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CHAPTER 1

Introduction

Initiated by Alan Turing’s formulation of the "Turing test" in 1950, scientists were
determined to develop an artificial intelligence being able to autonomously learn from
information or data by utilizing computing resources. With the invention of the world
wide web in the 1980s at the European Organization for Nuclear Research (CERN) in
Geneva, data was commonly shared and increasingly gathered to be harnessed by data
scientist around the world. Today’s computing resources have reached a level at which
storing and processing of data is feasible, resulting in many applications of so-called
multivariate analysis (MVA) techniques in every part of human life.
Also at CERN, the starting point of this worldwide spread of information, MVA methods
are increasingly used for physics analysis. With its Large Hadron Collider (LHC), over
100 Petabytes of data have been recorded over the last 20 years, portraying the ideal basis
for the application of an MVA algorithm. The LHC is a ring collider for proton-proton
collisions, currently operated at a center of mass energy of 13TeV. The Compact Muon
Solenoid (CMS) represents one of four detectors at which these collisions are measured
in order to gain deeper knowledge about the fundamental principles of particle physics
and the search for yet unknown particles.
The CMS detector can however not detect every kind of particles. Particles such as
neutrinos do not interact with any detector component and are therefore not directly
measurable, though they are of importance for many physics analyses. An important
quantity, to gain information about these non-measurable particles, is the missing trans-
verse energy (/ET ). It relies on the basic physical principle of momentum conservation.
Beam particles show negligible initial momentum in the plane perpendicular to the beam
axis. Hence, the transverse momenta of the particles produced by a collision have to be
cancelled out. A non-vanishing sum of the measured transverse momenta can therefore be
used to gain information about undetected particles, which are missing in this momentum
addition.
The accuracy of missing transverse energy (/ET ) is determined by detector resolution
limits on reconstructing individual particles. By using an MVA technique, utilizing all
information available about the structure and characteristics of an event, it is possible
to improve the resolution of /ET in order to get more precise information about non-
measurable particles.
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Introduction

Boosted Decision Trees (BDTs) are commonly used for classification in the field of parti-
cle physics. A similar technique, gradient boosted regression trees (GBRTs), are used in
the context of this thesis for the /ET calculation.
An overview about the experimental setup of CMS and its particle reconstruction is given
in chapter 2. The MVA techniques are described in chapter 3, followed by an introduction
to /ET in chapter 4. The MVA approach applied to /ET is introduced in chapter 5 with a
validation on events in the absence and presence of non-measurable particles. Its impact
on a typical analysis as well as the performance on real data is also shown.

2



CHAPTER 2

Particle Physics at the Compact Muon Solenoid

2.1. The Standard Model of Particle Physics

Three of the four fundamental forces are described in the theory of the Standard Model
of Particle Physics. An elaboration about the standard model can be found in [1–3]. This
theory represents a re-normalisable quantum field in which excitations are interpreted
as particles. These particles can be distinguished in bosons and fermions. Bosons as
mediators of the fundamental forces have integer spin whereas fermions are characterized
with half-integer spin and represent massive particles.
The Lagrange formalism and Lagrangian density LSM are used to describe field dynamics
of this theory and thus describe the dynamics of all particles in the Standard Model.
Similar to classical mechanics, problems can be solved by using generalized coordinates,
simplifying problems by using intrinsic symmetries.
Objects in this formalism are described by Lorentz vectors. These four-vectors are in-
variant under relativistic transformation (Lorentz-transformation). This is important as
particle physics at high energies implies relativistic effects.
Even though the Standard Model does not incorporate e.g. the full theory of gravitation
or neutrino oscillations, it has proven successful at predicting the outcome of modern
particle physics experiments.

2.2. Higgs Boson - Production and Decay

The Higgs mechanism was formulated independently in 1964 by P. Higgs [4] and F.
Englert and R. Brout [5]. It explains the non-vanishing masses of the gauge vector
bosons W± and Z by electroweak symmetry breaking. The mechanism also introduces
an additional boson, called the Higgs boson. This boson was discovered at the LHC in
2012 [6, 7]. An elaboration about the Higgs mechanism can be found in [8, 9].
The Higgs boson has four main production modes: gluon-gluon-fusion (gg → H), vector
boson fusion (qq → H), the associated production with a Z or W± boson and the
associated top-pair production (tt̄H) mode. The gluon-gluon-fusion is the dominant
production mode for the Higgs boson with a cross section of 50 pb at 13TeV at the LHC.
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Particle Physics at the Compact Muon Solenoid

The Higgs boson is produced by the interaction of two gluons via a ferminoic loop.
The Higgs boson has many decay channels, one of these being the leptonic H → ττ decay,
studied in this thesis. With a branching ratio of 22.5%, the H → ττ → µτh final state
plays an important role for validating the Higgs mass, as the muon is well measured and
enhances the Higgs signal sensitivity.

2.3. The Compact Muon Solenoid Experiment

The CMS experiment is part of the LHC at CERN in Geneva, Switzerland. The CMS
experiment is one of four detectors located around the LHC. With its pre-accelerators,
the LHC is currently the largest synchrotron with two proton beams colliding at a center
of mass energy of 13TeV and a 1034 cm−2s−1 instantaneous luminosity.

2.3.1. Coordinate system

The CMS coordinate system is defined as a right-handed system centered at the nominal
interaction point. The x-axis points to the centre of the LHC ring. The y-axis points
upwards, perpendicular to the ring collider plane. Hence, the transverse plane is described
by the x-y plane of the CMS coordinate system. In spherical coordinates, the azimuthal
angle φ is measured with respect to the x-axis in the x-y or transverse plane. The polar
angle θ, defined with respect to the z-axis, is often replaced by the pseudo-rapidity

η = − ln
(

tan
(
θ

2

))
. (2.1)

The metric
∆R =

√
∆φ2 + ∆η2, (2.2)

is used to describe angular distances between two objects in the detector.

2.3.2. Detector elements

Figure 2.1 and 2.2 show a transverse and longitudinal view of the CMS detector system,
respectively. The individual components from the inside to the outside are:

• Tracker system: This innermost detector part consists of silicon semi-conductor
pixel detectors, followed by strip detectors. This set-up allows the reconstruction
of tracks with up to 10µm accuracy [10]. The transverse momentum of charged
particles can also be calculated from the curvature of the associated tracks in the
4T magnetic field with an accuracy of a few percent [11, 12].

• Electromagnetic calorimeter: This part of the detector is made of lead tungstate
crystals, serving as both absorber and scintillator. Electrons and photons deposit
most of their energy in this part of the detector.
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2.3. The Compact Muon Solenoid Experiment

Figure 2.1.: Transverse view of the CMS detector. The technical components and typical particle
tracks are shown. Figure is taken from [13].

• Hadronic calorimeter: Hadrons passing the electromagnetic calorimeter are mea-
sured in this detector sub-system. It consists of brass absorbers and plastic scintil-
lators [10].

• Superconducting solenoid: The 4T magnetic field inside the detector is created
by this solenoid. It is surrounded by a steel return-yoke, returning the magnetic
flux outside the magnet.

• Muon chambers: This outermost part of the detector system is built for the
measurement of muons, the only measurable particles that escape the detector.

2.3.3. Particle reconstruction

Particles at CMS are reconstructed using the particle-flow (PF) approach [15]. PF candi-
dates are reconstructed by combining signals from different sub-detector systems. Tracks
are reconstructed in an iterative process, depending on the quality of each reconstructed
PF candidate. Starting from tracks fulfilling tight requirements, the respective signals
are removed for the following iteration with loosened requirements. This process ensures
a high reconstruction efficiency in particle reconstruction. Stable particles deposit their
energy in several calorimeter cells which are summarized as clusters. These Particles
follow different reconstruction criteria:

• Muon reconstruction: Muons are the best-measured particles at CMS, as they
interact with all detector sub-systems. Reconstruction algorithms match tracks in
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Particle Physics at the Compact Muon Solenoid

Figure 2.2.: Longitudinal view of the CMS detector. Spatial dimensions of the technical compo-
nents as a function of y, z and η: inner tracking system (light blue), electromagnetic calorimeter
(green), hadronic calorimeter (yellow), superconducting solenoid (blue), muon chambers (red),
iron return yoke (gray). Figure is taken from [14].
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2.3. The Compact Muon Solenoid Experiment

the muon chambers and in the tracker to reach a muon reconstruction efficiency
rate of 99,5% with a resolution around a few percent [12].

• Electron and Photon reconstruction: Both of the particles deposit most of their
energy in the electromagnetic calorimeter. The clustered calorimeter deposits (and
the reconstructed electron track) are combined to reconstruct an electron or photon
object.

• Jet reconstruction: Jets from quarks and gluons show a broad energy resolution
distribution and are reconstructed using the anti-kT algorithm [16]. This algorithm
uses a metric to measure the distance between adjacent candidates to decide if
both candidates originate from the same particle and will consequently be clustered
together as part of the same jet.

• Tau reconstruction: Due to their high mass of 1.78GeV, Tau leptons decay into
lighter particles and are therefore only measurable through their decay products,
clustered as jets.
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CHAPTER 3

Machine Learning

3.1. Introduction

Machine learning was described already in 1959 by Arthur Samuel as giving "computers
the ability to learn without being explicitly programmed" [17]. Machine learning can thus
be understood as applied statistics with an emphasis on using computers to estimate
complex functions and relationships by reference to the given information or data.
A machine learning algorithm needs a task or target to be able to learn from data.
An algorithm has learned a task if its performance at the task has improved with the
given information. Information or data is usually represented as a collection of features,
measured from an event or object. A task describes the manner in which one of these
collections is processed by the algorithm. This input- or feature-vector ~x is defined as
~x ∈ Rn with xi representing the i-th element of this vector. Machine learning is typically
used for different types of tasks:

• Classification: A classification task represents a function f : Rn → {1, .., k} to
be learned, assigning the input to one of k categories. The output ŷ = f(~x) can
represent a probability distribution for each category. This type of task is widely
used in object recognition. The pixels of an image depict the feature vector, whereas
the output assigns different probabilities to different object classes. This technique
is also used in particle physics, using hits in the tracker system in the transverse
plane, to create a two-dimensional image of the detector. This input is used to
train a machine learning algorithm to determine the probability of each track in
this image to belong to a specific particle. Another popular use of classification
is for distinguishing between signal and background processes. For instance in the
Higgs analysis, an input vector, featuring important quantities of an event, is fed
into an algorithm, whose target it is to predict if this particular event contains a
Higgs boson or not [18].

• Regression: In contrast to classification, the trained function of this approach has
to map its input on a continuous output f : Rn → R. This approach is used for
predictions on e.g. algorithmic trading or insurance claims. Despite its occasional
use in particle physics, it will be applied in the context of this thesis.
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• Transcription: Transcription transforms differently structured data into textual
form. Speech recognition transforms audio data into text, whereas Google Street
View transforms photographs of house numbers into written numbers [19]. A related
task would be machine translation, for which the input already consists of textual
form.

• Sampling: One can use machine learning algorithms to synthesize new data ac-
cording to the structure of existing data. The task of the algorithm is to exploit
the structure and form of its input data in order to sample new data with compa-
rable properties. It is also possible to apply this in particle physics when it comes
to generating additional simulated event data based on obtained data from the
experiment or simulation.

• Denoising: In this type of task, the machine learning algorithm is given a corrupted
data sample, aiming to obtain a clean input sample as an output. One example of
this is "unfolding", in which one tries to reverse the effect of combined uncertainty
sources being propagated to the measured corrupted sample.

All of these methods need a specific performance measurement in order to be able to
evaluate and compare different algorithms. Classification or transcription tasks can be
assigned an accuracy rate, measuring the fraction of how many input samples were clas-
sified or transcribed correctly. Regression tasks require a different performance metric,
since its output is continuous. This so-called loss function will be introduced in the
following section 3.2.
In order to guarantee an unbiased estimate for performance, it is necessary to evaluate
the algorithm on a statistically independent test sample. This sample cannot be used for
learning and is only used as an independent measurement of generalization capacity of
the algorithm. Generalization is the ability of a trained algorithm to perform equally well
on previously unknown data. This is directly associated with overfitting, which represents
a scenario in which the algorithm has memorized not only the structure of a dataset but
also its single events, loosing the generalization ability on unknown data.
This behaviour can be mitigated by regularization techniques, aiming to avoid the al-
gorithm overfitting its training data. Some regularization techniques are introduced in
the following section 3.3.1. For very high statistics, the overfitting effect is mitigated by
the fact that the algorithm will not be able to learn dataset specific features, as these
features will be statistically cancelled out.
An important distinction has to be made between supervised and unsupervised learning.

Unsupervised learning represents a technique in which the algorithm has to iden-
tify useful features from a dataset. For instance, a clustering algorithm aims to divide
data in different clusters in order to learn about useful information categories in the data.

Supervised learning involves data samples which are associated with a target. The
algorithm has to learn structure or features from the dataset in order to make predictions
about the target value of each sample.

10



3.2. Regression

Very often, both of these methods are combined. A possible scenario would be an unsu-
pervised algorithm, transforming the given input into a set of abstract variables, which
are then used to make prediction on a target of a supervised learning algorithm.
In this thesis, a supervised regression machine learning algorithm is used, introduced in
the following chapter 3.2.

3.2. Regression
Regression analysis is the mapping of a multivariate input ~x ∈ Rn on a continuous output
y = g(~x). A machine learning algorithm aims to find a function f(~x), approximating
the function values y by its prediction ŷ = f(~x). The function f(~x) is optimized by
minimizing a loss function L(ŷ, y). A typical loss function is the squared-loss function

L(ŷ, y) =
N∑
i=1

(ŷ − y)2, (3.1)

summing over the squared difference of all N input samples. Figure 3.1 shows two possible
regression approximations of a given dataset.
Another loss function which is more robust in terms of outlying target values, is the
Huber loss function [20]

L(ŷ, y) =
{1

2(y − ŷ)2 for (y − ŷ) ≤ δ
δ(|y − ŷ| − δ/2) for (y − ŷ) > δ

, (3.2)

with δ representing a threshold beyond which outlying events only have linear effect on
the loss function.

11



Machine Learning

Figure 3.1.: Illustration of two different regression approximations of a given dataset. The loss
is calculated as the sum of squared difference between target and prediction. The loss for the
black regression approach is higher than for the blue one, as the data points y in red show a
larger distance to the approximated function ŷ = f(x) in black than to the blue approximation.
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3.3. Method

3.3. Method

Finding and optimizing a suitable function f(~x) for approximating the original distri-
bution y = g(~x) plays an important role in machine learning. In the following, two
approaches will be introduced and discussed shortly.

3.3.1. Gradient Boosted Regression Trees

Whereas boosted decision trees are used for classification in particle physics, a GBRT
algorithm follows a similar approach for regression.
Decision trees classify data into different categories by applying a cut on a certain input
variable. This input variable is chosen to be the variable on which a cut yields the best
possible separation power regarding the target variable. The cut value is determined
accordingly. However, a single cut is often not enough to sufficiently categorize data.
Additional cuts on other variables are therefore applied, aiming to further discriminate
on the target variable. This number of succeeding cuts is defined as the depth of a
decision tree.
With a typical depth of three, a decision tree can only separate the data in eight different
segments and therefore lacks separation power for complex datasets. This is handled by
a so-called boosting technique. By training an additional tree on top of the predictions
of the first tree, one aims to "boost" the overall performance of the first classifier. This
procedure is repeated until a sufficient separation power is achieved. These additional
trees are weighted with smaller relative weights, as additional trees aim to further increase
the separation power of the preceding trees.
As boosted decision trees separate data into two (or more) target classes, a GBRT
predicts a function h(~x) by dividing the target values y into different regions, based on
a gradient-boosting technique. A first tree is trained, approximating the data with

h1(~x) =
S∑
s=1

µsI(~x ∈ As), (3.3)

with S standing for the number of possible regions As, and µs representing the average
value of all target values in that region. I(~x ∈ As) is one, if ~x is contained in As and zero
otherwise. See figure 3.2a for an exemplary application of two cuts on a target variable
x, resulting in three different regions.
Boosting is now applied by calculating so-called pseudo-residuals

ri,s = −
(
∂L(ŷi,u−1, yi)

∂ŷi

)
, (3.4)

for each event i, based on the predictions of the previous trees, u − 1. These pseudo-
residuals are used as regression targets for the next tree hu, aiming to improve the previous
one and so forth (fig 3.2b). Starting with f1(~x) = h1(~x), trees are finally combined with

fu(~x) = fu−1(~x) + νhu(~x), (3.5)

13
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with ν representing the previously mentioned weight parameter or learning rate of an
additional tree. A high learning rate accelerates the training process, leading however to
possible fluctuations if the chosen step size is too large to converge towards the global
minimum. A low learning rate counters this effect at the cost of slow convergence of the
algorithm.
Different criteria can be defined to stop the training of additional trees. In order to be
insensitive to outliers, a minimum number of events per regions is defined, preventing
overfitting. In addition, each cut has to significantly improve the effect on the target
value. If either of these two criteria cannot be fulfilled, no further trees will be trained.
Another stopping criterion is the maximum number of trees, in case a training did not
converge within a reasonable computing time. This is, however, suboptimal as training
will not yet have converged or is fluctuating around possible minima.
Decision trees are commonly used due to their robustness and the transparency of the
training process. It is possible to evaluate the chosen variables and their cut values in
order to obtain deeper knowledge about underlying structures in studied datasets. The
actual GBRT algorithm used in this thesis was developed by Joshua Bendavid (California
Institute of Technology) as part of the software framework of CMS.
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Figure 3.3.: Illustration of a typical neural networks structure with three input, four hidden
and two output nodes. Figure is taken from [23].

3.3.2. Neural Networks

Neural networks are inspired by the biological functionality of the human brain. Analogous
to axons in the brain, these networks are made of artificial neurons, connected like
synapses. Neurons can therefore communicate with each other and transmit and process
information. They take continuous states between zero and one, depending on their input
and propagate their states to following neurons. Each neuron is assigned an individual
weight to prioritize important information aspects. These neurons are typically organized
in layers, a first layer processing the input vector ~x, several hidden layer to generate the
function f(~x) and a last output layer finally providing the prediction ŷ (figure 3.3). All
neurons are connected linearly, while the activation, calculating the state of each neuron,
can be non-linear. These non-linear activation functions enable the modelling of any
complex function, expandable by adding additional hidden layers or varying their size.
Overtraining can be prevented by randomly excluding nodes in the training, similar to
the brain "forgetting" some information [21]. More information about neural networks
can be found in [22].
Regression is realized with several hidden layers containing non-linear activation functions,
providing an estimate for the linear output neuron, which predicts ŷ = f(~x). This
prediction is optimized by an appropriate loss function L(ŷ, y). Appendix B.1 introduces
a custom loss function dealing with periodic target values. Appendix B.2 evaluates the
performance of a neural network compared to a GBRT, regarding the scalar correction
of the MVA/ET , introduced in chapter 5.
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CHAPTER 4

Missing Transverse Energy

4.1. Introduction

The quantity of missing transverse energy (/ET ) is based on the physical principle of
momentum conservation. It is defined in the transverse plane, the plane perpendicular
to the beam axis. Colliding particles have no initial momentum in this transverse plan.
Therefore, each transverse directed momentum of a particle originating from a collision
has to be compensated by other particles from the same collision. Thus /ET is defined as
the negative sum of the transverse momenta of all reconstructed particles. This excludes
particles which can not be measured by the detector e.g. neutrinos. Consequently the
particles’ sum of transverse momenta defines the genuine /ET . However, a non-zero /ET
does not necessarily comply with undetected particles. Detector misreconstruction effects
play an important role and can originate from:

• Particle misidentification: Tracking algorithms reconstruct tracks from detector
signals and assign a particle to each track. Misidentified particles can lead to wrong
calculations of /ET .

• Detector resolution: The tracking algorithms are limited by the resolution of the
detector. E.g. detector signals cannot always be doubtlessly assigned to a certain
track or can be distorted by detector malfunctions or misalignments. This results in
a reconstruction uncertainty for each particle, being propagated into an uncertainty
on /ET .

• Beam misalignment: The center of the detector system is not necessarily in perfect
agreement with the beam interaction point. This leads to a non-uniform distribution
of the angular distribution of /ET .

• Detector coverage: A small region (|η| > 5) in the area around the beam axis is
not covered by any part of the detector. Particles in this region are therefore not
detectable and may imbalance the /ET calculation.

Every reconstructed particle at CMS is denoted as a particle-flow (PF) candidate. The
PF algorithm uses all information from the CMS (sub-) detectors to create a collection
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of particle-flow candidates, including muons, electrons, photons, neutral and charged
hadrons, pooled together as jets. The quantity /ET is then defined as

~/ET = −
∑

PF cand.
~pT , (4.1)

with ~pT representing the transverse momentum of the respective PF candidate.
The ~/ET -vector is given in polar coordinates with the magnitude /ET and the respective
angle in the transverse plane φ/ET

. Another important parameter is the scalar sum of
all transverse momenta, ∑ET , providing an estimator of how much transverse energy is
involved in the current evaluation of /ET .
The /ET variable is calculated from all PF candidates. Wrong descriptions of these
candidates lead to an incorrect description of the /ET . Input particles can therefore be
scaled to compensate for detector resolution effects. These scale corrections are called
jet energy corrections. More information regarding jet energy corrections can be found
in [24].
This /ET , obtained by the PF candidates and corrected by the jet energy corrections, is
denoted as PF/ET .

4.2. Additional Missing Transverse Energy definitions

Only charged particles can be directly measured by the detector via electromagnetic
interactions (for further information see [1]). This allows the reconstruction algorithms
to assign a track to these charged particles and thus reconstruct their origin. From
this, interaction points can be reconstructed, called primary vertices. One distinguishes
between the main primary vertex and pile-up vertices. The main primary vertex is defined
as the vertex to which the quadratic sum of the transverse momenta of all particle tracks
associated with it, is the largest. All other vertices are considered as pile-up, not being
of primary interest for this event.
Neutral particles, clustered as jets, can be assigned to either the primary vertex or pile-
up vertices. Neutral particles which cannot be clustered to jets are considered a third
category.
Regarding charge and interaction vertex particles can be allocated to five categories:
Charged particles from primary vertex (Charged PV) or pile-up (Charged PU) and neutral
particles, clustered as jets from primary vertex (Neutral PV) and pile-up (Neutral PU).
The neutral unclustered particles (Neutral Unclustered) form an additional category.
Based on these five categories, additional /ET definitions can be formed:

• PF/ET : This definition takes all particles into account

• Track /ET : Only charged particles from the primary vertex are used for this defini-
tion.

• No PU /ET : This definition only accounts for particles from the primary vertex.
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Table 4.1.: Overview of different types of /ET definitions and the respective types of included
particles.

/ET definition Charged
PV

Charged
PU

Neutral
PV

Neutral
PU

Neutral
Unclustered

PF/ET X X X X X
Track /ET X
No PU /ET X X
PU Corrected /ET X X X
PU /ET X X
PUPPI /ET ( X) ( X)

• PU Corrected /ET : This /ET definition adds unclustered neutral particles to the "No
PU /ET ".

• PU /ET : This definition consists of all charged and neutral clustered particles from
pile-up.

An unequivocal assignment to either primary vertex or pile-up is not always possible for
neutral particles. A new method was therefore proposed in 2014, called the pile-up-per-
particle-identification (PUPPI) /ET [25]. This method assigns a probabilistic value to
each particle, giving the probability of this particle to come from pile-up. This probability
is derived by using information about pile-up density of the whole event and the area
around the particle and vertex information retrieved from the tracks of charged particles.
Table 4.1 gives an overview over all /ET definitions. All these /ET definitions are to be
evaluated regarding their performance on calculating the /ET in the following chapter.

4.3. Performance

4.3.1. Response and Resolution

In order to be able to compare these different /ET definitions, the quantities response
and resolution can be defined. The /ET response is defined as

/ET Response =
〈Prediction

Target

〉
=
〈

/ET
/ET True

〉
, (4.2)

and /ET resolution as

/ET Resolution = σ (Prediction− Target) = σ
(
/ET − /ET

True
)
. (4.3)

Prediction and Target are terms from machine learning and refer to the predicted or cal-
culated value of the algorithm and the nominal or true value of the quantity in question.
In this case, prediction refers to the calculated /ET value, according to the specific /ET
definition and target is the true value of the /ET . Based on this equation, the question
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arises what the true /ET value is. To answer this, one has to distinguish between simulated
events, based on theory assumptions, and events, measured by the detector. For simulated
events, the true values of all quantities are known and therefore easily accessible. Data
events are limited to measurable quantities of which the true value is not known.
Nevertheless it is possible to filter for well understood events in which the true value
of a quantity can be estimated from theoretical models. As it comes to /ET , which is
a sum of all reconstructed transverse momenta, one can inspect events containing only
reconstructable particles, resulting in a nominal /ET True value of 0. The /ET value is then
an indicator for the detector performance. Well measurable and understood is the Z
boson decay into two muons. Muons are the most efficiently identifiable and measurable
particles at CMS[11, 12]. See figure 4.1 for schematic Z event topologies with and without
real /ET .

(a) (b)

Figure 4.1.: Two schematic event topologies of a Z decay to neutrinos (ETrueT > 0) (left) and
to muons (ETrueT = 0) (right). Note that the signal bars indicate the deposit in the hadronic
calorimeters and are therefore not proportional to the transverse energy as muons escape the
detector.

Figure 4.2.: Transverse momentum addition for the Z → µµ decay illustrated in figure 4.1b.
The discrepancy between calculated recoil and (negative) boson momentum lead to a non-zero
/ET .

The main part of the incorrect /ET in the Z → µµ decay comes from particles carrying
the recoil of the Z (p1 to p5 in figure 4.1). The transverse momentum of the two muons
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is precisely measured and is therefore a good foundation for comparison of the /ET algo-
rithms. The recoil is defined as the sum of the transverse momenta of all reconstructed
particles except for the muons. The transverse momentum of the Z boson is reconstructed
as the sum of the four-momenta of the two muons.
The negative recoil is now compared to the reconstructed boson momentum. Depending
on the /ET definition, all pile-up particles are included in the recoil. See figure 4.2 for a
schematic recoil calculation.

In order to compare recoil and the negative transverse momentum of the Z boson pZT ,
the recoil is split into components parallel and perpendicular to pZT , denoted as U|| and
U⊥ (fig. 4.3). The performance of the /ET definitions can now be analysed separately in
both components on a given validation sample with

Response|| =
〈
U||

−pZT

〉
,

Resolution|| = σ(U|| + pZT ),
Resolution⊥ = σ(U⊥).

(4.4)

Figure 4.3.: Construction of U|| and U⊥ based on the projection of the recoil on the transverse
momentum of the Z boson pZt .

Response is a measure of how correct the /ET definition is. If the expected value〈
U||/(−pZT )

〉
is around 1, the /ET algorithm is estimating the magnitude of pZT correctly,

averaged over the data sample. A response below 1 indicates an under-estimation of the
recoil, meaning that e.g. some particles are missing to reconstruct the complete recoil of
the Z boson.
Resolution is a measurement on how accurate the /ET definition is. The difference be-
tween the calculated and the nominal value gives an estimate for the variance of the
method.

ResponseCorrected =
Resolution||
Response||

, (4.5)

provides a combined measurement, accounting for both close-to-unity response and low
resolution.
Both, response and resolution, behave differently for specific collision characteristics.

The transverse Z boson momentum, pZT , is a measure for the structure of an event. High
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pZT events are defined by a high transverse momentum of the boson and as a consequence
high recoil values. Tracks of reconstructed particles are often better described and the
response reaches one for good /ET definitions.
Another quantity is the number of pile-up vertices. This quantity gives an estimate on
how densely the particles are distributed. A good /ET algorithm has to still perform
well under high pile-up scenarios. The distributions of pZT and #PV are shown in figure
4.4, motivating the regions of interest for validation techniques introduced in the follow-
ing chapter. Simulated data was generated in 2016 and is based on the instantaneous
luminosities at the LHCin 2016.
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Figure 4.4.: Distribution of the transverse momentum of the Z boson pZT (left) and the number
of pile-up vertices #PV (right). pZT decreases exponentially, while the number of pile-up vertices
has its maximal value around 18 vertices. The dashed black lines indicate the event partitioning
in the following plots, adjusted to the event distribution of the considered quantity. Events
within a partition were averaged for validation.

4.3.2. Validation techniques

As stated in equation 4.4, response and resolution are obtained by determining the mean
and standard deviation respectively of all events assigned to a defined region as shown
in figure 4.4. Under the assumption of the particles being normal distributed, one can
fit a gaussian distribution function and obtain µfit and σfit (figure 4.5). As can be
seen in figure 4.6a, a gaussian fit is not always the correct choice and would especially
overestimate the resolution for non-gaussian distribution shapes. Another approach, tack-
ling the standard deviation over-estimation consistently, is the full-width-half-maximum
method. The relationship to the standard deviation of a gaussian distribution is given
by σFWHM = FWHM

2.355 . Nevertheless, one can see in figure 4.6b that this method struggles
with sparsely populated event regions, as it relies on reasonable step sizes to determine
the maximum and the interpolation function.
A universal approach is to evaluate the empiric mean µtot and standard deviation σtot of
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the whole event sample. This has however drawbacks as outliers introduce biases towards
shifted means and larger variances.
A possible solution is to exclude these outliers. This can be done by excluding events
exceeding a certain distance to the mean, µtot, determined over the whole sample. This
distance was chosen to be four standard deviations σtot, representing an interval including
99,99% of all data points for normal distributed data. The µsel and σsel of this truncated
method have proven to be robust and reasonable for most scenarios. However, the trun-
cated mean, even with excluding outlying events, is still sensitive to highly asymmetric
distributions. An estimator, mostly ignoring shape distributions, is the 50% quantile,
P (50), for the mean and

σQtl = P (84, 13)− P (15, 87)
2 . (4.6)

As symmetries and shape distributions are important for the understanding of section
5.5, all plots in this section, concerning response and resolution determination, were done
with the truncated method. All other plots, concerning performance comparison of /ET
definitions, were done using the quantile method.
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Figure 4.5.: Distribution shape for the resolution determination for both parallel (left) and
perpendicular (right) components of the recoil in the bin (80 GeV < pZT < 100 GeV). Both
shapes are normally distributed in this case.

4.3.3. Comparison

Figures 4.7, 4.8, 4.9 and 4.10 show the performance of the /ET definitions defined in
equation 4.4.
All left-sided plots are given as a function of the transverse momentum of the Z boson, pZT ,
the right-sided plots as a function of the number of reconstructed primary vertices, #PV.
Note that only events with a pZT > 60 GeV are considered for plots with respect to #PV,
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Figure 4.6.: Distribution shape for the response determination. On the left a distribution based
on very few events. This especially happens for small data samples and sparsely populated
event partition. On the right a non-gaussian-like shape.

as otherwise the plots would be dominated by low-pZT events. These low-pZT events are
poorly described, having an statistically broad influence on the response and resolution
parameters, resulting in worse validity of the validation parameters. For instance, figure
4.11 shows negative response values for low pZT , which means that the recoil vector points
in the other direction than the boson momentum vector.
All /ET definitions have an increasing response over pZT , reaching a constant level of
response for events with pZT > 60 GeV. Figure 4.12 shows the distribution of the fraction
of the sum of transverse momenta of each /ET definition over the sum of all transverse
momenta.
The /ET characteristics can be summarized as

• PF /ET : Together with pile-up-per-particle-identification (PUPPI)/ET , this defini-
tion has the best-to-unity response of all /ET definitions. It has a fairly low increase
in resolution with pZT (< 5 GeV in the considered range of (5 < pZT < 200) GeV) but
a quite great dependence on #PV in resolution (up to 13 GeV) compared to Track
/ET (up to 3 GeV) or Puppi /ET (up to 6 GeV).

• Puppi /ET : With its response close to one, this /ET definition has one of the best
resolution performances. It shows low dependence on pile-up (up to 6 GeV) and is
only inferior to Track /ET in resolution as a function of pZT . It also has the smallest,
on average, fraction of ∑ET , indicating that 90% of the transverse momenta of
an event are represented by particles coming from pile-up.

• Track /ET : Even though this /ET definition has a quite good resolution performance
for low-pZT regimes and little dependence on pile-up, it shows only 50% of the
expected response. This means that half of all particles representing the recoil are
charged.
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• PU /ET : As it is only considering particles from pile-up, the recoil is consistently
excluded, resulting in a response of zero. It has comparably good performance on
the perpendicular resolution component (< 20 GeV), depending only on pile-up
effects. The dependency on pile-up is consequently the greatest (up to 25 GeV) and
worst for high pile-up regimes.

• No PU /ET : Trying to exclude particles coming from pile-up, it shows inferior
performance on the perpendicular resolution part compared to other /ET definitions.
The differentiation between pile-up and main primary vertex is thus not as effective
as for PUPPI/ET .

• PU Corrected /ET : This /ET definition adds the neutral unclustered particles to the
"No PU /ET " definitions. As the differences to the "No PU /ET " in resolution and
response are not significant, one can conclude that unclustered neutral particles are
not having a great influence on /ET . Nevertheless, the unclustered particles carry
50% of the ∑ET , following figure 4.12. Their small effect on the /ET is due to their
randomly directed small transverse momenta statistically evening out for the high
amount of neutral unclustered particles.

Taking all these effects into account, considering advantages and disadvantages of all
/ET definitions, one can conclude that most /ET definitions have advantages in a specific
category but suffer from performance deficiencies in others.
This is the reason why the idea arose to use a multivariate analysing method to profit
from the specific benefits of each /ET definition in order to create a multivariate /ET
definition with close to unity response and superior resolution abilities.
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Figure 4.11.: Examples of response distributions for different pZT regions. In the low-pZT regime
(left), the standard deviation σsel is higher than µsel. On the right, the same plot for high-pZT
regimes, with a relatively small standard deviation of the determined response value.
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4.3. Performance

Figure 4.12.: Distribution of
∑
ET /

∑
EPFT for all /ET definitions.
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CHAPTER 5

Multivariate Missing Transverse Energy
determination

In chapter 4, various /ET definitions were introduced, each performing superior in
different performance aspects but suffering in others. To harness the advantages of all
/ET definitions, a multivariate analysis (MVA) approach has been developed at CMS and
will be explained in this chapter.
The ideal /ET vector only consists of the transverse momenta of all non-measurable
decay products from the main primary vertex. In section 4.3, the recoil definition was
introduced, distinguishing between decay products of a particle and particles carrying
the recoil of this particle. Figure 4.1b and 4.2 show this definition for the Z → µµ decay.
The decay of a particle in e.g. muons or neutrinos is purely probabilistic and does not
influence the particles carrying the recoil. Excluding all decay particles from an event,
one can therefore not differentiate between events from e.g. a Z → µµ or Z → νν decay,
as the recoil structure stays the same.
The Z → µµ (ee) decay has two outstanding characteristics. First, all particles from this
decay are measurable and the true /ET of this event is therefore zero. Second, muons
and electrons are the best measured particles at the CMS detector [11, 12]. Any /ET
unequal to zero originates therefore from reconstruction inefficiencies of particles in the
recoil. In order to mitigate resolution effects on the /ET , this recoil can be corrected. In
the Z → µµ (ee) decay, this is done by comparing it to the reconstructed transverse Z
boson momentum pZT , obtained by adding up the four-momenta of the muons or electrons
respectively (compare figure 4.2).
The pZT variable represents the ideal environment for the application of a machine learning
algorithm by providing a target to which the recoil can be compared to. Based on training
information gained from pZT , the MVA/ET algorithm corrects the recoil on an event-by-
event basis.

5.1. Input

The MVA/ET algorithm is based on a GBRT method, as introduced in chapter 3.3.1. It is
provided all /ET definitions introduced in chapter 4.2 as input. As explained before, this
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Multivariate Missing Transverse Energy determination

method relies on the fact that the decay process is irrelevant for the recoil. All bosonic
decay products are subtracted from these definitions, thus omitting all information about
the boson. This results in a recoil definition, U , for each algorithm, defined with

• φU : The angular direction of the recoil in the CMS coordination system.

• pUT : The magnitude of the recoil in direction of φU .

• ∑
ET /

∑
PF ET : The fraction of the sum of all transverse momenta of the corre-

sponding /ET definition over the sum of the transverse momenta of all PF candidates.
This provides an estimator for the MVA algorithm on how significant the impact
of the corresponding /ET definition is for each event.

Additionally the following variables are passed to the GBRT:
• pJetT , φJet, ηJet: Transverse direction φJet, momentum pJetT and direction in the

longitudinal beam direction plane ηJet of the five leading jets with pJetT > 15 GeV.

• NJets: The number of jets with a threshold of pJetT > 15 GeV.

• #PV: The number of reconstructed primary vertices as introduced in chapter 4.2.

5.2. Method
The MVA/ET algorithm improves the /ET resolution of an event by correcting its recoil.
This correction is based on the PF/ET definition and performed in two steps.

Angular correction

First, an angular correction rotates the PF recoil vector, ~UPF, by an angle φ, based on
the nominal angular difference

T1 = φZ − φU − π. (5.1)
The constant factor π is subtracted as ~pZT shows in the opposite direction of ~UPF. This
allows a symmetric output of the machine learning algorithm around zero. See figure 5.1
for a schematic sketch of the angular correction. This φ−corrected recoil vector UMVA

φ is
used for the second correction.

Scale correction

In a second step, this rotated recoil is multiplied with a scalar factor in order to stretch
or bulge its parallel component, UMVA

|| , to match pZT as illustrated in figure 4.3. For the
machine learning algorithm, this nominal stretching factor is defined as

T2 = −pZT
UMVA
||,φ

. (5.2)

Figure 5.2 shows a possible scale correction.
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5.2. Method

Figure 5.1.: Schematic angular correction of UPF. The angle φZ−φU −π represents the angular
difference between the two vectors and the target for the multivariate regression algorithm. φ
embodies a possible prediction of the algorithm.

Covariance estimation

A last training is performed to provide an event-by-event error estimation of the MVA/ET
calculation. This is done by predicting the covariance matrix

V (~/ET ) = E

((
~/ET − ~/E

True

T

)(
~/ET − ~/E

True

T

)T)
, (5.3)

with the genuine missing transverse energy ~/E
True

T . As mentioned before, the genuine
/ET for Z → µµ(ee) decays is estimated as zero, simplifying this equation. The diagonal
elements of this matrix refer to the error estimation of U|| and U⊥. As both recoil
components are assumed to be uncorrelated, off-diagonal elements are zero, resulting in
two additional regression targets

T3 =
√
π

2

∣∣∣pZT,|| − UMVA
∣∣∣

UMVA , (5.4)

and

T4 =
√
π

2

∣∣∣pZT,⊥∣∣∣
UMVA . (5.5)

Both targets, T3 and T4, refer to an error estimation of the parallel and perpendicular
component by projecting the boson momentum pZT on the MVA recoil UMVA. The target
values are normalized by UMVA and the constant factor

√
π
2 , later to be applied with

V (~/ET ) =
(

(T3)2 · U 0
0 (T4)2 · U

)
. (5.6)

This covariance is calculated in the coordinate system of the recoil and accounts for the
error estimation of the MVA/ET recoil. The covariance of the decay products is added to
this estimation to ensure a correct /ET covariance estimation.
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Figure 5.2.: Schematic scalar correction of the rotated UPF. UMVA represents the final angular
and scalar corrected recoil vector.

5.3. Calculation

This multivariate method is based on reconstructed quantities. This implies that also
the target value, pZT , is a measured quantity. To ensure an unbiased training and to
exclude reconstruction inefficiencies, the training events have to pass certain filters. A
first criterion requires the reconstructed mass of the di-lepton system to be between 80
and 100GeV. This assures that the muons or electrons are decay products of a Z boson.
In about 10% of all events, more than one combination of lepton-pairs fulfil this criterion.
This means that different combinations of di-lepton pairs can be found. These events
are skipped to avoid possibly wrong training targets. The samples used for training of
the MVA method are simulated events, therefore leptons, wrongly reconstructed as other
particles, are also discarded.
As shown in figure 4.4a, the bosonic transverse momentum has a falling spectrum. By
simply using this pZT -distribution for training, the low pZT -area is relatively denser popu-
lated and therefore an MVA algorithm would tend to favour this region, introducing an
emphasis towards low pZT regimes. This focus can be avoided by applying weights to each
event such that high pZT events are weighted with a relatively higher weight than low pZT
events. This event reweighting was applied in a way that the resulting pZT spectrum was
uniformly distributed.
Nevertheless, very few events exist for the pZT > 150 GeV region. In order to avoid too
high weights for events in this sparsely populated region, special simulated high pZT event
samples exist. These samples exist up to transverse momenta of 2500GeV and were added
to the training data. In total, 8.427.529 events were used to train the GBRT algorithm.
An important point for validation of the MVA method is a statistically independent
test sample for performance measurement and avoidance of over-training. This sample
is supplied by another simulation campaign and contains 4.066.203 events, forming a
statistically sound sample for a measurement of performance.
The training was performed with a maximum number of 500 trees, a shrinkage rate of
0.05 and 250 minimum events per node (see chapter 3.3.1 for further explanation). This
ensured a stable and converging training process of the GBRT.
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5.4. Performance on events with no genuine /ET
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Figure 5.3.: Resolution of MVA, PF and PUPPI /ET as a function of pZT (left) and #PV (right).
MVA/ET shows a 5GeV resolution gain versus PF/ET as a function of pZT and increasing
resolution gain of up to 9GeV versus #PV. MVA/ET shows a similar 6-8GeV resolution gain
with PUPPI/ET versus PF/ET in low pTT -regions, however profiting from better-defined event
topologies for higher pZT , resulting in a performance gain of up to 6GeV versus both /ET
definitions. Both, PUPPI and MVA /ET , have a similar dependence on pile-up, with MVA/ET
showing a constant 4GeV resolution difference to PUPPI/ET .

5.4. Performance on events with no genuine /ET

Figure 5.3, 5.4 and 5.5 show the resolution and response of MVA/ET compared to PF and
PUPPI /ET for the Z → µµ decay. Other /ET definitions from section 4.2 were omitted
as they either lack close-to-unity response or show inferior resolution capabilities. Figure
5.6 shows the response corrected plot.
All plots were done with the above mentioned validation set and passed the filters
introduced in the previous section.
MVA/ET features a gain in resolution versus PF and PUPPI /ET . It shows a constant
5GeV gain versus PF/ET as a function of pZT and up to 9GeV (31%) resolution gain with
increasing pile-up.
As for PUPPI/ET , the resolution margin is bigger for the parallel than for the perpendicular
component. The reason for that lies within the importance of the angular and scalar
correction of the recoil vector for each component. As will be shown in section 5.5, the
perpendicular component is dominated by the correctness of the angular direction of
the recoil vector. Small deviations from the boson’s momentum direction, result in high
resolution losses especially in high pZT -regions. PUPPI/ET shows a good performance on
estimating the angular orientation by showing a 3-7GeV resolution gain versus PF/ET
but lacks capability of estimating the scalar component of the recoil. This behaviour can
be seen in figure 5.3a, with PUPPI/ET being highly dependent on pZT , showing worse
resolution than PF/ET for high pZT and MVA/ET outperforming both /ET definitions by
2-5GeV.
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Figure 5.4.: Resolution of MVA, PF and PUPPI /ET as a function of pZT (left) and #PV. MVA/ET
shows a 5GeV resolution gain versus PF/ET as a function of pZT and increasing gain of up to
9GeV versus #PV. MVA/ET shows comparable angular correction performance to PUPPI/ET ,
resulting in a similar perpendicular resolution performance. For high pZT , MVA/ET shows a
2GeV resolution gain, also observable in the right plot as a function of #PV.

In terms of response, MVA/ET reaches unity response quicker than PF and PUPPI
/ET . However the response is about 2-3% above unity for events with pZT > 60 GeV. This
behaviour is unexpected considering the fact that an MVA method was used to correct
the PF recoil in order to scale it to the true pZT -vector. This effect was therefore studied
and will be discussed in the following chapter.
Figure 5.6 shows the resolution corrected by the response and illustrates the overall
resolution gain of MVA/ET versus PF and PUPPI /ET with 2.5GeV difference for low pZT
regions and up to 9GeV for high pZT events.

Figure 5.7 shows Resolution|| for Z → µµ in comparison to Z → ee. All /ET definitions
show a 1-2GeV resolution gain in ee compared to µµ. However, all /ET definitions follow
the same trend in both channels. This is expected as the recoil structure of both decay
channels is not dependent on the decay products and the /ET calculation should thus not
be affected by this decay. The shift between both channels can be introduced by differ-
ent reconstruction resolutions for electrons and muons, resulting in possible resolution
differences for both particles. Additional plots for a comparison of Z → µµ and Z → ee
can be found in appendix A.1.
Modern machine learning algorithms such as neural networks were also tested in the
context of this thesis. If adjusted correctly, these neural networks performed equally
well in terms of resolution and response, however not being able to significantly surpass
the GBRT in correcting the /ET of an event. Appendix B introduces two possible ma-
chine learning scenarios, indicating possible pitfalls when dealing with (modern) machine
learning algorithms.
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Figure 5.5.: Response of MVA, PF and PUPPI/ET as a function of pZT (left) and #PV (right).
A response of 2-3% above unity can be observed for MVA/ET .
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Figure 5.6.: Response corrected plot of MVA, PF and PUPPI /ET as a function of pZT (left) and
#PV (right). MVA/ET has the lowest response corrected behaviour, however profiting from the
fact that it has a slightly above unity response, leading to a lower response corrected value.
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Figure 5.7.: Resolution|| of MVA and PF /ET for the Z → µµ (left) and Z → ee decay (right).
Whereas PF and MVA/ET show the same resolution in both channels, PUPPI/ET has a smaller
dependence on pile-up for the µµ-channel, resulting in an up to 4GeV resolution difference for
high pZT .

5.5. Symmetries in response determination

Figure 5.5 shows a 2-3% response above unity for the MVA/ET . This effect was studied
and found to be introduced by the scalar correction of the MVA approach. Compare figure
5.8 for performances of MVA/ET and an only angular-corrected φ−MVA/ET . The angular
corrected /ET shows even closer-to-unity response behaviour than PF/ET . Nevertheless,
the scalar correction can not be omitted, as the parallel component shows no gain in
resolution without the scalar correction (fig. 5.8b).

Training with excluded low pZT events

A possible explanation for this may originate from the low-pZT region in which events
are averagely under-estimated (compare figure 5.5a) and need an up-scaling to reach
unity-response. In order to possibly eliminate this bias, a training was performed ex-
cluding events with pZT < 30 GeV. Figure 5.9 shows response and resolution of this
training. Beside the fact that low pZT -events were handled incorrectly, with a response
of up to 60% above unity, it was not possible to avoid above-unity response in any region.

Training with limited scale corrections

Assuming this bias not being introduced by the MVA method, a possible cause of trouble
could be its target, T2. Figure 5.10 shows the target distribution for a high pZT region.
The highly asymmetric shape of the distribution introduces a bias towards, on average,
scale values above unity. A possible approach to eliminate this bias is an additional filter
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Figure 5.8.: Response as a function of pZT with the angular corrected MVA/ET (left). Whereas
MVA/ET shows its 2-3% above unity response, the only φ-corrected /ET yields a close-to-unity
response. Nevertheless, the resolution gain of 5GeV for the parallel component is introduced
by the scalar correction (right).
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Figure 5.9.: Response as a function of pZT of MVA/ET , trained on events with pZT > 30 GeV. The
effect of above-unity-response could not be eliminated by excluding these low-pZT events from
training. Consequently low pZT were also not handled properly, resulting in worse resolution
than PF/ET for low pZT .
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Figure 5.10.: Illustration of the target distribution, T2, for the scale correction of the MVA
method. The distribution shape is asymetric around 1, wherfore the empiric mean of the
distribution, µempiric, is above 1, introducing a bias towards overcorrection for events with
(80 < pZT < 100) GeV. A similiar target distribution shape can be found for other pZT -regimes.

to exclude events for training, whose target value exceeds too high scaling thresholds
around one. This was done for different arbitrarily chosen thresholds as can be seen in
figure 5.10. The results can be compared in figure 5.11. One can observe a mitigation of
the above-unity behaviour for tighter cuts at the cost of gain in resolution. The observed
2-3% response above unity could be gradually mitigated to about 1% (0.5%) for a target
cut of 1 ± 0.5(±0.3). The decrease in resolution gain is visible for low-pZT regions in
which the initial gain of 8GeV for the conventional MVA/ET training was reduced to 4
and 2GeV for the 1 ± 0.5 and ±0.3 training respectively in the lowest pZT region. The
differences in resolution between different trainings become smaller for higher pZT and
are negligible for the highest region with 1GeV difference, compared to the resolution
gain versus PF/ET of 6GeV.
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Scalar target calculation

In order to fully understand the origin of this asymmetry in the target distribution T2,
it is helpful to examine the initial distributions the target is calculated from. The scalar
target, T2, was calculated as

T2 = −pZT
UMVA
||,φ

, (5.7)

with the distribution of the bosonic transverse momentum, pZT , and UMVA
||,φ representing

the projection of the φ-corrected-vector on the pZT -vector. The distribution of UMVA
||,φ

is illustrated in figure 5.12. While the pZT distribution of the (weighted) events is uni-
form, the corresponding UMVA

||,φ values are normal distributed around their respective pZT .
Constructing the target, T2, by dividing pZT by UMVA

||,φ , the left-sided tail of the normal
distribution creates the asymmetric distribution, as small values in the denominator lead
to high target values. This asymmetry introduces the bias of the MVA algorithm to
predict on average too high scale factors and can not easily be removed.

Changing the target value to

T−1
2 =

UMVA
||,φ

−pZT
, (5.8)

would create a symmetric target function, since a normal divided by a uniform distribu-
tion results in a normally distributed shape. However this approach just postpones the
introduction of the asymmetry, as the scaling would then be applied as a division rather
than a multiplication

UMVA =
UMVA
φ

T−1
2

, (5.9)

introducing the asymmetry by, again, dividing by a normal distribution. Further studies
about shape alteration based on distribution divisions, can be found in the appendix
A.3.

Inverse Response definition

The Response|| was defined in equation 4.4 as

Response|| =
〈
U||

−pZT

〉
. (5.10)

The optimal response equals unity, a response of one. Intuitively one would expect the
inverse of the response

Response−1
|| =

〈
−pZT
U||

〉
, (5.11)

also to be one for an optimal unity response behaviour. However this Response|| definition,
as a division of normal by uniform distribution, has a symmetric shape (fig. 5.13a). The
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Figure 5.12.: Illustration of the distribution UMVA
||,φ for events with (80 < pZT < 100) GeV.
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Figure 5.13.: Distribution shapes for the Response (left) and Response−1 (right) determina-
tion of MVA/ET for events with (100 < pZT < 150) GeV. Events for the response determina-
tion are normal distributed, resulting in negligible differences between all validation methods.
Response−1 is asymmetrically distributed, yielding different response values for the validation
methods. Whereas µtot and µsel emphasise outlying events, µFWHM and µQtl focus on the
centre of mass of the distribution.

Response−1
|| , as a division of uniform by normal distribution, has an asymmetric shape,

similar to the target, T2, of the MVA algorithm (fig. 5.13b). As can be seen in figure 5.14,
MVA/ET shows unity-response behaviour for the inverse response definition using the
truncated method. However Figure 5.13b shows that other validation techniques such
as the FWHM or quantile method calculate a below-unity response for this asymmetric
distribution. This is due to the fact that few high response values are compensated by
many low response values to achieve unity-response, resulting in a median value below
one. To avoid asymmetric scaling effects, the median is therefore a better measurement
to define the centre of mass of an asymmetric distribution. Figure 5.15 shows Response
and Response−1 with this quantile mapping as introduced in chapter 4.3.2, showing that,
in contrast to PF and PUPPI /ET , the MVA/ET is scaling its recoil too high, due to its
asymmetric training target. For further plots, the quantile method is used to evaluate
the performance of the /ET definitions.
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Figure 5.14.: Response (left) and Response−1(right) of MVA, PF and PUPPI /ET using the
truncated method. MVA/ET reaches unity response for the asymmetric inverse response defini-
tion.
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Figure 5.15.: Response (left) and Response−1(right) of MVA, PF and PUPPI /ET using the
quantile method. Both, PF and PUPPI /ET , have close-to-unity response, whereas MVA/ET
shows above unity response for the response definition and vice versa for inverse response. This
method indicates an on average too high scaling of the recoil for MVA/ET .
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5.6. Performance on events with genuine /ET

Both Z → µµ and Z → ee decays are special due to their visible decay products.
Z → ττ → µτh is a decay with genuine /ET , since the tau decay produces neutrinos.
The transverse momentum of the boson, pZT , reconstructed as the sum of the transverse
momenta of its visible decay products, is in this case missing the momentum of the
neutrinos. As for this decay the neutrinos are the only particles contributing to the /ET ,
pZT can be approximated by adding the true /ET . This information is available as plots
in this section were made with simulated events.

The response can now only be measured on the /ET , as the projection for splitting in
parallel and perpendicular components was done on the reconstructed boson momentum.
The /ET response is defined, following its definition in equation 4.2, as

/ETResponse =
〈

/ET

/E
True
T

〉
. (5.12)

Plots in this section were done only with PF/ET , as PUPPI/ET was not available for this
data sample.
The above unity response, introduced by the asymmetric target distribution, T2, could
be mitigated in the previous chapter by applying a constraint to the scale-correction of
the MVA/ET training. In this Z → ττ → µτ channel, the conventional training, denoted
as unconstrained /ET and a scale constrained training are validated. The training with a
scale constraint of 30% was chosen as it mitigated the above-unity response effect more
consistently than less tight constraints.
Figure 5.16 shows the response for the unconstrained and constrained training set-ups
with respect to pZT . PF/ET shows up to 35% above-unity response for low pZT , reaching
a constant level of response for events with pZT > 35 GeV around 8-10% below unity.
The unconstrained MVA/ET training reaches unity response for the highest pZT region
with increasing above-unity response of up to 50% for lower pZT . The constrained set-up
reaches close-to-unity response for events with pZT > 50 GeV. However, low pZT events are
described by an up to 70% above-unity response.
Figure 5.17 shows the parallel resolution as a function of pZT for an unconstrained MVA/ET .
Compared to a constant 5GeVresolution gain of MVA/ET versus PF/ET in the µµ channel,
the resolution gain in µτh is maximal for events with pZT = 50 GeV (6-7GeV). Low pZT
events yield an only 2-3GeV gain. This effect is possibly introduced by the jet clustering
algorithm. The tau lepton momentum is reconstructed by clustering all particles within
a certain cone. Low tau momenta can be distorted by other low pT unclustered particles.
If the clustering algorithm is assigning these particles to the hadronic tau jet, the tau
momentum is reconstructed incorrectly and can thus distort the /ET correction. This
effect is negligible for higher pZT as individual neutral unclustered particles carry small
transverse momenta.
Figure 5.18 shows the perpendicular resolution as a function of pZT . Both /ET definitions
show a comparable trend in both channels resulting in a constant 4-6GeV resolution
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Figure 5.16.: /ET Response of MVA and PF /ET for the Z → ττ → µτ decay for an unconstrained
MVA/ET training (left) and a scale-constrained training (right).

difference between MVA/ET and PF/ET . Figure 5.19 shows the parallel resolution as a
function of reconstructed primary vertices, #PV. In both channels, MVA/ET yields a
smaller dependence on pile-up resulting in an up to 8-9GeV resolution gain with increas-
ing pile-up. Both definitions show a shift of 2-3GeV between µµ and µτh. This effect can,
similar to electrons, be introduced by different reconstruction efficiencies of the specific
leptons.

Figure 5.20 and 5.21 show the parallel and perpendicular resolution of a scale-constrained
MVA/ET training. Compared to an unconstrained set-up, the scale-constrained /ET shows
negligible resolution differences for low pZT . This can be explained by the fact that low
pZT events need high relative scale corrections to yield an improvement in /ET resolution.
High pZT events need relative small corrections, resulting in the fact that this constrained
/ET shows a similar resolution trend to the unconstrained training for high pZT .
The following chapter will evaluate the effects of different training set-ups on the

reconstructed Higgs mass in the H → ττ analysis.
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Figure 5.17.: /ET Resolution|| of MVA and PF /ET for the Z → µµ (left) and Z → ττ → µτ
decay (right). The MVA/ET performance is based on a training without any restrictions.
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Figure 5.18.: /ET Resolution⊥ of MVA and PF /ET for the Z → µµ (left) and Z → ττ → µτ
decay (right). The MVA/ET performance is based on a training without any restrictions.
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Figure 5.19.: /ET Resolution|| of MVA and PF /ET for the Z → µµ (left) and Z → ττ → µτ
decay (right) as a function of number of primary vertices, #PV.

0 50 100 150 200

pZT in GeV

15

20

25

30

σ
(E

m
is
s

T
,|
|
−
E
m
is
s

T
,g
en

)
in

G
eV

Z→µµ Resolution Emiss
T, ||

Scale− constrained Emiss
T

PF Emiss
T

0 50 100 150 200

pZT in GeV

15

20

25

30

σ
(E

m
is
s

T
,|
|
−
E
m
is
s

T
,g
en

)
in

G
eV

Z→ττ→µτh Resolution Emiss
T, ||

Scale− constrained Emiss
T

PF Emiss
T

Figure 5.20.: /ET Resolution|| of scale-constrained /ET and PF /ET for the Z → µµ (left) and
Z → ττ → µτ decay (right). The scale-constrained /ET resolution performance is based on a
training with constraint scalar corrections.
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Figure 5.21.: /ET Resolution⊥ of scale-constrained and PF /ET for the Z → µµ (left) and
Z → ττ → µτ decay (right). Scale-constrained /ET is based on a training with constraint scalar
corrections.

5.7. Performance in the H → ττ analysis

MVA/ET was used in the H → ττ analysis based on data taken in 2016 at CMS [26].
An algorithm reconstructs the Higgs mass based on many input variables of an event
(for further information, see [27]). One of them is the respective /ET of each event and
its significance. This algorithm was run on a simulation sample with generated Higgs
bosons from gluon-gluon fusion and a nominal mass of 125GeV. In order to validate the
impact of MVA/ET , this algorithm was first run with PF/ET as /ET definition and then
substituted by MVA/ET . The reconstructed di-τ mass of the Higgs boson can be found
in figure 5.22. To compare different /ET performances, the empiric mean µ, median and
standard deviation σ were calculated from these distributions and can be compared in
table 5.1. Figure 5.23 and 5.24 show response and resolution of an unconstrained and
scalar constrained MVA/ET training. Perpendicular resolution plots are shown in the
appendix A.2.
An overall shift to higher masses for all /ET definitions is observable. The PF/ET shift
of 2.5GeV could be mitigated to 1.1GeV for the unconstrained MVA/ET training. Also
the resolution on the Higgs mass could be reduced by 0.6GeV. The median shows a
1GeV shift of PF/ET which could be removed by MVA/ET . The median evaluates a lower
value as the Higgs mass shows an asymmetric tail to higher mass values (figure 5.22).
The scalar constraint training yields a lower mass than PF/ET , however not showing
close-to-nominal mass prediction nor an improvement in resolution.
Analyses are based on so-called signal regions, excluding regions that could distort their
result. Table 5.1 shows this region with pHT > 50 GeV, representing an area in which
particles are well reconstructed. All /ET definitions show a larger shift to higher masses
than for the whole sample. Though both, PF and MVA/ET show the same 1.5-3.5GeV
shift in the Higgs mass, MVA/ET improves the resolution by 1.7GeV (7.5%).
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Figure 5.22.: Reconstructed mass of the Higgs boson for the H → ττ → µτ decay produced
with gluon-gluon fusion, using PF/ET and MVA/ET . The boson was simulated with a nominal
mass of 125GeV. Median, empiric mean and standard deviation were calculated for different
training setups and can be compared in table 5.1.

Possible explanations for this behaviour can be found in figure 5.23, showing the response
and the parallel resolution of PF and MVA/ET . MVA/ET reaches unity-response for
pHT > 50 GeV with an up to 35% above unity response for low pHT . PF/ET yields only an
up to 25% above unity response for these low pHT region, however deviating up to 15%
below unity response for high pHT . MVA/ET shows a 2GeV parallel resolution gain for
low pHT , increasing up to 4GeV for higher pHT . This behaviour in resolution explains a
better resolution gain of MVA/ET over PF/ET for pHT > 50 GeV. Counter-intuitively to
close-to-unity response in this signal region, both /ET definitions show a larger shift in the
Higgs mass than for the whole sample. Also, though /ET in low pHT regions is on average
overestimated, the algorithm calculates a lower Higgs mass. A possible explanation can
be found in the significance of /ET , yielding an estimate for each event on how accurate
the current /ET calculation is. This information about the /ET calculation is taken into
account to determine to most likely Higgs mass. Therefore, above-unity response has not
necessarily to result in an above-nominal predicted Higgs mass.
The scale-constrained training set-up performed worse in resolution than the PF/ET and
the conventional MVA/ET . Also, the conventional training predicted an on average closer-
to-nominal Higgs mass. Future applications of MVA/ET should therefore be based on the
conventional MVA/ET set-up.
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Table 5.1.: Performance of different MVA/ET trainings on the evaluation of the reconstructed
nominal Higgs mass of 125GeV in theH → ττ analysis. The lower part of the table is calculated
with pHT > 50 GeV.

Empiric Mean µ
in GeV

Median
in GeV

Resolution σ
in GeV

PF/ET 127.5 126.0 22.04
MVA/ET No constraint 126.1 124.9 21.44
MVA/ET Scalar constraint 126.9 125.2 23.02

pHT > 50 GeV
PF/ET 128.4 126.5 22.7
MVA/ET No constraint 128.1 126.6 21.01
MVA/ET Scalar constraint 129.3 127.1 23.54
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Figure 5.23.: Response and Resolution of an unconstrained MVA/ET training in the H → ττ →
µτ decay produced with gluon-gluon fusion.
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Figure 5.24.: Response and Resolution of a scalar constrained MVA/ET training in the H →
ττ → µτ decay produced with gluon-gluon fusion.

5.8. Performance on data
As mentioned in section 5.3, the training and validation of MVA/ET is based on recon-
structed quantities. It is therefore possible to also validate its performance on real data
in the Z → µµ channel. This is best possible for the µµ channel as the genuine /ET is
zero and thus not needed to be added to the recoil.
However, due to mismodelling in the simulation, simulated and real events differ slightly
as can be seen in figure 5.25. To mitigate these differences, so-called recoil corrections
are applied, scaling the recoil of the simulated sample to match its corresponding real
data recoil.
Figure 5.25 shows the resolution as a function of pZT for both components. By applying
these corrections, that have been produced for this thesis, it was possible to scale the
simulated recoil to real data, also confirming the performance gain of MVA/ET versus
PF/ET in real data.
The resolution with respect to the number of reconstructed primary vertices, #PV, is
given in figure 5.26 yielding an up to 7GeV resolution gain of MVA/ET over PF/ET with
increasing pile-up for both simulated and real data.
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Figure 5.25.: Resolution plots of PF and MVA/ET on simulated and real events for the Z → µµ
decay as a function of pZT . Left sided plots are not recoil corrected, whereas right sided plots are
recoil corrected. The 3-5GeV gain of MVA/ET over PF/ET is also visible in real data. Differences
between real data and simulated events by at most 1GeV were consistently removed by applying
recoil corrections.
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Figure 5.26.: Resolution plots of PF and MVA/ET on simulated and real events for the Z → µµ
decay as a function of #PV. Left sided plots are not recoil corrected, whereas right sided plots
are recoil corrected. MVA/ET shows as well in data an up to 7GeV performance gain versus
PF/ET . Recoil corrections are modelling #PV dependence well for MVA/ET but introduce a
small discrepancy of up to 1GeV between simulation and real data for PF/ET .
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CHAPTER 6

Conclusion and Outlook

An MVA method was introduced to improve the /ET resolution of an event at the CMS
experiment. It is based on a GBRT algorithm and has been trained on Z → µµ events,
due to accurate muon reconstruction resolution and an expected /ET of zero.
The validation on a statistically independent Z → µµ sample has confirmed a resolution
gain of 5-7GeV (16-35%) with respect to the conventional PF/ET when resolved in pZT .
The pile-up dependence of MVA/ET has proven to be significantly smaller than for PF/ET ,
resulting in a resolution gain of up to 9GeV (31%) for high pile-up regimes. Similar
resolution performance was shown for Z → ee, representing another decay channel with
zero expected /ET .
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Figure 6.1.: /ET Resolution as a function of
reconstructed primary vertices, #PV, in the
H → ττ → µτh decay channel. MVA/ET yields
an up to 5GeV resolution gain with respect to
PF/ET with increasing pile-up vertices.

This MVA approach is only dependent on
the recoil structure of an event. Its perfor-
mance on evaluating the /ET of each event
is thus independent of the decay channel.
The Z → ττ → µτh was therefore studied,
representing a decay process with genuine
expected /ET carried by neutrinos. The su-
perior resolution performance with respect
to PF/ET on estimating the /ET of an event
was also verified in this channel with small
deviations between µµ and µτh for low pZT .
These differences can be explained with
different reconstruction efficiencies of the
decay products and are thus not caused by
the MVA method.
The H → ττ analysis plays an important
role in studying the Higgs boson and its
properties. The MVA/ET was used in this
analysis to determine the Higgs mass in the H → ττ → µτh decay channel and compared
to PF/ET . It was found to improve the resolution of the Higgs mass by 7.5% compared
to the conventional /ET definition. Its resolution gain improves with increasing pile-up
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Conclusion and Outlook

as can be seen in figure 6.1. This small pile-up dependence is important as future data
taking periods at LHC with higher instantaneous luminosities will increase pile-up and
portray an ideal environment for MVA/ET .
MVA/ET was tested on real data in the Z → µµ decay channel, confirming its constant
resolution gain of 5GeV as a function of pZT and small pile-up dependence.
The studies of this thesis cleared the way for an appliance of MVA/ET in on-going analyses.
The current MVA/ET is limited to di-lepton decays. An expansion to one or more than
two decay products would create possible new applications in other analyses.
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APPENDIX A

Additional plots for MVA/ET

A.1. Performance of MVA/ET in the Z → ee channel
Figure A.1 and A.2 show the response and perpendicular resolution for the Z → µµ
and Z → ee channel as a function of pZT . Figure A.3 and A.4 show the parallel and
perpendicular resolution as a function of reconstructed primary vertices, #PV. All /ET
definitions show a 1-2GeV down-shift between µµ and ee due to different reconstruction
resolution effects for electrons and muons. This shift is larger for PUPPI/ET (2GeV) than
for PF or MVA/ET (1GeV). Different handling of electrons and muons in the PUPPI
algorithm can introduce these specific resolution effects.
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Figure A.1.: Response of MVA and PF /ET for the Z → ee (left) and Z → µµ decay (right).
All three /ET definitions show the same response behaviour in both decay channels.
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Additional plots for MVA/ET
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Figure A.2.: Resolution⊥ of MVA and PF /ET for the Z → µµ (left) and Z → ee (right) decay.
All /ET definitions show a 1-2 resolution gain in the ee-channel compared to µµ.
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Figure A.3.: Resolution|| of MVA and PF /ET for the Z → µµ (left) and Z → ee (right) decay
as a function of #PV. Whereas PF and MVA/ET yield a less than 1GeV resolution difference
between µµ and ee, PUPPI/ET shows an up to 2.5GeV resolution deficit in µµ compared to
ee. The pile-up dependence is smaller for PUPPI and MVA/ET resulting in a more than 9GeV
gain of MVA/ET versus PF/ET for high pZT .
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A.2. Plots of the perpendicular resolution in the H → ττ → µτh channel
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Figure A.4.: Resolution⊥ of MVA and PF /ET for the Z → µµ (left) and Z → ee (right) decay
as a function of #PV. This plot is similar to figure A.3, yielding a 1-2GeV resolution gain in ee
for all /ET definitions. Pile-up dependence is again smaller for PUPPI and MVA/ET , confirming
the 9-10GeV (34%) resolution gain of MVA/ET over PF/ET .

A.2. Plots of the perpendicular resolution in the
H → ττ → µτh channel

Perpendicular resolution plots for theH → ττ → µτ channel with simulated Higgs bosons
from gluon-gluon fusion are shown in figure A.5. The unconstrained training set-up shows
a constant 3-4GeV resolution gain over PF/ET , whereas the scale-constrained training
yields a negligible resolution difference for low pZT . These events require relative high
scale corrections larger than 30%, resulting in a small gain for low pZT as these events
are insufficiently corrected.
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Additional plots for MVA/ET
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Figure A.5.: Perpendicular resolution plots for the H → ττ → µτ channel. The unconstrained
MVA/ET training (a) shows a constant 3-4GeV resolution gain versus PF/ET whereas the 30%
scale-constrained set-up (b) shows no resolution gain for low pZT .
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A.3. Toy study - Symmetries in distribution fractions

A.3. Toy study - Symmetries in distribution fractions
In this toy study, the ratio of two distributions is studied in dependence of the respective
mean and standard deviation. One distribution is assumed to be uniform, the other
one is normal distributed. Both distributions have the same mean value and the width
of the uniform distribution is fixed to 20. In total, 100000 random data points were
generated. Figure A.6a shows the input distributions. Figure A.6b illustrates the ratio of
the respective distributions. The normal distribution divided by a uniform distribution
is normal distributed around one. This is expected, as the normal distributed values,
around 90 with a standard deviation of 20, are divided by a value in the range of 80
to 100, resulting in a statistically normal distributed shape. The other case, a uniform
distribution divided by a normal distribution yields an asymmetric distribution with
a mean value above one. This asymmetry is introduced by small values of the normal
distribution. The uniformly distributed data points around 80 to 100 are divided by a
normal distributed data points with a mean of 90 and standard deviation of 20. This,
relative to the mean, high standard deviation leads to data points around zero, resulting
in high values of the out-coming distribution shape.
Figure A.7 shows the effect of standard deviations. Data points are generated with the
same uniform range of 80 to 100, whereas the standard deviation of the normal distribu-
tion is varied to 5 and 50. The small standard deviation yields no significant difference
between both ratios. As the standard deviation of 5 compared to a mean of 90 is small,
the generated values are drawn within a range comparable with the uniformly distributed
data points, preventing an asymmetric distribution. A high standard deviation of e.g. 50
compared to a mean of 90, results in larger asymmetries, as normal distributed values
close to zero introduce divergences in the resulting distribution.
The effect of varied mean values at a fixed standard deviation is shown in figure A.8.
The same effect of asymmetry occurs for a mean value (30) in the range of the standard
deviation (20). Changing the mean value to 290, reduces the effect of asymmetry.
This study shows the effects of asymmetries introduced by dividing by a normal dis-
tribution. The ratio of standard deviation over mean has to be large to mitigate these
asymmetric effects. This factor is also dependent on the width of the uniform distributed
data. Figure A.8 indicates a factor of 10 to be sufficient to reduce these effects for this
set-up.
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Figure A.6.: Toy study for symmetries in distribution fractions. The first distribution is uni-
formly distributed between 80 and 100, whereas the second distribution is normal distributed
around 90 with a standard deviation of 20.
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Figure A.7.: Toy study for symmetries in distribution fractions with large and small standard
deviations. The first distribution is uniformly distributed between 80 and 100, whereas the
second distribution is normal distributed around 90 with a standard deviation of 5 (left) and
50 (right).
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APPENDIX B

Neural network performance on /ET calculation

This chapter shows two problematic examples of appliances of a modern typical machine
learning algorithm. The first section presents a problem that may occur when dealing
with periodic variables, the second section shows the unusual performance of a trained
neural network on the scalar correction of MVA/ET .

B.1. Custom loss functions for angular target values
As introduced in chapter 5.2, the recoil has to be corrected to fit the true boson momentum,
pZT . The first angular correction rotates the vector by an angle φMVA to approximate the
nominal angular orientation of pZT . Especially for high pZT this required rotation is smaller
than 30 ◦ but for low pZT the required rotation can range from −π to π as can be seen
in figure B.1. From a physical point of view, a nominal rotation of +π equals a rotation
of −π as the resulted rotated vector points in the same direction. A schematic sketch
of this rotation can be found in figure B.2. However, for a machine learning algorithm,
this nominal correction value or target is essential. It is optimized by minimizing the loss
function introduced in chapter 3.2. For a nominal target value of y = π, the two physical
correct rotations of ŷ = ±π result in the following squared loss L(ŷ, y):

L(π, π) = (π − π)2 = 0,
L(−π, π) = (−π − π)2 = 4π2 � 0.

(B.1)

The trained neural network faces the largest possible loss for a rotation in the wrong
direction. As events with a nominal ±π rotation are physically not distinguishable, the
neural network learns in these cases to rather not perform any correction, resulting in
an average loss of L(0, π) = π2, compared to (L(π, π) + L(−π − π))/2 = 2π2. This can
be seen in figure B.3.
To avoid this behaviour, the target can be transformed to cartesian coordinates to avoid
this periodic target value. However, for MVA/ET this was not possible as the correction
had to be applied in polar coordinates, to guarantee scalability for high pZT events.
Another approach to avoid this behaviour is a custom loss function. This loss function
can be designed in a way that differences between target and prediction of ±2π result in a
minimal loss as well and are thus not avoided by the machine learning algorithm. Figure
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Figure B.1.: Illustration of the angular target distribution for events below pZT < 60 GeV (left)
and above. Whereas the nominal corrections for low pZT events extend from −π to π, corrections
for high pZT events are mostly in the range of -0.5 to 0.5. The dashed line of ±0.5 represents a
maximal target rotation of ±28.6◦.

Figure B.2.: Possible angular correction scenario. The recoil vector has to be rotated by ±π to
match the direction of pZT .

B.4 shows this custom loss function as a multiplication of three parabolic functions with
minima around zero and ±2π. It can be seen that the tendency of predicting zero for high
nominal rotations could be repealed, resulting in an improvement of angular correction.
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B.1. Custom loss functions for angular target values

(a)
(b)

Figure B.3.: Squared loss function with the two possible losses for a rotation of ±π on the left.
The right plot shows a two-dimensional distribution of the difference between prediction and
target as a function of the target value. The black dashed line indicates the preferred behaviour
of the algorithm predicting the nominal target value in each event. The white dashed line
indicates a zero prediction, meaning that the algorithm has predicted zero for events following
this line.

(a)
(b)

Figure B.4.: Custom loss function with the two possible losses for a rotation of ±π on the
left. Both scenarios result in a minimal loss for the algorithm. The right plot shows a two-
dimensional distribution of the difference between prediction and target as a function of the
target value. The black dashed line indicates the preferred behaviour of the algorithm predicting
the nominal target value in each event or a difference of ±2π. Events are now mostly distributed
around ŷ = y. Events with a high nominal rotation value are additionally distributed around
ŷ = y ± 2π.
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B.2. Evaluation on Z → µµ

This section shows the result of a neural network training on the scalar correction as
introduced in section 5.2. The neural network was trained with 10 hidden layers with 500
neurons each. Figure B.5 shows the parallel and perpendicular resolution as a function of
pZT . NN/ET yields an up to 80% resolution gain compared to PF/ET , seeming to perform
far superior to both PF/ET and MVA/ET . However, figure B.6 shows response and response
corrected for all three /ET definitions. In contrast to MVA and PF/ET , NN/ET shows an
response around 30-40% compared to unity-response. Combining both response and
resolution, yields a comparable resolution for low pZT with MVA/ET but a worse response
corrected value for high pZT .
An explanation for this small resolution value and below-unity response can be found in
figure B.7. Whereas the difference between nominal pZT and parallel component of the
recoil, U||, is normal distributed around zero for PF/ET , the difference of both values is
normal distributed around 46GeV for NN/ET . Compared to PF/ET the standard deviation
of this distribution is small, leading to a small resolution value. However, this constant
shift in resolution can also be observed in response, leading to a constant under-estimation
of the recoil.
As mentioned before, the machine learning algorithm aims to minimize its loss function.
If the loss is minimized by accurately predicting a value shifted from the target value
more accurately and thus minimize its loss, this prediction is preferred over another
approach in which it predicts less accurately the nominal value but at the cost of a larger
variance and thus greater loss.
Both introduced scenarios reveal potential difficulties when dealing with modern machine
learning algorithms. These algorithms are able to learn complex data structures and create
predictions based on functions learned from its data. However, these functions may not
lead to the intended behaviour of the trained algorithm, making it necessary to always
precisely formulate the given task and determine a reasonable validation technique.
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Figure B.5.: Resolution|| and Resolution⊥ of MVA, NN and PF /ET for the Z → µµ decay.
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Figure B.6.: Response and Response corrected of MVA, NN and PF /ET for the Z → µµ decay.
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Figure B.7.: Event distribution for the resolution determination for PF (left) and NN/ET (right).
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