
Continuum Suppression with
Deep Learning techniques for

the Belle II Experiment

Dennis Weyland

Master Thesis

November 2, 2017

Institut of Experimental Particle Physics (ETP)

Advisor: Prof. Dr. G. Quast
Coadvisor: PD Dr. A. Meyer

Editing time: November 2, 2016 – November 2, 2017

ETP-KA/2017-30

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Contents

1. Introduction 1

2. The Belle II Experiment 3
2.1. Motivation . 3
2.2. Accelerator . 4
2.3. Detector . 4
2.4. Tracks and Cluster Reconstruction . 6
2.5. Software Framework basf2 . 6

3. Continuum Suppression 7
3.1. Continuum . 7
3.2. Event Shapes . 8

4. Multivariate Analysis Methods 13
4.1. Boosted Decision Trees (BDT) . 13
4.2. Artificial Neural Networks . 14
4.3. Deep Learning . 15
4.4. Bayesian Optimization . 19

5. Deep Learning for Continuum Suppression 23
5.1. Introducing the Benchmark Dataset . 24
5.2. Choosing Input Features . 26
5.3. Hyper-Parameters . 30
5.4. Comparison of Traditional & Deep Learning Approaches 37
5.5. Relation Network . 40
5.6. Adversarial Network . 43
5.7. Discussion of Results . 49

6. Conclusion & Outlook 51

A. Continuum Suppression Features 57
A.1. Thrust . 57
A.2. Cleo Cones . 58
A.3. Fox Wolfram Moments . 60

B. Hyper Parameter Optimization 65
B.1. BDT . 65

III

IV Contents

B.2. DNN . 67

1. Introduction

The human mind always tries to understand what is beyond its knowledge. To understand
the universe and the process of its creation to this point, particle physics examines the
tiniest building blocks of matter by conducting experiments with ever-increasing accura-
cies. The Standard Model of Particle Physics (SM) is a theory that describes nearly all
phenomena with remarkable accuracy. It explains three of the four fundamental interac-
tions and all known particles. The SM has been developed since the 1960s and almost all
tests in high energy physics are in agreement with this theory.

The last particle predicted by the Standard Model, the Higgs Boson, was discovered at
the Large Hadron Collider (LHC) in 2012 [1, 2]. However, astrophysical and cosmological
measurements like the galactic rotation curves or gravity lensing effects are indications for
the existence of dark matter, for which the SM does not provide a satisfying explanation.
The SM is thus not an encompassing theory, but there are physical phenomena.

B-factories are experiments that investigate the decay of B mesons by collecting a large
amount of data by operating on the energy of the Υ(4S)-resonance that decays almost
exclusively into two B mesons. This makes it possible to search for deviations of the SM
by searching for new exotic decays and testing already known branching fractions more
accurately than other experiments. B-factories such as Babar and Belle discovered CP
violation in the B meson system and thus verified the theory of Makoto Kobayashi and
Toshihide Maskawa, who were awarded the Nobel Prize for their theory in 2008 [3].

The Belle II experiment, which is currently under construction, is an upgrade of Belle and
thus the next generation of B-factories. By accumulating 50 times more data than Belle,
the Belle II experiment will open up new possibilities for analyses, that were not possible
before. Besides the desired collision containing a B meson pair (signal), Belle II will also
create many other events, in which this is not the case. Those events are called continuum
and have to be suppressed in order to analyze the B meson decays.

For achieving a separation between continuum and signal, multivariate analysis (MVA)
methods are used to classify the event as continuum or signal. The Belle II Software
Framework basf2 implements such a continuum suppression by using engineered features
that describe the shapes of the underlying event. Those engineered features were developed
empirically using the understanding of the difference of the event shape between signal and
continuum.

1

2 1. Introduction

Recent developments in machine learning have changed the way classification processes can
be carried out with huge datasets. In so-called Deep Learning techniques [4], a classifier is
able to learn its own representation of the event, instead of relying on engineered features.
In Belle II, Deep Learning was already successfully applied for Flavour Tagging [5]. Besides
the valuable experience gained from the Deep Flavour Tagger, Deep Learning techniques
are an active field of research with many innovations, which could further benefit the Belle
II experiment.

In this thesis, a “deep continuum suppression” using various Deep Learning techniques is
developed and compared to the traditional, Belle-inspired approaches, which were already
implemented in basf2. Instead of just relying on the traditional engineered features, new
features are used that describe single reconstructed tracks and clusters in the event. Besides
the improvement in continuum suppression, this thesis also provides new insights in Deep
Learning techniques, which were not used in the Belle II experiment before and which
further increase the understanding of these technologies.

In Chapter 2 a brief introduction to the Belle II experiment is provided. Understanding the
continuum is crucial, when building a continuum suppression. The continuum as well as
the engineered features are explained in Chapter 3. In Chapter 4 the used MVA methods
including the Deep Learning techniques are described. To compare the Deep Learning
techniques with the traditional technique, Monte Carlo (MC) generated events are needed
to extract the features which can be used by the classifiers. Chapter 5 introduces the used
MC generated dataset and explains all features which were fed into the classifiers. Also, the
choice of so-called hyper-parameters, which are crucial to the performance of a classifier is
discussed. In the second half of the chapter, the classifiers using Deep Learning techniques
are then compared to the traditional technique. The results are discussed at the end of the
chapter. In Chapter 6 the results are summarized and an outlook on the “deep continuum
suppression” and its Deep Learning techniques is provided.

2. The Belle II Experiment

The Belle II experiment at the SuperKEKB accelerator is designed to examine electron-
positron collisions. The experiment is located at the High Energy Accelerator Research
Organization (KEK) in Tsukuba, Japan and is currently under construction. Like its
predecessor, the Belle experiment, it is a so-called B-factory, that operates mostly at a
center-of-mass energy that corresponds to the mass of the Υ(4S)-resonance to produce B
meson pairs at a high luminosity. Although the Belle II experiment is an upgrade to the
Belle experiment, many parts were built completely new based on the experience gained
from the previous experiment. The Belle II Collaboration is responsible for designing and
operating the experiment, as well as analyzing the resulting data.

To understand the underlying motivation of this experiment, Section 2.1 gives a brief
introduction to the physical motivations that warrant an upgrade. A detailed overview of
important physical contributions of past B-factories is described in Ref. [6]. The accelerator
SuperKEKB and the detector Belle II are described in Section 2.2 and Section 2.3, while a
more in-depth description of both can be found in Ref. [7]. This thesis uses features that
are extracted directly after tracking and cluster reconstruction. Therefore, both processes
are introduced in Section 2.4. At last, the software framework basf2, which was built for
the Belle II experiment from scratch and was used and expanded in this thesis, is described
in Section 2.5.

2.1. Motivation
In 2008, the Nobel Prize in physics was awarded to Makoto Kobayashi and Toshihide
Maskawa for their prediction of CP violation [3]. This was achieved by the verification of
Belle’s [8, 9] and BaBar’s [10] observation of the CP violation in the interference between
mixing and decay in B0 → J/ψK0

S decays.

In the same year 2008, the Belle II Collaboration was formed, as proposed in a Letter of
Intent from 2004 [11]. With a 40 times higher luminosity, Belle II will carry on the legacy
of B-factories and accumulate around 50 times more data than Belle [12]. Using such a
bigger dataset provides access for more accurate and new analyses. The physics program
of Belle II is to search for new physics in rare decays and in CP violation, as well as to
further examine B anomalies and exotic states. Charmless 2-body B meson decays are an
example of rare SM processes in which possible contributions from new physics could be
large enough to be observed in Belle II. In this case B → Kπ decays like B0 → K0

Sπ
0 are

studied. A more detailed overview of the physics motivation can be found in Ref. [7].

3

4 2. The Belle II Experiment

Figure 2.1.: The Belle II detector [15].

2.2. Accelerator

SuperKEKB is an upgrade to KEKB, which was the accelerator with the Belle experiment,
and is built in the same tunnel as its predecessor. It is an e−e+-collider with an energy of
4 GeV in the low energy positron ring (LER) and an energy of 7 GeV in the high energy
electron ring (HER). The accelerator is designed to run mainly at the energy of 10.58 GeV
which corresponds to the mass of the Υ(4S)-resonance [13]. Because of the asymmetry in
beam energy, there is a boost of the center-of-mass system of the Υ(4S), which makes it
possible to measure the time difference in the lifetime of the two resulting B mesons, which
is necessary for the measurement of time dependent CP violation.

The huge increase in luminosity, which SuperKEKB is designed to achieve is due a new
“nano-beam” scheme [14]. In this scheme, the cross section of the two beams is reduced,
which makes an e−e+ collision more likely and increases the luminosity by a factor of 20.
The remaining factor of two is realized by increasing the number of particles per beam.

2.3. Detector

The Belle II detector is presented in Figure 2.1. It is built on similar principles like its
predecessor, while introducing some modifications due to new concepts for improving the
quality of measurement. Below, a brief introduction of the major detector components is
given. A detailed explanation of the components can be found in Ref. [7].

2.3. Detector 5

Magnetic Field

A superconducting solenoid provides a magnetic field of 1.5 T, which is used to determine
the momentum and charge of charged particles. To achieve the homogeneity of the magnetic
field, an iron yoke is used. The solenoid is located around the ECL.

Vertex Detector (VXD)

The VerteX Detector consists of a two-layer silicon PiXel Detector (PXD) and a four layer
silicon strip detector (SVD). While the PXD is based in the DEPFET technology [7], the
SVD is built of silicon strips with a double-sided readout. The PXD is the innermost
detector component, closest to the interaction point, while the SVD is located around the
PXD. Because the VXD can measure precise space points, tracks can be reconstructed
with precise impact parameter information.

Central Drift Chamber (CDC)

The CDC consists of a cell-wire structure, filled with a Helium-Methane mixture. Some
of its wires are arranged parallel to the beam axis and some are slightly tilted to obtain
information from the particles in the direction of the beam axis. The information of the
CDC is used for reconstructing tracks and extracting particle ID information from the
specific energy loss due to ionization.

Electromagnetic Calorimeter (ECL)

The ECL consists of many scintillator crystals and is used for the detection of electromag-
netic clusters. It is located in the barrel region and at the end cap region. Its information is
used to determine the energy deposition, angular information and the PID of the incoming
particles.

Particle Identification

There are multiple systems for particle identification. Their main purpose is to provide
information for discriminating kaons and pions. The Time-Of-Propagation counter (TOP)
is located at the outer wall of the CDC and uses Cerenkov light for detection. In the
end-cap region, there is the Aerogel Ring-Imaging Cerenkov detector (ARICH), which uses
the same detection principle.

K0
L and Muon Detector (KLM)

The KLM is the outermost detector component and consists of alternating sensor layers and
iron plates. A good distinction between hadrons and muons can be achieved by determining
whether there is a charged track that matches the particle measured by the KLM. These
tracks belong to muons.

6 2. The Belle II Experiment

2.4. Tracks and Cluster Reconstruction

A particle is traversing the detector and creates hits in the CDC and energy depositions in
the ECL. Many hits (energy depositions) are combined to create a track (cluster) object.

In the tracking algorithm, the trajectory of the particle is reconstructed from the hits
measured in the detector along the trajectory of the particle. Because there are multiple
hits originating from all sorts of particles, track finding is a process of pattern recognition.
Various algorithms are used to reconstruct the tracks correctly. A reconstructed track
consists of information about the position and momentum at the closest point to the
interaction point in its trajectory. The curvature of the trajectory indicates the sign of
the charge. Additionally, uncertainty information about the reconstruction of the track is
available, as well as PID information from the various detector parts.

The ECL detects the particles by their energy deposition. Therefore, momentum informa-
tion about the particle is available at the time of entering the ECL, if a particle hypothesis
is applied. If no track is matched to the cluster the position resolution is very poor and
therefore it is only considered, if the particle is detected in the barrel or endcap region. In
addition to momentum and region, cluster objects also consist of information about the
uncertainty, timing and shape of the reconstructed cluster.

2.5. Software Framework basf2

The Belle II Analysis Software Framework basf2 was written completely new for the Belle II
experiment. It is designed to be used for online tasks (such as data acquisition and high
level trigger) and offline purposes (such as reconstruction and analysis) [16]. While the
biggest part of its code is written in C++, there is a user interface which can be accessed
by the programming language Python.

The software framework also features a multivariate analysis (MVA) package. This pack-
age provides access to a wide variety of MVA methods, as well as the possibility to be
compatible with every classifier, which possesses a python interface.

During the work of this thesis, I implemented several new features in the analysis package
of basf2. For the MVA package, I implemented new classifier interfaces, several examples
and further improvements regarding the performance of the package.

3. Continuum Suppression

Performing an analysis is largely associated with the detection of so-called background.
Background is anything that does not contribute to the analysis and should be discarded.
When dealing with measured data, there is no absolute proof, which parts of the data is
background. Therefore, the MVA methods (see Chapter 4) use a set of input features to
predict whether the event is a background event that should be discarded or whether it is
a desired signal event containing a Υ(4S)-resonance. This chapter introduces continuum
as an event based background component and explains the engineered features, which are
used by the traditional continuum suppression.

The chapter starts with introducing continuum as a main background component in many
analyses in Section 3.1. For understanding the differences between continuum and signal
events, the event shapes are explained in Section 3.2. In Sections 3.2.1 – 3.2.3, the engi-
neered features used for continuum suppression are introduced. Finally, a short conclusion
of these features is given in Section 3.2.4.

3.1. Continuum

The goal of SuperKEKB is to produce as many events at the Υ(4S)-resonance (signal
events) as possible. The Υ(4S) has an invariant mass of 10.58 GeV [13] and consists of a
bound bb pair, which will hadronize to a pair of B mesons. But not every e−e+ collision
results in the two desired B mesons. Events are called continuum if they do not contain a B
meson pair. For example the cross section of the Bhabha scattering process e−e+ → e−e+

is around 300 times higher than that of the Υ(4S)-resonance [17]. There are other leptonic
decay products like µ−µ+ and photons, although they do not possess such a high cross
section than the Bhabha scattering. Most of these leptonic events will be cut away by the
trigger. Therefore, they can be neglected as a background component in most analyses.

The remaining continuum are quark-antiquark events. In Figure 3.1 the relative cross
sections of e−e+ → qq are shown. The desired signal event, which leads to two B mesons,
occurs only in 22.2% of the cases. Not shown in Figure 3.1 is τ−τ+. Although those are
leptons, they can decay hadronically and are therefore also a relevant background for many
analyses. Many analyses in Belle, e.g. B0 → K0

Sπ
0, could be vastly improved with a better

separation between continuum and signal events [18].

7

8 3. Continuum Suppression

Figure 3.1.: Relative cross sections of e−e+ → qq at the invariant mass of the Υ(4S)-
resonance [17]. Events with e−e+ → BB come from the Υ(4S)-resonance and
are the desired signal category. The rest of the chart is continuum background.

Figure 3.2.: Event shapes for continuum (left) and signal(right) events. Signal events have
spherical shape, while light quark pairs have a jet like structure, because they’re
produced back-to-back. Adapted from [19].

3.2. Event Shapes
The event shapes of continuum and signal events are illustrated in Figure 3.2. In the
center-of-mass system the two B mesons from signal events are almost at rest. Because
they have spin 0, their decay products have no preferred direction, which results in an
isotropic distribution of spherical shape. In continuum events the light quark pairs that
are created back-to-back have much more kinetic energy, which almost corresponds to the
energy of the accelerator. Therefore, the hadrons produced in the fragmentation do not
deviate so much from the flight directions of the quark pairs, resulting in a jet-like structure.

Below, different features are described that characterize the differences in event shapes
between signal and continuum events. They are calculated using information from final
state particles found in the detector, described in Section 2.3. The final state particles can
be combined to a B meson candidate, which represents one of the two B meson originating
from an Υ(4S)-resonance. The rest of event (ROE) is formed by the remaining final state
particles that are not used for forming the B candidate. To visualize the distributions of
these features each for signal and background, B → K0

Sπ
0 is chosen as the decay to combine

the B candidate.

3.2. Event Shapes 9

0.0 0.2 0.4 0.6 0.8 1.0
thrustOm

0

1

2

3

4

5 continuum
signal

0.0 0.2 0.4 0.6 0.8 1.0
cosTBTO

0.0

0.2

0.4

0.6

0.8

1.0

1.2 1e1

continuum
signal

Figure 3.3.: Normalized distributions of the magnitude of the thrust axis of the ROE
(thrustOm, left) and the angle between the thrust axis calculated from the
B candidate and thrust axis calculated the ROE (cosTBTO, right).

3.2.1. Thrust

The concept of thrust was originally used to quantify jets [20]. The thrust axis is defined as
the axis that maximizes the sum of longitudinal momenta of particles. Since the particles
are divided into those which are used for reconstructing the B candidate and those in
ROE, two different thrust axes can be calculated. Four different thrust related features
are used for continuum suppression: the magnitude of each thrust axis; the cosine of the
angle between the two thrust axes; and the cosine of angle between the thrust axis of the
B candidate and the z-axis, which is the beam axis. Two of these features are shown in
Figure 3.3. All features can be found in Appendix A.1.

3.2.2. Cleo Cones

Cleo Cones were introduced by the CLEO Collaboration for continuum suppression [21].
The cones measure the scalar momentum flow around the thrust axis into concentric cones
in angular intervals of 10◦. The distributions of the first two Cleo Cones are shown in
Figure 3.4. All Cleo Cone distributions are shown in Appendix A.2.

10 3. Continuum Suppression

0 2 4 6 8 10 12
Cleo Cone (1)

0

1

2

3

4

5

6

7

8

1e 1

continuum
signal

0 2 4 6 8 10
Cleo Cone (2)

0

1

2

3

4

5

6

7

1e 1

continuum
signal

Figure 3.4.: Normalized distributions of the first (left) and second (right) Cleo Cones. Cleo
Cones sum up all momenta in 10◦ cones around the thrust axis.

0.0 0.2 0.4 0.6 0.8 1.0
R2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
continuum
signal

1.0 0.5 0.0 0.5 1.0
KSFW Hso

0, 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

continuum
signal

Figure 3.5.: Normalized distributions of the KSFW moments R2 (left) and Hso
0,2 (right).

3.2.3. Fox-Wolfram Moments

The Fox-Wolfram (FW) moments Hl are defined as

Hl =
N∑
i,j

|pi||pj |Pl(cos(θij)) and Rl =
Hl

H0
, (3.1)

where θij is the angle between pi and pj and Pl is the l-th order Legendre polynomial.
Those moments were originally introduced to describe event shapes in e−e+ annihila-
tions [22]. A very good discriminator is R2, which is one of the used features in continuum
suppression. The feature is shown in Figure 3.5.

3.2. Event Shapes 11

A more refined version of the FW moments are the Kakuno-Super-Fox-Wolfram (KSFW)
moments Hg

c,l, which are described in detail in Ref. [6]. The considered particle groups for
the double sum are described in the variable g. If one of the sums runs over the particles
that decayed from the B candidate and the other sum runs over the particles located in
ROE, the variable g is marked as “so”. If both sums use the particles in the ROE, the
variable g is marked as “oo”. The variable c describes whether the considered particles are
charged (0), neutral (1) or missing (2). It is only used with the superscript “so”. In the
end the possible KSFW moments are Hso/oo

0/1/2,l.

Also considered as KSFW moments are the transverse energy Et, which is the scalar sum
of the transverse momenta of each particle and the missing mass squared M2

m [6]. One of
the best discriminating KSFW moments is shown in Figure 3.5. All KSFW moments can
be found in Appendix A.3.

In Belle, most of these features were combined into a Fisher Discriminant [23] and then
fed in another MVA method [24]. For the Belle II software framework basf2, the state-
of-the-art approach prior to this thesis was to insert all features directly into an MVA
method.

3.2.4. Conclusion

The features, which are introduced in this Section were specifically built for continuum
suppression and were refined over the years. Therefore, it is not surprising that some of
these features separate signal and continuum already very well on their own. As a result
using just these engineered features as input features in a MVA method results in a very
good classifier.

Even with such a high baseline, continuum is still considered as the main background
component for many analyses. Also, the engineered features are not built to contain all
possibly useful information in the event. Therefore, a new set of features based on tracks
and clusters will be compared with the engineered features in Chapter 5.

4. Multivariate Analysis Methods

Multivariate Analysis (MVA) methods are commonly used in particle physics. Most of the
time they are used as binary classifiers. In this case a multidimensional feature vector will
be projected into a one dimensional test-statistic. This test-statistic is designed to separate
signal and background and therefore is used to increase the signal-to-background ratio in
an analysis. In contrast to simple cuts on independent features, MVA methods also use
information about correlations between the features. Therefore, the resulting test-statistic
is in many cases much better. MVA methods have to be trained on an independent dataset
to adapt its model specific parameters to a given classification task. Many MVA methods
also require so-called hyper-parameters, which are not automatically tuned by the training
and have to be chosen by the user.

This section starts by introducing Boosted Decision Trees (BDT) and Artificial Neural
Networks (ANN) in Section 4.1 and Section 4.2. The concept of Deep Learning, which is a
very active field of research in and outside of physics, is explained in Section 4.3. Relation
Networks and Adversarial Networks as recent techniques developed in Deep Learning are
introduced in Section 4.3.1 and Section 4.3.2. Using such techniques requires the handling
of many hyper-parameters. So-called Black Box Optimization is an approach that can
handle this automatically and is explained in Section 4.4.

4.1. Boosted Decision Trees (BDT)

A decision tree divides the feature vector into distinct rectangular regions to separate signal
and background. In Figure 4.1 the schematic outline of this process is shown. The binary
cuts are ordered hierarchically in a tree and are applied consecutively. In the end, the
feature space is divided into regions with different sizes. Each region now possesses its own
signal fraction, which is used as a classifier output, if the data point is in the corresponding
region. The cuts of a decision tree are referred to as nodes, while the regions are referred
to as leafs.

A single decision tree does not possess a good generalization capability. In other words, it is
very prone to “remember” statistical features of the particular dataset used for the training
and performs much worse on an independent dataset. This so-called over-training can be
prevented by limiting the depth of a tree, which is the number of consecutive cuts. Such a
limited tree is a so-called weak-learner and divides signal and background only poorly.

13

14 4. Multivariate Analysis Methods

Figure 4.1.: Schematic outline of a single Decision Tree (left) and its regions inside a two-
dimensional feature vector resulting from the cuts in the tree (right). Taken
from [25]

While a single weak-learner does not perform well on classification tasks, many weak-
learners combined can create a good classifier that is resistant to over-training. A so-
called Boosting algorithm, like Gradient Boosting [26], assigns each event from the training
dataset a weight to train a weak learner. Weights of wrongly (correctly) classified events
will be increased (decreased) and used for training a new weak-learner. This process will
be repeated a few hundred times. In the end the classifier output is defined by the weighted
sum of the outputs of the individual weak-learners. The boosting algorithms build a “forest”
of weak-learners and belong to the category of ensemble methods.

In the Belle II Software Framework basf2, BDTs are the most often used classifiers. The
standard boosting algorithm is FastBDT [27, 28]. FastBDT also supports boosting to
uniformity, which is a concept that is explained in Section 4.3.2. For the comparisons in
this thesis, FastBDT will be used as a representative for BDT classifiers.

4.2. Artificial Neural Networks
Artificial Neural Networks are inspired by neural biological processing systems. One of
the predecessors was the Rosenblatt Perceptron [29]. A basic ANN is shown in Figure 4.2.
This type of Neural Network is called a Multilayer Perceptron (MLP) and consists of an
input layer, which receive the input features, a hidden layer and an output layer that is
the classifier output. While the dimension of the input and output layer is specified by the
classification task, the size of the hidden layer can be adjusted. Every neuron consists of
weighted sums from the outputs from the previous layer. Neurons in hidden and output
layers have an activation function A(x), which transforms the output of each neuron. Also,
every neuron can have a bias b, which serves as an offset for the activation function. The
output of a Neural Network with a single hidden layer is calculated as

y = A2

(∑
hj · w

(2)
j + b

)
, where hj = A1

(∑
xi · w

(1)
ij + bj

)
, (4.1)

and i, j are the indices over the input, hidden neurons.

4.3. Deep Learning 15

Figure 4.2.: Schematic outline of a Multilayer Perceptron (MLP). The network consists of a
layer of input neurons xi, a layer of hidden neurons hj , a single output neuron
y and weights w(1)

ij /w(2)
j , which are the connections between the layers. Biases

and activation functions are not shown.

To be able to solve nonlinear classification problems like the XOR-Problem the activation
functions from the MLP has to be nonlinear. Otherwise, the MLP is only a linear classifier
and therefore not able to solve such problems [30].

To train a MLP a loss function is required, which compares the predicted result with the
truth values. The gradient of the error defined by the loss function is then backpropagated
through the network and the weights are updated by their gradients. By updating the
weights the training tries to minimize the loss function. Using this method a Neural Net-
work can approximate a vast number of functions and is not limited to binary classification
tasks.

4.3. Deep Learning
A three-layer MLP like the one shown in Section 4.2 consists of only one hidden layer.
However, one can increase the capabilities of a MLP by adding many more hidden layers.
Such approaches are becoming more popular due to improvements in the available hardware
for parallel computation, significantly reducing the time necessary for the training. Besides
the increase in depth, there is also a tendency for bigger input feature vectors, e.g. when
dealing with images [31]. The goal is to extract the required information from the raw
dataset, instead of relying on engineered features, which are only representations of the
raw dataset. Because every layer in a Neural Network is a representation of the input
features, the number of neurons per layer in relation to a classical Neural Network has to
increase as well. Using more hidden layers as well as using more neurons per layer is the
foundation of Deep Learning. A schematic outline of a Deep Neural Network is shown in
Figure 4.3.

In Deep Learning the underlying statistical models are much more complex than in a
traditional Neural Network. Therefore, the need for regularization techniques to prevent
over-training is much more important. Two very popular methods for regularization are
Dropout [32] and Weight Sharing.

16 4. Multivariate Analysis Methods

Figure 4.3.: Schematic outline of a Deep Neural Network. Taken from [33]

Figure 4.4.: Neural Network before (left) and after (right) applying Dropout. Taken
from [32]

During training, Dropout will randomly select neurons and set their activation to zero. As
shown in Figure 4.4, the number of weights used for training is reduced significantly. The
selection of dropped out neurons is always changing. In the end every weight of the fully
connected layer is scaled and no dropout is used for predicting the results.

Weight Sharing is another approach for regularization. Using the same weights in different
parts of the network greatly decrease the number of weights and therefore complexity.
This loss of complexity does not result in a loss of classification quality because the exact
location of some features are unknown. The idea is to search for the same feature in
different regions of the representation. The most popular approach to shared weights are
Convolution Layers [34]. Another example of Weight Sharing is explained in Section 4.3.1.

Using Deep Learning techniques also requires a fitting software library. TensorFlow [35]
calculates symbolic operations using data flow graphs. The graphs are designed by the
user on a mathematical operations level. For this thesis, I implemented the TensorFlow
interface in basf2 with and without Keras [36], which serves as a front end to TensorFlow
and other libraries. In Keras the Neural Network is designed on a layer base, while retaining
the freedom of “mixing in” TensorFlow code.

4.3. Deep Learning 17

While in basf2 both approaches are supported, I recommend using Keras with TensorFlow
as back end. Keras has many convenient functions to use for training Deep Neural Net-
works, which makes the code of designing such networks much shorter and more accessible.
Therefore, sharing Neural Networks inside the Belle II-Collaboration becomes more trans-
parent and easier to understand. However, for developing new types of Deep Learning
techniques it is still required to write code at a TensorFlow level.

Deep Learning is already used for FlavourTagging in Belle II [5]. The objective of this
thesis was to apply Deep Learning for continuum suppression and to further increase the
understanding and knowledge of Deep Learning techniques and how they are useful for
the Belle II-Collaboration. In the following sections, specific techniques for Deep Neural
Networks, which are used in this thesis are explained. Relation Networks in Section 4.3.1
use the concept of sharing weights, while Adversarial Networks in Section 4.3.2 use the
concept of discriminators.

4.3.1. Relation Networks

Relation Networks use the concept of Weight Sharing by comparing two sets of similar
features pairwise [37]. A schematic outline of a Relation Network is shown in Figure 4.5.
For the purpose of comparing subsets of input features, the input features have to be divided
into several groups. The groups should have a representative meaning, e.g. coordinates of
a particle. In this case, every feature that describe a single coordinate of a specific particle
in the event is grouped together with other features that contain information about the
same particle.

The groups are compared pairwise with an internal MLP shown as a black box in Figure 4.5.
The shared weight approach is the key aspect of this step. A Multilayer Perceptron with
enough neurons and hidden layers could learn the same functionality as the Relation Net-
work. However, for every permutation, the MLP use a new set of parameters. For the
example described above, this means that while particle A is still compared to particle B
and particle B is still compared to particle C, those comparisons will be done differently,
which is not reasonable in most cases. Using a new set of parameters for every permutation
also hugely increases the number of parameters, which more likely leads to over-training
or to no convergence at all. Therefore, Relation Networks are very good for handling
large numbers of input features, which can be understood as groups, while retaining small
complexity and preventing over-training.

The output is now determined by the number of permutations and the extracted features
per combination. In Figure 4.5 there are three permutations resulting from three groups
and two features per combination. This results in a total of six output features. However,
using more groups and features might result in a vector, which is too big for feeding into
another Neural Network. In this case Global Average Pooling is performed, which averages
each feature over every permutation. This process is shown in Figure 4.5. Output features
are marked with different colors and are reduced into one neuron per feature in the next
layer. The remaining output can now be fed into a MLP, which results in the classifier
output.

18 4. Multivariate Analysis Methods

There is also one optional extension for Relation Networks. In this case an additional
input vector provides additional features event-wise to every comparison for context. These
features only change event-wise and are identical for every permutation. This idea was used
to create a Relation Network, which can compare specific objects depending on a given
question [37]. Those modified Relation Networks can be used to feed in additional features,
which can not be divided into groups.

Relation Networks are a very recent development and I implemented them in basf2 for this
thesis. In Section 5.5 the results of applying both types of Relation Networks for continuum
suppression are shown.

4.3.2. Adversarial Networks

Using Adversarial Networks as discriminators in a joint training was first introduced in
Generative Adversarial Networks (GAN, [39]). Those Networks are divided into two parts:
The Generative Network (GN) which tries to create data out of random numbers and the
Adversarial Network (AN), which tries to predict if the data is “real” or from the GN.
Because of that, the AN is called a discriminator. The better the discriminator is at
separating “real” and generated data during training, the more the GN will be punished
in its loss function. This way, the GN is trained against the AN and tries to create data
which is indistinguishable for the AN.

The concept of AN was also adapted for classification purposes [40]. Depending on the
input features, the classifier might be biased towards a certain quantity, which is not
allowed to be correlated to the classifier output. In most analyses it is required that the
classifier output does not affect such a quantity at all. Therefore, the AN has to learn to
approximate this quantity during training and to punish the classifier, if it is able to learn
the shape of said quantity.

Such a Neural Network is shown in Figure 4.6. In this case there is a regular Neural
Network with one red classification output. An AN is built to approximate the shape of
a specific quantity using the classification output. This is done by trying to predict the
parameters of a Gaussian Mixture Model [38]. In Figure 4.6 the Gaussian Mixture Model
is made of two parameter sets, each representing a Gaussian distribution, which will be
combined to approximate the shape of the quantity. The resulting shape will then be
compared with the specific quantity during training and the classifier will be punished by
the approximation capability of the AN.

The classifier is not limited to only one Adversarial Network. Multiple ANs can be built
on the same output to control different quantities. In Section 5.6 each quantity is split
into its background and signal distribution and therefore requires two ANs. The classifier
is then compared to other classifiers, which avoid the bias on the quantities by dropping
features that are correlated to them.

There is also a BDT algorithm called uBoost which provides a similar functionality [41].
Here, a metric is calculated which describes the change in shape of the quantity on different
classifier output cuts. This metric will be used as an additional loss function in the boosting
algorithm. In principle this metric fulfills the same role as the AN of a Neural Network
classifier. The technique is also available in FastBDT and can produce similar results than
the Adversarial Networks.

4.4. Bayesian Optimization 19

4.4. Bayesian Optimization

Bayesian Optimization is a technique for minimizing black box functions, where the deriva-
tives are unknown. In contrast to other minimization algorithms, Bayesian Optimization
is especially useful in dealing with functions where evaluations are quite expensive. The
hyper-parameters of a classifier can be seen as the arguments of a multidimensional func-
tion that projects the hyper-parameters to a figure of merit, which is a metric for the
classification capability. Therefore, the task of tuning hyper-parameters from a classifier is
very fitted to be done by Bayesian Optimization [42].

Building a Bayesian Optimization algorithm requires two bits: A prior probability measure
and an acquisition function. The prior probability measure is a function, which captures the
prior beliefs on the function to minimize. This prior will be updated to a posterior by using
data received from calculating the figure of merit. As a prior probability measure, Gaussian
Processes, which are described in Ref. [43], are the most common. An acquisition function
is chosen to determine which data points will be calculated next, based on the assumptions
of the prior. After calculation, the prior is updated and this cycle continues. Therefore,
Bayesian Optimization tries to optimize the amount of exploration and exploitation and is
suited to solve the Multi Armed Bandit Problem [44].

An example of how a Bayesian Optimization operates is shown in Figure 4.7. Every plot
shows an updated version with one additional calculated data point from the plot before.
As a figure of merit the Area Under ROC Curve (AUC [45]) is chosen and will also be
explained and used in Section 5. Figure 4.7 shows that the acquisition function peaks at
the point of lowest lower bound of the model function µ(x), which is the model acquired
by the prior (Step 1-3), but also takes into consideration the number of points already
calculated in the local region (Step 4). Therefore, if the next point does not show an
improvement in the AUC score the acquisition function will peak in another region.

For most classifiers used in Section 5, Bayesian Optimization was used for optimizing its
hyper-parameters. Automatically optimizing every classifier with the exact same condi-
tions improves the credibility of the comparisons and decreases the bias of the author.
However, final evaluations of classifiers has to be done on a different dataset as the one
used for calculating the figure of merit during optimization. Otherwise, there could be
an optimization bias, which could vary across classifiers and reduces the credibility of the
results. During this thesis I implemented Bayesian Optimization techniques for hyper-
parameter optimization in basf2. For this purpose the software library scikit-optimize [46]
was chosen and used for all hyper-parameter optimizations in this thesis.

20 4. Multivariate Analysis Methods

Figure 4.5.: Schematic outline of a Relation Network. From top to bottom, the nine in-
put features are divided into 3 groups. The groups are pairwise compared
with the same Neural Network with shared weights. This Neural Network ex-
tracts two features for every comparison. For each feature the average over all
permutations will be calculated and fed into a Multilayer Perceptron.

4.4. Bayesian Optimization 21

Figure 4.6.: Schematic outline of an Adversarial Network from top to bottom. The struc-
ture is a MLP until the red classifier output. Below the classifier output a
discriminator network is built, which approximates a quantity with a Gaussian
Mixture Model [38], with means µ, standard deviations σ and normalization
factors n. During training this approximation also affects the MLP.

22 4. Multivariate Analysis Methods

0.82

0.80

0.78

AU
C

Step 1 Step 2

0 250 500 750 1000
Number of Trees

0.82

0.80

0.78

AU
C

Step 3

0 250 500 750 1000
Number of Trees

Step 4

(x)
Acquisition Function

Observations
Next Observation

Figure 4.7.: Example of using Bayesian Optimization for tuning the hyper-parameter
“Number of Trees” for a BDT classifier. The model function µ(x) is an ap-
proximation of the true hyper-parameter function with respect to the figure of
merit AUC [45]. µ(x) is calculated on the observation points and is updated
with every new point. The Acquisition function determine the next location
of observation, where the figure of merit will be calculated. The y-axis of the
acquisition function is arbitrary.

5. Deep Learning for Continuum
Suppression

Continuum suppression classifiers were steadily improved in recent years [24]. This was
achieved either by engineering better input features used by the classifiers or by changing
the classifiers themselves. The features of the state-of-the-art continuum suppression, which
is referred in this thesis as traditional approach, are explained in Section 3.2 and are fully
illustrated in Appendix A. Any classifier used for continuum suppression could only be
as good as those features that represent the event. Deep Learning techniques that can
process much larger input spaces do not have to rely on the representation of the engineered
continuum suppression features. Instead, they use information obtained from tracks and
clusters and extract the relevant characteristics for continuum suppression themselves. This
chapter compares various Deep Learning techniques with traditional classifiers.

The chapter starts by introducing the benchmark dataset in Section 5.1. The features and
their composition used for the classifiers will be explained in Section 5.2. Choosing the
right hyper-parameters is crucial to the optimal performance of the classifier. Bayesian Op-
timization can improve the classification result significantly. The whole process of choosing
the hyper-parameters is described in Section 5.3. In Section 5.4 comparisons between Deep
Neural Networks and traditional classifiers are shown. Section 5.5 demonstrates that Re-
lation Networks (explained in Section 4.3.1) further improve the results of Deep Learning
classification. Adversarial Networks (explained in Section 4.3.2) are an elegant technique
for avoiding correlations between classifier output and other quantities. Section 5.6 shows
how this benefits the continuum suppression. Finally, all results are discussed in Section 5.7.

23

24 5. Deep Learning for Continuum Suppression

5.1. Introducing the Benchmark Dataset

Belle II is currently under construction at the time of this thesis and no data measured by
Belle II is available. Therefore, the dataset is only based on Monte Carlo (MC) simulation.
The Belle II Software Framework basf2 is capable of generating MC simulated events. For
the simulation of physical decay chains EvtGen [47] is used. The detector simulation is
done with the software package GEANT4 [48]. In the Belle II-Collaboration MC events
are generated in so-called Monte Carlo Campaigns, because the generation is very time-
consuming and is used for many purposes. This thesis uses simulated events from Monte
Carlo Campaign 7 phase 3 [49].

The benchmark dataset contains two types of MC: continuum and signal samples. In the
continuum sample uu, cc, dd, ss and τ−τ+ events are considered. Within these events
the particles hadronize. In the signal sample only bb events are considered. One of the
two B mesons resulting from this event has to decay as B0 → K0

Sπ
0 (charge conjugated

included), because this is the decay chosen for reconstructing the B candidate for the
continuum suppression. The other B meson decays according to its branching fractions
estimated based on PDG information [13]. During the MC Campaign 30 million events
were generated in the signal sample and 11 billion events were created for the continuum
sample.

The MC sample mentioned above contains simulated events, which are measured inside
a simulated detector. However, to perform an analysis, the desired events have to be
reconstructed with particle candidates, which are potential particles reconstructed from
the simulated detector data. To calculate the engineered features used for the traditional
continuum suppression, one reconstructed B candidate and its corresponding ROE (see
Section 3.2) is required. For this thesis the desired B candidate is reconstructed using the
following decay:

B0 → K0
S(→ π+π−) π0(→ γγ).

While in the signal sample only correctly reconstructed B candidates are considered, the
amount of candidates in the continuum sample are limited by pre-cuts that accept only
continuum events, which look like signal events and are therefore more difficult to classify
as continuum. Those pre-cuts are shown in Table 5.1. In addition to the cuts on the
B candidate, there are also cuts for the tracks and cluster information inside the ROE.
Both types are cut away, if they have a center-of-mass momentum (see Section 3.2) greater
than 3.2 GeV. Also, every track, which is not connected to a hit inside the Central Drift
Chamber (see Section 2.3) and every cluster information, which possesses a momentum
smaller than 0.05 GeV are thrown away.

Applying the selections for reconstructing the B candidate and building the corresponding
ROE leads to a benchmark dataset that contains 4 914 670 events. 56.83 % of these events
are from the signal sample and the rest is from the continuum sample. To perform the
classification tasks, the dataset is divided into three parts, as shown in Figure 5.1. All
classifiers are trained with the dataset Train. The figure of merit calculation for hyper-
parameter optimization, described in detail in Section 5.3, uses the Opt dataset. Finally,
each result shown in this thesis is based on the evaluation of the trained classifier on the
dataset Val.

5.1. Introducing the Benchmark Dataset 25

Table 5.1.: Pre-selection cuts on the different particles for building B candidates. The
charge conjugated particles are implicitly included. GoodGamma is a momen-
tum cut on γ , which is cluster region specific. ChiProb is a probability based
on the fit performed during reconstruction and piid is the pion identification
probability. Mbc is the beam constrained mass and 4E is the energy difference
between the candidate and the theoretical massM . Values forM ,Mbc and 4E
are listed in GeV.

target cut

γ goodGamma=1
π0 0.115 ≤M ≤ 0.152

π+ chiProb > 0.001

π+ piid > 0.5

K0
S 0.48 ≤M ≤ 0.516

B0 5.2 < Mbc < 5.3

B0 −0.3 < 4E < 0.3

Figure 5.1.: Relative size of the different benchmark dataset parts. Final Evaluation is
done on 10 % (Val) of the dataset. This dataset will only be used at the
end for creating the results. The rest is split in the dataset used for training
the classifier (Train) and the dataset used for calculation the figure of merit
during hyper-parameter optimization (Opt). All parts posses the same signal-
to-background ratio.

26 5. Deep Learning for Continuum Suppression

5.2. Choosing Input Features

Choosing the input features is crucial to every classification task. They are a representation
of the event, which is meant to have the required information to solve the classification
task. While each classifier is limited to the amount of information in the input features,
classifiers can be highly dependent on how this information is represented in the features.
Also, a small set of features, where each one already separates signal and background very
well, is much easier to train, but there might be missing additional information that would
be contained in a larger set of features, where each one is not so meaningful. Therefore,
this section explains in detail the different input features and their composition in the
classifiers.

For the comparison in Section 5.4 three sets of input features are chosen: Those sets are
hierarchically ordered, with each set adding additional features to the set before: The
Engineered (E) features (Section 5.2.1), the Detector Level (DL) features (Section 5.2.2)
and the Vertex (V) features (Section 5.2.3). While the E features already describe the event,
the DL and V features are built on a cluster and track basis. Therefore, Section 5.2.4
explains how the corresponding tracks and clusters are grouped to represent the whole
event. After introducing all features, Section 5.2.5 introduce the different composition of
features used for the comparison in Section 5.4. Before entering the classifier the features
are preprocessed, which is discussed in Section 5.2.6.

5.2.1. Engineered (E) Features

Engineered features are created specifically for the purpose of the classification task at
hand. Many of these features are also suitable for stand-alone cuts and were refined over
the years. The idea was to reduce the features used for continuum suppression to a small
number, which can be fed into a classifier.

The design of the E features is based on the understanding of the differences in event
shapes of continuum and signal. In Section 3.2 both the event shapes and all engineered
features are explained. A more detailed explanation can be found in Ref. [11]. Summing
them up will result in 30 input features, which were used by the traditional approach for
classification [6], which was state-of-the art for basf2 before this thesis. The distribution of
these features are fully shown in Appendix A. Some of these features separate signal and
background very well and using them already leads to a very good classification result.

5.2.2. Detector Level (DL) Features

In contrast to the E features, which represent the whole event, the DL features represent
only a track or a cluster. Below the different features are explained, which are used for
describing tracks and clusters. In the end there are twelve features used for tracks and ten
features used for clusters.

5.2. Choosing Input Features 27

Momentum (Clusters and Tracks)

The momentum features chosen for the feature sets contain the magnitude p, the azimuth
angle φ and the polar angle cos θ, as well as the uncertainties of the track at the nearest
point on the trajectory to the interaction point.

Because the B meson pair decays in an isotropic distribution of spherical shape, the z-axis
is also rotated to the thrust axis of the B candidate. The rotated B candidate now always
lies in the center of the p-φ-plane, which makes feature extraction across different events
easier for the classifier. This rotated coordinate system is inspired by the Cleo Cones (see
Section 3.2.2) and is called the thrust frame.

ECL Cluster specific Features

These features are specifically made for gathering information about a cluster in the
ECL (see Section 2.3). In total there are four features: Timing, Number of Hits, E9E21
and Region.

Timing is used to distinguish event-related clusters from clusters that are caused by the
induced background and do not occur at the same time as the event. Both the Number
of Hits and E9E21 are characteristics that describe the shape of the cluster to determine
whether the particle causing the cluster came from the direction of the interaction point.
While the Number of Hits indicates the number of activated crystals of the cluster, E9E21
is an energy ratio of the innermost crystals (3x3) to a larger area of the crystals (5x5 minus
4 corners). The Region describes, if the cluster was detected in the forward endcap, barrel
or backward endcap region.

Track specific Features

The track specific features involve PID for kaons, electrons, muons and protons, to deter-
mine which kind of particle belongs to the track. Additionally, the χ2 probability of the
track as well as Number of Hits inside the CDC (see Section 2.3) are chosen as features to
determine the uncertainty of the reconstruction of the track.

5.2.3. Vertex (V) Features

Vertex features are additional features for describing tracks. The V features consist of
the distance and differences between azimuth (polar) angle to the point of interaction,
calculated at the nearest point on the trajectory to the point of interaction.

Using V features can increase the classification result but can create unwanted correlation
between the classifier output and 4z. The quantity 4z is the B vertex-difference in the
boosting direction (see Section 2.2). This quantity is important for time dependent CP
violation (see Section 2.1) and therefore is not allowed to be correlated to the classifier
output in such analyses. The problem of correlation between the classifier output and 4z,
as well as a more detailed explanation of the quantity is discussed in Section 5.6.

Because of these correlations the Vertex features can not be used for every continuum
suppression and are therefore treated specifically. If the V features are used, however, they
are calculated in the same coordinate and thrust frame as the momentum features.

28 5. Deep Learning for Continuum Suppression

0 10 20 30
Number of Tracks per event

0

20000

40000

60000

0 10 20 30
Number of Clusters per event

0

20000

40000

60000

Figure 5.2.: Distribution of number of Tracks (left) and number of Clusters (right) per
event. For the selection of the clusters, the goodGamma cut (see Table 5.1)
was applied.

5.2.4. Grouping Tracks and Clusters for Event Representation

Every event has different numbers of tracks and clusters, which is outlined in Figure 5.2.
However, the classifiers are required to receive a fix amount of input features, and so a
fixed amount of tracks and clusters, per training. Therefore, a suitable grouping of tracks
and cluster representing the event is necessary.

The process of grouping clusters and tracks is shown in Figure 5.3. Every event represen-
tation contains 20 clusters and 20 tracks. They are divided according to whether they are
used to reconstruct the B candidate or whether they are in the ROE. Tracks are addition-
ally divided by charge. Therefore, both informations are encoded into the structure of the
feature set and do not have to be fed in as additional features for every track and cluster.
In order to be independent of the B candidate’s decay, the number of tracks (clusters)
belonging to the B candidate and the number of tracks (clusters) belonging to the ROE
are the same.

In those divisions, clusters and tracks are ordered by highest magnitude of momentum in
the center-of-mass frame. If an event does not posses enough clusters or tracks in one
category the features in the blank spots will be filled with zeros. Therefore, every event
has the same number of features, which is required for most classifiers.

5.2.5. Feature Sets for the Comparison

In Section 5.4 three different feature sets are used for the comparison. The E features
are the features used in the traditional approach and therefore serve as the baseline set
containing 30 features. In the second set the features are complemented by the DL features
without Vertex information (E+DL) resulting in 470 features. The V features are added
in the last set (E+DL+V) for a total of 530 features.

5.2. Choosing Input Features 29

Figure 5.3.: Schematics of the grouping of tracks and clusters. Clusters are shown on
the left and are divided into whether they were used to reconstructing the B
candidate or are in the Rest of Event (ROE). At maximum ten Clusters per
category will be chosen per event. If there are not enough clusters, they will be
filled up with blank spots containing zeros. On the right the same procedure
is shown for tracks. Because tracks are additionally divided by charge, there
are five tracks per division.

5.2.6. Preprocessing

Preprocessing is an important step to improve classifier results by transforming the features
to be better suited for the classifier. Feeding in different features with values using different
orders of magnitude results in a distorted feature space, where values have a different impact
on the classification output based on their absolute values instead of their information about
continuum. This can be prevented by normalization, which transforms the space of each
feature into a desired region.

By using binned features instead of continuous ones, the training will be more regularized.
Minor, non-relevant differences in each feature are prone to over-training without having
additional information, although this effect is rather small. Binning can also be distorted
by outliers, which could limit the interesting range of the feature into a few bins, which
results in a loss of information.

In this thesis equal frequency binning was used, which solves the problem of having outliers
in the feature space. This binning approach chooses the binning boundaries in such a way
that every bin has the same amount of entries, resulting into a flat distribution. The
FastBDT algorithm already applies equal frequency binning before training. For Deep
Neural Networks equal frequency binning was implemented by myself.

30 5. Deep Learning for Continuum Suppression

5.3. Hyper-Parameters

Hyper-parameters are parameters which have to be set by the user and are not automati-
cally chosen during training. Choosing the right hyper-parameters is crucial for a successful
classification and can make the difference between a very good classification result and a
worthless one. To evaluate different hyper-parameter sets a figure of merit is needed, which
evaluates the classification result. For every combination of classifier (BDT and DNN) and
feature set Bayesian Optimization (Section 4.4) is performed.

The figure of merit is explained in Section 5.3.1. The explanations of the hyper-parameters
as well as the results of the Bayesian Optimization for BDT and DNN are shown in Sec-
tion 5.3.2 and Section 5.3.3.

5.3.1. Figure of Merit

The figure of merit is a metric which evaluates the quality of a classifier. For this purpose
the classifier is trained on the Train-Part of the benchmark dataset and evaluated on
the Opt-Part. As figure of merit the integral of the Receiver Operating Characteristic
curve (ROC, [50]) called area under ROC curve (AUC, [45]) is used.

The ROC curve projects background rejection, which is the fraction of background thrown
away by a cut on the classifier output, over signal efficiency, which is the fraction of signal
remaining in the benchmark dataset after a cut on the classifier output. Therefore, every
point on this curve represents a cut on the classifier output. In Section 5.4 ROC curves
are shown, which compare the classifiers and feature sets.

For the AUC, a value of 0.5 means no classification ability at all, because the chance of
predicting if an event belongs to signal or background is 50 %. An ideal classifier, which
classifies every event correctly possesses an AUC of 1.

5.3.2. BDT Hyper-Parameters

BDT are known as very robust classifiers, which means that the classification result should
not vary much by changing the hyper-parameters. FastBDT offers five different hyper-
parameters which are explained in Section 5.3.2.1. The results of Bayesian Optimization
based on the different feature sets are discussed in Section 5.3.2.2.

5.3.2.1. Description

As an ensemble method, BDTs are a combination of many single Decision Trees. Therefore,
the first hyper-parameter is the Number of Trees (NoT) building the classifier. The depth
of the trees (D) is the information about how many consecutive cuts are performed in
a single tree. To control the number of bins in the preprocessor, the Number of Cut
Levels (NoCL) is used. Depending on this hyper-parameter 2n bins are used per feature.
In FastBDT, every tree is trained on a subset of the events. The relative size of this subset
is determined by the Rand Ratio (RR). As the final hyper-parameter the Shrinkage (Shr)
is chosen, which regularizes the update rule of the boosting algorithm similar to a learning
rate found in Neural Networks.

5.3. Hyper-Parameters 31

Table 5.2.: Boundaries for hyper-parameters chosen for optimizing BDTs with Bayesian
Optimization. Although the optimization was done for each feature set, the
boundaries of the hyper-parameters were always the same.

Hyper-Parameter Type Boundaries

Number of Trees (NoT) Integer [10, 1000]
Depth of Trees (D) Integer [2, 8]
Number of Cut Levels (NoCL) Integer [4, 12]
Rand Ratio (RR) Real [0.01, 1]
Shrinkage (Shr) Real [0.01, 0.3]

Table 5.3.: Hyper-parameter sets for the BDTs. The standard parameters of FastBDT are
chosen as the Educated Guess before Bayesian Optimization is applied. For
every feature set, the final hyper-parameter set was chosen based on the results
of the optimization. The hyper-parameter sets and their figure of merit for
every BDT optimization is shown in Appendix B.1.

NoT D NoCL RR Shr

Educated Guess 200 3 8 0.5 0.1
Final Set 1000 8 12 0.7 0.3

5.3.2.2. Hyper-Parameter Optimization

The FastBDT algorithm already has five different hyper-parameters, which can be directly
used for the hyper-parameter optimization. In Table 5.2 the boundaries of these hyper-
parameters chosen for the optimization are shown. The optimization is done for each
feature set with the same boundaries.

An educated guess is given for each optimizer at the start of the training. After this,
there are 20 iterations, where the optimizer predicts four new hyper-parameter sets and
is then told the results of the computations of the figure of merits. This results in 81
hyper-parameter sets calculated for the optimization for each feature set. In Appendix B.1
the ten best sets for each optimization as well as the educated guess is shown.

Using FastBDT with around 500 input features makes the algorithm very slow. One train-
ing could take up to 24 hours and therefore it was not possible to finish the optimization
for the feature sets E+DL and E+DL+V. Only 37 hyper-parameter sets for the second
feature set and 25 hyper-parameter sets for the third feature set were calculated.

32 5. Deep Learning for Continuum Suppression

As shown in Appendix B.1 the best hyper-parameter sets for each feature set led to very
similar performance. Therefore, only one hyper-parameter set was chosen for every feature
set. The choice was made by approximating the trend of the best results rather than taking
only the best result. This Final Set and the Educated Guess is shown in Table 5.3. It is
noticeable that most of the hyper-parameters become very large and reach the boundaries
of the optimization. While the Number of Cut Levels might not affect the classification
result very much, the results are surprising for the Number of trees, Depth and Shrinkage.
Because the Number of Trees and the Depth of the Trees directly affects the training
duration a further upper increase of the hyper-parameter boundaries seems unreasonable,
due to the training duration of the optimization. This leads to the conclusion that the
FastBDT algorithm is not suitable for dealing with large feature sets.

5.3.3. DNN Hyper-Parameters

Deep Neural Networks can vastly differ in their design. It is impossible to take every pos-
sible Neural Network into consideration while performing a hyper-parameter optimization.
Therefore, most of the hyper-parameters have to be chosen based on experience before the
optimization. In this optimization no special topologies like Relation Networks are consid-
ered. Instead, the Neural Networks are all MLPs, which vary in their number of hidden
layers and neurons. A key aspect of a Neural Network is the number of parameters (weights
and biases) resulting from the topology. It is a good approximation of the complexity of
the Neural Network. The hyper-parameters chosen before the optimization and the hyper-
parameters tuned by the optimization are explained in Section 5.3.3.1. In Section 5.3.3.2
the results of the optimization for each feature set are discussed. Based on those results a
further investigation of certain hyper-parameters was performed in Section 5.3.3.3.

5.3.3.1. Description

To limit the near infinite amount of possible hyper-parameters that could be optimized,
most of them have to be chosen before the optimization. Therefore, in this optimization
all Neural Network consists of an input layer, which contains all the features from the
used feature set. All hidden layers are MLP layers, which use the hyperbolic tangent as
activation function. The output layer, which contains only one neuron, uses the sigmoid
function as activation function to produce a classifier output between zero and one.

The Number of Hidden Layers (NoHL) and the Number of Neurons per Layer (NoN) are
hyper-parameters used for the optimization. In this optimization every hidden layer in a
Neural Network is required to have the same number of neurons. There are two additional
hyper-parameters for regularization. After every hidden layer, Dropout can be performed.
The hyper-parameter Dropout (Drop) determines the probability of each individual neuron
dropping out. For every Dropout layer this probability is the same.

5.3. Hyper-Parameters 33

Figure 5.4.: Example of a Neural Network with the Parameter Set: NoHL: 3, NoN: 100,
Drop: 0.3 and RD: True. The number of parameters #Parameters are the
number of weights and biases used per layer.

The second hyper-parameter for regularization is Restrain Dropout (RD). It is a boolean
hyper-parameter, which can set the Dropout after the first and last hidden layer to zero.
An example of such a Neural Network with an arbitrary set of hyper-parameters (NoHL:
3, NoN: 100, Drop: 0.3, RD: True) is shown in Figure 5.4. To get a sense of the complexity
of the Neural Network the number of parameters (weights and biases) needed by the layers
are presented. The four hyper-parameters and their boundaries are shown in Table 5.4. Al-
though the goal was to find the best topology for a Deep Neural Network, the optimization
can also try Shallow Neural Networks with only one hidden layer. Hyper-parameters for
weight decay and different activation functions were examined in earlier iterations before,
but could not improve the classification.

34 5. Deep Learning for Continuum Suppression

Table 5.4.: Boundaries for hyper-parameters chosen for optimizing DNNs with Bayesian
Optimization. Although the optimization was done for each feature set, the
boundaries of the hyper-parameters were always the same.

Hyper Paramater Type Boundaries

Number of Hidden Layers (NoHL) Integer [1, 10]
Number of Neurons(NoN) Integer [50, 1000]
Dropout (Drop) Real [0, 0.5]
Restrain Dropout (RD) Categorical [False, True]

In addition to the topology of the Neural Network, there are many other aspects to consider.
For the equal frequency binning in the preprocessing process 100 bins per feature are used.
The minimizer responsible for decreasing the loss function uses the Adam algorithm [51]
with the standard arguments implemented in Keras. Class weights are used to take into
account the imbalance between signal and background. The training is done in batch
sizes of 500 events and every event is used for training one time per epoch. To determine
the end of the training, 10 % of the Train-Dataset is not used for training. Instead, it
is used for evaluating the loss function independently. If the loss function calculated on
this independent dataset does not decrease for ten epochs, the training is finished. This
procedure is called Early Stopping.

5.3.3.2. Hyper-Parameter Optimization

The Bayesian Optimization for the Neural Network was performed in the same way as
with the BDTs. The idea of the Educated Guess in Table 5.5 was to start with a relatively
small topology without regularization. Because these Neural Networks take only up to two
hours to be trained, all 81 trainings could be performed for every feature set.

In Table 5.5 the chosen topology for each feature set are shown that is based on the best ten
results per feature set listed in Appendix B.2. It is very noticeable that trainings without
regularization are strongly preferred. Besides this, there is no clear trend on the remaining
two hyper-parameters. Therefore, the topologies chosen for the different feature sets are
quite different. For the feature set E the Neural Network is relatively small, which reflects
the number of parameters. The topologies for feature sets E+DL and E+DL+V differs very
much: The first one is a Shallow Neural Network with only one hidden layer containing
the maximum number of neurons and the other uses the minimum number of neurons with
five hidden layers. Such vast differences raise the suspicion that the hyper-parameter space
should be more constrained before applying the Bayesian Optimization.

In contrast to BDTs, Neural Networks need a lot more expert knowledge to tune the hyper-
parameters. Even with this constrained topology, there was no clear optimal topology.
Because of this unstable result, a second study was performed to explicitly compare shallow
with deep networks that decides which topology leads to the best performance.

5.3. Hyper-Parameters 35

Table 5.5.: Hyper-parameter sets for the DNNs. The Educated Guess is chosen before
Bayesian Optimization. For each feature set, the final set was chosen based
on the results of the optimization. The hyper-parameter sets and their figure
of merit for every DNN optimization is shown in Appendix B.2. #Parameters
is the number of total parameters (weights and biases) used by the Neural
Network. Because #Parameters also depends on the input features, the number
from the Educated Guess varies depending on the feature set.

NoHL NoN Drop RD #Parameters

Educated Guess 4 100 0 True 33,501/77,501/83,501
Final Set (E) 2 160 0 True 30,881
Final Set (E+DL) 1 1000 0 True 472,001
Final Set (E+DL+V) 5 50 0 True 36,801

5.3.3.3. Shallow or Deep Neural Network

To compare Shallow Neural Networks with Deep Neural Networks the number of total
parameters (containing weights and biases) is interesting. While the number of total pa-
rameters grows linearly with the number of hidden layer, the growth is quadratic with the
number of neurons per layer. In Figure 5.5 the AUC scores are shown for a Shallow Neural
Network with only one hidden layer and a Deep Neural Network with 50 neurons per layer.
The shared x-axis represents the total number of parameters ranging from 26 600 to 50 000
and the trainings are evaluated with the Opt-Dataset on feature set three (E+DL+V). To
see which topology is the best one, each training is performed five times with the same
hyper-parameter set and the median of the AUC score is chosen, along with the best and
worst result as boundaries. Because of the results in Table 5.5, no Dropout regularization
is considered.

The Deep Neural Network with three hidden layers has the best performance in this com-
parison. While the Shallow Neural Network is relatively constant around the number
of neurons and the boundaries are closer to the median, the classification quality of the
Deep Neural Network drops significantly with seven or more hidden layers. This drop in
performance is also present, when evaluating the Deep Neural Networks with the Train-
Dataset (not shown in the Figure) and is therefore not due to over-training.

Not shown is a big Shallow Neural Network with many more neurons like the one in
Table 5.5. Therefore, the best Deep and Shallow Neural Network from Figure 5.5, as well
as Shallow Neural Networks with many more neurons are shown in Table 5.6. Although
the bigger Shallow Neural Networks have many more parameters than the Deep Neural
Network, the performance is still not better than the Deep Neural Network.

Considering the results from the last two sections, the Deep Neural Network for the com-
parison in Section 5.4 has three hidden layers containing 50 neurons for feature set two
and three. For the feature set E, which has significantly fewer features, the result from
Table 5.5 is used. In all Neural Networks no regularization is performed.

36 5. Deep Learning for Continuum Suppression

50.0 55.0 60.0 65.0 70.0 74.0 79.0 84.0 89.0 94.0
Number of Neurons for one Hidden Layer

0.9950

0.9955

0.9960

0.9965

0.9970

0.9975

0.9980

A
U

C

1 2 3 4 5 6 7 8 9 10
Number of Hidden Layers for 50 Neurons

Figure 5.5.: Comparison of a Shallow Neural Network with only one hidden layer and a
Deep Neural Network with 50 Neurons per layer. The x-axis also represents
the number of total parameters from the Networks, ranging from 26 600 to
50 000. Each Training was done five times on the Train-Dataset and was
evaluated using the Opt-Dataset. To show the best topology, the Median of
the AUC scores, as well as the best and worst result as boundaries, are shown.

Table 5.6.: Comparison between the best Deep and Shallow Neural Networks from Fig-
ure 5.5 and bigger Shallow Networks with many more parameters.

NoHL NoN Median of AUC #Parameters

3 50 0.99751 31 701
1 84 0.99736 44 689
1 250 0.99733 133 001
1 500 0.99732 266 001
1 1000 0.99724 532 001
1 1500 0.9973 798 001

5.4. Comparison of Traditional & Deep Learning Approaches 37

5.4. Comparison of Traditional & Deep Learning Approaches

This section compares two kinds of improvements for the continuum suppression: Changing
the feature set used for training and changing the classifier. In this section only Deep Neural
Networks with no special topology are used. The setup of this comparison and the metrics
of evaluation are explained in Section 5.4.1. In Section 5.4.2 the results are presented.

5.4.1. Methodology of the Comparison

The comparison is done with two classifiers, each trained on three different feature sets.
The traditional approach BDT (E), which is the FastBDT algorithm trained on the feature
set E, was state of the art before this comparison. Therefore, it serves as the baseline.

To compare the general classification capability the ROC curve [50] is chosen. Also, to
sum up the curve into one scalar value, the integral of the curve (AUC, [45]) is chosen.

Not every region in the ROC curve is interesting for the continuum suppression. Usually
the continuum suppression is applied at an early step of an analysis and therefore should
not reduce the amount of signal events significantly. Because of this, only cuts which retain
high signal efficiencies will be considered. Also, for this comparison it is interesting how
the classifiers perform relative to the baseline BDT (E). Therefore, a new metric is created:
the Relative amount of Background on a 98 % signal efficiency cut (RB(98)). This metric
cuts on the classifier output on values where only 2 % of the amount of signal is thrown
away. The amount of background remaining after this cut is shown relative to the amount
of background of the baseline using the same procedure. As an example an RB(98) of 60 %
means that the user can expect only 60 % of the background compared to the baseline
classifier, loosing 2 % of signal in both cases.

As the last metric for comparison, the training time is chosen. This should only serve
as an approximation, because training time is hardware dependent and BDTs and DNNs
were trained on different hardware. For the training of the DNNs GPUs were used to
speed up the training, while for BDTs only CPU based trainings are possible. Also, the
time includes the reading time of the files containing the input features and the training
time is very dependent on the chosen hyper-parameters. Nonetheless, the training time is
important because up to this comparison every classifier was trained many times to get
a better understanding of the classifier and to tune its hyper-parameters. Therefore, a
shorter training time means additional possibilities to tune the classifier.

5.4.2. Results

The ROC curves and their AUC scores are shown in Figure 5.6. Looking at the different
feature sets, the classifiers are strongly feature dependent. With each additional feature
set, the classification result significantly improves. Apart from the first feature set E, there
are hardly any differences between BDTs and DNNs.

38 5. Deep Learning for Continuum Suppression

In Table 5.7 the RB(98) scores and the training time is shown. The RB(98) scores further
confirm the huge increase in classification capability using the new feature sets. With the
feature set E+DL the amount of background is only around 20 % relative to the amount
of the traditional approach BDT (E). Including the Vertex features the background is
additionally halved and the amount of background is now only 10 % of the amount of the
traditional approach.

The big difference between DNNs and BDTs are the training times in Table 5.7. While the
slowest DNN needs approximately one hour for training, the BDTs with the new feature
sets (E+DL and E+DL+V) need over a day. The time differences are due to the complexity
of the models. For the DNN a rather small topology with few parameters is chosen, but
for the BDT a huge number of Trees with a big depth is chosen. The BDT classifier has to
train 1000 Trees, in which the last layer alone contains 28 = 256 bins. Also, the training
time of the BDT grows linearly with respect to the number of input features. In addition
to this the DNNs are trained on a GPU, which isn’t possible for BDTs using the FastBDT
algorithm.

In summary, changing the feature sets has a huge impact on the training performance.
While BDTs can achieve similar results to DNNs, the DNN only takes up a fraction of the
BDT’s training time.

5.4. Comparison of Traditional & Deep Learning Approaches 39

0.75 0.80 0.85 0.90 0.95 1.00
Signal Efficiency

0.75

0.80

0.85

0.90

0.95

1.00

B
ac

kg
ro

un
d

R
ej

ec
tio

n

ROC Rejection Plot

DNN(E+DL+V) 0.9977
BDT(E+DL+V) 0.9974

DNN(E+DL) 0.9950
BDT(E+DL) 0.9940

DNN(E) 0.9776
BDT(E) 0.9664

Figure 5.6.: ROC curve of the BDTs and DNNs for each feature set. Each training is
performed five times and the best result is used for this plot. The corresponding
AUC score is listed in the legend. The 98 % signal efficiency cut used for
Table 5.7 is shown in red. For this evaluation, the Val-Dataset was used.

Table 5.7.: This table shows the Relative amount of Background on a 98 % signal efficiency
cut (RB(98)) and the time needed for training for each classifier in Figure 5.6.
As a baseline, the traditional approach BDT based on the first feature set is
chosen.

Classifier RB(98) in % Training Time in h:min

DNN (E+DL+V) 9.81 1:01
BDT (E+DL+V) 10.12 26:26
DNN (E+DL) 21.65 0:33
BDT (E+DL) 23.24 25:42
DNN (E) 90.35 0:54
BDT (E) 100 1:39

40 5. Deep Learning for Continuum Suppression

5.5. Relation Network

Relation Networks are a very recent development in Deep Learning [37]. With this tech-
nique feature groups can be compared pairwise using shared weights, and therefore re-
duce the number of parameters (see Section 4.3.1). This section describes how Relation
Networks can improve the classification result using the classifiers with the third feature
set (E+DL+V) as comparison. It starts by explaining the setup of the used Relation Net-
works in Section 5.5.1. The improvements compared to the BDT and DNN are shown in
Section 5.5.2.

5.5.1. Setup

To have a sound comparison, the datasets used for training and evaluation as well as the
metrics are identical to Section 5.4.1. Because Relation Networks are a very recent develop-
ment and there is not much information about their capabilities and preferred topologies, a
Bayesian Optimization was not performed. Instead of fine-tuning their hyper-parameters,
the focus was to get experience with these networks and find a working topology.

The chosen design of the Relation Network is shown in Figure 5.7. This shows the Relation
Network RN (E+DL+V), where the E features are fed event-wise into every comparison.
The Relation Network RN (DL+V) has the same structure, but omits the engineered
information (yellow part in the figure). Global Average Pooling, which takes the average
value over all permutations of the Relation layer output, as well as the shown MLP and
Dropout layer after pooling are topologies inspired by Ref. [37].

During this thesis a third Relation Network was tested. It is like the one in Figure 5.8,
but extends the input of the first MLP layer by feeding in the 530 input features directly.
Hence, the Network was a DNN, using the output of the Relation Network as additional
input. The relational part of the network was trained first, before connecting it to the
whole network. Although this Relation Network should have the potential to have a better
classification capability than the other ones, no better classification performance could be
achieved. Therefore, it is not considered for the comparison.

5.5.2. Results

The ROC curves and their AUC-Score are shown in Figure 5.8. Both Relation Networks
have better classification capabilities than the BDT and DNN. The modified Relation
Network with the E features performs better than the Relation Network without those
features. In Table 5.8 the RB(98) scores confirm these results. Using RN (E+DL+V)
reduce background around 15 % more than using DNN (E+DL+V). It is interesting that
RN (E+DL+V) has a shorter training time than RN (DL+V) despite using more features.
Therefore, using the E features as event information inside the Relation Network leads to
faster convergence and a better classification result.

5.5. Relation Network 41

Figure 5.7.: Relation Network RN (E+DL+V) used for the comparison. The input features
are split in their different groups, before fed into the Relation layers. Because
the order of the tracks and clusters is irrelevant to the Relation layer the charge
and ROE information are added as features. Global Average Pooling takes the
average value over every permutation of the Relation layer output. After that,
the output is fed into a MLP. In case of the Relation Network RN (DL+V) the
yellow part of the network, where the E features are fed as event information
into the Relation layers, are removed.

42 5. Deep Learning for Continuum Suppression

Table 5.8.: This table shows the Relative amount of Background on a 98 % signal efficiency
cut (RB(98)) and the time needed for training for each classifier in Figure 5.8.
As a baseline, the traditional approach BDT based on the first feature set E is
chosen (see Section 5.4.1).

Classifier RB(98) in % Training Time in h:min

RN (E+DL+V) 8.13 19:43
RN (DL+V) 8.61 33:53
DNN (E+DL+V) 9.81 1:01
BDT (E+DL+V) 10.12 26:26

0.95 0.96 0.97 0.98 0.99 1.00
Signal Efficiency

0.95

0.96

0.97

0.98

0.99

1.00

B
ac

kg
ro

un
d

R
ej

ec
tio

n

ROC Rejection Plot

RN(E+DL+V) 0.9982
RN(DL+V) 0.9980

BDT(E+DL+V) 0.9974
DNN(E+DL+V) 0.9977

Figure 5.8.: ROC curve of the RNs and the best DNN and BDT from Figure 5.6. Each
training is performed five times and the best result is used for this plot. The
corresponding AUC score is listed in the legend. The 98 % signal efficiency cut
used for Table 5.8 is shown in red. For this evaluation, the VAL-Dataset was
used.

5.6. Adversarial Network 43

5.6. Adversarial Network

Adversarial Networks are an active field of research of Deep Learning, which is especially
true for Generative Adversarial Networks (GAN, [39]). Their concept is explained in Sec-
tion 4.3.2. In this thesis, Adversarial Networks are used to prevent correlations between
the classifier outputs and 4z, which is a quantity explained in Section 5.6.1. The topol-
ogy and the additional hyper-parameters of the used Adversarial Network is explained in
Section 5.6.2. Finally, the classification results as well as the corresponding correlations
between the classifier outputs and 4z are presented in Section 5.6.3.

5.6.1. Correlation between Vertex Features and 4z

The quantity 4z describes the difference in vertex position of the two B-mesons in boost
direction. A schematic of this is shown in Figure 5.9. The measurement of 4z is crucial in
analyses, where time-dependent CP violation (see Section 2.1) like in Ref. [19] is measured.
The shape of 4z must not change after a cut on the classifier output of the continuum
suppression, which means that the classifier output and 4z have to be uncorrelated.

The influence of the V features can result in a correlation between the classifier output and
4z. To confirm this hypothesis, the impact from the classifier output on the shape of 4z
is examined on three different classifiers: a random classifier whose classifier output is a
random series of numbers, a DNN (E+DL) and a DNN (E+DL+V) from Section 5.4. The
random classifier is obviously not correlated at all to 4z and serves as the offset, which
determines how much fluctuation can be expected in the evaluation.

To measure the impact of the classifier output on4z, a Classifier Output Dependent (COD)
normalized distribution of 4z is chosen. In this thesis, only the signal distribution of 4z is
shown, because there are no significant correlations in the background distribution of 4z.
For the random classifier this distribution is presented in Figure 5.10. The distribution of
4z without applying a cut on the classifier output is shown as a black line. The sharp
peak at zero is due to ROE vertex fits, which fail to converge. In a physics analysis, these
would nominally be removed at the reconstruction level. However, this example focuses
on the changes in the distribution and not the distribution itself, so these candidates are
not discarded. For every possible quantile cut on the classifier output, the distribution
is drawn in the respective color of the cut, if the shape deviates from the black line. If
one cuts away 20 % of the signal, the deviation in the distribution are shown in the color
red (value 20 at the color bar). Since in most analyses the continuum suppression is done
at an early step, high quantile cuts are not reasonable and thus the colors representing
high quantile cuts fade to white. On the other hand, red deviations from the distribution
are significant, because then the distribution is affected even by low quantile cuts.

In addition to the COD distribution, there is also a flatness score that determines how flat
the distribution is. To determine the score, the distribution is binned by equal frequency
and divided into several distributions using different quantile cuts. Then, the squared
differences between the distributions are summed up and normalized. The closer the value
is to zero, the flatter the distribution and the less correlated the classifier output is to 4z.

44 5. Deep Learning for Continuum Suppression

In Figure 5.11 the COD distribution of4z with the classifier DNN (E+DL) is shown. There
is not much difference between Figure 5.10 and Figure 5.11, which indicates that the classi-
fier output from DNN (E+DL) is not correlated to 4z as suspected. However, this changes
with the addition of the V features in Figure 5.12. Using the classifier DNN (E+DL+V)
results in a significant bias in the signal distribution of 4z. This is also reflected by the
flatness score at the top of the distribution, which is four times higher than the score from
the random classifier.

Comparing the classifier outputs from DNN (E+DL) and DNN (E+DL+V) indicates, that
the distribution of 4z is biased by using the V features. However, using the V features also
increases the classification results as outlined in Section 5.4. This raises the question, if the
Adversary Network is able to reduce this correlation while retaining a classifier performance
above that of the classifier DNN (E+DL).

5.6. Adversarial Network 45

Figure 5.9.: Schematics of 4z, which is the vertex difference of the two B-mesons in the
boost direction.

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08

signal shape of z

1e1 Random (0.0075)

0

20

40

60

80

Figure 5.10.: Classifier Output Dependent (COD) normalized signal distribution of 4z
with a random classifier. The distribution without applying a classifier cut is
drawn as a black line, while the different quantile cuts are drawn as deviations
from the black line in their respective colors. Significant deviations are drawn
in red, while not important deviations from high quantile cuts fade to white.
The value at the top represents the flatness of the distribution. It is clear,
that the random classifier has no correlation at all to 4z.

46 5. Deep Learning for Continuum Suppression

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08

signal shape of z

1e1 DNN (E+DL) (0.0088)

0

20

40

60

80

Figure 5.11.: COD signal distribution of 4z with the classifier DNN (E+DL) from Sec-
tion 5.4. For details of this representation method see Figure 5.10. The
classifier output has close to none correlations to 4z considering the offset
shown in Figure 5.10.

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08

signal shape of z

1e1 DNN (E+DL+V) (0.0437)

0

20

40

60

80

Figure 5.12.: COD signal distribution of 4z with the classifier DNN (E+DL+V) from
Section 5.4. For details of this representation method see Figure 5.10. The
classifier output has significant correlations with the signal distribution of 4z
in contrast to that in Figure 5.11.

5.6. Adversarial Network 47

5.6.2. Structure of the Adversarial Network

The Adversarial Network consists of two parts: the classifier and the discriminators. Be-
sides the addition in the loss function from the discriminators, the classifier is built identi-
cally to the classifier DNN (E+DL+V). The discriminators are built like in Figure 4.6 of
Section 4.3.2. The first two MLP layers have the same amount of neurons, as the input
layer (530). After these layers, four Gaussians are built for the Gaussian Mixture Model,
which tries to predict 4z. Using this topology, two discriminators are built to predict
separately the signal and background distribution of 4z.

During every step of training the classifier, the discriminators have to be able to approx-
imate the distribution of 4z as good as possible, although the classifier output, which
serves as the input to the discriminators, can change with each training step. Therefore,
the discriminators always need to be close to the minimum of its own loss function during
training of the classifier. To accomplish this, the discriminators are trained ten steps after
each step of the classifier training. This results in an increase in training time by a factor
of ten.

To determine on how much the discriminators are affecting the loss function of the classifier,
the hyper-parameter λ is introduced, which weights the loss function of the discriminators
before combining it with the loss function from the classifier. This hyper-parameter reg-
ularizes the increase in flatness against the decrease in classification performance and has
to be explored for every new task. For this thesis, different values were tested and a value
of 0.4 for λ was chosen.

5.6.3. Results

In order to demonstrate the potential of Adversarial Networks, one was trained for this
thesis using the feature set E+DL+V. The correlation between its classifier output and
4z is shown in Figure 5.13, while its performance compared to DNN (E+DL) and DNN
(E+DL+V) is presented in Figure 5.14.

Figure 5.13 demonstrates, that the Adversarial Network significantly reduce the correlation
between the classifier output and 4z. The flatness score is only a third of the score from
DNN (E+DL+V) and now much closer to DNN (E+DL). Also, the red deviations van-
ished almost entirely. Looking at the ROC curve in Figure 5.14, the Adversarial Network
performs only slightly worse than DNN (E+DL+V) and is still a big improvement over the
classifier without V features. Therefore, the Adversarial Network is able to significantly
reduce correlations while retaining most of the classification performance.

In Section 4.3.2 there is also a technique introduced which solves the same problem as the
Adversarial Networks, in which the FastBDT is punished by a flatness loss similar to the
flatness score. While in this case FastBDT can produce similar results as the Adversarial
Networks, the technique is strongly dependent on the meaningfulness of the used metric. In
contrast to that, the discriminator is a trained Neural Network, which tries to approximate
4z itself and therefore is not dependent on a handcrafted metric.

48 5. Deep Learning for Continuum Suppression

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08

signal shape of z

1e1 AN (=0.4, E+DL+V) (0.0138)

0

20

40

60

80

Figure 5.13.: COD signal distribution of 4z with an Adversarial Network’s classifier out-
put. For details of this representation method see Figure 5.10. The classifier
output has significantly fewer correlations to the signal distribution of 4z
than DNN (E+DL+V) in Figure 5.12.

0.90 0.92 0.94 0.96 0.98 1.00
Signal Efficiency

0.90

0.92

0.94

0.96

0.98

1.00

B
ac

kg
ro

un
d

R
ej

ec
tio

n

ROC Rejection Plot

DNN(E+DL+V) 0.9977
AN (=0.4, E+DL+V) 0.9974

DNN(E+DL) 0.9950

Figure 5.14.: ROC curves of DNN (E+DL) and DNN (E+DL+V) from Section 5.4 and
an Adversarial Network AN trained with the same topology in the classifier
part.

5.7. Discussion of Results 49

5.7. Discussion of Results

This thesis started with a Boosted Decision Tree, which classified continuum background
based on the 30 E features. By introducing new and much bigger feature sets, that rather
focus on using all information from the detector than to find a compact engineered repre-
sentation of the event, the continuum background could be reduced from a RB(98) score
of 100 % to a score around 10 %. Although those improvements can be accomplished with
DNNs as well as BDTs, DNNs have a significantly faster training time when dealing with
large amounts of input features.

Besides DNNs that exclusively use MLP layers more complex topologies were examined
like Relation Networks. Those Networks could further decrease the amount of continuum
by 15 % to a RB(98) score of 8.13 %. Because Relation Networks are a very recent devel-
opment, it is likely that the full potential of this topology was not exhausted during this
thesis. More research in the hyper-parameters of the Relational layer and the composition
between Relational and MLP layers, such as feeding the input features before and after
the Relational layer, could improve the continuum suppression significantly.

Using all kinds of features can lead to unwanted correlations between the classifier output
and other quantities like 4z. Instead of dropping features in the input features, this thesis
showed that Adversarial Networks are able to reduce the correlations significantly while
achieving a higher classification performance. Adversarial Networks can be built after every
classifier based on Neural Networks like DNN or Relation Networks. Although there is a
similar technique available for BDTs, this technique is dependent on a metric, which tries
to describe the correlation between the classifier output and 4z. In contrast, Adversarial
Networks try to directly predict the shape of 4z and therefore are not dependent on a
scalar representation.

The use of Deep Learning techniques in continuum suppression does not only improve
the classification results, they also open up new possibilities to known problems. Because
this thesis covers rather new techniques like Relation and Adversarial Networks, the full
potential of these might not be fully understood at this point. Further examinations,
which increase the experience with these techniques, might significantly benefit the con-
tinuum suppression. During this thesis, all the discussed Deep Learning techniques were
implemented as examples into the software framework basf2 and are ready to be used for
analysis.

6. Conclusion & Outlook

In this thesis Deep Learning techniques were applied to the task of continuum suppression.
By introducing new feature sets and using Deep Neural Networks the amount of continuum
was reduced to a fraction of 9.81 % compared to the 100 % using the engineered features
with a BDT, which was state of the art before this thesis. With the use of a Relation
Network the amount of continuum was further reduced to a fraction of 8.13 %. Additionally,
Adversarial Networks proved capable of removing correlations between the classifier output
and 4z, without discarding the correlation-inducing input features.

While the hyper-parameters of the DNNs and BDTs were researched using Bayesian Op-
timization, this could not be applied to Relation and Adversary Networks. These ap-
proaches take far more training time than the average DNN and instead of thousands of
CPUs, only four GPUs were available as shared resources during this thesis. Therefore, the
hyper-parameters of the Relation and the Adversarial Networks could only be studied to
a working minimum. A further refinement of the topology and hyper-parameters of these
techniques can result into better and more robust classification results. With more GPUs
the number of trainings in parallel can be increased and a more detailed hyper-parameter
optimization for Relation and Adversarial Networks will be possible.

One of the limiting factor in this thesis was the amount of continuum, because the recon-
struction of B0 → K0

Sπ
0 already discards most of it. Although the remaining amount was

sufficient to train and evaluate the classifiers, the performance of the baseline BDT (E)
was so good that limiting the training to continuum with events that are difficult to clas-
sify could improve the performance of the classifiers. A new comparison with another B
candidate that does not discard most of the continuum in building the candidate can lead
to new insights.

During this thesis only Monte Carlo generated events were used for the comparison. There-
fore, the difference between measured data and generated events could not be considered
during this thesis. The Software Framework basf2 contains a package, that converts Belle
measured data into basf2, which makes it possible to test the deep continuum suppression
on measured data. Using Belle data also opens up the possibility to do a full analysis
using the deep continuum suppression. In this process the impact of Adversarial Networks
reducing unwanted correlations to quantities crucial to the analysis can be examined.

51

52 6. Conclusion & Outlook

Continuum suppression is only one part of an analysis. There are other tasks like suppress
wrongly reconstructed candidates in a Υ(4S) event or Flavour Tagging. In the past, each
task was handled separately. With Deep Learning it is possible to combine those tasks
into one classifier with multiple outputs. The classifier would then be trained on multiple
targets, which can improve the overall performance across the various tasks.

Finally, it is important not to consider Deep Learning as a complete set of techniques. Any
innovation in Deep Learning could have the potential to significantly improve the work of
particle physicists. Like the Standard Model, Deep Learning is a field of research in which
the human mind tries to understand what lies beyond its knowledge.

Bibliography

[1] ATLAS, G. Aad et al., “Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett.
B716 (2012) 1–29, arXiv:1207.7214 [hep-ex].

[2] CMS, S. Chatrchyan et al., “Observation of a new boson at a mass of 125 GeV with
the CMS experiment at the LHC,” Phys. Lett. B716 (2012) 30–61,
arXiv:1207.7235 [hep-ex].

[3] M. Kobayashi and T. Maskawa, “Cp-violation in the renormalizable theory of weak
interaction,” Progress of Theoretical Physics 49 no. 2, (1973) 652–657.
+http://dx.doi.org/10.1143/PTP.49.652.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”.

[5] J. Gemmler, “Study of b meson flavor tagging with deep neural networks at belle and
belle ii,” ms, Karlsruhe Institute of Technology (KIT), 2016.
https://ekp-invenio.physik.uni-karlsruhe.de/record/48849. Karlsruhe
Institute of Technology (KIT), Masterarbeit, 2016.

[6] A. J. Bevan, B. Golob, T. Mannel, S. Prell, B. D. Yabsley, et al., “The physics of the
b factories,” The European Physical Journal C 74 no. 11, (Nov, 2014) 3026.
https://doi.org/10.1140/epjc/s10052-014-3026-9.

[7] Belle-II, T. Abe et al., “Belle II Technical Design Report,” arXiv:1011.0352
[physics.ins-det].

[8] Belle Collaboration, K. Abe et al., “Observation of large CP violation in the
neutral B meson system,” Phys. Rev. Lett. 87 (Aug, 2001) 091802.
https://link.aps.org/doi/10.1103/PhysRevLett.87.091802.

[9] Belle, K. Abe et al., “Observation of mixing induced CP violation in the neutral B
meson system,” Phys. Rev. D66 (2002) 032007, arXiv:hep-ex/0202027 [hep-ex].

[10] BABAR Collaboration, B. Aubert et al., “Observation of CP violation in the b0

meson system,” Phys. Rev. Lett. 87 (Aug, 2001) 091801.
https://link.aps.org/doi/10.1103/PhysRevLett.87.091801.

[11] SuperKEKB Physics Working Group, A. G. Akeroyd et al., “Physics at super
B factory,” arXiv:hep-ex/0406071 [hep-ex].

53

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://dx.doi.org/10.1143/PTP.49.652
+ http://dx.doi.org/10.1143/PTP.49.652
https://ekp-invenio.physik.uni-karlsruhe.de/record/48849
http://dx.doi.org/10.1140/epjc/s10052-014-3026-9
https://doi.org/10.1140/epjc/s10052-014-3026-9
http://arxiv.org/abs/1011.0352
http://arxiv.org/abs/1011.0352
http://dx.doi.org/10.1103/PhysRevLett.87.091802
https://link.aps.org/doi/10.1103/PhysRevLett.87.091802
http://dx.doi.org/10.1103/PhysRevD.66.032007
http://arxiv.org/abs/hep-ex/0202027
http://dx.doi.org/10.1103/PhysRevLett.87.091801
https://link.aps.org/doi/10.1103/PhysRevLett.87.091801
http://arxiv.org/abs/hep-ex/0406071

54 Bibliography

[12] C. Schwanda, “Superkekb machine and belle ii detector status,” Nuclear Physics B -
Proceedings Supplements 209 no. 1, (2010) 70 – 72.
http://www.sciencedirect.com/science/article/pii/S0920563210004482.
Proceedings of the Third Workshop on Theory, Phenomenology and Experiments in
Heavy Flavour Physics.

[13] Particle Data Group, C. Patrignani et al., “Review of Particle Physics,” Chin.
Phys. C40 no. 10, (2016) 100001.

[14] P. Raimondi. 2nd superb workshop, frascati, 2006.
http://www.lnf.infn.it/conference/superb06/talks/raimondi1.ppt.

[15] “Desy belle and belle ii.”.
http://belle2.desy.de/sites2009/site_belle2/content/e127118/SuperKEKB:
BelleII.jpg. Accessed: 2017-09-29.

[16] A. Moll, “The software framework of the belle ii experiment,” Journal of Physics:
Conference Series 331 no. 3, (2011) 032024.
http://stacks.iop.org/1742-6596/331/i=3/a=032024.

[17] P. Urquijo and T. Ferber, “Overview of the belle ii physics generators,”
BELLE2-NOTE H-2015-006 (2016) . https:
//docs.belle2.org/record/282/files/BELLE2-NOTE-PH-2015-006-v2.pdf.

[18] The Belle Collaboration, Y.-T. Duh, T.-Y. Wu, P. Chang, G. B. Mohanty,
Y. Unno, et al., “Measurements of branching fractions and direct cp asymmetries for
b→ kπ, b→ ππ and b→ kk decays,” Phys. Rev. D 87 (Feb, 2013) 031103.
https://link.aps.org/doi/10.1103/PhysRevD.87.031103.

[19] M. Röhrken, “Time-dependent cp violation measurements in neutral b meson to
double-charm decays at the japanese belle experiment,”.
https://ekp-invenio.physik.uni-karlsruhe.de/record/48212.

[20] E. Farhi, “Quantum chromodynamics test for jets,” Phys. Revi. Lett. 39 (Dec., 1977)
. https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.39.1587.

[21] D. M. Asner, M. Athanas, D. W. Bliss, et al., “Search for exclusive charmless
hadronic b decays,” Phys. Rev. D 53 (Feb, 1996) 1039–1050.
https://link.aps.org/doi/10.1103/PhysRevD.53.1039.

[22] G. C. Fox and S. Wolfram, “Observables for the analysis of event shapes in e+e-
annihilation and other processes,” Physical Review Letters 41 (1978) 1581–1585.

[23] R. A. FISHER, “The use of multiple measurements in taxonomic problems,” Annals
of Eugenics 7 no. 2, (1936) 179–188.
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x.

[24] M. Prim, “Angular analysis of b→ πk* decays and search for cp violation at the belle
experiment,”. https://ekp-invenio.physik.uni-karlsruhe.de/record/48306.
KIT, Diss., 2013.

[25] G. Bohm and G. Zech, Einführung in Statistik und Messwertanalyse für Physiker.
DESY, 2006. https://books.google.de/books?id=isVrtwAACAAJ.

http://dx.doi.org/https://doi.org/10.1016/j.nuclphysbps.2010.12.012
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysbps.2010.12.012
http://www.sciencedirect.com/science/article/pii/S0920563210004482
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://www.lnf.infn.it/conference/superb06/talks/raimondi1.ppt
http://belle2.desy.de/sites2009/site_belle2/content/e127118/SuperKEKB:BelleII.jpg
http://belle2.desy.de/sites2009/site_belle2/content/e127118/SuperKEKB:BelleII.jpg
http://stacks.iop.org/1742-6596/331/i=3/a=032024
https://docs.belle2.org/record/282/files/BELLE2-NOTE-PH-2015-006-v2.pdf
https://docs.belle2.org/record/282/files/BELLE2-NOTE-PH-2015-006-v2.pdf
http://dx.doi.org/10.1103/PhysRevD.87.031103
https://link.aps.org/doi/10.1103/PhysRevD.87.031103
https://ekp-invenio.physik.uni-karlsruhe.de/record/48212
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.39.1587
http://dx.doi.org/10.1103/PhysRevD.53.1039
https://link.aps.org/doi/10.1103/PhysRevD.53.1039
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://ekp-invenio.physik.uni-karlsruhe.de/record/48306
https://books.google.de/books?id=isVrtwAACAAJ

Bibliography 55

[26] J. H. Friedman, “Greedy function approximation: A gradient boosting machine.,”
Ann. Statist. 29 no. 5, (10, 2001) 1189–1232.
https://doi.org/10.1214/aos/1013203451.

[27] T. Keck, “Fastbdt.” https://github.com/thomaskeck/FastBDT.

[28] T. Keck, “Fastbdt: A speed-optimized multivariate classification algorithm for the
belle ii experiment,” Computing and Software for Big Science 1 no. 1, (Sep, 2017) 2.
https://doi.org/10.1007/s41781-017-0002-8.

[29] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in the brain,” Psychological Review (1958) 65–386.

[30] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry.
The MIT Press, 1969.

[31] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard,
and L. D. Jackel, “Handwritten digit recognition with a back-propagation network,”
in Advances in Neural Information Processing Systems 2, D. S. Touretzky, ed.,
pp. 396–404. Morgan-Kaufmann, 1990. http://papers.nips.cc/paper/
293-handwritten-digit-recognition-with-a-back-propagation-network.pdf.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal of
Machine Learning Research 15 (2014) 1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html.

[33] T. Keck, “Multivariate classification.” Cern school of computing, 2016.

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[35] M. Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015. http://tensorflow.org/. Software available from tensorflow.org.

[36] F. Chollet et al., “Keras.” https://github.com/fchollet/keras, 2015.

[37] A. Santoro, D. Raposo, D. G. T. Barrett, M. Malinowski, R. Pascanu, P. Battaglia,
and T. P. Lillicrap, “A simple neural network module for relational reasoning,”
CoRR abs/1706.01427 (2017) . http://arxiv.org/abs/1706.01427.

[38] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., 2006.

[39] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative Adversarial Networks,” ArXiv e-prints
(June, 2014) , arXiv:1406.2661 [stat.ML].

[40] G. Louppe, M. Kagan, and K. Cranmer, “Learning to Pivot with Adversarial
Networks,” arXiv:1611.01046 [stat.ME].

[41] J. Stevens and M. Williams, “uBoost: A boosting method for producing uniform
selection efficiencies from multivariate classifiers,” JINST 8 (2013) P12013,
arXiv:1305.7248 [nucl-ex].

http://dx.doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://github.com/thomaskeck/FastBDT
http://dx.doi.org/10.1007/s41781-017-0002-8
https://doi.org/10.1007/s41781-017-0002-8
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network.pdf
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network.pdf
http://jmlr.org/papers/v15/srivastava14a.html
http://www.deeplearningbook.org
http://tensorflow.org/
https://github.com/fchollet/keras
http://arxiv.org/abs/1706.01427
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1611.01046
http://dx.doi.org/10.1088/1748-0221/8/12/P12013
http://arxiv.org/abs/1305.7248

56 Bibliography

[42] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Optimization of
Machine Learning Algorithms,” ArXiv e-prints (June, 2012) , arXiv:1206.2944
[stat.ML].

[43] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, 2005.

[44] H. Robbins, “Some aspects of the sequential design of experiments,” Bull. Amer.
Math. Soc. 58 no. 5, (09, 1952) 527–535.
https://projecteuclid.org:443/euclid.bams/1183517370.

[45] A. P. Bradley, “The use of the area under the roc curve in the evaluation of machine
learning algorithms,” Pattern Recognition 30 no. 7, (1997) 1145 – 1159.
http://www.sciencedirect.com/science/article/pii/S0031320396001422.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in Python.” https://github.com/scikit-optimize/scikit-optimize.

[47] D. J. Lange, “The EvtGen particle decay simulation package,” Nucl. Instrum. Meth.
A462 (2001) 152–155.

[48] GEANT4, S. Agostinelli et al., “GEANT4: A Simulation toolkit,” Nucl. Instrum.
Meth. A506 (2003) 250–303.

[49] “MC7 samples for analysis users.”
https://confluence.desy.de/display/BI/MC7+samples+for+analysis+users.
No public access.

[50] J. Egan, Signal Detection Theory and ROC-analysis. Academic Press series in
cognition and perception. Academic Press, 1975.
https://books.google.de/books?id=V40oAAAAYAAJ.

[51] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR
abs/1412.6980 (2014) . http://arxiv.org/abs/1412.6980.

http://arxiv.org/abs/1206.2944
http://arxiv.org/abs/1206.2944
https://projecteuclid.org:443/euclid.bams/1183517370
http://dx.doi.org/http://dx.doi.org/10.1016/S0031-3203(96)00142-2
http://www.sciencedirect.com/science/article/pii/S0031320396001422
https://github.com/scikit-optimize/scikit-optimize
http://dx.doi.org/10.1016/S0168-9002(01)00089-4
http://dx.doi.org/10.1016/S0168-9002(01)00089-4
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
https://confluence.desy.de/display/BI/MC7+samples+for+analysis+users
https://books.google.de/books?id=V40oAAAAYAAJ
http://arxiv.org/abs/1412.6980

A. Continuum Suppression Features

A.1. Thrust

0.975 0.980 0.985 0.990 0.995 1.000
thrustBm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1e2

continuum
signal

0.0 0.2 0.4 0.6 0.8 1.0
thrustOm

0

1

2

3

4

5 continuum
signal

0.0 0.2 0.4 0.6 0.8 1.0
cosTBz

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
continuum
signal

0.0 0.2 0.4 0.6 0.8 1.0
cosTBTO

0.0

0.2

0.4

0.6

0.8

1.0

1.2 1e1

continuum
signal

Figure A.1.: Normalized distributions of the thrust axis of the B candidate (upper left)
and the ROE (upper right), as wells as the angle between the thrust axis of
the B candidate and the beam axis (lower left) and the angle between the
thrust axis of the B candidate and the thrust axis of the ROE (lower right).
See Section 3.2.1 for details.

57

58 A. Continuum Suppression Features

A.2. Cleo Cones

0 2 4 6 8 10 12
Cleo Cone (1)

0

1

2

3

4

5

6

7

8

1e 1

continuum
signal

0 2 4 6 8 10
Cleo Cone (2)

0

1

2

3

4

5

6

7

1e 1

continuum
signal

0 2 4 6 8
Cleo Cone (3)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
continuum
signal

0 1 2 3 4 5 6
Cleo Cone (4)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
continuum
signal

Figure A.2.: Normalized distributions of Cleo Cones 1-4. See Section 3.2.2 for details.

A.2. Cleo Cones 59

0 1 2 3 4 5 6
Cleo Cone (5)

0.0

0.5

1.0

1.5

2.0

2.5
continuum
signal

0 1 2 3 4 5 6
Cleo Cone (6)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
continuum
signal

0 2 4 6 8
Cleo Cone (7)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
continuum
signal

0 1 2 3 4 5 6 7 8
Cleo Cone (8)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

continuum
signal

0 2 4 6 8
Cleo Cone (9)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 continuum
signal

Figure A.3.: Normalized distributions of Cleo Cones 5-9. See Section 3.2.2 for details.

60 A. Continuum Suppression Features

A.3. Fox Wolfram Moments

0.0 0.2 0.4 0.6 0.8 1.0
R2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
continuum
signal

2.5 5.0 7.5 10.0 12.5 15.0 17.5
KSFW Et

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1e 1

continuum
signal

250 200 150 100 50 0
KSFW M2

m

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1e 1

continuum
signal

Figure A.4.: Normalized distributions of R2 and some KSFW moments. See Section 3.2.3
for details.

A.3. Fox Wolfram Moments 61

0.0 0.5 1.0 1.5 2.0 2.5 3.0
KSFW Hso

0, 0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
continuum
signal

1.0 0.5 0.0 0.5 1.0
KSFW Hso

0, 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

continuum
signal

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25
KSFW Hso

0, 4

0

1

2

3

4

5

continuum
signal

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
KSFW Hso

1, 0

0.0

0.5

1.0

1.5

2.0

2.5

continuum
signal

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
KSFW Hso

1, 2

0

1

2

3

4

5

6

7

continuum
signal

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
KSFW Hso

1, 4

0.0

0.2

0.4

0.6

0.8

1.0

1e1

continuum
signal

Figure A.5.: Normalized distributions of some KSFW moments. See Section 3.2.3 for de-
tails.

62 A. Continuum Suppression Features

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
KSFW Hso

2, 0

0

1

2

3

4

continuum
signal

0.5 0.0 0.5 1.0
KSFW Hso

2, 2

0

1

2

3

4

5 continuum
signal

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25
KSFW Hso

2, 4

0

1

2

3

4

5

6

7 continuum
signal

0.0 0.5 1.0 1.5 2.0 2.5
KSFW Hoo

0

0

1

2

3

4

5

6

7

8 continuum
signal

0.10 0.05 0.00 0.05 0.10 0.15 0.20
KSFW Hoo

1

0

1

2

3

4

5

6

1e1

continuum
signal

0.0 0.2 0.4 0.6 0.8 1.0
KSFW Hoo

2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1e1

continuum
signal

Figure A.6.: Normalized distributions of some KSFW moments. See Section 3.2.3 for de-
tails.

A.3. Fox Wolfram Moments 63

0.10 0.05 0.00 0.05 0.10
KSFW Hoo

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2
1e2

continuum
signal

0.0 0.2 0.4 0.6
KSFW Hoo

4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1e1

continuum
signal

Figure A.7.: Normalized distributions of some KSFW moments. See Section 3.2.3 for de-
tails.

B. Hyper Parameter Optimization

B.1. BDT

Table B.1.: Results of the Educated Guess and the ten best hyper parameter sets from the
Bayesian Optimization from BDT (E). The hyper parameters are the Number
of Trees (NoT), the Depth of each tree (D), the Number of Cut Levels (NoCL),
the Rand Ratio (RR) and the Shrinkage (Shr). As the figure of merit, the area
under ROC curve (AUC) is chosen. For details see Section 5.3.2.

NoT D NoCL RR Shr AUC

Educated Guess 200 3 8 0.5 0.1 0.971
Rank 1 1000 8 12 0.694 0.135 0.9752
Rank 2 992 7 12 0.772 0.138 0.9752
Rank 3 1000 8 12 0.744 0.137 0.9752
Rank 4 536 8 12 0.785 0.160 0.9749
Rank 5 494 8 12 0.645 0.078 0.9748
Rank 6 1000 4 12 0.707 0.226 0.9747
Rank 7 1000 4 12 0.598 0.197 0.9746
Rank 8 679 5 12 0.743 0.163 0.9746
Rank 9 1000 3 9 0.703 0.300 0.9746
Rank 10 990 4 12 0.860 0.200 0.9745

65

66 B. Hyper Parameter Optimization

Table B.2.: Results of the Educated Guess and the ten best hyper parameter sets from the
Bayesian Optimization from BDT (E+DL). The hyper parameters are listed in
Table B.1. For details see Section 5.3.2.

NoT D NoCL RR Shr AUC

Educated Guess 200 3 8 0.5 0.1 0.9863
Rank 1 1000 5 12 0.880 0.300 0.9951
Rank 2 853 5 4 0.773 0.300 0.9947
Rank 3 484 8 12 0.726 0.300 0.9946
Rank 4 595 6 12 0.718 0.151 0.9946
Rank 5 771 8 12 0.694 0.300 0.9946
Rank 6 423 6 4 0.672 0.300 0.9944
Rank 7 874 6 4 0.522 0.264 0.9942
Rank 8 241 8 12 0.387 0.119 0.9940
Rank 9 296 8 12 0.330 0.300 0.9940
Rank 10 318 8 4 1.000 0.300 0.9938

Table B.3.: Results of the Educated Guess and the ten best hyper parameter sets from
the Bayesian Optimization from BDT (E+DL+V). The hyper parameters are
listed in Table B.1.For details see Section 5.3.2.

NoT D NoCL RR Shr AUC

Educated Guess 200 3 8 0.5 0.1 0.9930
Rank 1 861 4 11 0.359 0.238 0.9977
Rank 2 956 8 11 0.693 0.278 0.9976
Rank 3 317 5 4 0.687 0.252 0.9975
Rank 4 1000 2 12 0.687 0.300 0.9972
Rank 5 996 2 5 0.656 0.254 0.9970
Rank 6 1000 2 4 0.444 0.300 0.9967
Rank 7 998 5 5 0.950 0.038 0.9967
Rank 8 1000 8 12 1.000 0.194 0.9964
Rank 9 1000 2 4 1.000 0.300 0.9960
Rank 10 1000 6 4 0.972 0.300 0.9957

B.2. DNN 67

B.2. DNN

Table B.4.: Results of the Educated Guess and the ten best hyper parameter sets from
the Bayesian Optimization from DNN (E). The hyper parameters are the
Number of Hidden Layers (NoHL), the Number of Neurons for each Hidden
Layer (NoN), the amount of Dropout after each Hidden Layer (Drop) and if
the Dropout after the first and last Hidden Layer should be set to zero (RD).
As the figure of merit, the area under ROC curve (AUC) is chosen. For details
see Section 5.3.3.

NoHL NoN Drop RD AUC

Educated Guess 4 100 0.00 True 0.9772
Rank 1 2 159 0.00 True 0.9779
Rank 2 2 304 0.00 False 0.9775
Rank 3 2 50 0.50 True 0.9775
Rank 4 2 348 0.50 True 0.9775
Rank 5 2 50 0.00 True 0.9773
Rank 6 4 100 0.00 True 0.9772
Rank 7 4 97 0.00 True 0.9772
Rank 8 2 592 0.00 True 0.9771
Rank 9 3 493 0.00 False 0.9766
Rank 10 3 322 0.40 True 0.9766

68 B. Hyper Parameter Optimization

Table B.5.: Results of the Educated Guess and the ten best hyper parameter sets from the
Bayesian Optimization from DNN (E+DL). The hyper parameters are listed
in Table B.4. For details see Section 5.3.3.

NoHL NoN Drop RD AUC

Educated Guess 4 100 0.00 True 0.9948
Rank 1 1 1000 0.48 True 0.9951
Rank 2 7 50 0.00 False 0.9948
Rank 3 1 1000 0.28 True 0.9948
Rank 4 4 100 0.00 True 0.9948
Rank 5 1 966 0.49 True 0.9948
Rank 6 4 50 0.04 True 0.9947
Rank 7 3 50 0.05 True 0.9947
Rank 8 1 1000 0.11 True 0.9947
Rank 9 3 212 0.06 True 0.9947
Rank 10 1 977 0.00 False 0.9947

Table B.6.: Results of the Educated Guess and the ten best hyper parameter sets from
the Bayesian Optimization from DNN (E+DL+V). The hyper parameters are
listed in Table B.4. For details see Section 5.3.3.

NoHL NoN Drop RD AUC

Educated Guess 4 100 0.00 True 0.9970
Rank 1 2 150 0.00 True 0.9976
Rank 2 5 50 0.00 False 0.9976
Rank 3 2 50 0.00 False 0.9975
Rank 4 4 50 0.00 True 0.9975
Rank 5 1 681 0.20 True 0.9975
Rank 6 1 856 0.13 True 0.9974
Rank 7 1 130 0.00 True 0.9974
Rank 8 1 382 0.00 True 0.9974
Rank 9 1 1000 0.34 True 0.9974
Rank 10 6 50 0.00 True 0.9973

Danksagung

Zu aller erst möchte ich mich bei Herrn Prof. Dr. Günter Quast für die Übernahme des
Referats und Herrn PD Dr. Andreas Meyer für die Übernahme des Korreferats und für
das Korrekturlesen der Arbeit bedanken.

Bei Herrn Dr. Martin Heck bedanke ich mich dafür, dass er mir das Thema dieser Arbeit
angeboten hat, sowie für das Korrekturlesen der Arbeit. Für die hervorragende Betreuung
und das Korrekturlesen der Arbeit möchte ich mich sehr herzlich bei Herrn Dr. Pablo
Goldenzweig bedanken.

Außerdem möchte ich mich für eine hervorragende Betreuung, viele interessanten Diskus-
sionen und das Korrekturlesen der Arbeit sehr herzlich bei Herrn Thomas Keck bedanken.
Zudem möchte ich mich bei Herrn Jochen Gemmler für die unzähligen hilfreichen Diskus-
sionen und Anregungen bedanken, von denen diese Arbeit sehr profitiert hat.

Sehr herzlich bedanke ich mich bei allen Mitgliedern der B-Physik-Arbeitsgruppe am ETP
für die hervorragende Arbeitsatmosphäre und die umfangreiche Hilfsbereitschaft während
der gesamten Arbeit.

Zuletzt möchte ich mich bei meiner Freundin, meinen Eltern und meiner Familie für ihre
unermüdliche Unterstützung während meines gesamten Studiums bedanken.

69

Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfs-
mittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus
Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.

Karlsruhe, November 2, 2017

. .
(Dennis Weyland)

	Contents
	1 Introduction
	2 The Belle II Experiment
	2.1 Motivation
	2.2 Accelerator
	2.3 Detector
	2.4 Tracks and Cluster Reconstruction
	2.5 Software Framework basf2

	3 Continuum Suppression
	3.1 Continuum
	3.2 Event Shapes

	4 Multivariate Analysis Methods
	4.1 Boosted Decision Trees (BDT)
	4.2 Artificial Neural Networks
	4.3 Deep Learning
	4.4 Bayesian Optimization

	5 Deep Learning for Continuum Suppression
	5.1 Introducing the Benchmark Dataset
	5.2 Choosing Input Features
	5.3 Hyper-Parameters
	5.4 Comparison of Traditional & Deep Learning Approaches
	5.5 Relation Network
	5.6 Adversarial Network
	5.7 Discussion of Results

	6 Conclusion & Outlook
	A Continuum Suppression Features
	A.1 Thrust
	A.2 Cleo Cones
	A.3 Fox Wolfram Moments

	B Hyper Parameter Optimization
	B.1 BDT
	B.2 DNN

