0.15

0.20

0.25

0.30

0.35

cr
os

s e
nt

ro
py

 lo
ss

Training and Validation Loss

validation
training
15-val-mean
early stopping

(b) λ is set to zero. From the tenth epoch, λ is
increased by three in each epoch.

Figure 6.7.: Training and validation losses for the training of Three Streamer models using
different implementations for λ. The training loss is shown in red and the
validation loss in blue. To address fluctuations, the mean of the last 15 validation
losses is determined and used for early stopping. The epoch from which no
more improvement takes place is shown in light blue.

6.7.2. Decorrelation Power

In order to evaluate the effectiveness of the decorrelation with DisCo applied on an ensemble
of Three Streamers, the resulting bias on the ∆z distribution is taken into account and
compared with the ensemble from Section 6.6.

To access the degree of correlation with ∆z, the Classifier Output Dependent (COD)
distribution of ∆z is plotted for both ensembles which are shown in Figure 6.8. This
method was already used in [3] to measure the classifier correlation with ∆z. Since the
∆z distribution of background events is not significant, these COD distributions only take
signal events into account. The black lines show the normalized ∆z distribution without
an applied classifier cut. Additionally, 100 classifier cuts are plotted in different red tones.
These cuts are based on the quantiles of the classifier output. Low quantile cuts are shown
as dark red while high quantile cuts fade to light red. For a cut on a given quantile of
the classifier output the resulting ∆z distribution is plotted in the corresponding red tone.
Since only signal events are taken into account, 40% of all signal events would be cut away
in the example. The number of signal events used in this thesis is low in general, which
explains the non-smooth behavior of the ∆z distributions in the COD curves.

In addition, a flatness score [3] is computed to quantify the deviations of the quantile
distributions compared to the uncut ∆z distribution. Therefore, the ∆z distribution is
equal frequency binned which results in a flat distribution. Then 100 quantile cuts are
applied to this distribution which should result in a flat distribution in an optimal case. To
determine the flatness of these quantile cuts the squared differences are summed up and
normed. This concept was already used in [31], for its implementation [63] was used. The
flatness score is plotted on top of the COD diagrams in Figure 6.8.

6.7. Ensemble Decorrelation with Distance Correlation 51

0.075 0.050 0.025 0.000 0.025 0.050 0.075
DeltaZ

0

5

10

15

20

25

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

flatness: 0.07119
ensemble

0.0

0.2

0.4

0.6

0.8

1.0

qu
an

til
es

(a) Ensemble without distance correlation.

0.075 0.050 0.025 0.000 0.025 0.050 0.075
DeltaZ

0

5

10

15

20

25

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

flatness: 0.03239
ensemble with DisCo

0.0

0.2

0.4

0.6

0.8

1.0
qu

an
til

es

(b) Ensemble with distance correlation. λ is set to zero and increased by 3 per epoch,
starting at epoch ten.

Figure 6.8.: Comparison of COD curves of an ensemble (Figure 6.8a) and an ensemble
trained with DisCo (Figure 6.8b).

52 6. Applied Continuum Suppression

Figure 6.8a shows the correlation between the ensemble from Section 6.6 with ∆z. It can
be seen, that there are significant deviations for high quantile cuts. Low quantile cuts
already lead to a visible bias in the ∆z distribution. The higher the quantile cuts, the more
significant the bias. The decorrelation results in Figure 6.8b show, that the application
of DisCo reduces the red deviations clearly. The bias for low quantile cuts seems to be
suppressed completely. For quantile cuts around the 50% quantile, deviations on the peak
of the distribution are present. Biases for low quantile cuts are still visible but are reduced
compared to the ensemble without a decorrelation mechanism. The bias reduction is also
notable considering the flatness scores. The decorrelation using DisCo reduces the flatness
score by over 50%.

The comparison between the original ensemble and the decorrelated one using Disco clearly
shows the significant reduction of the bias in ∆z. Therefore one can conclude, that the
decorrelation with DisCo is an effective and handy method to decorrelate a classifier output
from ∆z. It would be a motivation for future work to use a DisCo-decorrelated model in a
CPV study to test the decorrelation effect in such studies.

The comparison of the decorrelation results presented in this thesis with the ones from
previous work is not possible. Figure 6.9 shows a comparison between the COD curve of
reproduced MLP and a COD curve for the corresponding MLP (DNN) from [3]. The figure
shows clearly, that the bias is significantly higher for an MLP based on the actual dataset
of MC13a compared to the one based on MC7. One can therefore not assume, that the
results of this work are comparable to one on other datasets.

6.7.3. Separation Power

The performance of the ensemble trained with DisCo is compared with the normal one
and the reproduced MLP (see Section 6.4). Corresponding ROC curves are plotted in
Figure 6.10.

The results show, that an ensemble without DisCo outperforms both other models, the
MLP and the normal ensemble. The ensemble trained with DisCo achieves a ROC AUC
score of 0.9819 and therefore cannot compete with the MLP. Obviously, the decorrelation
term hinders the performance of the model and leads to a trade-off between the degree of
decorrelation and performance.

6.7.4. Uncertainties

The Uncertainty vs. Prediction plots for the ensemble trained with DisCo are given in
Figure 6.11. The overall behavior of the uncertainties is similar to the ones shown in
Figure 6.6a. Nevertheless, several differences can be found in the details of the distributions.

At first, the minimum gaps seem to be smaller compared to the ones in Figure 6.6c. This
can be traced back to the fact, that the DisCo term complicates the training and it seems
to lead to a lower variety in the modes the ensemble members converge to. Therefore, the
predictions of the ensemble members differ less from each other which finally leads to tighter
uncertainty limits.

In the signal only plot, the lower uncertainty limits tend more to values near zero. But
more statistics is needed in regions with low prediction for a reliable statement. In the

6.7. Ensemble Decorrelation with Distance Correlation 53

0.075 0.050 0.025 0.000 0.025 0.050 0.075
DeltaZ

0

5

10

15

20

25

no
rm

al
ize

d
in

 a
rb

. u
ni

ts
flatness: 0.07033

MLP

0.0

0.2

0.4

0.6

0.8

1.0

qu
an

til
es

(a) COD curve of an MLP based on MC13a.

(b) COD curve of an MLP based on MC7. The peak is due to failed vertex fits.
Taken from [3]

Figure 6.9.: Comparison between the correlation of an MLP (DNN) based on different
datasets. Figure 6.9a shows the corresponding COD curve based on MC13a,
Figure 6.9b is the corresponding one based on MC7.

54 6. Applied Continuum Suppression

0.75 0.80 0.85 0.90 0.95 1.00
signal efficiency

0.75

0.80

0.85

0.90

0.95

1.00
ba

ck
gr

ou
nd

 re
je

ct
io

n
Signal Efficiency vs. Background Rejection

AUC
Ensemble 0.9912

MLP 0.9848
Ensemble DisCo 0.9819

Figure 6.10.: Background rejection over signal efficiency for different models. The perfor-
mance of an MLP (see Section 6.4) is plotted in green. The models designed
in the scope of this work are the ensemble (dark red) and the ensemble trained
with DisCo (light red).

background only plot, the tendency of the upper uncertainty limits seems less pronounced
compared to the ones in Figure 6.6b.

In general, the uncertainties of the ensemble trained with DisCo displays the expected
behavior. Nevertheless, to understand the details of their behavior, further studies are
needed.

6.7. Ensemble Decorrelation with Distance Correlation 55

0.0 0.2 0.4 0.6 0.8 1.0
prediction

0.0

0.2

0.4

0.6

0.8

1.0

un
ce

rta
in

ty
 (9

5%
 C

L)

Uncertainty vs. Prediction: Signal Only

101

102

103

104

to
ta

l c
ou

nt
s

(a) Signal only

0.0 0.2 0.4 0.6 0.8 1.0
prediction

0.0

0.2

0.4

0.6

0.8

1.0

un
ce

rta
in

ty
 (9

5%
 C

L)

Uncertainty vs. Prediction: Background Only

100

101

102

103

104

to
ta

l c
ou

nt
s

(b) Background only

0.0 0.2 0.4 0.6 0.8 1.0
prediction

0.0

0.2

0.4

0.6

0.8

1.0

un
ce

rta
in

ty
 (9

5%
 C

L)

Uncertainty vs. Prediction

100

101

102

103

104

to
ta

l c
ou

nt
s

(c) Signal and background

Figure 6.11.: Uncertainty vs. prediction plots for a Deep Ensemble. The x-axis shows the
predicted value (i.e. the mean) of the ensemble. On the y-axis the absolute
uncertainty limits of the ensemble shown. For this, the upper (above grey
line) and lower (under grey line) uncertainty limits for given predictions are
shown as scatter plots. Since the dataset is imbalanced, all plots are produced
with class weights.

7. Summary and Outlook

The goal of this master’s thesis was to extend the Deep Continuum Suppression by three
mechanisms: an invariant particle input, predictive uncertainties, and a decorrelation from
an analysis variable, which was performed with ∆z. To do so, a Three Streamer model
using a self-attention-based input mechanism allowing for invariance under the particle
order was designed. Afterward, predictive uncertainties were added to the DCS by using
this Three Streamer model in a Deep Ensemble approach to predict well-calibrated and
interpretable uncertainties. To decorrelate this ensemble from ∆z, Distance Correlation is
used to capture non-linear patterns and is appended as a regularisation term in the model’s
cost function.

All mechanisms were implemented and evaluated in an applied Continuum Suppression
based on MC13a data. To compare their performance an MLP from previous work was
reproduced a as benchmark model [3].

This work showed, that DisCo can be easily applied to a model by decreasing the correlation
with ∆z by over 50%, as measured by the flatness score. However, since the decorrelated
ensemble cannot compete with the performance of either an MLP or of a normal ensem-
ble, a trade-off between the degree of decorrelation and the discrimination power of the
ensemble was observed. In contrast, the Three Streamer model, as well as its ensemble,
could outperform both the decorrelated ensemble and the MLP. The ensemble of Three
Streamers performs slightly better than the single Three Streamer model. In conclusion,
the performance of the DCS could be increased notably.

The uncertainties of the Deep Ensemble are evaluated by uncertainty vs. prediction plots.
These plot show, that ensembles are able to predict asymmetric, well-calibrated and therefore
interpretable uncertainties. Additionally, a minimum gap was observed for the upper and
lower uncertainty limits. The upper uncertainty limits of background events had a clear
tendency towards a signal probability of 100%. This effect was less pronounced in the
decorrelated ensemble.

Despite the fact that the performance of the DCS could be improved, there is still potential
for further improvements. The self-attention-based input mechanism is restricted to particles
with the same features. This could be optimized by finding a way to combine track and
cluster variables in a self-attention-based input to extract information between tracks
and clusters too. To optimize the application of Deep Ensembles, a study to analyse the
dependency between the size of the ensemble and the behaviour of their uncertainties could

57

58 7. Summary and Outlook

be made. Additionally, a comparison between uncertainties in a Continuum Suppression
of an Deep Ensemble and a Bayesian Network would be thinkable. The next step for
the decorrelation with DisCo would be to test the decorrelation in a CPV study for its
suitability.

Bibliography

[1] Belle Collaboration, K. Abe et al., “Observation of Large CP Violation in the
Neutral B Meson System,” Phys. Rev. Lett. 87 (Aug, 2001) 091802.
https://link.aps.org/doi/10.1103/PhysRevLett.87.091802.

[2] Belle Collaboration, K. Abe et al., “Observation of Mixing-induced CP Violation in
the Neutral B Meson System,” Phys. Rev. D 66 (Aug, 2002) 032007.
https://link.aps.org/doi/10.1103/PhysRevD.66.032007.

[3] D. Weyland, “Continuum Suppression with Deep Learning Techniques for the Belle II
Experiment,” Master’s thesis, Karlsruhe Institute of Technology (KIT), 2017.

[4] B. Lakshminarayanan et al., “Simple and Scalable Predictive Uncertainty Estimation
using Deep Ensembles,” arXiv:1612.01474 [stat.ML].

[5] G. Kasieczka and D. Shih, “Robust Jet Classifiers through Distance Correlation,”
Phys. Rev. Lett. 125 no. 12, (2020) 122001, arXiv:2001.05310 [hep-ph].

[6] G. Aad et al., “Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC,” Physics Letters B 716 no. 1,
(2012) 1–29.
https://www.sciencedirect.com/science/article/pii/S037026931200857X.

[7] MissMJ and Cush, “Elementary Particles Included in the Standard Model,” 2019.
https://de.wikipedia.org/wiki/Standardmodell.

[8] V. C. Rubin and W. K. Ford, Jr., “Rotation of the Andromeda Nebula from a
Spectroscopic Survey of Emission Regions,” Astrophys. J. 159 (1970) 379–403.

[9] B. Pontecorvo, “Mesonium and Anti-mesonium,” Sov. Phys. JETP 6 (1957) 429.

[10] E. Kearns et al., “Detecting Massive Neutrinos,” Scientific American 281 no. 2, (1999)
64–71. http://www.jstor.org/stable/26058368.

[11] J. H. Christenson et al., “Evidence for the 2π Decay of the K0
2 Meson,” Phys. Rev. Lett.

13 (Jul, 1964) 138–140. https://link.aps.org/doi/10.1103/PhysRevLett.13.138.

[12] M. Kobayashi and T. Maskawa, “CP-Violation in the Renormalizable Theory of Weak
Interaction,” Progress of Theoretical Physics 49 no. 2, (02, 1973) 652–657,
https://academic.oup.com/ptp/article-pdf/49/2/652/5257692/49-2-652.pdf.
https://doi.org/10.1143/PTP.49.652.

59

http://dx.doi.org/10.1103/PhysRevLett.87.091802
https://link.aps.org/doi/10.1103/PhysRevLett.87.091802
http://dx.doi.org/10.1103/PhysRevD.66.032007
https://link.aps.org/doi/10.1103/PhysRevD.66.032007
http://arxiv.org/abs/1612.01474
http://dx.doi.org/10.1103/PhysRevLett.125.122001
http://arxiv.org/abs/2001.05310
http://dx.doi.org/https://doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/https://doi.org/10.1016/j.physletb.2012.08.020
https://www.sciencedirect.com/science/article/pii/S037026931200857X
https://de.wikipedia.org/wiki/Standardmodell
http://dx.doi.org/10.1086/150317
http://www.jstor.org/stable/26058368
http://dx.doi.org/10.1103/PhysRevLett.13.138
http://dx.doi.org/10.1103/PhysRevLett.13.138
https://link.aps.org/doi/10.1103/PhysRevLett.13.138
http://dx.doi.org/10.1143/PTP.49.652
http://arxiv.org/abs/https://academic.oup.com/ptp/article-pdf/49/2/652/5257692/49-2-652.pdf
https://doi.org/10.1143/PTP.49.652

60 Bibliography

[13] BABAR Collaboration, B. Aubert et al., “Observation of CP Violation in the B0

Meson System,” Phys. Rev. Lett. 87 (Aug, 2001) 091801.
https://link.aps.org/doi/10.1103/PhysRevLett.87.091801.

[14] B. Wang, “Searches for New Physics at the Belle II Experiment,” arXiv:1511.00373
[hep-ex].

[15] Belle-II, W. Altmannshofer et al., “The Belle II Physics Book,” PTEP 2019 no. 12,
(2019) 123C01, arXiv:1808.10567 [hep-ex]. [Erratum: PTEP 2020, 029201 (2020)].

[16] SuperKEKB, K. Akai et al., “SuperKEKB Collider,” Nucl. Instrum. Meth. A 907
(2018) 188–199, arXiv:1809.01958 [physics.acc-ph].

[17] N. Toge, “KEK B-factory Design Report,” Tech. Rep. KEK-Report-95-7, KEK,
Tsukuba, 1995. https://cds.cern.ch/record/475260.

[18] Particle Data Group, P. Zyla et al., “Review of Par-
ticle Physics,” Progress of Theoretical and Experimental Physics 2020 no. 8, (08, 2020) ,
https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf.
https://doi.org/10.1093/ptep/ptaa104. 083C01.

[19] @belle2collab (Belle II Experiment), “Belle II at SuperKEKB Has Reached a New
Luminosity World Record,” 2021.
https://twitter.com/belle2collab/status/1407985979953012743.

[20] T. Abe et al., “Belle II Technical Design Report,” arXiv:1011.0352
[physics.ins-det].

[21] R. Richter et al., “Design and Technology of DEPFET Pixel Sensors for Linear
Collider Applications,” Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 511 no. 1, (2003)
250–256.
https://www.sciencedirect.com/science/article/pii/S0168900203018023.
Proceedings of the 11th International Workshop on Vertex Detectors.

[22] A. Baur, “Trigger Studies for e+ e− → π + π − γ and e+ e− → µ+ µ− and
Implementation of a New DAQ Logging and Monitoring System at Belle II,” Master’s
thesis, Karlsruhe Institute of Technology (KIT), 2020.

[23] Belle II software group, “Documentation - BASF2 Framework,” 2021.
https://software.belle2.org/.

[24] R. Brun and F. Rademakers, “ROOT: An Object Oriented Data Analysis Framework,”
Nucl. Instrum. Meth. A 389 (1997) 81–86.

[25] BaBar, Belle, A. J. Bevan et al., “The Physics of the B Factories,” Eur. Phys. J. C
74 (2014) 3026, arXiv:1406.6311 [hep-ex].

[26] D. Besson and T. Skwarnicki, “Upsilon Spectroscopy: Transitions in the Bottomonium
System,” Annual Review of Nuclear and Particle Science 43 no. 1, (1993) 333–378,
https://doi.org/10.1146/annurev.ns.43.120193.002001.
https://doi.org/10.1146/annurev.ns.43.120193.002001.

http://dx.doi.org/10.1103/PhysRevLett.87.091801
https://link.aps.org/doi/10.1103/PhysRevLett.87.091801
http://arxiv.org/abs/1511.00373
http://arxiv.org/abs/1511.00373
http://dx.doi.org/10.1093/ptep/ptz106
http://dx.doi.org/10.1093/ptep/ptz106
http://arxiv.org/abs/1808.10567
http://dx.doi.org/10.1016/j.nima.2018.08.017
http://dx.doi.org/10.1016/j.nima.2018.08.017
http://arxiv.org/abs/1809.01958
https://cds.cern.ch/record/475260
http://dx.doi.org/10.1093/ptep/ptaa104
http://arxiv.org/abs/https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf
https://doi.org/10.1093/ptep/ptaa104
https://twitter.com/belle2collab/status/1407985979953012743
http://arxiv.org/abs/1011.0352
http://arxiv.org/abs/1011.0352
http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)01802-3
http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)01802-3
http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)01802-3
https://www.sciencedirect.com/science/article/pii/S0168900203018023
https://software.belle2.org/
http://dx.doi.org/10.1016/S0168-9002(97)00048-X
http://dx.doi.org/10.1140/epjc/s10052-014-3026-9
http://dx.doi.org/10.1140/epjc/s10052-014-3026-9
http://arxiv.org/abs/1406.6311
http://dx.doi.org/10.1146/annurev.ns.43.120193.002001
http://arxiv.org/abs/https://doi.org/10.1146/annurev.ns.43.120193.002001
https://doi.org/10.1146/annurev.ns.43.120193.002001

Bibliography 61

[27] M. Röhrken, “Time-Dependent CP Violation Measurements : Analyses of Neutral B
Meson to Double-Charm Decays at the Japanese Belle Experiment,” 2014.
http://swbplus.bsz-bw.de/bsz39581362xcov.htmhttps:
//doi.org/10.1007/978-3-319-00726-7.

[28] E. Farhi, “A QCD Test for Jets,” Phys. Rev. Lett. 39 (1977) 1587–1588.

[29] CLEO, D. M. Asner et al., “Search for Exclusive Charmless Hadronic B Decays,”
Phys. Rev. D 53 (1996) 1039–1050, arXiv:hep-ex/9508004.

[30] G. C. Fox and S. Wolfram, “Observables for the Analysis of Event Shapes in e+e−

Annihilation and Other Processes,” Phys. Rev. Lett. 41 (Dec, 1978) 1581–1585.
https://link.aps.org/doi/10.1103/PhysRevLett.41.1581.

[31] T. Keck, “FastBDT: A Speed-optimized and Cache-friendly Implementation of
Stochastic Gradient-boosted Decision Trees for Multivariate Classification,” CoRR
abs/1609.06119 (2016) , arXiv:1609.06119. http://arxiv.org/abs/1609.06119.

[32] I. J. Goodfellow et al., “Generative Adversarial Networks,” arXiv:1406.2661
[stat.ML].

[33] A. Santoro et al., “A Simple Neural Network Module for Relational Reasoning,” CoRR
abs/1706.01427 (2017) , arXiv:1706.01427. http://arxiv.org/abs/1706.01427.

[34] F. Rosenblatt, “The perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain.,” Psychological Review 65 no. 6, (1958) 386–408.
http://dx.doi.org/10.1037/h0042519.

[35] C. Patterson, “Managing a Real-time Massively-parallel Neural Architecture,” 01,
2012.

[36] C. Dilmegani, “Dark side of Neural Networks Explained,” 2021.
https://research.aimultiple.com/how-neural-networks-work/.

[37] M. A. Nielsen, Neural Networks and Deep Learning. Determination Press, 2015.
http://neuralnetworksanddeeplearning.com.

[38] I. Goodfellow et al., Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[39] D. Rumelhart et al., “Learning Representations by Back-propagating Errors,” Nature
323 (1986) 533–536.

[40] A. Vaswani et al., “Attention Is All You Need,” arXiv:1706.03762 [cs.CL].

[41] Y. Goldberg and O. Levy, “word2vec Explained: Deriving Mikolov et al.’s
Negative-sampling Word-embedding Method,” CoRR abs/1402.3722 (2014) ,
arXiv:1402.3722. http://arxiv.org/abs/1402.3722.

[42] J. Cheng et al., “Long Short-Term Memory-Networks for Machine Reading,” in
Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pp. 551–561. Association for Computational Linguistics, Austin, Texas,
Nov., 2016. https://aclanthology.org/D16-1053.

http://swbplus.bsz-bw.de/bsz39581362xcov.htmhttps://doi.org/10.1007/978-3-319-00726-7
http://swbplus.bsz-bw.de/bsz39581362xcov.htmhttps://doi.org/10.1007/978-3-319-00726-7
http://dx.doi.org/10.1103/PhysRevLett.39.1587
http://dx.doi.org/10.1103/PhysRevD.53.1039
http://arxiv.org/abs/hep-ex/9508004
http://dx.doi.org/10.1103/PhysRevLett.41.1581
https://link.aps.org/doi/10.1103/PhysRevLett.41.1581
http://arxiv.org/abs/1609.06119
http://arxiv.org/abs/1609.06119
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1706.01427
http://arxiv.org/abs/1706.01427
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
https://research.aimultiple.com/how-neural-networks-work/
http://neuralnetworksanddeeplearning.com
http://www.deeplearningbook.org
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1402.3722
http://arxiv.org/abs/1402.3722
http://dx.doi.org/10.18653/v1/D16-1053
https://aclanthology.org/D16-1053

62 Bibliography

[43] J. Alammar, “The Illustrated Transformer,” 2018. http://jalammar.github.io/
illustrated-transformer/?utm_source=share&utm_medium=ios_app.

[44] K. Doshi, “Transformers Explained Visually (Part 1-4),” 2020.
https://towardsdatascience.com/
transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452.

[45] K. He et al., “Deep Residual Learning for Image Recognition,” arXiv:1512.03385
[cs.CV].

[46] J. L. Ba et al., “Layer Normalization,” arXiv:1607.06450 [stat.ML].

[47] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift,” arXiv:1502.03167 [cs.LG].

[48] C. Guo et al., “On Calibration of Modern Neural Networks,” CoRR abs/1706.04599
(2017) , arXiv:1706.04599. http://arxiv.org/abs/1706.04599.

[49] J. Platt, “Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods,” Adv. Large Margin Classif. 10 (06, 2000) .

[50] J. De Leeuw et al., “Isotone Optimization in R: Pool-Adjacent-Violators Algorithm
(PAVA) and Active Set Methods,” Journal of Statistical Software 32 (10, 2009) .

[51] J. Zhang, “Dive into Decision Trees and Forests: A Theoretical Demonstration,”
arXiv:2101.08656 [cs.LG].

[52] S. Fort et al., “Deep Ensembles: A Loss Landscape Perspective,” arXiv:1912.02757
[stat.ML].

[53] I. J. Goodfellow et al., “Explaining and Harnessing Adversarial Examples,”
arXiv:1412.6572 [stat.ML].

[54] C. Blundell et al., “Weight Uncertainty in Neural Networks,” arXiv:1505.05424
[stat.ML].

[55] K. He et al., “Deep Residual Learning for Image Recognition,” arXiv:1512.03385
[cs.CV].

[56] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” 2016.

[57] G. J. Székely and M. L. Rizzo, “Brownian Distance Covariance,” The Annals of
Applied Statistics 3 no. 4, (2009) 1236 – 1265.
https://doi.org/10.1214/09-AOAS312.

[58] K. Pearson, “Note on Regression and Inheritance in the Case of Two Parents,”
Proceedings of the Royal Society of London 58 (1895) 240–242.
http://www.jstor.org/stable/115794.

[59] I.-K. Yeo and R. Johnson, “A new Family of Power Transformations to Improve
Normality or Symmetry,” Biometrika 87 (12, 2000) .

[60] K. Horak et al., “Classification of SURF image features by selected machine learning
algorithms,” in 2017 40th International Conference on Telecommunications and Signal
Processing (TSP), pp. 636–641. 2017.

http://jalammar.github.io/illustrated-transformer/?utm_source=share&utm_medium=ios_app
http://jalammar.github.io/illustrated-transformer/?utm_source=share&utm_medium=ios_app
https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452
https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1706.04599
http://arxiv.org/abs/1706.04599
http://dx.doi.org/10.18637/jss.v032.i05
http://arxiv.org/abs/2101.08656
http://arxiv.org/abs/1912.02757
http://arxiv.org/abs/1912.02757
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1505.05424
http://arxiv.org/abs/1505.05424
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1214/09-AOAS312
http://dx.doi.org/10.1214/09-AOAS312
https://doi.org/10.1214/09-AOAS312
http://www.jstor.org/stable/115794
http://dx.doi.org/10.1093/biomet/87.4.954
http://dx.doi.org/10.1109/TSP.2017.8076064
http://dx.doi.org/10.1109/TSP.2017.8076064

Bibliography 63

[61] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, eds.
2015. http://arxiv.org/abs/1412.6980.

[62] O. Taubert et al., “Loss Scheduling for Class-Imbalanced Image Segmentation
Problems,” in 2020 19th IEEE International Conference on Machine Learning and
Applications (ICMLA), pp. 426–431. 2020.

[63] T. Keck, “FastBDT,” 2017. https://github.com/thomaskeck/FastBDT/blob/
e67f71525612020acc78721031fca681d173c144/PyFastBDT/utility.py.

http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1109/ICMLA51294.2020.00073
http://dx.doi.org/10.1109/ICMLA51294.2020.00073
https://github.com/thomaskeck/FastBDT/blob/e67f71525612020acc78721031fca681d173c144/PyFastBDT/utility.py
https://github.com/thomaskeck/FastBDT/blob/e67f71525612020acc78721031fca681d173c144/PyFastBDT/utility.py

A. Continuum Suppression Features

A.1. Event Shape Variables

1 2 3 4 5 6 7
CleoCone(1)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
CleoCone(1)

0.00

0.05

0.10

0.15

0.20

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0 1 2 3 4 5 6
CleoCone(2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
CleoCone(2)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.1.: Normalized and trimmed distributions of event shape features used in the
Continuum Suppression (see Section 4.2). The distribution of the features
is shown before (left) and after (right) the Yeo-Johnson transformation (see
Section 6.2).

65

66 A. Continuum Suppression Features

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
CleoCone(3)

0

1

2

3

4

5

6

7

8

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.2 0.4 0.6 0.8 1.0
CleoCone(3)

0

5

10

15

20

25

30

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.5 1.0 1.5 2.0 2.5 3.0
CleoCone(4)

0

1

2

3

4

5

6

7

8

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
CleoCone(4)

0

5

10

15

20

25

30

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.5 1.0 1.5 2.0 2.5
CleoCone(5)

0

2

4

6

8

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
CleoCone(5)

0

5

10

15

20

25

30

35

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.2.: Normalized and trimmed distributions of event shape features used in the
Continuum Suppression (see Section 4.2). The distribution of the features
is shown before (left) and after (right) the Yeo-Johnson transformation (see
Section 6.2).

A.1. Event Shape Variables 67

0.0 0.5 1.0 1.5 2.0 2.5
CleoCone(6)

0

2

4

6

8

10

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.1 0.2 0.3 0.4 0.5 0.6
CleoCone(6)

0

10

20

30

40

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.5 1.0 1.5 2.0 2.5
CleoCone(7)

0

2

4

6

8

10

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.1 0.2 0.3 0.4 0.5 0.6
CleoCone(7)

0

10

20

30

40

50

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.5 1.0 1.5 2.0 2.5
CleoCone(8)

0

2

4

6

8

10

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.1 0.2 0.3 0.4 0.5
CleoCone(8)

0

10

20

30

40

50

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.3.: Normalized and trimmed distributions of event shape features used in the
Continuum Suppression (see Section 4.2). The distribution of the features
is shown before (left) and after (right) the Yeo-Johnson transformation (see
Section 6.2).

68 A. Continuum Suppression Features

0.0 0.5 1.0 1.5 2.0 2.5 3.0
CleoCone(9)

0

2

4

6

8

10

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.1 0.2 0.3 0.4 0.5
CleoCone(9)

0

10

20

30

40

50

60

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.2 0.4 0.6 0.8 1.0
cosTBTO

0

2

4

6

8

10

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.2 0.4 0.6 0.8
cosTBz

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.4.: Normalized and trimmed distributions of event shape features used in the
Continuum Suppression (see Section 4.2). The distribution of the features
is shown before (left) and after (right) the Yeo-Johnson transformation (see
Section 6.2). Centered features were not transformed. Not transformer features
are shown in the middle.

A.1. Event Shape Variables 69

5 6 7 8 9 10 11
KSFW et

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

20 30 40 50 60 70 80 90
KSFW et

0.000

0.005

0.010

0.015

0.020

0.025

0.030

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
KSFW Hoo

0

0

2

4

6

8

10

12

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
KSFW Hoo

0

0

5

10

15

20

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.02 0.01 0.00 0.01 0.02 0.03 0.04
KSFW Hoo

1

0

20

40

60

80

100

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.03 0.02 0.01 0.00 0.01 0.02
KSFW Hoo

1

0

20

40

60

80

100

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.5.: Normalized and trimmed distributions of event shape features used in the
Continuum Suppression (see Section 4.2). The distribution of the features
is shown before (left) and after (right) the Yeo-Johnson transformation (see
Section 6.2).

70 A. Continuum Suppression Features

0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12
KSFW Hoo

2

0

5

10

15

20

25

30

35

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.01 0.00 0.01 0.02 0.03 0.04
KSFW Hoo

2

0

5

10

15

20

25

30

35

40

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.02 0.01 0.00 0.01 0.02 0.03
KSFW Hoo

3

0

20

40

60

80

100

120

140

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.02 0.01 0.00 0.01 0.02
KSFW Hoo

3

0

20

40

60

80

100

120

140

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.02 0.00 0.02 0.04 0.06 0.08
KSFW Hoo

4

0

10

20

30

40

50

60

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.02 0.01 0.00 0.01 0.02
KSFW Hoo

4

0

10

20

30

40

50

60

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.6.: Normalized and trimmed distributions of event shape features used in the
Continuum Suppression (see Section 4.2). The distribution of the features
is shown before (left) and after (right) the Yeo-Johnson transformation (see
Section 6.2).

A.1. Event Shape Variables 71

0.2 0.4 0.6 0.8 1.0 1.2
KSFW Hso

00

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.2 0.4 0.6 0.8 1.0
KSFW Hso

00

0.0

0.5

1.0

1.5

2.0

2.5

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.2 0.0 0.2 0.4 0.6
KSFW Hso

02

0.0

0.5

1.0

1.5

2.0

2.5

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.2 0.0 0.2 0.4 0.6
KSFW Hso

02

0.0

0.5

1.0

1.5

2.0

2.5

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5
KSFW Hso

04

0

1

2

3

4

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.3 0.2 0.1 0.0 0.1 0.2 0.3
KSFW Hso

04

0

1

2

3

4

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.7.: Normalized and trimmed distributions of event shape features used in the
Continuum Suppression (see Section 4.2). The distribution of the features
is shown before (left) and after (right) the Yeo-Johnson transformation (see
Section 6.2).

72 A. Continuum Suppression Features

0.0 0.2 0.4 0.6 0.8
KSFW Hso

10

0.0

0.5

1.0

1.5

2.0

2.5

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.1 0.2 0.3 0.4 0.5
KSFW Hso

10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
KSFW Hso

12

0

1

2

3

4

5

6

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.2 0.1 0.0 0.1 0.2 0.3
KSFW Hso

12

0

1

2

3

4

5

6

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.1 0.0 0.1 0.2 0.3 0.4
KSFW Hso

14

0

2

4

6

8

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
KSFW Hso

14

0

2

4

6

8

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.8.: Normalized and trimmed distributions of event shape features used in the
Continuum Suppression (see Section 4.2). The distribution of the features
is shown before (left) and after (right) the Yeo-Johnson transformation (see
Section 6.2). Not transformer features are shown in the middle.

A.1. Event Shape Variables 73

0.0 0.1 0.2 0.3 0.4 0.5
KSFW Hso

20

0

1

2

3

4

5

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
KSFW Hso

20

0

1

2

3

4

5

6

7

8

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.2 0.1 0.0 0.1 0.2 0.3 0.4
KSFW Hso

22

0

1

2

3

4

5

6

7

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.2 0.1 0.0 0.1 0.2
KSFW Hso

22

0

1

2

3

4

5

6

7

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.1 0.0 0.1 0.2 0.3
KSFW Hso

24

0

2

4

6

8

10

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
KSFW Hso

24

0

2

4

6

8

10

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.9.: Normalized and trimmed distributions of event shape features used in the
Continuum Suppression (see Section 4.2). The distribution of the features
is shown before (left) and after (right) the Yeo-Johnson transformation (see
Section 6.2). Not transformer features are shown in the middle.

74 A. Continuum Suppression Features

20 15 10 5 0 5 10 15
KSFW mm2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

25 20 15 10 5 0 5 10
KSFW mm2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.2 0.4 0.6 0.8 1.0
R2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.975 0.980 0.985 0.990 0.995 1.000
thrustBm

0

50

100

150

200

250

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.10.: Normalized and trimmed distributions of event shape features used in the
Continuum Suppression (see Section 4.2). The distribution of the features
is shown before (left) and after (right) the Yeo-Johnson transformation (see
Section 6.2). Centered features were not transformed. Not transformer
features are shown in the middle.

A.2. Cluster Candidate Features 75

0.6 0.7 0.8 0.9 1.0
thrustOm

0

1

2

3

4

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.11.: Normalized and trimmed distributions of cluster features used in the Con-
tinuum Suppression (see Section 4.2). The distribution of the features is
shown before (left) and after (right) the Yeo-Johnson transformation (see
Section 6.2). Not transformer features are shown in the middle.

A.2. Cluster Candidate Features

0.75 0.80 0.85 0.90 0.95 1.00
E9E21

0

20

40

60

80

100

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0 1 2 3 4 5 6
E9E21 1e14

0

1

2

3

4

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

1e 14
signal
background

Figure A.12.: Normalized and trimmed distributions of cluster features used in the Con-
tinuum Suppression (see Section 4.2). The distribution of the features is
shown before (left) and after (right) the Yeo-Johnson transformation (see
Section 6.2). Not transformer features are shown in the middle.

76 A. Continuum Suppression Features

0 5 10 15 20 25
NHits

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

2 4 6 8 10 12
cluster region

0

1

2

3

4

5

6

7

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

40 20 0 20 40 60 80 100
Timing

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

60 40 20 0 20 40 60
Timing

0.00

0.05

0.10

0.15

0.20

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.13.: Normalized and trimmed distributions of cluster features used in the Con-
tinuum Suppression (see Section 4.2). The distribution of the features is
shown before (left) and after (right) the Yeo-Johnson transformation (see Sec-
tion 6.2). Centered features were not transformed. Not transformer features
are shown in the middle.

A.2. Cluster Candidate Features 77

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
cosTheta

0.0

0.2

0.4

0.6

0.8

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

3 2 1 0 1 2 3
phi

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
p

0.0

0.5

1.0

1.5

2.0

2.5

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.14.: Normalized and trimmed distributions of cluster features used in the Contin-
uum Suppression (see Section 4.2). The shown features were not transformed.

78 A. Continuum Suppression Features

0.000 0.002 0.004 0.006 0.008 0.010 0.012
cosThetaErr

0

50

100

150

200

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.005 0.010 0.015 0.020
phiErr

0

25

50

75

100

125

150

175

200

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
pErr

0

20

40

60

80

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.15.: Normalized and trimmed distributions of cluster features used in the Contin-
uum Suppression (see Section 4.2). The shown features were not transformed.

A.3. Track Candidate Features 79

A.3. Track Candidate Features

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
cosTheta

0.0

0.2

0.4

0.6

0.8

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

3 2 1 0 1 2 3
phi

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.5 1.0 1.5 2.0 2.5 3.0
p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.1 0.2 0.3 0.4 0.5 0.6 0.7
p

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.16.: Normalized and trimmed distributions of track features used in the Continuum
Suppression (see Section 4.2). The distribution of the features is shown before
(left) and after (right) the Yeo-Johnson transformation (see Section 6.2).
Centered features were not transformed.

80 A. Continuum Suppression Features

0.00 0.05 0.10 0.15 0.20
cosThetaErr

0

50

100

150

200

250

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
cosThetaErr

0

100

200

300

400

500

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.00 0.05 0.10 0.15 0.20 0.25 0.30
phiErr

0

25

50

75

100

125

150

175

200

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.000 0.002 0.004 0.006 0.008 0.010 0.012
phiErr

0

50

100

150

200

250

300

350

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.00 0.02 0.04 0.06 0.08 0.10 0.12
pErr

0

50

100

150

200

250

300

350

400

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0045
pErr

0

100

200

300

400

500

600

700

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.17.: Normalized and trimmed distributions of track features used in the Continuum
Suppression (see Section 4.2). The distribution of the features is shown before
(left) and after (right) the Yeo-Johnson transformation (see Section 6.2). Not
transformer features are shown in the middle.

A.3. Track Candidate Features 81

0.0 0.2 0.4 0.6 0.8 1.0
electronID

0

10

20

30

40

50

60

70

80

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
electronID

0

200

400

600

800

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.2 0.4 0.6 0.8 1.0
kaonID

0

10

20

30

40

50

60

70

80

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
kaonID

0

200

400

600

800

1000

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.2 0.4 0.6 0.8 1.0
muonID

0

10

20

30

40

50

60

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
muonID

0

50

100

150

200

250

300

350

400

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.18.: Normalized and trimmed distributions of track features used in the Continuum
Suppression (see Section 4.2). The distribution of the features is shown before
(left) and after (right) the Yeo-Johnson transformation (see Section 6.2). Not
transformer features are shown in the middle.

82 A. Continuum Suppression Features

0.0 0.2 0.4 0.6 0.8 1.0
protonID

0

20

40

60

80

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.000 0.005 0.010 0.015 0.020 0.025
protonID

0

500

1000

1500

2000

2500

3000

3500

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
dcosTheta

0

2

4

6

8

10

12

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

3 2 1 0 1 2 3
dphi

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.19.: Normalized and trimmed distributions of track features used in the Continuum
Suppression (see Section 4.2). The distribution of the features is shown before
(left) and after (right) the Yeo-Johnson transformation (see Section 6.2).
Centered features were not transformed.

A.3. Track Candidate Features 83

0 20 40 60 80 100 120 140
distance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.1 0.2 0.3 0.4
distance

0

5

10

15

20

25

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0 50 100 150 200
nCDCHits

0.00

0.01

0.02

0.03

0.04

0.05

0.06

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.2 0.4 0.6 0.8 1.0
pValue

0

2

4

6

8

10

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

0.0 0.2 0.4 0.6 0.8 1.0
pValue

0

2

4

6

8

10

no
rm

al
ize

d
in

 a
rb

. u
ni

ts

signal
background

Figure A.20.: Normalized and trimmed distributions of track features used in the Continuum
Suppression (see Section 4.2). The distribution of the features is shown before
(left) and after (right) the Yeo-Johnson transformation (see Section 6.2).
Centered features were not transformed.

	Contents
	1 Introduction
	2 The Standard Model
	3 The Belle II Experiment
	3.1 Motivation
	3.2 SuperKEKB
	3.3 The Belle II Detector
	3.4 Belle Software Framework

	4 Continuum Suppression
	4.1 Continuum
	4.2 Variables
	4.3 Previous Work on Continuum Suppression

	5 Multivariate Analysis Methods
	5.1 Neural Networks
	5.2 Self-Attention
	5.3 Three Streamer
	5.4 Probability Calibration Methods
	5.5 Deep Ensembles
	5.6 Distance Correlation

	6 Applied Continuum Suppression
	6.1 Dataset
	6.2 Preprocessing
	6.3 Figure of Merit
	6.4 Reproduction of Previous Work
	6.5 Three Streamer Model
	6.6 Ensemble of Three Streamers
	6.7 Ensemble Decorrelation with Distance Correlation

	7 Summary and Outlook
	A Continuum Suppression Features
	A.1 Event Shape Variables
	A.2 Cluster Candidate Features
	A.3 Track Candidate Features

