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Zusammenfassung

Seit seiner Entwicklung in den sechziger Jahren des neunzehnten Jahrhunderts ist das
Standardmodell der Teilchenphysik zu einer der erfolgreichsten und genauesten vermesse-
nen physikalischen Theorien geworden. Mit der Entdeckung eines Higgs-Bosons im Jahr
2012, dessen Eigenschaften mit denen des im Standardmodell vorhergesagten Higgs-
Bosons übereinzustimmen scheinen, hat das Standardmodell noch einmal eine Bestä-
tigung erfahren. Trotz seines überwältigenden Erfolgs bleiben einige Fragen und Prob-
leme offen. Ein Beispiel hierfür ist der Versuch, Gravitation als vierte Kraft in das
Standardmodell zu integrieren. Es gibt viele verschiedene Theorien, wie zum Beispiel
Modelle, die endliche gekrümmte Extradimensionen enthalten, die am LHC als Reso-
nanzen im invarianten Massenspektrum von zwei elektroschwachen Bosonen beobachtet
werden könnten.

Mit dem neuen Datensatz der 2015 am LHC bei einer Schwerpunktsenergie von 13 TeV
aufgenommen wurde, wird in vielen verschiedenen Endzuständen nach neuer Physik im
Diboson-Massenspektrum gesucht. Um dabei eine hohe Rekonstruktionseffizienz auch
in geboosteten Endzuständen zu erreichen, wie sie von einem Zerfall eines schweren
Teilchens zu erwarten sind, werden zur Rekonstruktion von hadronisch zerfallenden
Vektor-Bosonen Techniken eingesetzt, die auf der Analyse der Substruktur von Jets
beruhen.

Analysen, die nach neuer Physik suchen, sehen sich immer mit dem Problem konfron-
tiert, dass es eine Vielzahl an Modellen gibt, die unterschiedliche Phänomenologien am
LHC vorhersagen. Idealerweise müssten Ausschlussgrenzen für jedes dieser Modelle ge-
funden werden; dies ist in der Praxis jedoch nicht möglich. Stattdessen konzentrieren
sich die meisten Suchen auf einige wenige Modelle, innerhalb derer ihre Ergebnisse zu in-
terpretieren sind. Durch diese Auswahl bleiben einige Modelle unbeachtet. Diese Arbeit
schließt durch die Erweiterung zweier Diboson Resonanzsuchen, mit unterschiedlichen
Endzuständen, auf eine modellunabhängige Interpretation, diese Kluft zwischen The-
orie und Experiment. Zu diesem Zweck werden modellunabhängige Ausschlussgren-
zen als Funktion der Resonanzmasse und der relativen Breite der Resonanz berechnet.
Die Ausschlussgrenzen berücksichtigen Unterschiede der Rekonstruktions- und Identifika-
tionseffizienzen zwischen verschiedenen Modellen, indem eine zusätzliche, von der Reso-
nanzmasse abängige Unsicherheit der erwarteten Anzahl der Signalereignisse eingeführt
wird. Die modellunabhängigen Ausschlussgrenzen sind in Abbildung 0.1 zu sehen. Die
beobachteten Ausschlussgrenzen stimmen innerhalb einer Standardabweichung mit den
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erwarteten Ausschlussgrenzen überein. Die betrachteten Endzustände sind ein semilep-
tonischer Endzustand und ein hadronischer Endzustand. Im semileptonischen Endzus-
tand zerfällt ein W-Boson leptonisch und das zweite Boson, das ein W- oder Z-Boson sein
kann zerfällt hadronisch. Im hadronischen Endzustand zerfallen beide produzierte Vek-
torbosonen hadronisch, als Zwischenzustände sind zwei W-, zwei Z- oder ein W-Boson
und ein Z-Boson berücksichtigt.

Um die Berechnung der modellunabängigen Ausschlussgrenzen als Funktion der natür-
lichen Breite der Resonanz möglich zu machen, wird im Rahmen dieser Arbeit ein Modell
für die funktionale Parametrisierung breiter Resonanzformen entwickelt und an Simula-
tionen verschiedener Modelle getestet.

Um einen Vergleich der Vorhersagen arbiträrer Modelle mit den gegebenen modellun-
abängigen Ausschlussgrenzen zu ermöglichen, werden die Rekonstruktionseffizienzen von
hadronisch zerfallenden W- oder Z-Bosonen und von leptonisch zerfallenden W-Bosonen
innerhalb der Analysen berechnet und mittels dem transversalen Impuls und der Pseudo-
rapidität des generierten Vektorbosons parametrisiert. Mithilfe dieser Effizienzparame-
trisierung und eines im Rahmen dieser Arbeit geschriebenen Programms kann, ausgehend
von Simulationen im Les Houches Format, die Signalereignishäufigkeit für beliebige Mod-
elle berechnet werden.

Um das dieser Arbeit zu Grunde liegende Konzept zu testen, werden Ausschlussgrenzen
für ein Randall-Sundrum-Modell [1] berechnet. Mit dem modellunabhängigen System
können in diesem Modell Resonanzmassen kleiner als ungefähr 2 TeV und natürliche
Resonanzbreiten Γ/MX zwischen 0.05 und 0.3 ausgeschlossen werden. Diese Grenzen
sind nur um ungefähr einen Faktor 2 schlechter als spezifisch für dieses Modell berechnete
Grenzen im sensitiveren Diphoton-Zerfallskanal, siehe [2, 3].
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Figure 0.1.: Die modellunabhängigen Ausschlussgrenzen für ein Konfidenzniveau von
95% als Funktion von der Resonanzmasse MX und der relativen Breite
Γ/MX . Die Ausschlussgrenzen sind auf die Ereignisanzahl für vorher-
sagen von arbiträren Modellen gegeben. Oben sind die beobachteten Auss-
chlussgrenzen für den semileptonischen Endzustand, unten diejenigen für den
hadronischen Endzustand. Der schattierte Bereich markiert den Parameter-
bereich, in dem die Form von mit Gluon-Fusion produzierten Resonanzen
mit dem verwendeten Modell für die Resonanzform nicht mehr beschrieben
werden kann. In diesem Bereich sind die Ausschlussgrenzen nur noch für
Modelle gültig, die primär andere Produktionsmechanismen verwenden.
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Introduction

Since its development in the 1960s the Standard Model (SM) of particle physics has
become the most successful and precise physical theory of all time. For all its merits,
however, the standard model is not without flaws in both phenomenology and theory.
Prominent examples include the Hierarchy problem, that introduces fine tuning of theory
parameters, Neutrino flavor mixing, that has been experimentally observed but is not
described by the SM, and the absence of the fourth fundamental force of nature, gravity,
in the SM.

As a consequence, even though SM predictions describe the data taken by generations
of particle accelerators very well, the general consensus within the particle physics com-
munity is that a multitude of new physical phenomena not described by the SM are to
be expected at high energy scales. This skepticism regarding the SM lead to the de-
velopment of new ideas such as grand unification, which tries to unify three of the four
fundamental forces of nature (electromagnetic, weak and strong force) within one gauge
group that is then dynamically broken at some higher energy scale, or Supersymmetry,
which can solve the hierarchy problem. Another interesting idea is the attempt to in-
clude the effects of the fourth fundamental force, gravity, by introducing a corresponding
particle, the graviton, into the SM. Well known representatives of this are warped extra
dimensional models.

Since the spectacular discovery of the Higgs boson in 2012 at the Large Hadron Collider
(LHC), a new run at a center of mass energy of

√
s = 13 TeV has begun in 2015, collecting

data at energies never before reached in a laboratory.

This opens new opportunities for searches of physics beyond the Standard Model (BSM).
Many BSM theories predict new resonances, for example in the diboson channel, at ener-
gies of a few TeV. However, due to the multitude of models with different phenomenologies
only a fraction of existing models can be considered by a dedicated analysis by one of
the experimental groups at the LHC. This leaves many theorists and model-builders who
are unable to determine wether or not some of their predictions are already excluded by
experimental results.

This thesis aims to provide such model-builders with the means to find experimental
limits for the parameters of their respective models without having to rely on the help
of experimental groups. As a first step towards this goal model-independent limits on
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diboson resonances with a semileptonic or hadronic final state are extracted from data
collected by the CMS detector at the LHC. Based on these limits a ready-to-use frame-
work is then developed, which enables theorists to calculate the approximate signal yield
of their theory predictions. As a proof-of-concept of the provided framework its applica-
tion to a example model in the Randall-Sundrum scenario is demonstrated.

This thesis is organized as follows. Chapter 1 gives a short overview over the Standard
Model of particle physics as well as beyond the Standard Model theories predicting
diboson resonances. In chapter 2 the construction and operation of the Large Hadron
Collider and the Compact Muon Solenoid Detector are explained. Chapter 3 is dedicated
to the reconstruction of events in the detector as well as the physical principles behind
Monte Carlo event generators. A description of the statistical methods used in this
thesis is found in chapter 4. Chapter 5 contains a detailed description of two CMS
analyses searching for diboson resonances in the semileptonic and hadronic final state.
Finally, chapter 6 describes the calculation procedure for model-independent limits for
both channels as well as a working example of the framework provided for an RS1-
Graviton theory model.
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1. Theoretical Introduction

The standard model (SM) of particle physics is a theoretical model describing the interac-
tions and free behaviour of fundamental particles with great precision. Developed in the
1960th it is now one of the most powerful theories in physics, with its last missing piece,
the Higgs boson, discovered in 2012. However although the standard model provides as-
toundingly precise predictions for the three fundamental forces of electromagnetism, the
strong and the weak force, it still leaves unanswered questions and problems that hint
at the SM only being an effective theory valid at relatively low energy scales, compared
to the Planck scale at 1019 GeV. Since this thesis is an experimental work using the
concepts of basic quantum field theory and the SM, the first section (1.1) will give a brief
introduction to the SM of particle physics as well as a few glimpses at questions that the
SM is not able to answer. The second part of this theoretical introduction (section 1.2)
will be dedicated to models beyond the standard model (BSM) that try to address some
or all of the problems of the SM. In this chapter natural units as well as the Einstein
notation are used throughout. The following section is based on references [4–7].

1.1. The Standard Model of Particle Physics

One of the most basic concepts of the standard model is the connection between sym-
metries and the conservation laws following from them. The formalism connected to
this is described mathematically by Noether’s theorem [8, 9] and allows for general con-
straints on the formulation of a theory based on the observation that certain quantities
are conserved. A convenient way of writing down such a theory with these restrictions
in mind is using the Lagrange formalism; in the case of field theories Lagrange densities
are used. As is the case in classical mechanics, as far as we know today every physical
theory should hold under the following assumptions:

• The result of an experiment should be the same if it is shifted in time or space
(invariance under translations).

• The result of an experiment should also remain unchanged if the whole experiment
is rotated in space (rotational invariance).

6



1.1. The Standard Model of Particle Physics

Since a relativistic formulation is needed to describe phenomena involving elementary
particles, the theory should also be invariant under Lorentz boosts. In summary the
theory is supposed to be invariant under the full Poincaré group giving rise to the con-
servation of energy, momentum and angular momentum. These symmetries are global
coordinate transformations.

However, the Poincaré group is not the only ingredient needed to formulate the SM;
in addition the theory builds on knowledge from non-relativistic quantum mechanics,
additional local symmetries that will be discussed later and other principles such as
causality.

One of the trademarks of a quantum field theory is that the particle fields themselves are
described by operators connected to the particle interpretation via expectation values -
however the fields themselves are often called "particles" anyway.

The SM contains three different kinds of particles. The first kind are gauge bosons which
are introduced mathematically using invariance under local gauge transformations and
are therefor associated with a gauge symmetry; these will be described in more detail in
the next section. The second kind are matter particles, which have a spin of 1/2 and are
governed by the Dirac equation (1.1) in their free state; they differ only in their charges
under the gauge groups of the SM, which will be described in the next section, or in their
mass m. The Dirac equation is

i/∂Ψ−mΨ = 0 , (1.1)

with the particle field Ψ and /∂ = γµ∂
µ. The third kind of particle found in the SM

is massive spin-0 field, called the Higgs boson. A spin-0 particle such as the SM Higgs
boson in its free state is governed by the Klein-Gordon Equation

∂µ∂
µΦ +m2Φ = 0 . (1.2)

The free fields in quantum field theory are the quantised solutions of (1.1) or (1.2)

Φ(x) =

∫
d3k

(2π)3

(
eikx

a†(~k)

2k0
+ e−ikx

a(~k)

2k0

)
, (1.3)

Ψ(x) =

∫
d3k

(2π)3

∑
s

(
eikxvs(~k)b†s(

~k) + e−ikxus(~k)as(~k)
)
, (1.4)

where a, a† are annihilation/ creation operators of a spin 0 particle with momentum k,
as/b

†
s are annihilation/creation operators of a spin s particle/anti-particle with momen-

tum k, and us/vs are spinors. A particle corresponds to the creation operator a†s(~k)
applied to the vacuum, it has a positive energy eigenvalue, while and anti-particle corre-
sponds to the construction operator b†s(~k) and has a negative energy eigenvalue.
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1.1. The Standard Model of Particle Physics

1.1.1. Gauge Symmetries

The SM is constructed of several symmetries that are required to hold locally, i.e. under
local spatial-dependent transformations of the symmetry group. The requirement that
these symmetries hold requires the presence of gauge fields and determines the interaction
of SM particles mediated by the gauge fields in a unique way. Each introduction of a new
symmetry group leads to new charges for the matter fields, which relate the matter field to
the gauge group generators. The matter fields belong to the fundamental representation
of the gauge group, i.e. they transform as Ψ→ UΨ where U = U(x) is a unitary matrix
parametrising a gauge transformation. The gauge fields themselves belong to the adjoint
representation of the gauge group, i.e. they transform as φ→ UφU †.

The SM consists of three gauge groups, the associated mediator fields and kinematic
terms for the fermions of the theory, and the kinematic and potential terms of a scalar
spin-0 particle, the Higgs boson. In addition to this an interaction term between the
Higgs boson and the fermion fields is added. The Higgs field is introduced to give rise
to the masses of the weak gauge bosons, as well as the fermions, through spontaneous
symmetry breaking.

The full symmetry group of the SM is SU(3)C×SU(2)L×U(1)Y . U(n) is the group of all
unitary n×n matrices, while SU(n) is a subgroup of this, containing only matrices with
a determinant of 1. All three symmetry groups are also Lie groups and can therefore be
described by a Lie algebra of the form

[T a, T b] = fabcT c , (1.5)

where T a are the group generators and fabc is the structure constant. Each local gauge
symmetry leads to n new gauge boson fields, where n is the number of Lie group gener-
ators.

Quantum Chromodynamics

The non-abelian Lie-group SU(3)C is the gauge symmetry of the strong force with colour
as charge. The Lagrange density L can be written as

LQCD = −1

4

(
GaµνG

a,µν
)

+
∑

quark flavours

q̄i /Dijqj , (1.6)

Dµ,ij = ∂µδij − igGaµT aij , (1.7)

Gaµν = ∂µG
a
ν − ∂νGaµ + gfabcGbµG

c
ν , (1.8)

Here G are the gauge fields i.e. gluons, q are the quark spinor fields, g is the coupling
and Dµ is the covariant derivative. The indices a, b, and c sum over the eight generators
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1.1. The Standard Model of Particle Physics

of the Lie group, and the indices i and j denote the quark colours. A non-abelian gauge
group like SU(3) gives rise to self couplings of the gauge fields which leads to triple and
quadruple vertices in the Feynman rules for QCD. The gauge bosons of the strong force,
generally referred to as gluons, remain massless after the spontaneous symmetry breaking
of the Higgs field. However, because of the special non-abelian structure of QCD, the
strong coupling constant αs, which is proportional to g2 in first order perturbation theory,
grows smaller at high energies and larger at small energies, leading to the two phenomena
of asymptotic freedom and confinement. Consequently at high energies or small distances,
the quarks can be approximated as almost free particles (asymptotic freedom). At low
energies or high distances the interaction between coloured particles get stronger, which
ultimately leads to the confinement of colour charges within a colourless object. When
the coupling αs grows too large, calculations via a perturbative approach are no longer
valid.

Electroweak Force

The second gauge group is also a non-abelian Lie-group, SU(2)L. The equation is almost
identical to the QCD Lagrangian above:

Lweak = −1

4

(
W a
µνW

a,µν
)

+
∑

generations

ĪL /DIL , (1.9)

Dµ = ∂µ − igW a
µT

a (1.10)

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν , (1.11)

W a are the gauge fields, g the coupling, T a the three generators of SU(2) and I contains
matter fields. Formally the charge of the matter fields under this group is called isospin,
and I is an SU(2) doublet containing two quarks, or one lepton and one neutrino. The
quarks are grouped into this doublet according to their flavour, where an up-type flavour
coincides with an eigenvalue of T 3 of 1/2 and a down-type flavour with an eigenvalue of
T 3 of -1/2.

This force only couples to left-handed fermions with IL = (1 − γ5) I and εabc is the
totally anti-symmetric tensor in three dimensions i.e. the structure constant of SU(2).
Left-handed means that the fermions have a negative chirality, i.e. the direction of their
momentum is antiparallel to the direction of their spin. This non-abelian gauge group
also gives rise to triple and quartic gauge couplings.
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1.1. The Standard Model of Particle Physics

U(1)Y is an abelian symmetry group. Its Lagrangian LY is

LY =
1

4
BµνB

µν +
∑

flavours, generations

Ψ̄ /DΨ , (1.12)

Dµ = ∂µ + ig′Y Bµ , (1.13)
Ba
µν = ∂µBν − ∂νBµ , (1.14)

where Y is the hypercharge of the fermion field Ψ. Left-handed fields have hypercharge -1
and right-handed ones -2. It is ,however, harder to associate these groups with any of the
known forces directly, since the weak and electromagnetic forces as they are experienced
at low energy scales only arise as a mixture of both SU(2)L and U(1)Y symmetries after
they are partially broken through the Higgs mechanism [10].

In order for this to occur a scalar field φ with a potential term and isospin 1/2 is intro-
duced, such that the ground state for this field has a non-vanishing vacuum expectation
value:

LHiggs = (Dµφ)†Dµφ+ µ2φ†φ− λ(φ†φ)2 , (1.15)

Dµ = ∂µ −
ig

2
τaW a

µ + i
g′

2
Bµ , (1.16)

φ =

(
φ+

v+H+iϕz√
2

)
. (1.17)

The Higgs field φ is parametrised with respect to its ground state φ0 = (0, v/
√

2)T , since
it is a complex field the three field φ+, H and ϕz are used. H and ϕz are real, while
φ+ has a real and imaginary part. This parametrisation if chosen in order to emphazise
the ground state φ0. λ and µ are constants with v = µ/

√
λ. The ground state of the

Lagrangian breaks the SU(2)L × U(1)Y gauge symmetry of the electroweak force to a
residual U(1) symmetry, effectively leaving one massless U(1) gauge boson and three
massive gauge bosons, the W± and Z bosons. The gauge boson for this residual U(1)
symmetry is known as the photon and it is a mixed state of both B and W 3 fields. This
leaves, according the Goldstone Theorem [11], one degree of freedom for a neutral Higgs
boson.

Fermion Mass Term

The last ingredient for the full SM Lagrangian are the mass terms for fermions, which are
believed to also originate through symmetry breaking, through a coupling to the Higgs
field.

LY ukawa = −l̄LφYllR − q̄LYdφdR − q̄Liσ2φ
∗YuuR + h.c. , (1.18)
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1.1. The Standard Model of Particle Physics

Figure 1.1.: The particle content of the SM. Figure taken from [13].

where Yi are the Yukawa couplings, q contains the left handed quarks, and dR/uR contain
the right-handed down/up-type quarks, while lL contains the left handed leptons and
left-handed neutrinos and lR contains right-handed leptons. The Yukawa couplings are
matrices in flavour space that are in general not diagonal, and in the SM up- and down-
type Yukawa matrices cannot be diagonalised simultaneously. This gives rise to flavour-
changing charged currents via the electroweak W± bosons proportional to the CKM
matrix1 [12] elements with UCKM = UL,uU

†
L,d, where UL,u/d is the unitary transformation

matrix diagonalising the u/d Yukawa matrix from the left side.

Due to some accidental global U(1) symmetries other quantities such as the baryon
number and the electron, muon and tauon numbers are conserved.

An overview over the particle content of the SM is given in figure 1.1. There are three
generations of fermions. The matter particles of each generation only differ in their
respective masses, with each generation having a higher mass than the one before. All
matter almost exclusively consists of the first generation of particles, which has the lowest
masses. It is interesting to note that the SM itself gives no indication why there are three
generations. In each generation there are two quark flavours, up-type and down-type,
as well as 6 different colour states for each flavour. As mediator particles for the strong
interaction there are 8 massless gluons. After spontaneous symmetry breaking, there is
one massive Higgs boson, three massive bosons W± and Z for the mediation of the weak

1CKM stands for Cabibbo, Kobayashi and Maskawa, after the physicists who first suggested to introduce
a quark mixing matrix.
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1.1. The Standard Model of Particle Physics

force, and one massless gauge boson for the residual U(1) symmetry, the photon. Finally
the SM contains one lepton per generation, denoted with electron, muon and tauon, as
well as one left-handed neutrino per generation, the electron-, muon- and tau-neutrino.

Put together the SM Lagrangian density describes all elementary particles and their
interactions with astounding precision. With the Lagrange densities the behaviour is
determined through the principle of least action

S =

∫
d4x LSM , (1.19)

δS = 0 . (1.20)

This however cannot be solved directly and particle physics instead relies on a perturba-
tion series approach for its calculations. With Feynman diagrams the perturbation series
can be written down pictorially. Quantum field theories have the additional peculiarity
that they contain a series of ultraviolet divergences that have to be dealt with. This
is done using regularisation, a mathematical recipe to parametrise the divergences, and
renormalisation, a procedure to subtract the divergences into counter-terms. In principle
this means that QFTs can predict the evolution of behaviour of the particles between
two energy scales, but can make no absolute predictions at one particular scale.

1.1.2. Open Questions

There are several reasons why physicists generally believe that there has to be physics
beyond the standard model. In this section some of these problems are discussed briefly.

• Neutrino Mixing [14]:
The first problem concerns neutrinos and the masses of the fermions in general.
Although the Higgs mechanism provides a convenient way to introduce masses to
quarks and the charged leptons, the SM leaves the neutrinos massless. Neutrino
masses can still be incorporated into the SM by introducing right-handed neutrinos
and giving them a Dirac mass term, however doing this is not satisfying to most
model-builders. This approach cannot explain why neutrino masses are as tiny
as they are a few keV as opposed to MeV. There is also no satisfying explanation
for the large mass differences between the three generations of particles, or for the
mixing angles for quarks or neutrinos.

• Unification [15]:
Another reason why the SM may only be a small energy approximation of a larger
theory is condensed into the idea of unification. The weak and electromagnetic
forces seem to be two different phenomena for sufficiently small energies. For en-
ergies above the electroweak breaking scale however, they combine into one force

12



1.2. Theories Beyond the Standard Model

under a larger symmetry group. The idea of unification then claims that if this
works for the electroweak force, at sufficient high energies, all fundamental forces
could be combined into one phenomenon. This hypothetical scale is called unifica-
tion scale. This idea is aided by the fact that the energy dependence of the coupling
constants of all three atomic forces have crossing points at high energies, though
they do not combine at one point in the SM. Models that try to combine the forces
of the SM are called Grand Unified Theories (GUT) although they usually do not
take gravity into account.

• Hierarchy Problem:
The hierarchy problem can be stated in many ways, such as why the Higgs mass
is so small about 125 GeV [16], or why there is such a large difference between the
Planck scale (1019 GeV) and the electroweak scale (103 GeV). The problem can
also be posed as the question why gravity is so weak compared to the electroweak
force. The problem comes down to why the Higgs mass, which is not protected by
any gauge symmetries in the SM, does not get corrected to a value near the Planck
scale under loop corrections. Within the SM, this can only be solved by fine-tuning
of parameters, which seems unnatural to many theorists. Supersymmetric models
provide a nice solution to this fine-tuning problem, provided the Supersymmetric
partners to SM particles have masses at the TeV scale, but warped extra dimen-
sional models also provide solutions to this problem.

• Dark Matter:
The existence of dark matter is hinted at by many measurements from astrophysics,
for example the rotational curves of galaxies [17] can only be explained with a
distribution of invisible mass throughout the galaxies. Such matter should consist
of massive particles that interact only very weakly with the SM particles. The SM
itself has no natural dark matter candidate, but theories like Supersymmetry do
provide natural candidates for dark matter.

• Gravitation:
The SM does not contain gravitation as a forth force. This makes no difference
for particle interactions at low energies where most measurements take place, since
gravity is so much weaker than the other three forces. However, a complete theory
should also contain a fundamental description of gravity on the particle level.

1.2. Theories Beyond the Standard Model

In this section BSM theories that are important for this thesis will be discussed briefly.
This account is therefore restricted to a few selected theory models.

13



1.2. Theories Beyond the Standard Model

1.2.1. Warped Extradimensional Models

Warped Extradimensional Models (WED) try to incorporate gravity as a forth force
into the SM model. These theories are able to solve the hierarchy problem and usually
still allow for a grand unification at some high energy scale. This section is based on
references [18,19]. The basic idea behind them is the following. There are two "branes"
consisting of fourdimensional Minkowski space-time that are linked through a fifth, finite
dimension. The wave functions of the normal SM particles, especially the Higgs boson, are
now confined within their brane, called TeV brane. The graviton, however, can propagate
through the "bulk" of the extra dimension, while the peak or its wave function is located
on the other brane, called "Planck brane" (see figure 1.2). With this basic idea the
gravitational force gets an exponential suppression due to travelling through the bulk.
At the same time, the Higgs vacuum expectation value and with it its mass get also
scaled down by an exponential factor, since the higgs is confined to the TeV brane the
extra dimension can be integrated out of the five dimensional action.

In a more sophisticated theory some of the SM particles are allowed to propagate into
the bulk too, giving them a coupling strength to gravity (i.e. mass) proportional to the
overlap their wave function has with the graviton wave function.

This approach replaces the fine tuning of parameters on orders of magnitude with the
tuning of order one parameters, i.e. the placement inside the bulk, thus getting rid of
the hierarchy problem.

Properties

The most basic feature of all WED models is the extension of 3+1-dimensional Minkowski
space to a fivedimensional space with the metric gMN . The most general solution of the
fivedimensional Einstein equations

RMN −
1

2
RgMN = 0 , (1.21)

where RMN is the Ricci tensor and R = RMM the Ricci scalar is,

ds2 = e−2kr(φ)ηµνdx
µdxν + r2dφ . (1.22)

ds2 is the line segment of the given metric and a solution for 1.22, φ parametrises the extra
dimension and ηµν is the Minkowski-metric, while r is the size of the extra dimension
and k its curvature. Here curvature can only be understood in a purely mathematical
sense, where it is closely connected to the second derivation of a path with respect to its
parameters, see for example [20]. In order to arrive at this ds2 matter is neglected and
the solution is required to retain four-dimensional Minkowski space-time on the branes.
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1.2. Theories Beyond the Standard Model

Figure 1.2.: Schematic picture of the two branes connected via a finite extra dimension.
Here the Planck brane is called gravitybrane, and the TeV brane is called
weakbrane. Figure taken from [19].

When integrating the extra dimension out of the five dimensional action, an exponential
"warp factor" appears, effectively suppressing quantities like the vacuum expectation
value v of the SM Higgs boson v = v0e

−πkr with respect to its fivedimensional value v0.
In this case the Higgs potential from equation (1.17) is put into a 5D action and confined
to the TeV brane. With this the hierarchy problem is solved if

kr ≈ 11 . (1.23)

Models of this kind introduce resonances with interesting features. These resonances are
the excitation modes of the five dimensional metric gMN . They can be decomposed into
two different excitations

δgMN =

(
h(φ, x)µν ~0

~0 h(x, φ)5

)
, (1.24)

a spin-2 excitation h(φ, x)µν of Minkowski-space in general these excitations are referred
to as gravitons, and a spin-0 excitation h(x, φ)5 along the fifth dimension, called a Radion.
Such excitation X can be decomposed into their fourdimensional wave functions X(n)(x)
and the functions f (i)(φ), called profile functions that describe the behaviour in the extra
dimension

X(x, φ) =

∞∑
n

X(n)(x)f
(n)
X (φ) . (1.25)
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1.2. Theories Beyond the Standard Model

The profile functions and have a series of roots depending on kr. Usually the two pa-
rameters chosen to describe the theory are k̃ = k/MPl, with the reduced Planck mass
Mpl = Mpl/

√
8π ≈ 2.4×1018 GeV, and the mass of the first resonance. k̃ is also commonly

called coupling because it naturally appears as a parameter when the fivedimensional La-
grangian of matter fields is expanded around the excitation modes of gMN .

The periodic root structure of the profile function leads to standing waves inside the
warped dimension. Each of these standing waves has mass corresponding to the roots of
the profile function thus resulting in a tower of resonances observable on the TeV brane.
The resonances belonging to such a tower of resonances are called a KK-resonances 2.
In order for kr ≈ 11 to hold the first KK-resonance of this kind should have a mass of a
few TeV.

This thesis considers two warped extra dimensional models, the RS1 3 model which
considers every SM particle to be confined on the TeV brane (as shown in figure 1.2), and
the Bulk-Graviton scenario, where the SU(2)L × U(1)y symmetry is expanded to reach
into the bulk (see figure 1.3). For the case of bulk models, each SM particle allowed
to propagate into the bulk causes a tower of KK-modes. The first, massless, resonance
is assumed to be the normal SM particle, while the higher excitations only play a role
in loop corrections at low energy scales. There are far more models suggesting a wide
range of possible scenarios, however for the case of high energy physics searches it is
advantageous to take relatively simple models that can stand in for a class of more
sophisticated models.

1.2.2. Heavy Vector Triplet Models

Another benchmark model considered in this thesis is the Heavy Vector Triplet (HVT)
model. This benchmark model is a spin-1 vector triplet, that is basically analogous to
the weak force of the standard model. This scenario, describes an exotic resonance that
can be either a charged or neutral spin-1 resonance, can arise in different theoretical
scenarios. For example in composite Higgs models, where the Higgs boson is thought to
be a composite particle emerging from the breaking of an overlying symmetry, a triplet
of heavy spin-1 resonances are predicted that can be described by the HVT model [27].
The neutral spin-1 resonance is usually called Z′, while the charged resonance is called
W′. The HVT model is a simplified model which can describe the important qualities of
a spin-1 resonance from the experimental point of view, without introducing too many
contraints on the theoretical model the resonance can arise from. This is done using an
effective Lagrangian and a parametrisation of all couplings that are used for limit setting.
Two slightly different models are distinguished, they are commonly referred to as HVT

2KK stands for Kaluza and Klein, who first predicted such resonances in extra-dimensional models
[21, 22].

3RS stands for Randall and Sundrum. The properties of such models are found in references [1,23–25].
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1.2. Theories Beyond the Standard Model

Figure 1.3.: Schematic picture of the two branes connected via a finite extra dimension
in the Bulk-Graviton case, where the fermions and the electroweak bosons
are extended into the bulk. In this case the Planck-brane is denoted with
UV and the TeV brane with IR. Figure taken from [26].

model A and B. The difference between the two models lies in the coupling strengths to
the fermion sector. These are suppressed in model B, while the couplings to fermions
and gauge bosons are of similar strengths in model A.

1.2.3. Phenomenology at the Large Hadron Collider

In order to either discover one of the predicted exotic resonances or give exclusion bounds
on the signal strength, the phenomenology of these models at the Large Hadron Collider is
of great importance [28,29]. The power of a physics analysis depends on the production
mode, the coupling strengths to the considered final state, and other model specific
quantities. Table 1.1 contains an overview of some of the important properties of the
used benchmark theory models.

For WED spin-2 models the two parameters k̃, which is essentially the curvature of
the extra dimension, and the first KK-resonance mass mX are used to parametrise the
models. In case of the HVT models, the generic phenomenological Lagrangian can be
parametrised by the resonance mass mX and the coupling to fermions cF , to bosons
gV , and to the Higgs boson cH . The Radion model can be parametrised the same way
as the spin-2 WED resonances, by using the first KK-resonance mass as well as the
coupling k̃, or alternatively kr where r, which is sometimes denoted as L, is the size
of the extra dimension. Phenomenological parameters such as the decay width of the
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Table 1.1.: Overview over the important qualities of the benchmark theory models used
in this analysis. The letter l stands for longitudinally polarised vector bosons,
t stands for transversal polarisation. The column production lists the pro-
duction modes used for the MC samples. For MC generation, the dominant
production mode, either gluon fusion (GF) or Drell-Yan (DY), was used.

Benchmark model Spin production coupling to VB theory class
RS1-Graviton 2 87% DY 13% GF 90% t 10% l WED
Bulk-Graviton 2 GF l WED

W′ 1 DY l HVT
Z′ 1 DY l HVT

Radion 0 GF l WED

resonance and the cross section depend quadraticlly on the choice of k̃. The branching
fractions, however, are independent of the exact parameter choices.

In the case of a spin-0 resonance, i.e. in the case of the Radion model, an interference with
the SM Higgs boson is predicted by some models. Such a mixing can quite drastically
change the couplings of the Radion to SM particles [30]. Since the interference also
changes the phenomenology for the Higgs boson, severe restrictions on the coupling
strength to the SM Higgs boson can be set, see for example reference [31]. A mixing with
the SM Higgs boson would lead to a decline in coupling strenght to vector bosons, thus
requiring a minimum of 50 fb−1 for a detection at the LHC with

√
s = 14 TeV. In the

following a model without mixing with the SM Higgs boson is used.

Production

Since the Large Hadron Collider (LHC) is a proton-proton collider the important produc-
tion modes of all considered models are either through Drell-Yan (DY) or gluon fusion
(GF) processes (see figure 1.4). Although the considered models share a high branching
ratio to vector bosons, the production mechanisms of vector boson fusion (VBF) and
vector boson associated (VBA) production are negligible compared to the other two pro-
duction modes. This is due to the presence of additional weak vertices and the high mass
of the expected resonance, which lead to a small phase space. In figure 1.5 the produc-
tion cross sections for all considered benchmark models are displayed as a function of the
resonance mass for a given coupling. It can be seen that DY and GF production are the
most important production mechanisms. In the Bulk-Graviton and the Radion theory
models gluon fusion surpassed DY production since the coupling of both exotic particles
are proportional to the fermion masses, as is the case with the SM Higgs boson. This
means, that the coupling to top-quarks is the strongest, but the production via tt̄ pairs
is suppressed through the PDFs of the proton, while the gluon fusion via a top-quark
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Figure 1.4.: The Feynman graphs for DY and GF production of a hypothetical spin-2
resonance (top). The Feynman graphs for Vector Boson Fusion (VBF) and
Vector Boson Associated (VBA) production are shown on the bottom. This
figure is taken from [19].

loop becomes the dominant production process. For the two HVT resonances a direct
coupling to gluons is impossible due to the spin structure. In case of the W′ a direct
coupling to gluons would also violate electric charge conservation. The production cross
sections also drastically decrease with the resonance mass.

Decay Modes

The branching ratios to different final states can be seen in figure 1.6, for different theory
models. The branching into vector bosons, which is the most important for this thesis,
has a significant fraction for all models except for HVT model A, which was designed
to maximise the couplings to the fermion sector. This benchmark model is not used
in the following analysis. In addition to having one of the largest branching ratios for
all considered theory models, the vector boson channel has the additional advantage of
the existance of recently developed and highly effective techniques do deal with boosted
topologies.

In all of the above mentioned theory models with the exception of the RS1-Graviton
model, the coupling strength are vastly different. Most models derive a volume suppres-
sion for the coupling to the transverse degrees of freedom, while the longitudinal degrees
of freedom that arise from electroweak symmetry breaking have couplings proportional
to the mass of the vector bosons. The decay ratios given here are for longitudinally as
well as transversally polarised vector bosons.
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Figure 1.5.: The expected production cross sections for different theory models as a func-
tion of the resonance mass MGr or mφ. Top left is the production for Bulk-
Graviton and on the top right the one for the RS1 model (taken from [19])
with k̃ = 0.2. The red curve corresponds to the inclusive production at the
LHC, the green and blue ones to VBF and VBA production. Dot-dashed,
continuous and dashed line styles correspond to center of mass energies of
14 TeV, 13 TeV and 8 TeV respectively. On the bottom left is the produc-
tion cross section for a Radion model, taken from reference [32]. This cross
section is given at 7 TeV center of mass energy for GF and kL = 35 (solid
blue line) or kL = 7 (solid black line), the dashed lines represent theory un-
certainties. On the bottom right the inclusive production cross sections for
both HVT resonances in Model B are shown for 8 TeV center of mass energy
(dashed line) and 13 TeV center of mass energy (solid line). The figure is
taken from reference [33].
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In the case of the RS1-Graviton model the suppression factor for transverse degrees of
freedom is simply 1, which means that the decay rate primarily depends on the phase
space of the decay.
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Figure 1.6.: Branching ratios for different benchmark theory models; from top left to
bottom right they are Bulk-Graviton, RS1-Graviton [19] with a coupling k̃
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2. The Large Hadron Collider and the
Compact Muon Solenoid Detector

In order to test the validity of the standard model and search for physics beyond the
standard model, particle physics has to be tested at high energy scales, where the effects
of new physics become apparent. The Large Hadron Collider (LHC), as of today the
world largest scattering experiment, was built to search for new physics at a maximum
center-of-mass energy of

√
s = 14 TeV. The scientists analysing LHC data have already

successfully announced the discovery of the Higgs boson in 2012. The search for new
physics beyond the standard model continues with the new data from 2015, which is the
first data taken at a center-of-mass energy of 13 TeV.

For this thesis data taken with the Compact Muon Solenoid (CMS) detector from proton-
proton collisions at a center-of-mass energy of

√
s = 13 TeV are used with an integrated

luminosity of 2.1 fb−1 (2.6 fb−1). This chapter contains a brief summary of the properties
of the LHC and the CMS experiment. The first section (2.1) deals with the LHC. In
section 2.2 a brief description of the CMS particle detector and its subsystems is given.

2.1. The Large Hadron Collider

The Large Hadron Collider [35] is a scattering experiment designed to give an insight
into particle physics at the TeV scale. The collider itself is located at the European
Organisation for Nuclear Research (CERN) at Geneva, Switzerland, and consists of a
26.7 km ring built almost 100 m underground. The collider was built in a preexisting
tunnel previously occupied by the Large Electron-Positron Collider (LEP) and can reach
a maximum center-of-mass energy of 14 TeV and a peak luminosity of 1034 cm−2s−1.
These peak values can only be reached for proton-proton collisions but the collider can
also be operated with heavy ions. The LHC is built with two different beam lines, where
the protons are accelerated in opposing directions. A total of 1232 superconducting dipole
magnets, which are cooled to a temperature of 2 K and have an 8 T magnetic field, are
used to control the protons in the beam line. In addition about 4800 corrector magnets are
necessary to correct the beam position, bunch localisation and focusing. High frequency
cavities with a fundamental frequency of 400 MHz are used for the final acceleration and
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Figure 2.1.: A schematic of the structure of the LHC. The figure shows the position of
the four main experiments, as well as the schematic location of the multiple
preaccelerators, figure taken from reference [34].
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storage of the protons. The protons are inserted into the main ring only after passing
through a series of four preaccelerators. In figure 2.1 a schematic of the LHC ring is
shown. The LHC has a total of 8 straight sections for potential interaction points, two of
which are reserved for beam cleaning and one for the dumping of the beam. Only four of
the interaction points are surrounded by particle detectors. CMS [36] at interaction point
5 and A Toroidal LHC ApparatuS (ATLAS) [37] at interaction point 1 are multipurpose
detectors designed for proton-proton interactions at high luminosities. Both experiments
have a large physics programm from SM precision measurement, the Higgs boson search
to searches for dark matter particles. A Large Ion Collider Experiment (ALICE) [38] at
point 2 is a detector specialised on heavy ion collisions to investigate the conditions and
characteristics of a quark-gluon plasma. Lastly, LHCb (LHC beauty) [39] at point 8 was
built to investigate the physics of b-hadrons, especially CP-violating processes involving
b-quarks.

At this point in its operation the LHC manages to reach a number of 2808 bunches per
proton beam with a bunch spacing of 25 ns and about 1011 protons per bunch. This
results in an average of 21 proton-proton interactions per bunch crossing, which forces
experiments to put a focus on the removal of particles coming from a different proton
interaction from the main event, called pileup. The luminosity, which provides a measure
for the number of particle collisions per time unit, depends on the number of bunches nb,
the frequency f with which they run around the accelerator, the number of particles Nb

per bunch and the area of a bunch given, by σxσy since the bunches are nearly Gaussian,
σx,y,z is the standard deviation of the gaussian beam profiel in x/y/z direction. The
luminosity is then given by

L =
N2
b nbfγr

4πσxσy
F , (2.1)

F =

(
1−

(
θcσz
2σ∗

)2
)− 1

2

, (2.2)

where F is an additional reduction factor due to the crossing angle θc at the collision
point. γ is the relativistic gamma-factor and σ∗ the transverse beamsize at the interaction
point. The integrated luminosity L is

L =

∫
Ldt , (2.3)

and can be used to calculate the number of events N expected for a particular process
with cross section σ:

N = Lσ . (2.4)
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2.2. The Compact Muon Solenoid Experiment

Figure 2.2.: A schematic cut through the CMS detector, taken from [40]. Starting from
the interaction point the subdetector systems of tracker, ECAL, HCAL and
the iron return yoke with the muon system can be seen. As an illustration
the paths of a muon, electron, pion, neutron and photon are pictured as well
as their interactions with the detector.

2.2. The Compact Muon Solenoid Experiment

The CMS detector [36] is approximatly cylindrical around the beam direction. It has a
diameter of 14.6 m and a length of 21.6 m, and it weighs 12.500 tons, which makes it
relatively compact in comparison to other particle detectors. The experiment consists of
four subsystems, which in turn contain many subdetectors, of which three, the tracker, the
Electromagnetic Calorimeter (ECAL) and the Hadron Calorimeter (HCAL) are contained
inside a superconducting magnet generating an almost constant magnetic field of 3.8 T.
The muon system is situated both directly inside and on the outside of an iron return
yoke designed to guide the magnetic field lines. See figure 2.2 for a schematic cut through
the CMS detector.

In the following sections a coordinate system is used defined by setting the origin at the
collision point, the z-axis along the anti-clockwise beam direction, the x-axis pointing to
the center of the LHC and the y-axis pointing upwards perpendicular to the plane of the
LHC. The quantities θ, r and φ define a spherical coordinate system as follows. θ is the
angle measured from the z-axis, φ is the azimuthal angle measured from the x-axis, and
r is the distance to the interaction point. Another important detector variable is the
rapidity y, i.e. the boost along the beam axis that transforms from the lab frame to a
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2.2. The Compact Muon Solenoid Experiment

Figure 2.3.: An event display [41] from the CMS detector at a center-of-mass energy of
8 TeV. The display shows an event with two W bosons decaying into muons
and neutrinos. The missing transverse energy is indicated with a red arrow.

frame where the particle moves only orthogonal to the beam axis

y =
1

2
log(

E + pz
E − pz

) . (2.5)

Here E is the energy of a particel while pz is its momentum in z-direction. Along width
the rapidity the pseudorapidity η

η = − log(tan(
θ

2
)) (2.6)

is often used in measurements since it only depends on the polar angle of a particle and
not its energy. The pseudorapidity can therefore be used to discribe the particles absolute
location in the detector system. For massless particle η and y coincide. The quantity
∆R

∆R =
√

(∆η)2 + (∆φ)2 (2.7)

is a measure of the angular distance of two particles. The transverse momentum of a
particle is defined as

pT =
√
p2
x + p2

y . (2.8)

In figure 2.3 a typical event with two leptonically decaying W bosons is shown as an
event display, i.e. the energy deposits in the ECAL and HCAL are shown as red/blue
boxes, the tracks are shown as lines inside the tracker system, and the hits in the muon
system are shown by highlighting the detector pannel that registers the hit.
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2.2. The Compact Muon Solenoid Experiment

Figure 2.4.: A schematic layout of the CMS tracker, figure taken from [44]. The figure
depicts the tracker in the coordinate system given by η, r and z. At the
center lies the interaction point (black dot), which is surrounded by the
pixel detector. The barrel part of the detector consists of the tracker inner
barrel (TIB) and tracker outer barrel (TOB), while the endcaps are made
of the tracker inner disc (TID) and tracker end caps (TEC). Each black line
indicates a detector module.

2.2.1. Tracker

The CMS tracker [42,43] is situated directly around the beam axis, closest to the interac-
tion point, and made entirely out of silicon. The tracker has an active silicon area of 200
m2 and consists of an inner layer of silicon pixel detectors surrounded by another layer
of silicon strip detectors. The whole detector has a total of 75 million readout channels.
Both types of detectors are developed to result in high spatial resolution and response
time, while at the same time the detector material is kept as sparse as possible to avoid
multiple scattering or bremsstrahlung losses inside the tracker. This has to be balanced
against the need for cooling, since the tracker produces a substantial amount of heat.
These detector parts are also subjected to the highest particle fluxes and have to be as
resistant to radiation damage as possible. The overall goal of the tracking system is an as
precise as possible reconstruction of charged particle tracks, which are used to measure
the direction and the magnitude of the particle momenta as well as the charge itself.
These measurements rely on the bend in the particle tracks due to the 3.8 T magnetic
field. A schematic layout of the CMS tracker is shown in figure 2.4.
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2.2. The Compact Muon Solenoid Experiment

Silicon Pixel Detector

The silicon pixel detector consists of around 65 million pixels made of 100×150 µm2

silicon cells. If a charged particle hits one of those pixels it creates electron-hole pairs
inside the semiconductor material. This gives rise to a small electric signal, which gets
amplified and measured by readout chips mounted to the pixels-chips. The silicon pixel
detector reaches a resolution of 15-20 µm in all spatial directions and covers a range of
|η| < 2.5. The information of this subdetector is amongst other things used for a fast 3D
reconstruction of the interaction vertices.

Silicon Strip Detector

The silicon strip detector is situated in 10 layers around the pixel detectors and is ar-
ranged to give a high spatial resolution in every direction when combining the measure-
ments from two adjoining layers. These detectors work in the same way as the silicon
pixel detectors but provide a spatial resolution of about 20 µm in the plane spanned by
r-φ and of about 200 µm in the r-z plane.

2.2.2. Calorimetry

In contrast to the tracking system the main goal of the calorimeters is an energy mea-
surement, which means that the particles should ideally be absorbed completely inside
the detector material. Through interactions with the detector material the incoming
particle produces a shower of secondary particles with decreasing energies. These par-
ticles deposit their energy in the detector by exciting or ionizing the atoms inside the
detector material or they produce shower-particles themselves. The energy deposited by
all shower-particles is proportional to that of the incident particle. Both the Electromag-
netic Calorimeter (ECAL) and the Hadron Calorimeter (HCAL) of CMS operate under
these principles.

Electromagnetic Calorimeter

The ECAL is situated in the next layer surrounding the tracker and consists of around
76 000 lead tungstate (PbWO4) crystals, which work as a scintillating as well as an
absorber material. A schematic picture of the CMS ECAL is shown in figure 2.5. The
ECAL’s primary purpose is the energy measurement of particles interacting through QED
processes, like electrons or photons. For energies above about 10 MeV the interaction of
electrons with the detector material leads primarily to the emission of bremsstrahlung
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2.2. The Compact Muon Solenoid Experiment

Figure 2.5.: The layout of the CMS ECAL, figure taken from [45]. In the barrel region
the ECAL is made of modules comprised of lead tungstate crystals. In the
endcap region an additional material the preshower is put before the crystals.

photons, while the interaction of photons with the detector leads to the production of
electron positron pairs. This leads to the generation of showers consisting of secondary
particles with decreasing energy until the energy of the shower particles falls under a
critical value. The remaining energy is deposited in the detector material either by
ionisation or thermal excitation in the case of electrons, or compton scattering and the
photo-electric effect in the case of photons. In a scintillator material such as the one
used for the CMS ECAL the excited atoms of the detector material emit photons of a
specific wavelength for which the crystals are transparent. The total energy deposit is
proportional to the number of photons, which are detected and converted into electrical
signals by a series of photodetectors.

Many characteristics of electromagnetic showers can be described by the radiation length
X0, which is a material-specific constant defined by the energy loss of an electron to 1/e
of its original energy. The lead tungstate crystals have a radiation length of 0.89 cm.
The material was chosen to have a small radiation length in order to place the ECAL
inside of the magnetic coil.

The transversal size of an electromagnetic shower is primarily given by multiple scatter-
ing of electrons and positrons and the subsequent bremsstrahlung from those scattered
particles, which leads to relatively small spreads. The transverse spreads integrated over
the whole shower are given by the Molière-radius RM

RM ≈
21 MeV X0

ε
, (2.9)

where ε is the critical energy of the material at which the energy losses of electrons due
to bremsstrahlung and thermic excitation are equal [46]. The CMS ECAL has a small
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Molière-radius of RM = 2.2 cm.

The energy resolution of a calorimeter is given by

σ(E)

E
=

√(
a√
E

)2

+

(
b

E

)2

+ c2 . (2.10)

The three constants a, b, c are dependent on the specific detector. The contributions
in equation (2.10) have different sources. The 1/

√
E dependence is due to statistical

fluctuations in the showering process and fluctuations in the number of photons detected
in the photomultipliers and therefore called the stochastic term. The second term is the
noise term and is mainly due to electronic noise in the readout chain. The third term is
related to imperfections in readout, the detector geometry or the aging of detector units,
in short everything that gives rise to contributions that do not depend on the particle
energy.

Hadron Calorimeter

Similar to the processes in the ECAL particles also produce showers due to interactions
with the material of the hadron calorimeter. Here the interactions are often QCD pro-
cesses, which allow the detection of both charged and neutral hadrons. However, due to
the production of neutral pions, which usually decay into two photons before they can
interact strongly, a significant portion of energy gets deposited by purely electromag-
netic interactions. The HCAL at CMS [47] consists of many layers of absorber materials
alternated with scintillating materials. These scintillators are in turn connected to the
readout apparatus. A special challenge for the HCAL is the large anglular range it has
to cover in order to be able to measure the overall energy of an event as complete as
possible. With this guaranteed CMS can use missing transverse energy measurements
i.e. if the total energy deposits transverse to the beam direction do not sum up to zero,
the missing amount of energy is called missing transverse energy. The HCAL consists
of a calorimeter in the barrel region, one in the endcap region and a special forward
calorimeter (HF), covering in total a pseudorapidity range of |η| < 5.2. The HF is a
Cherenkov detector, utilizing the radiation of light from charged particles faster than the
speed of light inside the material of the detector. This has the effect that only charged
particles with sufficiently high velocities can be measured in the forward region. In this
region a Cherenkov detector was chosen because of its radiation hardness. Similarly to
the radiation length in the electromagnetic calorimeter an interaction length λ0 can be
defined for the hadronic particles. The energy resolution of the HCAL can be modelled
by a stochastic and a constant term according to [47]

σE

E
=

√(
a√
E

)2

+ b2 . (2.11)
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Figure 2.6.: A horizontal and vertical slice through the CMS detector, taken from [48].
The position of the main HCAL as well as the forward calorimeter are shown.
The positions of the muon system as well as the iron return yoke and the
superconducting coil are depicted.

For the CMS HCAL brass was chosen as an absorber material both because of its small
interaction length λ0 = 16 cm and its non-magnetic properties.

2.2.3. Muon System

Muons leave the detector system without being stopped in the calorimeters. This is
due to the significantly lower energy loss through bremsstrahlung, which depends on the
inverse of the particle mass and the long livetime of the muon, that allows it to leave the
detector before it decays. In order to distinguish muons from other charged particles and
to get a better measurement of their momentum, a system of muon detectors provides
the last layer of the detector. The muon system consists of drift chambers in the barrel
region, which are layered inside the iron return yoke, and cathode strip chambers in the
endcap region. Interleaved layers of resistive plate chambers (RPC) are used as a trigger
for the muon subsystem. The muon detectors measure a current when the muons ionize
the gas inside the detectors in passing. With exception of the measurements from the
RPC, these measurements can be used for tracking.
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2.2.4. Triggering

Since at normal operation of the LHC there is a bunch crossing every 25 ns, with around
20 collisions each, the amount of produced data far exceeds the storage capabilities.
Therefore a system is needed that quickly distinguishes between interesting events, which
should be kept for future analyses, and those that can be discarded. For this purpose
CMS has a trigger system containing the Level-1 (L1) trigger and the high level trigger
(HLT). The L1 trigger is a hardware trigger that mainly relies on the data from the
calorimetry and the muon system as well as availability of subsystems. The HLT is
software based and uses information from all detector systems to further reduce event
numbers. The combination of both triggers diminish the number of recorded events by
about 105 allowing a pre-selection of data.

2.2.5. Computing Infrastructure

The Worldwide LHC Computing Grid (WLCG) [49,50] is built to distribute the collected
data to analysis groups around the world. The WLCG has a hierarchical structure with
one Tier-0 center at CERN laboratory, 13 Tier-1 centers around the world - one of them
at the KIT- and many more Tier-2 and Tier-3 centers.

In figure 2.7 a schematic overview over the grid structure is provided. The primary task
of the Tier-0 center is the safekeeping of the raw detector data as well as a first pass at
reconstuction. These data get distributed to Tier-1 centers, via an optical-fiber network
working at 10 gigbits per second. The Tier-1 centers distribute data to Tier-2 centers,
store raw-data and processed data from CERN and process the raw-data further. Tier-2
centers are usually university clusters capable of handling the production of simulated
events. Scientists can also gain access to the grid infrastructure through local (Tier-3)
computing resources.
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Figure 2.7.: Schematic flow of raw experimental data in the CMS computing model, fig-
ure taken from [49]. The distribution of data begins with the measuring and
saving of events that pass the CMS HLT triggers. This data is either directly
saved or passed through a first reconstruction procedure. The CERN Anal-
ysis Facility is responsible for calibration and alignment. From the central
Tier-0 center the data gets distributed first to Tier-1 centers and from there
further to Tier-2 and 3 centers.
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3. Event Reconstruction and Simulation

This chapter gives an overview of the generation of simulated events and the reconstruc-
tion of measured events inside the detector. The first section contains a brief description
of the characteristics of a proton-proton collision. Section 3.2 deals with the reconstruc-
tion of events inside the CMS detector. Section 3.3 describes the simulation of events
using Monte Carlo (MC) event generators.

3.1. Characteristics of Proton-Proton Collisions

The LHC is a proton-proton collider. This means on the one hand that the accelerator can
reach high center-of-mass energies of

√
s of 14 TeV, which would in this configuration not

be possible with an electron-positron collider due to synchrotron radiation. On the other
hand collisions involving protons are more complicated for a number of reasons that are
going to be discussed in the following sections. Due to the composite nature of the proton,
its constituents take part in the scattering process. This leads to challenges concerning
the modelling of the composite structure itself, the existence of proton remnants and
the unknown fractions of the protons energy the parton (quark/gluon) involved in the
hard process in question are carrying. Figure 3.1 shows a schematic of a proton-proton-
collision.

3.1.1. Hard Process

The interaction on parton level with the highest momentum transfer in an event is called
hard process. It can be approximately calculated in quantum field theory as

dσ(k1k2 →
∑
k

pk) =
1

4
√

(k1 · k2)2 −m2
1m

2
2

· dLIPS|ME|2 , (3.1)

where LIPS denotes the Lorentz-invariant phase space and ME is the matrix element
calculated to some order in perturbation theory using the Feynman rules derived from the
interaction Lagrangian of the SM or some model with BSM physics.The four-momentum
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Figure 3.1.: A schematic of a proton-proton collision, figure taken from [51]. Due to the
composite nature of the proton each event contains, in addition to parti-
cles from the hard scattering process, initial- and final- state radiation and
particles coming from the underlying event.

Figure 3.2.: A schematic of the hard scattering process in a proton-proton collision. Fig-
ure taken from [52]. σ̂ denotes the hard scattering cross section of the partons
a and b. fa/A and fb/B are the parton distribution functions for parton a/b
from proton A/B.
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of particle i is denoted as ki. Equation 3.1 also assumes that only two initial state
particles exist.

However, when dealing with proton-proton scattering the partons cannot be approxi-
mated as free particles. Instead the probability of a parton to carry a specific fraction
of the proton momentum has to be evaluated. It is also important to note here that the
final state particles can only be calculated to the level of non-composite particles i.e. the
level of quarks and leptons.

3.1.2. Parton Distribution Functions

The proton is a bound state the structure of which cannot be calculated from QCD
directly since perturbation theory is not applicable. In order to be able to calculate
cross sections, however, it is necessary to know the probability of a particular parton,
which carries a fraction x of the momentum of the proton, to be available for a scattering
process.

The sets of functions providing this information are called Parton Distribution Func-
tions (PDF). They depend on the momentum fraction x, the energy scale Q2, and the
quark/gluon flavour. PDFs cannot be calculated from first principles, however using the
DGLAP 1 [53–55] equations it is possible to evolve the PDFs to another energy scale.
The DGLAP equations are differential equations derived from scale invariance, which
means that in principle they are true to all orders in perturbation theory.

The PDFs themselves are sets of either empirical functions or neural networks that are
determined by measurements from deep inelastic scattering (DIS) at a lower energy
transfer and then evolved to the energy scale of the LHC [56]. This procedure is far
from straightforward, and different groups calculating PDFs observe large discrepancies
between their predictions. This is, for example, caused by the use of different data sets
for the fit of the PDFs to scattering data, by the choice of the value of the strong coupling
constant, or the choice of function to fit to the DIS data. These discrepancies lead to
systematic PDF uncertainties, which are evaluated for CMS analyses using the procedure
described in reference [57].

The cross sections are calculated using PDFs fi(x,Q2) as

dσk1k2→
∑
k pk

=

∫
fi1(x1, Q

2)fi2(x2, Q
2)dσk1k2→

∑
k pk

(x1, x2)dx1dx2 , (3.2)

where i1/2 denotes the quark/gluon flavour of the initial state particles, x1/2 is the mo-
mentum fraction of particle 1/2 and σ is the hard scattering cross section from equation

1DGLAP stands for Dokshitzer, Gribow, Lipatow, Altarelli and Parisi.
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Figure 3.3.: The MSTW (Matin, Stirling, Thorne, Watt) parton distribution functions,
taken from [58]. On the left hand side the PDFs are shown at a low energy
scale of Q2 = 10 GeV2. On the right hand side the PDFs are propagated to
the higher energy scale of Q2 = 104 GeV2.

(3.1). Figure 3.2 shows a schematic of the use of PDFs during cross section calculations.
In Figure 3.3 an example of PDFs for different quark flavours is given.

3.1.3. Parton Showers and Hadronisation

Due to color confinement only colorless particles are measured in the detector. Instead
of a single quark or gluon a multitude of different particles are detected in a cone around
the initial parton direction. The exact process transforming colored particles into jets
cannot be calculated from QCD, although the apperance of new colored particles, i.e.
showering, can be modeled using QCD radiation. The hadronisation process, i.e. the
merging of particles into one colorless hadrons, can be described by empirical models
inspired by QCD.

3.1.4. Underlying Event

In proton-proton collisions there are partons that do not directly take part in the hard
process of interest. However these particles still need to be taken into account since their
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existence can lead to secondary particles in the detector or even a secondary scatter-
ing of final state particles. This contribution to the whole event is called Underlying
Event (UE). The UE is modeled in MC generators using phenomenological models with
paramters adjusted to data.

3.1.5. Pileup

If there were only one proton per bunch, the chance of ever measuring an interaction
would be practically zero. At the LHC one bunch contains of the order of 1011 protons.
This leads to multiple proton-proton interactions during one bunch crossing thus particles
from secondary interactions are also measured in the detector. This additional noise
source is called pileup. Pileup leads to tracks and energy deposits in the detector that
do not come from the primary event and can therefore distort the measurement. Two
different kinds of pileup can be distinguished. The first is in-time pileup, which comes
from scattering processes happening at the same bunch-crossing as the primary process.
The second is out-of-time pileup. These are events from a different bunch crossing that
get associated with the primary event due to the finite detector temporal resolution and
its finite response time.

3.2. Reconstruction of Measured Events

After an event is measured the output from the various subdetectors has to be combined
in order to reconstruct physical objects. The reconstruction also has to deal with pileup
and detector noise. In this section some techniques used by CMS on subdetector level
are discussed in sections 3.2.1-3.2.3. These techniques will later be combined for the
reconstruction of actual physical particles such as electrons or muons (section 3.2.4-
3.2.7). For this task the CMS experiment uses the particle flow algorithm (PF), for a
detailed description, see reference [59–61].

3.2.1. Particle Tracks

The basic problem of reconstructing particle trajectories from tracker hits is of high
combinatorical complexity. The algorithm used for this reconstruction is called Combi-
natorial Track Finder (CTF) [62]. The CTF uses a sequential procedure, removing the
tracks with high pT and many associated hits, which are easiest to reconstruct, from the
tracker hits, and then resuming the reconstruction process. The track reconstruction is
started from seeds which are in the first iteration required to consist of at least 3 hits in
the innermost layers of the pixel detector. The algorithm then uses Kalman filters [63–65]
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to extrapolate the trajectory through the detector layers. This iterative method uses all
the tracker hits from lower layers to extrapolate to a region in which the next hit is
estimated, taking into account energy loss due to the tracker material and effects from
coulomb scattering. This iteration is stopped either when the particle leaves the tracker,
or when the pT of the reconstructed particle sinks below a threshold value.

In order to cope with the high energy losses due to bremsstrahlung of electrons a different
algorithm is used to reconstruct electron tracks (see section 3.2.4).

3.2.2. Vertices

The reconstructed interaction points are called vertices. For the HLT a quick vertex
reconstruction using only hits in the pixel tracker is used. The primary event vertex
is considered to be the one with the highest transverse momentum tracks associated to
it. This is calculated as the sum over the pT of all associated tracks, weighted with a
goodness of fit value for each track. The reconstruction of vertices allows for a removal
of all objects that are associated with a secondary vertex, from an event. This is used
for pileup removal at CMS. The adaptive vertex reconstruction algorithm [66] is used
for a more differentiated three dimensional reconstruction of event vertices. It is an
iterative procedure that sorts through all reconstructed tracks and finds those which
share a common origin. The vertex reconstruction at CMS reaches a resolution of about
30 µm.

3.2.3. Clustering of Energy Deposits

In each of the calorimeters energy deposits are clustered separately [67]. First local max-
ima are identified as calorimeter cells with a local maximum of energy. Then adjoining
cells with energy deposits above a given threshold are clustered into particle flow clus-
ters. The threshold is defined as the detector noise level plus approxately 2σ, where σ
is the energy resolution. These particle flow clusters are later used in the reconstruction
of various physics objects, starting with the reconstruction of charged hadrons, leptons
and neutral hadrons and photons.
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3.2.4. Long-Lived Leptons

Muons

Muon reconstruction uses tracks in the CMS tracker in combination with hits in the muon
system. If a muon is reconstructed with a sufficient amount of hits in both systems it is
called a global muon. Most muons with a sufficiently high transverse momentum can be
reconstructed using hits in the muon system, extrapolating them to tracks in the inner
tracker. Muons reconstructed in such a way are used to reduce the tracks the particle flow
algorithm has to match to energy deposits. If the number of hits in the muon system is
insufficient to find the matching tracks, the matching is done by extrapolating the tracks
found in the main tracker and matching them to the hits in the muon chambers. Muons
reconstructed this way are called tracker muons. If only hits in the muon chambers are
available for reconstruction the reconstructed muon candidate is called standalone muon.
In this thesis global muons are used in the reconstruction.

Electrons

Electrons are reconstructed from tracks and energy deposits in the ECAL. However,
since electrons lose much more energy due to bremsstrahlung in the tracker than other
charged particles, a special track reconstruction [68] as well a specialized approach of
clustering the energy deposits [69] are needed. As a starting point for the reconstruction
of electrons energy deposits in the ECAL which exhibit a spread in φ, as is expected
due to bremsstrahlung emissions along the electron trajectories, are clustered together
as Super Clusters (SC). Using the SCs as seeds the electron tracks are reconstructed
using the Gaussian Sum-Filter [70] algorithm. This method is sufficient to reconstruct
most electrons with pT larger than 5 GeV. The rest of the electrons are reconstructed by
recalculating tracks with either too few hits or too large a χ2 fit value with the Gaussian
Sum-Filter algorithm.

3.2.5. Charged Hadrons

Charged hadrons are pieced together by the particle flow algorithm, combining tracks
and energy deposits inside the hadron calorimeter. Tracks associated with hits in the
muon chambers are not considered in this reconstruction step in order to not falsely
reconstruct a muon as a charged hadron. In order to remove pileup each hadron that
does not originate from the primary vertex is removed from the event; this is called
charged hadron subtraction. If the energy deposit in the calorimeter exceeds the one

41



3.2. Reconstruction of Measured Events

expected from track reconstruction an additional neutral hadron or photon has to be
assumed, based on the calorimeter in which the bulk of energy was deposited.

3.2.6. Photons and neutral Hadrons

When all tracks are associated with energy deposits in the calorimeters, the remaining
deposits above detection threshold are considered to be either photons or neutral hadrons,
depending on wether the bulk of the energy was deposited in the ECAL or HCAL.
For these neutral particles only the calorimeters can be used to reconstruct φ, η and
the transverse momentum, resulting in a larger uncertainty in the angular variables for
neutral hadrons.

3.2.7. Jets

Due to quark confinement, instead of a single quark a jet of particles in a cone around
the original radiation angle is detected, see for example [71, 72]. In order to identify
QCD objects the individual reconstructed physics objects like hadrons or photons have
to be reliably clustered into jets. Such jet clustering algorithms have to be infrared
safe, i.e. be robust against the radiation of low energy particles, and collinear safe,
i.e. a collinear splitting of their constituents should lead to the same jet properties.
The algorithm is also required to be compatible with pileup removal. Two different
types of algorithms exist, cone-type algorithms like Iterative Cone or SisCone [73], and
sequential clustering algorithms like the Cambridge-Aachen (CA) algorithm [74,75] and
anti-kT [76, 77] algorithm.

However, in this thesis only the anti-kT algorithm will be discussed in more detail, since
it is the only one used in the following analysis.

The anti-kT algorithm starts with a physics object i, and combines it with the nearest
object j into one pseudo-jet. The next step combines the pseudo-jet object with its
nearest particle. This procedure is repeated until the distance of the pseudo-jet to the
nearest particle is greater than the distance to the beam diB. Here distance dij between
two pseudo-jet objects is defined as

dij = min(k−2
T,ik

−2
T,j)

∆2
ij

R2
, (3.3)

∆2
ij = ((yi − yj)2 + (φi − φj)2) , (3.4)

diB = k−2
T i , (3.5)

where R is a radius parameter (0.4 or 0.8 for this analysis), and kT i is the transverse
momentum of object i. This clustering per definition is collinear- and infrared safe. In
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this thesis fat jets, i.e. jets with a large radius parameter are used in order to take the
highly boosted topology from high-pT vector boson decays into account. Jets with a
large radius parameter for the clustering are called fat jets. The mass of a jet is defined
as the invariant mass of all particles clustered into its cone.

After the jets are clustered and therefore available for reconstruction some corrections
have to be applied in order to map the measured jet energy to its physical value, the
energy of the parton from which the jet emerged. This is necessary mostly because of
nonlinearities in the detector, which have to be corrected after the measurement is taken,
as well as discrepancies between Monte Carlo simulated samples and data. The correc-
tions applied in this analysis follow the recipe of recommended jet energy corrections
provided by the CMS jet energy corrections subgroup [78]. The corrections are applied
sequentially in the order indicated by the numbering as η and pT dependent scale factors
on the jet four-momentum. L2L3 residual corrections are only applied to data, while the
rest of the corrections is applied to both MC and data.

• L1
The main goal of the L1 corrections [79] is to reduce pileup. This is particularly
necessary since pileup from neutral particles cannot be removed by the reconstruc-
tion of primary vertices. To remove this pileup contribution the average energy
deposit per unit-area of the detector is subtracted from the jet energy.

• L2L3
Scale factors dependent on jet η and pT and applied to correct detector efficiencies to
that the jet response is independent of the η range. They also contain scale factors,
based on Monte Carlo truth to correct for contributions from missing energy.

• L2L3 Residual
These corrections are applied to data only, in order to further correct the L2L3
corrections for discrepancies between data and Monte Carlo.

Since this analysis depends on a good separation of QCD jets and jets coming from
a boosted vector boson decays, the jet pruning algorithm [80] is, for example, used to
further reduce soft wide-angle QCD radiation coming from pileup events or initial state
radiation, and to improve the mass resolution and reduce systematic effects of the jet
clustering algorithms. For this the constituents of the anti-kT jets are reclustered discard-
ing soft components. A component is regarded as soft if either min(pT i, pT,j)/pT ij < 0.1,
i.e. if the transverse momentum of one of the constituents is too small compared to the
combined momentum, or if ∆Rij > morig/pT,orig, i.e. the angular separation between
the constituents is larger than the ratio of original jet mass and pT. The mass of such a
pruned jet is called pruned jet mass mpruned

jet .
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3.2.8. Jet Substructure Techniques

In order to further reduce background from QCD events, techniques depending on the
substructure of jets are used.

B-tagging

The procedure to classify jets according to their probability of originating from a bottom
quark is called b-tagging. The technique uses the relatively long lifetime of B-mesons.
This long lifetime comes from the suppression of a decay to up- and charm-quarks, due to
the small CKM matrix element. The decay to the top quark is suppressed as well because
the top quark is much heavier than a B meson. This results in a displaced secondary
vertex of the jet, which can be resolved by the tracker if the distance between primary and
secondary vertex is large enough. In the analysis described here the Combined Secondary
Vertex (CSV) algorithm ( [66,81]) is used to further suppress background from top quark
pair production (tt̄) or single top events. The CSV algorithm combines information about
track parameters and secondary vertices of the jets into a likelihood discriminant. Thus
providing a method to discriminate jets coming from a b-quark, from those originating
from light quarks, gluons, or charm-quarks. There are different working points (WP) for
the CSV algorithm, which are defined as the values of the b-tagging discriminant that
achieve a certain mistag rate. If a jet coming from light quarks is misidentified as a b-jet,
the jet is considered to be mistaged.

In this analysis all anti-kT jets are considered to be from B-meson decays if their b-tagging
value is larger than the CSV medium working point [81], which has a misidentification
probability of about 1.5 %. In figure 3.4 a schematic of a jet with a secondary vertex is
shown.

N-Subjettiness

In order to further discriminate between jets from SM background and jets coming from
a boosted vector boson decay, a quantity called n-subjettiness [83] is used. For this the
jet is reclustered into N subjets using the anti-kT algorithm. The n-subjettiness is then
defined as

τn =
1

d0

∑
k

(pT,k min(∆Rk1∆Rk2 . . .∆RkN )) , (3.6)
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Figure 3.4.: An illustration of the principle of the CSV algorithm. The blue jet has a
displaced secondary vertex coming from the decay of a B-meson. The tracks
coming from the B-meson do not point to the primary vertex but rather
are displaced by an impact paramter d0. The displaced tracks can be used
to reconstruct the secondary vertex at a distance from the primary event
vertex. Figure taken from [82].

The index k runs over all particles in the original jet, d0 =
∑

k pT,kR0 and Rki is the
distance of particle k to the candidate subjet i. The quantity 2-1-subjettiness

τ21 =
τ2

τ1
(3.7)

is used to identify jets clustered from two subjets. Jets coming from a W/Z decay are
characterized by lower values of τ21 compared to the SM background [84, 85]. Figure
3.5 shows a schematic of the difference between a fat QCD jet and one coming from a
boosted W decay. The use of the τ21 ratio to discriminate between QCD jets and jets
coming from a boosted vector boson decay, is called V-tagging.

3.2.9. Missing Transverse Energy

The missing transverse energy (MET) is calculated after all other objects are recon-
structed as

EmissT = −
∑
k

pT,k , (3.8)

where pT,k is the transverse momentum of the kth particle and the sum goes over all
reconstructed PF objects originating from the primary vertex [86]. Since the two pro-
tons that take part in the scattering have approximately zero momentum in transverse
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Figure 3.5.: Figure (a) shows an event with boosted W+ W−production. Figure (b)
shows the typical substructure of a fat jet coming from such an events; as
is illustrated two distinct subjets can be distinguished. Figure (c) shows a
typical QCD dijet event and (d) the corresponding event display. All jets
were clustered using the anti-kT algorithm. Figure taken from [83].
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direction, the sum over all transverse momenta from scattered particles should also be
zero. The small momentum of the partons in transversal direction is considered to be
negligible. If an event has MET not equal to zero, this can arise from particles that are
lost in the beam-pipe, in non-active detector material or from detection inefficiencies.
But MET can also originate from neutrinos or other particles which are very unlikely to
interact with the detector, such as a potential dark matter candidates.

3.3. Generation of Monte Carlo Events

In order to find new physics detailed predictions of standard model and BSM processes
have to be made of both the inclusive and differential cross sections. For these predictions
various Monte Carlo event generators can be used. These generators tackle the highly
non-trivial problem of event simulation utilizing the idea of scale factorization, i.e. the
idea that the process in question can be divided into subprocesses according to their
energy scales. The first step is the calculation of the matrix element of the hard process,
which takes place on a high momentum scale where pertubative calculations are valid
even for QCD processes. The next step is all order soft and collinear QCD radiation, the
so-called showering. Afterwards phenomenological models for hadronisation are used.
However, for a prediction that can be used for comparisons to experimental data, the
simulation must also include the decay of unstable hadrons, deal with the underlying
event, and undergo a full detector simulation. This process also deals with the proton-
structure using PDFs and includes the modelling of soft initial- and final- state radiation.
A schematic of these processes is shown in figure 3.6. MonteCarlo methods are used to
deal with the large multi-dimensional phase space of final state particles.

The following chapter is based on [87–89].

3.3.1. Matrix Element Calculation

Most event generators allow the user to chose a process, the matrix element of which is
calculated to leading order (LO) or next to leading order (NLO) in perturbation theory.
Since many processes that are interesting in the search for new physics are extremely
rare the event generator produces only events for the chosen process, using MC methods
for integration to deal with the phase space of the final state particles. In this calcu-
lation two main sources of uncertainty are present. One is that the matrix element is
only calculated to some order in perturbation theory, since in each order the number of
Feynman graphs to be calculated rises, and therefore computation time rises. The second
source of uncertainty is the difficult proton-structure, which makes the use of PDFs for
the calculations necessary. Some additional ambiguities are introduced due to the choice
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Figure 3.6.: A schematic view of the stages of MC event generation. Figure taken from
[90].

of the renormalisation scale.

3.3.2. Showering and Hadronisation in Simulation

Showering describes the scale evolution from the high momentum scales where the scat-
tering takes place to a scale of about 1 GeV, where colored particles begin to be confined
inside of hadrons. Showering itself, which describes the initial- and final- state QCD
radiation, is process-independent, i.e. factorizes from the process cross section in the
collinear and soft limit and only depends on the radiation energy with respect to the
parton and angle of emission. Leading collinear logarithmic parton shower algorithms
are used to calculate the collinear emission of QCD particles. The algorithms work it-
erativly, where the next final state, formed by two collinear partons, is only kept for
the next iteration if their distance is larger than a resolution-based minimal separation.
Most shower-generators also include soft wide-angle radiation. The challenge of initial-
state radiation is addressed by backwards evolution of an initial state parton to higher
momentum fractions using the DGLAP equations. Since parton shower algorithms usu-
ally only describe collinear and soft scattering, the calculation of next-to-leading-order
matrix elements is needed whenever the process in question strongly depends on mul-
tijet final states. When using matrix element calculation to NLO double counting has
to be avoided [87]. This refers to the fact that with NLO matrix element calculations,
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each emission can arise from two different paths, once from the ME calculation and once
from the showering algorithm. The procedure used to avoid this double counting of
components is called matching [91].

The hadronisation process cannot be derived from QCD but is instead described through
phenomenological models like the Lund-string model or cluster models. In the lund-string
model [92–94] a set of colored particles is connected via a linear confinement potential at
low energies. As soon as the potential energy stored in this "string" becomes large enough
a quark-anti-quark pair is created. This process continues until all colored particles are in
sufficient proximity to other color charges, thus forming hadrons. In cluster models [95,96]
the notion of preconfinement, i.e. the color structure arising from showering algorithms,
as well as gluon splitting are used to cluster shower constituents into colorless objects.

In order to simulate the whole event as it would occur for example at the LHC, the
decay of unstable hadrons has to be simulated after the hadronisation step. In addition
MC generators also simulate the underlying event by allowing the possibility of multi-
particle interactions which can lead to additional soft jets in the event. The effects of
the underlying event on the hard process due to color screening or rescattering are not
known well [97] and therefore not addressed by most MC generators.

3.3.3. Detector Simulation

After all physical objects like leptons and hadrons are simulated on generator level, the
events have to undergo a full detector simulation before they can be compared to data.
The CMS detector is simulated using the Geant4 software [98,99]. This software package
simulates the interactions of the collision particles with matter, including effects like
ionization, bremsstrahlung losses, multiple scattering and hadronic and electromagnetic
showering.

3.3.4. Monte Carlo Generators

There are many MC-event generators which are distinct in their implementation and their
usage. Some generators such as MadGraph and Powheg are only able to do matrix
element calculations; their output is in the Les Houches (LHE) event format in order to
be easily usable by parton shower generators such as Pythia. General purpose event
generators are able to do the full simulation including showering and hadronisation.

MadGraph
The MadGraph [100] package is able to calculate leading order matrix elements for
SM processes, but is also able of doing matrix element calculations for exotic models
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with additional packages. In this thesis the RS model [101, 102] is used to simulate
the production of a Spin-2 resonance. The package TauDecay [103] is used to simulate
leptonic τ decays. MadGraph is capable of simulating the phase space including PDFs
and adding initial- and final- state radiation. Using MadEvent it is also possible to
calculate leading order cross sections for the given process.

Powheg
The event generator Powheg [104] provides next to leading order accuracy in QCD.
Powheg calculates the hardest radiations with NLO accuracy while soft radiation is
calculated to leading order. It can therefore be interfaced with any shower generator
that is either pT ordered or is capable of including a pT veto.

Pythia
Although Pythia [105] is a general purpose event generator, it is often used as a shower
generator, that is interfaced to other generators that allow NLO calculations. Pythia
includes the calculation of the underlying event, and offers different models for hadroni-
sation for example the Lund string model.

Tauola
As a last step the decays of τ-leptons are simulated using the Tauola [106] package.
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In this chapter the main statistical methods and tools used to interpret data in this thesis
are discussed. First, a brief description of the merits and pitfalls of hypothesis testing
is given. In the second part the CLs technique [107] for limit setting in its complete
and asymptotic form is discussed. The handling of systematic uncertainties as nuisance
parameters and the handling of shape parameters within this framework is described.
These methods are implemented in various statistics tools for particle physics such as
the Combine framework, which is used to calculate limits in this thesis. The following
sections are based on references [108], [109] and [110].

4.1. Maximum Likelihood Estimation

The goal of maximum likelihood parameter estimation is to find values for the parameters
θ for a given probability distribution function f(x, θ) that maximize the probability of
measuring a given sample {xi}. θ is a set of parameters that parametrise the probability
density function f . First the joint density function F

F =

n∏
i=1

f(xi, θ) , (4.1)

is defined. If we take F to be a function of the parameters θ instead of the set of observed
values {xi} the resulting function is called the likelihood l. For many purposes it makes
sense to look at the logarithmic likelihood

L = ln(l) , (4.2)

because its derivatives are easier to compute than for the likelihood function. The best
values for the parameters θ in a maximum likelihood estimation are the values that
maximize the likelihood function or equivalently the logarithmic likelihood function.
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4.2. Hypothesis tests

The idea behind hypothesis tests is to have a reproducible and understandable measure
of whether a given model actually fits the data, which is subject to statistical errors. For
this approach a null hypothesis H0 has to be formulated; for example, the null hypothesis
could be that the measured data follows a given probability density function. In order to
test whether or not the null hypothesis should be rejected, a test statistic V is defined.
V is a quantity that is expected to have different distributions for alternative hypotheses
compared to its distribution f(V ) under the null hypothesis. In order to have a consistent
way of rejecting H0 a level of significance α has to be agreed on beforehand. This level
of significance is then compared to the p-value

p =

∫ ∞
V0

f(V )dV , (4.3)

where V0 is the observed value of the test statistic. The p-value quantifies the probability,
under the assumption that H0 is true, to see a variation between the prediction under H0

and data as large as observed or larger. The null hypothesis gets rejected if the calculated
p-value is smaller than the chosen level of significance α. The significance parametrises
errors of the first kind; this means that in α percent of cases H0 is rejected although
it is true. It is important to note that this approach only deals with errors of the first
kind and not with errors of the second kind. The latter are defined as the probability of
accepting H0 although it is false. The p-value therefore does not measure the probability
of H0 being true, but quantifies the level of significance with which the data differs from
the distribution given by the null hypothesis.

χ2 Tests:

As test statistic many quantities can be chosen; in this thesis χ2 is used. χ2 is the
quadratic difference of expected events N0k to observed events Nk per bin k

χ2 =
∑
k

(Nk −N0k)
2

N0k
. (4.4)

The χ2 variable is normalised with the variance of the probability function under the
null hypothesis, in this case Poission distributed values are assumed; thus the variance
is equal to N0k. The sum goes over all bins. A test using this quantity as test statistic
is called a χ2 test. The expectation value of χ2 per construction is

< χ2 > = nd.o.f , (4.5)

where nd.o.f is the number of degrees of freedom. The quantity nd.o.f can be calculated
as

nd.o.f = (nk − 1− nf ) , (4.6)
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where nk is the number of bins and nf is the number of parameters of the probability
distribution function for H0 that are fixed by data. For large values of nd.o.f the χ2

distribution can be approximated by a Gaussian function with x0 = nd.o.f and σ =√
2nd.o.f , which greatly simplifies the calculation of the p-value. The χ2 test assumes

that the disagreement per bin of the measured values follows a Gaussian distribution,
which is only a good approximation if the number of expected events per bin is sufficiently
large, see for example reference [108].

4.3. CLs Limits

The goal of any particle physics analysis searching for new physics is to either find new
phenomena or to give exclusion limits on BSM phenomena. For this a quantitative
approach is needed in order to evaluate the probability that the observed phenomenon
cannot be described with background only, in case of a discovery, or that the observed
data does not exclude exotic phenomena smaller than a given maximum signal strength,
in case of exclusion.

As is the case for any hypothesis test, the null hypothesis, which is in this case denoted
with the subscript b for background only, has to be separated from the signal-plus-
background s + b hypothesis. When setting exclusion limits, a mere separation of the
two scenarios is not sufficient. Instead the value µ should be found with which the
signal needs to be scaled in order to reject µ · s + b with a given confidence level of
1− α. One of the challenges in this scenario is to define the test statistic in a way that
includes uncertainties on the background and signal modelling. Another challenge is to
define a quantity similar to the p-value, that accounts for the problem of sensitivity. If
normal p-values, as defined in section 4.2, would be used it were possible that the chosen
test statistic had similar values for the case of background and signal-plus-background
hypotheses. In such a case the analysis is said to have a low sensitivity. In those
cases where it is hard to distinguish between the signal-plus-background and background
hypothesis, no statements about the validity of the signal hypothesis should be made.
Therefore a quantity called CLs is defined such that if the signal hypothesis is rejected
when CLs < α, it will only be rejected if the description using the signal-plus-background
hypothesis leads to small p-values, while the background only hypothesis leads to a good
description of the data. In case of low sensitivity when the p-values for both hypothesis
are similar, the signal-plus-background hypothesis cannot be rejected in favour of the
null hypothesis. The CLs quantity is defined as

CLs =
P (Q ≥ Qobs|s+ b)

P (Q ≥ Qobs|b)
:=

ps+b
1− pb

. (4.7)
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Here Q is the test statistic and Qobs is its observed value.

CLµ =
P (Q ≥ Qobs|µ · s+ b)

P (Q ≥ Qobs|b)
:=

pµ
1− pb

(4.8)

is defined in order to give a maximum value of the signal scale µ for which the signal-plus-
background hypothesis can be rejected with the given confidence limit. This is done by
calculating a µ such that CLµ = α. It remains to define the test statistic in a meaningful
way that also allows to deal with systematic uncertainties on the background and signal
estimation. For limit calculations this can be done using the profile likelihood ratio which
gives the maximum separation power of background hypothesis and signal hypothesis
in case of no nuisance parameters, according to the Neyman–Pearson lemma, see for
example reference [110]. If the nuisance parameters are well constraint, the Neyman-
Pearson lemma remains approximately true. The profile likelihood ratio is

λ(µ) =
Lp(µ)

L(µ̂, θ̂)
, (4.9)

where θ denotes the so-called nuisance parameters, Lp(µ) is the profile likelihood function,
i.e. the likelihood with all nuisance parameters set to values that maximize the likelihood
for this particular µ. L(µ̂, θ̂) is the likelihood function where θ̂ and µ̂ denote the values
that maximize the profile likelihood function L. The test statistic Qµ for setting upper
limits is then defined as

Qµ =

{
−2 ln(λ(µ)) , µ̂ ≤ µ
0 , µ̂ > µ

. (4.10)

The reason for setting Qµ to zero for values smaller than µ̂ is that when the goal is to set
an upper limit, samples with data where µ̂ > µ do not represent less compatibility with
µ than the data obtained. Therefore these cases are removed from the rejection region
of the text. If the goal is to define a test statistic for discovery, a different definition for
the test statistic should be used see for example reference [110]. The p-value is

pµ =

∫ ∞
Qobs

f(Qµ|µ)dQµ , (4.11)

where f(Qµ|µ) denotes the distribution of the test statistic under the assumption of a
signal hypothesis corresponding to µ · s+ b.

There are two different approaches of dealing with nuisance parameters to account for
systematic uncertainties in the modelling of signal and backgrounds. In the frequentist
approach the nuisance parameters are fixed to the values that maximize the likelihood
function for given signal hypothesis of µ · s + b. The nuisance parameter are fitted
within the contraints of a Gaussian prior distribution given by the assigned uncertainties.
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The resulting likelihood function Lp(µ) is called profiled likelihood. In a Bayesian-like
approach the nuisance parameters are handled by constructing the marginal likelihood

Lm(µ) =

∫
dθL(µ, θ)π(θ) . (4.12)

The function π(θ) is called a prior probability density function and describes the proba-
bility distribution of the nuisance parameters θ.

When calculating the full CLs limit the distribution of the test statistic, which is impor-
tant for the calculation of the p-value, is determined by generating pseudo-experiments
samples for profiled values of the nuisance parameters and a given µ, or using the marginal
likelihood, which is evaluated using MC integration. These toy-data sets are generated
using MC methods and assuming a Poisson distribution of data. This results in a high
number of pseudo-experiments samples that need to be generated for this kind of cal-
culation. The expected (1 − α)-CLs limit is then defined as the median of solutions to
CLµ′ = α using MC data sets according to the background-only hypothesis. The expected
1 and 2σ error bands are defined as the values of µ that mark the intervalls containing
68% and 95% of the µ distribution around µ′. Here σ denotes the standard deviation of
a normal distribution. To calculate the observed limits, the profile or marginal likelihood
functions are estimated with respect to data.

4.3.1. Asymptotic CLs Method

The asymptotic CLs method is an approximation of the full CLs limit that allows to skip
the generation of most of the necessary pseudo-experiments. This method is described
in detail in reference [110]. It relies on the asymptotic behaviour of the profile likelihood
ratio used as test statistic (see reference [111]) of

−2 ln(λ(µ)) =
(µ− µ′)2

σ2
+O(1/

√
N) , (4.13)

in the limit of a large sample N →∞. The standard deviation σ and mean µ′ are then es-
timated using the covariance matrix of the estimators for all nuisance parameters. These
quantities are calculated using a special artificial data set called "Asimov Data Set",
which is defined as the data set that has the profiled estimators for all parameters equal
to the true values or, equivalently, the values of all quantities in the Asimov data set are
equal to their expectation values. This method significantly reduces the computational
effort. However, although the method often produces limits similar to the computational
expensive method even for small sample sizes, it is strictly mathematically valid only in
the limit of large sample sizes and has to be used with some caution.
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4.3.2. Shape Parameters

Many physics analyses use the shapes of distributions in order to distinguish between
signal and background processes. This introduces additional systematic uncertainties
that do not have a direct influence on the event yields, but rather on the overall shapes
of the distributions. Uncertainties like these can also be addressed in the limit setting
procedure by including these uncertainties as nuisance parameters. This analysis uses
the Combine framework [112] to calculate all limits; this means that the signal and
background shape models are used to calculate the expected number of events to compare
to data. In principle the uncertainties on shape parameters are included as nuisance
parameter with a unit Gaussian prior distribution. When analytical functions are used
for the prediction of yield and shape, this approach is called unbinned shape analysis.
It is used in this thesis for the description of both background and signal functions.
If an unbinned likelihood is used in combination with this approach, the evaluation
of the analytical modelling is straightforward. In the case of a binned likelihood used
together with analytical functions for the shape modelling attention has to be paid to the
coarseness of data-binning, because of the way Combine evaluates the event prediction
from analytic functions. Since Combine uses the analytic shape function evaluated at the
center of the bin for each data point, this can lead to a systematic under- or overestimation
of data if the binning in the dataset is too coarse. In such cases a binned shape analysis
should be used, which requires a histogram instead of an analytic function, with the bin
widths corresponding to the binning used in data.
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5. Search for Massive Resonances
Decaying into Pairs of Boosted Vector
Bosons in the Semileptonic and
All-Hadronic Final State with the
CMS Detector

5.1. Introduction

The work presented in this thesis is an expansion of two existing CMS analyses, which are
described in this chapter. Both analyses are searches for a diboson resonance, however,
they differ in the final state. The first final state is VV decaying to two fat jets, i.e. jets
with a large clustering parameter R of 0.8, where VV denotes WW or ZZ. This final
state is denoted as all-hadronic channel in the following. The second final state is WW
or WZ decaying to one fat jet and a lepton plus neutrino, which is called semileptonic
channel. The resonance searches differ also in their background estimation techniques and
in the limit setting procedure. The analyses are based on data taken at

√
s = 13 TeV in

proton-proton collisions with the CMS detector, at an integrated luminositiy of 2.1 fb−1

(2.6 fb−1) and use jet substructure techniques to reconstruct diboson events in a highly
boosted regime, in order to search for a resonance in the reconstructed mass spectrum.
In the following sections the important aspects of the CMS analyses for this thesis are
discussed. For a more detailed description of the semileptonic analysis see reference [113]
and for a description of the all-hadronic analysis see reference [114]. Section 5.2 contains
a description of the topologies of expected signal events as well as of the main background
of the analysis. In section 5.3 the reconstruction of physics objects such as leptons or
the vector bosons is described. Section 5.3 contains the selection cuts used for the final
event reconstruction, and section 5.5 contains the estimation and modelling of dominant
backgrounds. The last section, 5.6, is dedicated to the systematic uncertainties used for
the final limit setting.
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Figure 5.1.: The Feynman graphs for the considered signal processes. At the top is the
production of a heavy resonance through gluon fusion (left) and Drell-Yan
(right) in the semileptonic decay channel. On the bottom are the same
production mechanisms for the all-hadronic channel. The circle stands in for
the coupling of the exotic resonance to gluons or quarks.
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Figure 5.2.: Representative Feynman graphs for W+jets processes. In the semileptonic
decay channel W+jets is the dominant background.
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Figure 5.3.: The figure displays the most important Feynman diagrams for tt̄ and single
top processes. These processes are subdominant backgrounds in the semilep-
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in the final state. These diagrams contribute to the backgrounds for diboson
resonance searches.
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5.2. Event Topology

The standard model of particle physics does not predict any resonant behaviour in the
reconstructed diboson mass spectrum. In this mass spectrum the background of standard
model processes is expected to have a more or less exponential decay. Many theory models
for example models predicting warped extra dimensions (see chapter 1) do predict heavy
exotic particles decaying into two highly boosted vector bosons. The Feynman graphs for
such processes can be seen in figure 5.1. The vector bosons in turn decay before detection
into the final state particles of the event. This thesis covers both the semileptonic and
all-hadronic final states. The semileptonic final state includes the decay of W bosons to
τ as long as the τ decay leptonically. The signal region of the analyses is defined as the
intervall in the mV V spectrum between 800 and 4500 GeV in the semileptonic case, or
between 1200 and 4000 GeV in the all-hadronic case.

5.2.1. Signal Processes

The main analysis is optimised and carried out for three different theory models, HVT
model B as well as a Bulk-Graviton model. Both analyses use the narrow width ap-
proximation for the modelling of the signal shapes. The resonance is assumed to have
and intrinsic width smaller than the full-width-half-maximum (FWHM) of the detector
resolution. In this approximation the signal shape modelled by a function describing the
detector resolution. In the semileptonic case a double sided Crystal-Ball function see
5.1, i.e. two power-law-functions modelling the tails around a Gaussian core, is used to
model the detector resolution.

DCB =


e
x−x̄
σ2

2

for − α1 <
x−x̄
σ < α2

n1
|α1|

n1 · e−α2
1/2 ·

(
n1
|α1| − |α1| − x−x̄

σ

)−n1

for x−x̄
σ < −α1

n2
|α2|

n2 · e−α2
2/2 ·

(
n2
|α2| − |α2| − x−x̄

σ

)−n2

for x−x̄
σ > α2

(5.1)

The parameters n1, n2 are the free parameters of the two power-law tail functions, while
σ and x̄ are the normal deviation and mean of the gaussian core function.

In the all-hadronic case the sum of a Gaussian function and a single sided Crystal-Ball
function is used to model the signal shape.

Monte Carlo simulated samples of signal events are produced for W′, Z′, RS1-Graviton,
Radion and Bulk-Graviton models using Madgraph5_AMC@NLO. For the W′, Z′

and Bulk-Graviton models twelve mass points between 800 and 4500 GeV are produced
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in the narrow width approximation for both considered final states. For the W′, Z′,
RS1-Graviton and Radion models an additional 5 points between 800 and 4000 GeV are
produced for relative widths of 0.1, 0.2 and 0.3 for both final states. Each generated
sample contains 50 000 events in the semileptonic case and 30 000 for the all-hadronic
final state. All parton showering and hadronisation is done with PYTHIA using the
CUETP8M1 tune [115]. The NNPDF 3.0 [56] parton distribution functions are used.

5.2.2. Background Processes

The dominant background in the semileptonic channel comes from QCD processes with a
W boson emission; this background is called W+jets. For this background it is important
to discriminate between QCD jets and jets that come from a hadronically decaying W
decay. Since the resonance search is optimised for heavy resonances, highly boosted W
decays are expected, which lead to the hadronically decaying W decaying into one fat
jet. Jet substructure techniques are used to determine if a jet is likely to come from a
vector boson decay. Subdominant but still important backgrounds in the semileptonic
channel are tt̄ production, single top production and standard model processes involving
the production of two vector bosons, in the following called VV.

The dominant backgrounds in the all-hadronic case are QCD multijet events. As in the
semileptonic case V-tagging is used to reduce this background. The other backgrounds of
the semileptonic analysis, like VV or single top, are small compared to the QCD multijet
background in the all-hadronic case.

For the validation and correction of backgrounds Monte Carlo simulated samples of back-
ground processes are used. The W+jets background is simulated using Madgraph5_-
AMC@NLO. The tt̄ and single top-quark events are generated with the MC generators
POWHEG v2 and Madgraph5_AMC@NLO respectively. Standard Model diboson
processes are generated with PYTHIA v8.205. Parton showering, hadronisation and
PDFs are implemented the same way as in the signal sample generation. The simulated
samples are corrected for differences in the lepton trigger efficiency, the lepton iden-
tification efficiency, the lepton isolation and the b jet identification efficiency between
simulation and data.

5.3. Physics Object Selection and Event Reconstruction

In the CMS detector events are reconstructed combining information from all subdetector
systems with the particle flow algorithm in order to reconstruct stable particles like
electrons, muon and charged hadrons. To reduce pileup, all hadrons not associated with
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the primary vertex are discarded in the jet clustering process. For this analysis events
are preselected using the triggers found in table 5.1 for the semileptonic channel and the
triggers in table 5.4 for the all-hadronic channel. The kinematic selections used in the
analyses are chosen to such that selected events lie in the region with nearly constant
trigger efficiency.

5.3.1. Electrons

For the reconstruction of semileptonic events in the electron channel each event is re-
quired to contain one electron passing the HEEP6.0 electron ID [69]. This ID already
contains isolation requirements and excludes the transition region between the ECAL
barrel and the endcaps. The HEEP6.0 electron ID also contains requirements on the
transverse energy, measured from track reconstruction compared to the one measured
in the ECAL, as well as requirements on the number of ECAL crystals with energy de-
posits. The variable is designed to discriminate between physical electrons and detector
noise, misidentified QCD background or electrons coming from conversions. An electron
used for the reconstruction of the leptonically decaying W boson also needs to have a
transverse momentum larger than 120 GeV and a pseudorapidity |η| smaller than 2.5.

5.3.2. Muons

Events are selected if they contain at least one global muon candidate, that passes the
HighPt muon ID [116] with a transverse momentum larger than 53 GeV and |η| <
2.1. In addition an isolation requirement of it/pT < 0.1 is applied to suppress QCD
multijet background where jet constituents are misidentified as muons, here it is the track
isolation, i.e. the sum of transverse momenta of all PF objects in a cone surrounding
the muon track. As is the case with all physics object identification the HighPt ID is
primarily used to reduce detector noise and contributions from misreconstruction. The
HighPt muon ID requires the detection of the muon candidate in the tracker and the
muon chambers, to suppress muons from in-flight decays or cosmic rays. The track
reconstruction has to have a small χ2 value and must start closely from the primary
vertex. The HighPt ID is optimised for the reconstruction of muons with high transverse
energy.

5.3.3. Jets

Both analyses use the anti-kT algorithm with a clustering parameter of R = 0.8 for the
clustering of hadron candidates into jets. In the semileptonic analysis a second anti-kT
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clustering with a distance of R = 0.4 is used. These jets are then required to pass the
inclusive CSV medium working point. Events containing at least one of those jets are
discarded in order to suppress the tt̄ and single top background. All jets are corrected
by applying L1, L2 and L3 jet energy corrections. The jets clustered with a clustering
parameter of R = 0.8 and R = 0.4 are in the following called AK8- and AK4-jets. Jets
are furthermore required to either pass a loose jet identification (semileptonic case) or
a tight jet identification (hadronic case) [117]. This means that certain conditions on
the energy fraction carried by charged/neutral particles as well as on the number of
constituents have to be met. This is done in order to discriminate between real jets and
detector noise or misidentified other particles. In both analyses the jets are required
to have no overlap with reconstructed leptons that pass the criteria in table 5.3, thus
requiring the distance between a reconstructed lepton and the jets used for the W boson
reconstruction to be larger than ∆R = 0.8.

5.3.4. Semileptonic Final State

A complete overview over all used selection cuts in the semileptonic analysis can be seen
in table 5.1. The selection cuts on electron and muon kinematics are designed to reject
QCD background as well as select a reconstruction region within the trigger efficiency
plateau. In addition selection cuts on the missing transverse energy are applied. These
cuts are designed to suppress multijet background. Each event is required to contain
exactly one lepton passing the criteria for leptons in table 5.1 and no additional leptons
passing the cuts in table 5.2. The events are further required to contain no b-tagged AK4-
jet, where the medium working point of the CSV algorithm is used for b-tagging. This
cut suppresses tt̄ and single top backgrounds. For the hadronically decaying W candidate
each event is required to contain at least one anti-kT jet clustered with R = 0.8 and with
a pT larger than 200 GeV. The jet with the largest pT per event is used to reconstruct
the hadronically decaying W boson. Three additional requirements on angular variables
(see table 5.1) are used to select a back-to-back topology, as it is expected from the
decay of a heavy particle. The pruned mass of the jet reconstruction candidate is used
to define four categories. The signal region of 65 GeV < mpruned

jet < 105 GeV, which in
turn is separated into two categories for WW events 65 GeV < mpruned

jet < 85 GeV and
WZ events with 85 GeV < mpruned

jet < 105 GeV, the lower sideband region 40 GeV <

mpruned
jet < 65 GeV, and the upper sideband region 135 GeV < mpruned

jet < 150 GeV.

5.3.5. Hadronic Final State

A complete overview over all selection cuts in the hadronic final state is listed in table
5.4. Each event must at least contain two anti-kT jets with a radius parameter of R = 0.8
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Table 5.1.: All selection cuts and triggers used by the resonance search in the semileptonic
WV channel.

physics object selections
trigger HLT_Ele105_CaloIdVT_GsfTrkIdT

HLT_Ele115_CaloIdVT_GsfTrkIdT
HLT_Mu45_eta2p1

electron pT > 120 GeV
|η| < 2.5
HEEP6
EmissT > 80

muon pT > 53
|η| < 2.1
trackIso/pT < 0.1
HighPt

AK8-jet pT > 200 GeV
|η| < 2.4

65 < mpruned
jet < 105

loose jet ID
∆R(j, l) > 1.0
HP: τ21 < 0.6
LP: 0.6 ≥ τ21 < 0.75
highest pT jet satisfying the cuts is used for reconstruction

Wlep pT > 200 GeV
Whad pT > 200 GeV
WV-System 700 < mV V < 5000

∆φ(Whad,Wlep) > 2
∆R(l,Whad) > π/2
∆φ(Whad, E

miss
T ) > 2

AK4-jets pT > 30
|η| < 2.4
∆R(j, jAK8) > 0.8
∆R(j, l) > 0.3
CSV medium WP: 0.89
event must contain no jets passing these selections
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Table 5.2.: Lepton selection requirements for the second-lepton veto of the semileptonic
analysis.

muon electron
pT > 20 GeV pT > 35 GeV
|η| < 2.4 |η| < 2.5 except [1.4442, 1.566]
trackIso/pT < 0.1
HighPt HEEP6

Table 5.3.: Lepton selections for the jet isolation requirement of the all-hadronic analysis.
muon electron
pT > 30 GeV pT > 35 GeV
|η| < 2.1 |η| < 2.5 except [1.4442, 1.566]
trackIso/pT < 0.1
HighPt HEEP6

and a separation of ∆R larger than 0.8 from any lepton in the event. Lepton candidates
used for the overlap veto must pass the cuts in table 5.4. In addition the transverse
momentum pT for each jet has to be larger than 200 GeV. If there are more than two
possible candidates the jets with highest pT are used for the reconstruction. To reduce the
dominant QCD multijet background the two jets used for reconstruction are additionally
required to pass |ηjet1 −ηjet2 | < 1.3. Furthermore the jet with the highest pT per event is
required to pass the tight jet ID whether or not it is used as a reconstruction candidate
for the hadronically decaying vector bosons.

5.4. Event Reconstruction

For the final event reconstruction, events are first preselected according to the criteria
described in section 5.3. The vector bosons are then reconstructed and in case of a
successful reconstruction of the whole event, final cuts on mV V are applied. The require-
ments are 500 GeV < mV V < 5000 GeV for the semileptonic channel and mV V > 1000
GeV for the all-hadronic channel. The higher mass cut in the all-hadronic case is chosen
in order to reach a the trigger efficiency plateau.

5.4.1. Reconstruction of Leptonically Decaying W Boson

In case of a semileptonically decaying W boson, the neutrino, which cannot be directly
measured in the detector, has to be reconstructed. For this the measurement of the
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Table 5.4.: All selection cuts and triggers used by the resonance search in the all-hadronic
VV channel.

physics objects selections
trigger HLT_PFHT650_WideJetMJJ900DEtaJJ1p5

HLT_PFHT650_WideJetMJJ950DEtaJJ1p5
HLT_PFHT800 or HLT_AK8PFJet360_TrimMass30
HLT_AK8PFHT700_TrimR0p1PT0p03Mass50

AK8-jets pT > 200 GeV
|η| < 2.4

65 < mpruned
jet < 105 GeV

tight jet ID
no overlap ∆R(jet, l) < 0.8 with leptons as defined in 5.3

VV-system |ηjet1 − ηjet2 | <1.3
mV V > 1000 GeV
τ jet21 < 0.45
HP: both jets must pass τ21 cut
LP: only one jet must pass τ21 cut

missing transverse energy is used as the transverse momentum of the neutrino. The
longitudinal momentum, however, cannot be directly reconstructed without using some
assumptions. In this analysis the known W mass is used for the reconstruction of the
longitudinal neutrino momentum, neglecting the neutrino mass and the mass of the
lepton. This leads to a quadratic equation for the transverse momentum of the neutrino
pz,ν following from

pW = pl + pν . (5.2)

The solution for pz,ν is

p(1/2)
z,ν =

µpz,l
p2
T,l

±

√√√√µ2p2
z,l

p4
T,l

−
E2
l p

2
T,ν − µ2

p2
T,l

:= b±√y , (5.3)

µ =
M2
W

2
+ pT,νpT,l cos(pφ,ν − pφ,l) , (5.4)

where pν is the four momentum of the neutrino, pl is the four momentum of the lepton
and pW is the four momentum of the leptonically decaying W boson. The mass of the
W boson is denoted with MW and set to MW = 80.38 according to reference [118]. The
solutions are chosen according to

pz,ν =

{
b , y < 0

min(|b+
√
y|, |b−√y|) , y > 0 .

(5.5)

The choice of pz,ν in case of imaginary solutions leads to a high mass tail for the recon-
structed leptonically decaying W boson.
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5.4.2. W/Z Boson Reconstruction using Jet Substructure

To reconstruct the hadronically decaying W boson one fat jet that has to pass require-
ments on its substructure is used. This reconstruction is basically the same for the
semileptonic and all-hadronic final states, except for the substructure requirements on
the jets, which are tighter in the all-hadronic case. After preselecting the events, the jets
which pass the kinematic analysis selections with the highest and second highest trans-
verse momenta are used as reconstruction candidates. The selected jets are required to
have a pruned jet mass within the signal region of the analysis. For the generic limit
calculation it suffices if they are within the WW/WZ combined signal window. For
the high-purity (HP) category both jets have to pass a 2-to-1-subjettiness requirement
of τ21 < 0.45 in the all-hadronic case. In the semileptonic channel the reconstruction
candidate needs to pass a requirement of τ21 < 0.6 for the high-purity category.

5.5. Background Estimation

In order to give limits on a potential signal model the backgrounds of the analysis decay
channels have to be estimated and modelled which is done using two different approaches
for the considered final states. In the all-hadronic channel the background is modelled
via a smooth three-parameter-function, which is fitted alongside the signal function in
the limit setting procedure. The semileptonic channel on the other hand uses a data-
driven sideband-interpolation method to extract the W+jets background while the tt̄ and
single top backgrounds normalisations are fixed to the theory cross sections multiplied
by the V-tagging scale factors. In the final limit fit, the background parameters are
fixed within their uncertainties. Since both background estimations are data-driven, a
potential mismodelling in the SM MC samples has only a small effect on the analysis
predictions.

5.5.1. V-tagging Scale Factors

V-tagging scale factors are used to correct the differences in MC predictions of the effi-
ciency for the τ21 subjettiness cut compared to data. To extract these scale factors the
shape in mpruned

jet signal region in a control region is fitted to the tt̄ MC sample and data.
This control region is defined the same way as the signal region of the main analysis only
instead of a b-jet veto, one b-tagged jet is required to be in the event. The subjettiness
cuts for τ21 < 0.6 and τ21 < 0.45 are then applied, both to MC and data, to estimate the
difference between MC prediction and data due to V-tagging. The scale factors extracted
using this method are applied to the background MC samples.
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A similar strategy is used to estimate differences in the V-tagging efficiency for signal
events. Once again the tt̄ MC sample and the top enriched control region are used
to estimate the V-tagging efficiencies. Contributions from real reconstructed W bosons
and combinatorial background are separated by matching the jets to the W bosons at
generator level. The V-tagging efficiencies are then derived through a fit of the functional
forms of both real and combinatorial contributions to data. The fit is done simultaneously
on events passing the τ21 cut and on events failing the cut. Thus four efficiencies are
extracted, εMC

HP the efficiency of real W bosons to pass the τ21 cut in MC, εdataHP the
efficiency of real W bosons to pass the τ21 cut in data and two efficiencies for failing the
cut in MC or data εfail. The V-tagging scale factors are then calculated as

SV =
εdataHP

εMC
HP

. (5.6)

The scale factors for the low-purity categories are derived using the relation

1 = εHP + εfail + εLP . (5.7)

5.5.2. Background Modelling for the Semileptonic Channel

The semileptonic analysis uses a data-driven sideband interpolation method, called alpha
method, to completely determine the dominant background contributions. For this the
functional forms of the three main backgrounds W+jets, tt̄ and single top production and
VV are extracted from simulation. Two different functional forms are extracted for each
background, one described the distribution in thempruned

jet spectrum and the second forms
describe the distribution in the invariant mass spectrum. For the normalisation of the tt̄,
single top and VV backgrounds the NLO theory cross section is multiplied by V-tagging
scale factors derived from a data-MC comparison in a top-enriched control region. The
normalisation of the dominant W+jets background is determined through a fit in the
lower sideband. The functional shapes that are used can be found in reference [113]. The
functional shape in the mV V signal region is derived via a transfer function αMC(mV V )
using the lower sideband only

αMC(mV V ) =
FMC
SR (mV V )

FMC
SB (mV V )

, (5.8)

where FMC
SB (mV V ) is the functional shape of the W+jets background in the sideband

and FMC
SR (mV V ) is its functional shape in the signal region. This function is completely

derived from MC predictions. In order to calculate the complete background prediction
in the signal region, the probability distribution function of W+jets derived from the low
sideband region F data,correctedSB (mV V ) is propagated to the signal region using the alpha
function defined in equation (5.8). F data,correctedSB (mV V ) is corrected by subtracting the
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Figure 5.5.: The final observed mV V distribution in the signal region for the semileptonic
channel. On the left is the result for the WW category and on the right for
the WZ category; the electron and muon channel are combined. The back-
grounds are fixed as described in section 5.5.2. As an example a narrow
Bulk-Graviton resonance with a mass of 2 TeV is shown enlarged by a factor
of 100. In each figure the solid curve represents the background estimation
provided by the alpha ratio method. The hatched band includes both statis-
tical and systematic uncertainties. The data are displayed as black markers.
At the bottom of each plot, the bin-by-bin fit residuals, (NData−NFit)/σData,
are shown together with the uncertainty band of the fit normalised by the
statistical uncertainty of data, σdata.

contributions of the smaller backgrounds. The background prediction thus looks like

NBKG
SR (mV V ) = CV+jets · αMC(mV V ) · F data,correctedSB (mV V ) +

∑
k

CkF kMC,SR(mV V ) ,

(5.9)

where Ci denotes the normalisation for different backgrounds and F iMC,SR is the proba-
bility density function for different backgrounds in the signal region. This method fixes
all background contributions before the limit setting, thus introducing no potential biases
when extending the analysis to broader resonances, see chapter 6.

In figure 5.5 the final mV V distribution in the signal region is shown, with the shapes
and normalisations of the MC backgrounds fixed as described above.
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Figure 5.6.: The final observed mV V distribution in the signal region for the all-hadronic
channel. As an example only the high-purity WW category is displayed.
The solid curve represents a background-only fit to the data distribution
where the filled red area corresponds to the 1 sigma statistical error of the
fit. The data are shown as black markers. At the bottom of each plot, the
bin-by-bin fit residuals, (NData − NFit)/σData, are shown with σData being
the statistical uncertainty of data. As an example the signal shape for a
Bulk-Graviton model is shown for a resonance mass of 2 TeV.

5.5.3. Background Modelling for the All-Hadronic Channel

In the all-hadronic channel one functional form is used to fit all backgrounds. In the
original analysis for different regions in mpruned

jet a two- or three-parameter function is
used; however, in the simplified analysis categories of this thesis only one three-parameter
function

dN

dm
=
P0 · (1−

√
s
m )P1

(
√
s
m )P2

(5.10)

is used to determine background contributions. The fit function is chosen based on MC
studies; m denotes the dijet invariant mass,

√
s the center of mass energy and the Pi are

fit parameters. It was tested on data in a sideband region defined by selecting events
with one jet with a pruned mass between 20 GeV and 65 GeV, that the functions are
sufficient in describing the backgrounds of the dijet channel and that for narrow signals
no bias is introduced through the choice of fit function. In figure 5.6 the final observed
mV V distribution is shown with a background-only fit.
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5.6. Systematic Uncertainties

In the following the systematic uncertainties are discussed for both decay channels. A
summary of all uncertainties can be seen in tables 5.5, 5.6 and 5.7. In principle two
kinds of uncertainties can be distinguished. Those are scale uncertainties, which only
affect the overall scale, i.e. the number of expected signal or background events, and
shape uncertainties, which affect the shapes of signal or background distributions. Both
sources of uncertainties are considered in the semileptonic and all-hadronic case. Uncer-
tainties on the scale can have various causes; they can be caused by uncertainties in the
measurement of important quantities or be related to the modelling procedure. Most un-
certainties that are caused by the measurement of quantities affect both background and
signal predictions. The most straightforward of those is the uncertainty on the integrated
luminosity of the sample, which affects the numbers of both non-data-driven background
and signal events. In addition to this there are uncertainties for the efficiency of lepton
triggers and identification assigned, which are derived from a sample of Z → ll events.
The effects of uncertainties on the energy scales are estimated by propagating the un-
certainties throughout the entire analysis, including MET in the semileptonic case. This
is done for the lepton and jet energy scale and resolution, affecting both the measured
signal efficiency and the mean and width of the fitted signal peak. Another source of
systematic uncertainties in both analyses is the V-tagging scale factor, the uncertainty
of which is applied as an uncertainty on the event yield.

There are two uncertainties that originate in the modelling procedure, one is the limited
number of events in the sideband fit, the other are uncertainties due to the choice of fit
function. These have to be evaluated for each background that is fitted separately, as
well as for the signal shapes and normalisations.

Lastly, uncertainties due to the overall renormalisation and factorisation scales are evalu-
ated by reweighting the scales independently by factors of 2 and 1/2 and redoing the MC
production. PDF uncertainties are evaluated similarly using the PDF4LHC prescription
found in reference [57] in order to take the effects of different PDF models on the signal
efficiency into account.

5.6.1. Systematic Uncertainties for WV → lvjj

The shape and scale uncertainties due to a limited amount of events in data and due to
the choice of fit function are evaluated for the W+jets background only, its dominant
contribution comes from the uncertainties on fit parameters due to the limited amount
of events in the data sideband. For the minor backgrounds shape uncertainties are ne-
glected and the uncertainty on the scale is taken to be the V-tagging and NLO cross
section prediction uncertainties added in quadrature. In addition to these background
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source signal norm. mean RMS
luminosity 5% - -
PDF 13% - -
scales 11% - -
V-tagging 14% - -
trigger 1%
lepton ID 1%(µ) 3%(e)
jet energy scale +[16%-33%] −[15%-25%] 1.3% 1%-3%
jet energy res. < 0.1% 0.1% 3%
lepton energy scale 0.7%(µ) 0.2%(e) 0.1%(µ) 0.1%(e) 0.5%(µ) 0.1%(e)
lepton energy res. 0.1% 0.1% 0.1%
b-tag ID 0.2% - -

Table 5.5.: A summary of all systematic uncertainties for the signal modelling in the
semileptonic decay channel in terms of the effect on shape and/or normalisa-
tion of the signal. The uncertainties are only given for the HP category. The
impact of the uncertainties are given on the mean of the reconstructed mass
and on the smearing (RMS) of the signal width.

uncertainties the jet and lepton energy scale and resolution uncertainties are propagated
throughout the analysis. Since the effects of uncertainties of the energy scales and res-
olutions are propagated to the MET, effects of uncertainties in MET energy scale and
resolution do not have to be evaluated independently. However, in the semileptonic case
the difference in mean mass values for the fitted W-peak between data and simulation in
the top-enriched control region of the mpruned

jet mass spectrum is taken as another system-
atic uncertainty on the pruned jet mass, and its effects on the signal yield are also taken
into account. The uncertainty on the signal yield due to b-tagging is evaluated through
a scaling of signal weights in MC. With the exception of the lepton energy scale and
resolution uncertainties and the trigger uncertainties of the two lepton categories, which
are assumed to be uncorrelated, the analysis assumes all other uncertainty sources to be
fully correlated for the different signal categories. In tables 5.5 and 5.6 all uncertainties
and their impacts on the model parameters are listed.

5.6.2. Systematic Uncertainties for VV → jjjj

In the all-hadronic final state the systematic uncertainties of jet energy scale and resolu-
tion, V-tagging scale factors and luminosity are taken into account. Only the jet energy
scale and resolution are propagated to estimate the error on the signal shape, all other
uncertainties are taken as uncertainties on the event yield. Since the parameters of the
background functions are left floating in the final limit calculation there are no uncer-
tainties assigned to the background estimation. A list of all considered uncertainties and
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source W+jets tt̄ and single top VV
luminosity - 5% 5%
PDF - 5% 3%
V-tagging - - 14%
background norm. 8%(µ) 9%(e) 5%(µ) 8%(e) 13%
background shape error fit par.×

√
2 - -

trigger - 1% 1%
lepton ID - 1%(µ) 3%(e) 1%(µ) 3%(e)

Table 5.6.: A summary of all systematic uncertainties for the background estimation in
the semileptonic decay channel. Uncertainties affect shape and/or normalisa-
tion. The uncertainties are only given for the HP category. For the W+jets
shape uncertainty the error of the fit parameters is taken, scaled by a factor
of
√

2.

source yield migration shape
luminosity 4.3% - -
pileup 2% - -
jet energy scale 0.4%-1.5% 1%-46% 2%
jet energy resolution 0.1%-1.3% - 10%
V-tagging 44%

Table 5.7.: A summary of all systematic uncertainties in the all-hadronic decay channel.
Uncertainties affect shape and/or normalisation of the signal. The values
given are only for the HP category.

their respective values can be found in table 5.7.

5.7. Limit Setting Procedure

To calculate the 95% CLs limits both analyses use the Combine framework [112]. All
systematic uncertainties are added as nuisance parameters in the limit setting procedure.
Systematic uncertainties are treated as nuisance parameters and profiled in the statis-
tical interpretation using log-normal prior distributions for normalisation uncertainties
and Gaussian prior distributions for shape uncertainties. Both channels use unbinned
shape analysis with different background estimations. The limits shown in figure 5.7 are
statistical combinations of both final states for each signal model. In the combination
the uncertainties of the jet energy scale and resolution, the V-tagging scale factors and
luminosity are assumed to be 100% correlated. In figure 5.7 the combined limits can
be seen, along with the theory prediction for a Bulk-Graviton and W′ model. For both
theory models upper limits on the production cross section are given for a mass range of

73



5.7. Limit Setting Procedure

1000 to 4000 TeV, which are the most stringent today in this final state. The expected
and observed limits are compatible thus giving stringent upper limit on the production
cross sections of the considered models.
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Figure 5.7.: Limits for the all-hadronic and semileptonic channels combined. The limits
are given on the branching fraction multiplied with the cross section of the
theory model and as a function of the resonance mass. The top left figure
contains limits for a GBulk → WW model; on the top right are limits for a
GBulk → ZZ model. On the bottom limits for the HVT model B are shown.
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6. Model-Independent Limits

The goal of this work is to provide a set of generalised limits and a framework that allows
the calculation of exclusion bounds for generic models. This way theorists can profit from
the results of the CMS diboson resonance search of 2016 even if their specific model was
not considered in the main limit setting procedure. Since numerous models exist that
address beyond-the-standard-model physics, it is impossible for a dedicated analysis to
address every possible model. Instead most analyses use one or two specific models which
are either considered important, or they use an effective field theory generalisation of a
class of different models. But even so only a part of possible theory models can be
addressed in this way.

The first section of this chapter contains a description of the analysis strategy as well as
the intended usage for model-builders and theorists. In section 6.2 the analysis categories
are discussed followed by the signal parametrisation in section 6.3 and the signal shape
modelling in section 6.4. Section 6.5 discusses the calculation of the two dimensional
grid of model-independent limits. The last section of this chapter contains a proof of
concept, through applying the described method on the example of an RS1-Graviton
model. Although this work builds on two distinct analyses realised for two different final
states, in this thesis the two final states will be referred to as the all-hadronic channel
and the semileptonic channel, respectively.

6.1. Analysis Strategy

In order to derive a model-independent limit, the model dependence needs to be elim-
inated in each step of the main analysis. To accomplish this the following steps are
implemented: The analysis categories are simplified to facilitate the usage of the model-
independent framework, at a moderate price in terms of performance. A model-indepen-
dent estimation of the reconstruction and identification efficiencies within the analyses
is developed in order to provide an estimation of the signal yield for generic models.
The systematic uncertainties due to imperfections of this estimation are included in the
calculation of the model-independent limits as an additional uncertainty on the signal
yield. This procedure has the advantage that no uncertainties have to be applied in
the estimation of signal yields for a generic model, since the necessary systematics are
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already included in the model-independent limits. The generalisation to a generic model
interpretation makes an expansion of the signal shape modelling to broad resonances
necessary, since the assumption of a signal width smaller than the detector resolution
is no longer applicable. The model-independent limits are then calculated for a two-
dimensional grid of different resonance masses and widths. As a last measure the limits
are given on the number of signal events, instead of on the cross sections in order to
remove the model dependence of the signal yield expectation, which depends on the
reconstruction efficiency.

6.2. Definition of Categories

In order to avoid a dependence on model-specific assumptions and to simplify the analyses
several categories of the main analysis are discarded or combined. In particular the low-
purity category in both the semileptonic and the all-hadronic channels is discarded,
since its efficiency strongly depends on the polarisation. This means a small loss in
sensitivity which is, however, low over a large mass spectrum and almost exclusively
affects the limits for large resonance masses. In light of the considerable simplification
the loss in sensitivity is acceptable, since it would otherwise be necessary to calculate all
efficiency histograms for the high- and low-purity categories separately. Furthermore the
two mass categories are combined into one signal category with a pruned jet mass between
65 GeV ≤ mpruned

jet ≤ 105 GeV to retain efficiency if the produced W or Z bosons do not
fall into their respective mass windows and also to reduce model dependent migration
effects. The two lepton categories in the semileptonic case are retained and combined
statistically in the limit setting procedure.

6.3. Generalisation of Signal Yields

This section is dedicated to describing and testing a generalised method to determine
signal yields for arbitrary theory models. There are two reasons for this generalisation
of the signal yield of the analyses. One objective is to get a scheme with which to
calculate the expected signal yield of a generic model. For this the identification and
reconstruction efficiencies are parametrised and calculated using the MC samples of the
Bulk-Graviton an W′ models. The second reason is to eliminate the dependence of the
limit on the model-specific expected yield of signal events. To eliminate this dependence
the limit is calculated on the number of signal events instead of on the cross section, and
additional uncertainties on the signal yield are added in the limit calculation. These un-
certainties include possible differences in the reconstruction efficiencies due to variations
in kinematics or resonance widths. In the following chapter the product of acceptance
and efficiency will be denoted as acceptance×efficiency for the sake of brevity.
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Table 6.1.: Selection criteria on the generator level kinematics for the semileptonic chan-
nel. The selection cut on the missing transverse energy has to be applied to
the transverse momentum of the neutrino.

Objects Requirements
Muons |η| < 2.1

pT > 53 GeV
Electrons |η| < 2.5

pT > 120 GeV
EmissT pT > 40 GeV (muon channel)

pT > 80 GeV (electron channel)
W→ lν or W→ lννν pT > 200 GeV
W/Z→ qq̄′ pT > 200 GeV
WV system 700 GeV < mWW < 5000 GeV

∆φ(Vhad,Wlep) > 2
∆φ(Vhad, E

miss
T ) > 2

∆R(Vhad, l) >
π
2

Table 6.2.: Selection requirements on the generator level kinematics for the all-hadronic
channel.

Objects Requirements
V → qq̄′ pT > 200 GeV

|η| < 2.4

VV system 1000 GeV< mV V

|ηV1 − ηV2 | < 1.3

6.3.1. Analysis Acceptance

The analysis acceptance is defined as

GE = {e ∈ all Events generated} , (6.1)
GEpassed = {e ∈ generated Events that passed kinematic cuts} , (6.2)

Acceptance =

∑
i∈GEpassed∑

i∈GE

. (6.3)

The events in the numerator are required to pass the kinematic cuts found in table 6.1 for
the semileptonic channel or table 6.2 for the all-hadronic channel. It is important to note
that the acceptances of the analyses also depend on the model predictions. Since many
kinematic selections are chosen in order to reach the plateau in the trigger efficiencies
the dependence of these selections on model predictions is small.
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6.3. Generalisation of Signal Yields

Since the recipe for the calculation of efficiencies for generic signal models depends on
a seperation of acceptance and efficiency the possibility of migration of events has to
be considered. Migration means that it is possible that events do not pass the analysis
selections on generator level but do pass the analysis selections after the showering,
hadronisation and detector simulation steps have been applied, or vice versa. This effect
is largest for samples of small resonance masses, where the lepton or quark kinematics
are closer to the selections on the respective variables. Differences in efficiency of up to
20% between a selection on generator and on reconstruction level is observed. Due to the
procedure of the calculations of the reconstruction efficiencies the effects of downward
migration are already included in the given efficiency tables. The effects of upward
migration cannot be included in this procedure but they are addressed in the uncertainties
used for the final limit setting.

6.3.2. Identification and Reconstruction Efficiencies

In order to be able to reweight specific theory models according to the identification and
reconstruction efficiencies of the analyses, those efficiencies are calculated as a function
of the generated W or Z boson kinematics. The efficiencies are calculated from MC
samples for different resonance masses of a Bulk-Graviton model and a W′ model. Since
all efficiencies are extracted from MC samples, the V-tagging efficiency scale factors
are applied to correct the differences between MC and data. The reconstruction and
identification efficiencies within the two CMS analyses are listed in the tables in appendix
A. In order to reproduce the complete analysis efficiency the efficiency of the vetoes and
the generator cut on ∆ηjj have to be considered separately. The effects of W or Z boson
polarisation on the efficiency has to be taken into account as well. These quantities are
discussed in subsection 6.3.3.

Calculation of Identification and Reconstruction Efficiencies

The identification and reconstruction efficiencies include in addition to the efficiency
of identifying and reconstructing a certain physics object also the trigger efficiencies,
V-tagging efficiencies, b-tag veto efficiency and the downward migration of events over
selection cuts. An additional scale factor εpolarisation corrects the differences in V-tagging
efficiency for transverse and longitudinal polarised vector bosons. In principle they are
calculated using the ansatz

ε = ε1

(
pV1
T , η

V1

)
· ε2
(
pV2
T , η

V2

)
· εveto · εpolarisation , (6.4)

εi

(
pViT , η

Vi
)

=
Nsel

(
pViT , η

Vi
)

Ngen

(
pViT , η

Vi

) . (6.5)
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MC sample
apply

generator
level selection

apply kin.
cuts + ID
+trigger →
jet+lepton
candidate

apply loose
lepton and
b-jet veto

apply MET
selections

apply τ21, cut
on mpruned

reco.
leptonically
decaying W

reco.
hadronically
decaying W

ε =∑
rec.events∑
gen.events

Figure 6.1.: A schematic overview over the calculation scheme for the reconstruction and
identification efficiencies in the semileptonic channel. Bulk-Graviton and W′

MC samples are used for the calculation.

Here Nsel is the number of events passing all analysis selections, including the selections
found in table 6.1 and 6.2, while Ngen is the number of events passing the generator level
kinematic selections. For this calculation all cuts are applied on the final kinematics of the
event i.e. the Monte Carlo kinematics after the full detector simulation. The efficiencies
are parametrised using the generated kinematics of the reconstructed W bosons or Z
bosons in order to allow an easy application of the efficiency tables to generated MC
events. Only events passing the kinematic selections on generator level are used, thus
upward migration over kinematic selection cuts is not taken into account. A schematic
overview over the efficiency calculation for the semileptonic channel is shown in figure 6.1.
A similar procedure is used for the all-hadronic case, see figure 6.2. In this channel the
efficiencies are separately calculated for W+ bosons and W−bosons, or for the Z boson
with leading and subleading pT . The resulting distributions for the efficiencies of either
a hadronic W+ or W−boson are added and provided as one efficiency in figure 6.4.

As can be seen in equation (6.5) the efficiencies are parametrised after the generated
kinematic variables of the vector bosons, in particular the transverse momentum and
pseudorapidity. These variables are chosen following the assumption that the angle of
production φ around the z-axis does not impact the efficiency of reconstructing or iden-
tifying the event, since the detector is rotationally symmetric with respect to this axis.

The calculation scheme also assumes that the respective reconstruction and identification
efficiencies of both vector bosons are independent, which is a reasonable assumption even
in the all-hadronic case where the same subdetectors are used for the reconstruction of
both fat jets, since the vector bosons are still separated in their angular distribution. This
is also the reason why for the all-hadronic decay channel only one efficiency distribution
is sufficient for both hadronically decaying vector bosons.
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MC sample

apply
generator

level selection

find two jets
+ apply kin.

cuts

apply mpruned

and τ21 cuts
separately

apply mV V

and ∆ηjj cuts

match jets to
generated V

boson

ε =∑
rec.events∑
gen.events

�

eff. is 98%

Figure 6.2.: A schematic of the calculation scheme for reconstruction and identification
efficiencies in the all-hadronic channel. The jets are matched to W+ and
W−or to the Z bosons ordered in pT with ∆R < 1. Events with unmatched
jets are discarded. The efficiency for the ∆ηjj cut is calculated afterwards
and amounts to an overall factor of 98%.

In figure 6.3 the resulting efficiencies are shown for the semileptonic decay channel and
in figure 6.4 they are shown for the all-hadronic decay channel. The efficiencies were
calculated using Monte Carlo samples of a Bulk-Graviton model and a W′ model, re-
spectively. Varying bin sizes are used to accommodate a similar number of events per
bin. Comparing the efficiencies for the hadronically decaying V boson for both final
states it is apparent that the semileptonic analysis has a higher efficiency for this object.
This is due to the tighter τ21 selection in the all-hadronic channel.

In a series of consistency tests, the applicability and plausibility of this approach was
thoroughly tested. For this the efficiency obtained using all analysis cuts on reconstructed
simulated events and the efficiency obtained by using the parametrisation scheme sup-
plied within this thesis are compared for different scenarios. As a result of these tests it is
concluded that the calculation scheme for the analysis efficiencies works well for the five
different theory models tested; it is therefore reasonable to assume that this approach
gives plausible results for arbitrary models.

Efficiency Dependence on the Resonance Width

To test the dependence of the efficiency on the resonance width the efficiency is calculated
for resonance masses of 800, 1200, 2000, 3000 and 4000 GeV and relative widths of 0.1,
0.2, and 0.3. For the calculation two different approaches are used. The real efficiency is
calculated by applying the selections of the analyses whereas the parametrised efficiency
is calculated following the description detailed in section 6.6. The results for both ef-
ficiency calculation schemes can be seen in appendix B. The kinematic distributions of
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Figure 6.3.: The reconstruction and identification efficiencies for the W → µν and W →
τν → µννν (top left) and W → eν and W → τν → eννν (top right),
W → qq̄′ (bottom left) and Z → qq̄ (bottom right) bosons. The efficiencies
are given as a function of the generated pT and η of the W boson or Z boson,
respectively.Bins at the edge of the covered phase space contain few events
and are therefore mostly driven by statistical fluctuations.
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Figure 6.4.: The reconstruction and identification efficiencies for the WW→ qq̄′qq̄′ decay
channel as a function of the generated transverse momentum pT and the
absolute value of the generated pseudorapidity η of the W boson. On the
right hand side is the reconstruction and idendification efficiency for the ZZ→
qq̄qq̄ channel, likewise as a function of the generated transverse momentum
and the pseudorapidity of the hadronically decaying Z boson. Bins at the
edge of the covered phase space contain few events and are therefore mostly
driven by statistical fluctuations.
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samples for broad resonances are spread over a larger region in phase space, for example
the pT distribution contains a wider spectrum of values. Due to the parametrisation of
efficiencies as functions of pT and the pseudorapidity, potential effects of a larger kine-
matic spread are already covered by the parametrisation. The overall dependence of the
efficiency on the resonance widths is small- about a relative difference of 2% between
widths- since the bulk of the events is in the same kinematic region for each sample of
the same mass. As an example the real acceptance×efficiency is shown as a function of
the resonance width for a Z′ model decaying to the semileptonic final state and for a
Radion model decaying to the all-hadronic final state, see figure 6.5.

It should be noted that although the efficiencies do not have a strong dependence on the
resonance width, the acceptance of the analysis can change significantly when introducing
signals with large widths. Such a drop in acceptance can be expected when the mean
value of the resonance mass is in the vicinity of one of the mass cuts. If a resonance is
produced with a larger spread in the mV V spectrum more events will fail the acceptance
cut on the resonance mass, thus leading to significantly lower acceptances.

Efficiency Dependence on the Resonance Mass

As can be seen in figure 6.6 and the tables in appendix B the efficiency depends on the
resonance mass. It shows a significant loss for higher masses. The reason for this lies in
the high transverse momentum of the produced vector bosons, which results in highly
collimated jets. Since the substructure techniques used for V-tagging depend on a separa-
tion between the two subjets the V-tagging efficiency decreases with the pT of the vector
boson. Figure 6.6 shows the acceptance×efficiency of the analysis over the resonance
mass for all considered final states and for different models. In the semileptonic channel
the mass dependence of the efficiency shows a turn on behaviour for small masses, since
the phase space for such resonances contains more events that do not pass the kinematic
selections of the analysis. For high masses both channels display the discussed reduction
in efficiency due to the substructure selections. These effects are more pronounced in
the all-hadronic channel because of tighter requirements that have to be met by two jets.
In principle the loss of efficiency for larger resonance masses is already properly taken
care of with the used parametrisation that depends on the transverse momentum of the
hadronically decaying vector boson. As can be seen in the tables in B the agreement
between parametrised and real efficiencies is stable over almost the whole mass range,
with the exception of the smallest mass point in the respective analysis i.e. 800 GeV
for the semileptonic case and 1200 GeV for the all-hadronic case. The large disagree-
ment between the true analysis efficiency and the modelling through parametrisation and
reweighting of events in this bin is due to the migration of events over kinematic cuts.
In particular there are some samples where the upward migration over the MET cut far
outweighs the downward migration. These migration effects are especially pronounced
when in total few events pass the selection criteria, as is the case for small resonance
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Figure 6.5.: The analysis efficiency×acceptance over the relative resonance width Γ/mV V

for different mass points. On the top a Z′ model is used for the calculation
of efficiencies. On the left is the electron channel and on the right the muon
channel. On the bottom the efficiency is extracted from MC samples of a
Radion model with two W bosons as intermediate state and a fully hadronic
final state.
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Table 6.3.: The scale factors for the vetoes of the semileptonic analysis, the polarisation
scale factors and the scale factor for the ∆ηjj cut of the all-hadronic analysis.
All scale factors are derived from MC.

semileptonic channel all-hadronic channel
intermediate state WW WZ WW/WZ/ZZ
loose lepton veto 0.999 0.998 -
b-jet veto 0.94 0.96 -
polarisation factor 0.76 0.76 0.74
∆η cut - - 0.98

masses beyond the narrow width approximation. In these cases the migration effects can
cause a relative difference in efficiency of around 20%, which leads to larger uncertainties
in the limit calculation for small masses, as discussed in section 6.3.4.

6.3.3. Veto and Polarisation Efficiencies

In order to correctly model the complete analysis efficiency the vetoes on a second lepton
and on b-tagged jets of the semileptonic analysis, as well as the effects of vector boson
polarisation on jet substructure techniques have to be taken into account. Since the
all-hadronic analysis uses a cut on ∆η of the two fat jets used for the vector boson
reconstruction the loss in efficiency due to this selection has to be taken into account as
well. All of these effects are independent of the kinematics of the vector bosons produced
in the exotic decay and can therefore be described by a single scale factor each. In table
6.3 the efficiency scale factors are listed.

Second-Lepton Veto

The semileptonic analysis requires the existence of exactly one lepton per event. Events
with an additional loose lepton, as defined in section 5.3, are not used in the analysis.
This veto is independent of the vector boson kinematics since the additional lepton does
not originate in the signal process directly. For signal events a real lepton can only
be produced in a pileup event or inside a jet during the interaction with the detector
or in Z → bb̄ events, where a lepton leaves the jet cone. Another possibility is the
misidentification of another particle. Such events that contain a second lepton with
enough energy to pass the kinematic requirements and isolation of a loose lepton are
rare. There are, however, SM background processes which can lead to the production of
a second lepton that are suppressed by the second-lepton veto.

The efficiency of this veto is calculated by summing all events containing a second lepton
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Figure 6.6.: The analysis efficiency×acceptance over the resonance mass for different
models. On the top the efficiency×acceptance in the electron category (top
left) and in the muon category (top right) is shown for narrow width Z′, W′

and Bulk-Graviton models. On the bottom MC samples for narrow width
Radion, Bulk-Graviton, Z′ models were used for the calculation. The W′

model has an intermediate state of one W and one Z boson, while for the
Bulk-Graviton, Z′ and Radion models intermediate states with two W bosons
are used for the calculation. For the Radion model a second set of MC sam-
ples with two Z bosons as intermediate states are used for the calculation in
the all-hadronic final state.
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with loose requirements and dividing by the number of generated events. For these
calculations all mass points of the narrow width Bulk-Graviton and W′ MC samples
are used. The efficiency for the second-lepton veto amounts to 0.999 in case of a WW
intermediate state and 0.998 for an intermediate state of one W boson and one Z boson.

B-Jet Veto

In order to reduce the background from tt̄ production a veto on additional anti-kT jets
with a clustering parameter of R = 0.4 that pass the mediumWP of the CSV algorithm is
introduced. The jets used for this veto are also required to have an angular separation of
∆R larger than 0.8 from the fat jet reconstruction candidate, and an angular separation
of ∆R larger than 0.3 from the lepton in the event. As in the case of the additional
leptons such a jet can be produced through the emission of a b quark from one of the
final or initial state partons for signal processes. The probability for this emission is
higher than for the appearance of an additional lepton, since the emission can arise from
a strong interaction. The amount of signal process events containing such a b-tagged jet,
either through real emission or due to a mistagging, is, however, low. This veto works
well to suppress backgrounds due to tt̄ production or single top production since the top
quark decays into a bottom quark and a W boson with a branching ratio of almost one
hundred percent. The efficiency for this veto for signal processes is calculated the same
way as the second-lepton veto. Its value is 0.94 for a WW intermediate state and 0.96
for a WZ intermediate state. The higher rejection rate for WZ intermediate states is
due to events where the hadronic Z boson decays to a bb̄ pair, which can be accidentally
rejected if at least one of the quarks gets clustered into a slim jet.

Effects of Vector Boson Polarisation

Since most models predicting an exotic resonance in the diboson channel are attempts to
include gravity into the standard model, the couplings to longitudinally polarised vector
bosons are usually larger than those to transversely polarised vector bosons. This means
that most of the models considered by this analysis produce almost exclusively longi-
tudinally polarised vector bosons. However, the effect of the vector boson polarisation
has to be considered to allow model-builders to use the framework even if their specific
model does not primarily produce one polarisation. The dependence on the vector bo-
son polarisation is studied using MC samples produced for the RS1-Graviton model, in
which 90% of all produced vector bosons are transversely polarised. this difference in
efficiency between polarisations exists only for hadronically decaying vector bosons, for
the leptonically decaying W bosons there is no difference in the reconstruction efficiencies
since this difference is already included in the analysis acceptance.
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For the reconstruction of hadronically decaying bosons fat jets that fulfil certain require-
ments on the substructure are used for the reconstruction. The polarisation does have an
impact on the efficiency of the τ21 cut and the cut on the pruned jet mass. The first effect,
which is investigated in detail in reference [85], is a larger asymmetry in the fractions of
transverse momentum carried by the quarks from the vector boson decay, which results
in a higher probability for the pruning algorithm to reject the particles coming from the
quark with lower transverse momentum. This leads to the calculation of smaller pruned
jet masses than in the case of longitudinally polarised vector bosons. For transversely
polarised W bosons the probability of the two quarks being emitted with a relatively
large angular separation is larger than in the case of longitudinal polarisation. This leads
to a larger fraction of events where the radius parameter of 0.8 is too small for the quarks
to be clustered together into one fat jet. Which of those effects is dominant depends on
the pT of the produced vector boson. As examined in reference [85] the efficiency for
the τ21 cut is also lower for transversely polarised vector bosons due to the two effects
described above. The remarks in this section are valid for both hadronically decaying W
bosons and Z bosons [119].

Figures 6.7 and 6.8 show that the effect of the polarisation is largely independent of
the vector boson kinematics. Although a slight dependence on the pT of the W boson
can be seen, this effect is small enough to be negligible compared to the uncertainties
on the efficiency fluctuations due to model-dependent kinematics. As an approximation
it is sufficient to apply a pT and η independent factors whenever hadronically decaying
W bosons or Z bosons are produced with a transversal polarisation. The parametrised
efficiencies in appendix B are calculated using a single scale factor to account for effects
of vector boson polarisation. The effects of using one polarisation efficiency for all events
is smaller than the differences between models. The values of the polarisation scale
factors εtrans/long can be found in table 6.3. They are calculated using RS1-Graviton MC
samples as

εtrans/long =

∑
samplesNRS1∑
samplesNBG

, (6.6)

where NRS1 is the number of events passing all analysis selections using RS1-Graviton
MC samples, and NBG is the number of events passing all analysis selections using Bulk-
Graviton MC samples.

6.3.4. Signal Yield Uncertainties

The efficiencies that are calculated and discussed in the previous sections are extracted
from Monte Carlo and as such their systematic uncertainties are due to limited Monte
Carlo statistics and the uncertainties on the V-tagging scale factors, which were applied
to scale the MC events to data. These uncertainties are of the order of 1% and therefore
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Figure 6.7.: The reconstruction and identification efficiency efficiency for a Bulk-Graviton
model divided by the reconstruction and identification efficiency of an RS1-
Graviton model, as a function of the generated pT and η of the W boson
for the semileptonic analysis. The top left graphic contains the ratio of re-
construction efficiencies for a hadronically decaying W boson. The top right
graphic contains the ratio of reconstruction efficiencies for a hadronically
decaying W boson, where the Bulk-Graviton sample was rescaled with the
polarisation factor of 0.76. On the bottom are the efficiency ratios for a W
boson decaying to a muon and neutrino (left) and a W boson decaying to an
electron and a neutrino (right).
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Figure 6.8.: The reconstruction and identification efficiency for a Bulk-Graviton model
divided by the reconstruction and identification efficiency of an RS1-Graviton
model, as a function of the generated pT and η of the W boson for the all-
hadronic analysis. The left histogram contains the same efficiency ratio but
the Bulk-Graviton sample was reweighted with the polarisation scale factor
of 0.76.

negligible compared to differences in efficiency due to varying distributions of kinematic
variables in different theory models. All other uncertainties are already discussed in sec-
tion 5.6. Since the goal is to calculate limits that are valid for a wide range of theory
models, those differences in the reconstruction and identification efficiency have to be
included in the limit calculation. They are applied as additional uncertainties on the
signal yield. When using this framework one therefore does not have to apply uncertain-
ties in the signal yield calculation. The uncertainties used for the limit calculation are
extracted from the tables found in appendix B by comparing the difference between the
exact sample efficiency, which is calculated by using all analysis selections on the recon-
structed events, with the efficiency obtained by using the recipe described in section 6.6
on different signal models. As final values for the uncertainties found in table 6.4 and
6.5 the largest relative differences for each mass samples is rounded to the nearest mul-
tiple of 5. This is a conservative appraisal of the necessary uncertainties to address the
remaining imperfections in the parametrisation of efficiencies, but since only a handful
of theory models have been tested with this method a conservative estimation is a valid
course of action. In section 6.5 for each region in mV V the different uncertainties derived
here are added to the uncertainty on the signal yield.
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Table 6.4.: Uncertainties of the signal reconstruction efficiencies for limit calculations in
the semileptonic WV channel. The uncertainties are taken from the studies
in appendix B and rounded up to the nearest multiple of 5.

MX [GeV] Uncertainty electron channel Uncertainty muon channel
800-1200 0.40 0.25
1200-2000 0.25 0.20
2000-3000 0.15 0.10
3000-4000 0.15 0.10
> 4000 0.15 0.10

Table 6.5.: Uncertainties of the signal reconstruction efficiencies for limit calculations in
the all-hadronic decay channel. The uncertainties are taken from the studies
in appendix B and rounded up to the nearest multiple of 5.

MX [GeV] Uncertainty
1200-2000 0.35
2000-3000 0.20
3000-4000 0.25
> 4000 0.20

6.4. Generalisation of Signal Shapes

The resonance searches that are described in chapter 5 are restricted to the narrow-
width approximation, where only resonances with a decay-width smaller than the full
width half maximum of the detector resolution are considered. In this approximation
the resonance shape is fully described by the detector resolution function, which is in
principle determined by the energy resolution of the subdetectors involved in the analysis.
In the all-hadronic channel a single sided Crystal-Ball function added to a Gauss curve
is used to model the signal shape in the mV V mass spectrum. For the semileptonic
channel a double-sided Crystal-Ball function is used. There are two slightly different
descriptions of the detector resolution, since the in the two final states the detector
resolution is driven by different detector components. In the all-hadronic channel the
resolution of the HCAL energy measurement plays and important role, but the ECAL
energy resolution also contributes due to π0 decays. Since both analyses use objects
with high transverse momenta, the tracker resolution is not important in this case. In
the semileptonic channel the ECAL plays an important role for events with a W boson
decaying into an electron. For the case where the W boson decays into a muon, the
resolution in the muon system is important. Since the semileptonic channel uses MET
measurements for the reconstruction of the neutrino, the MET energy resolution also
plays a role in this channel. However due to the constrain of the z component of the
MET with the W boson mass in the neutrino reconstruction its resolution does not
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play a leading role in this analysis but it still warrants the choice of a more asymmetric
resolution function than in the all-hadronic channel.

6.4.1. Extension to Broad Signal Shapes

Since the search takes place in the invariant mass spectrum of the expected resonance, all
parametrisations of signal shapes refer to the shape of the resonance in this spectrum. To
extend the signal shapes to widths larger than the detector resolution, a convolution of
Snarrow, the detector resolution function and a relativistic Breit-Wigner function (BW)

BW(m) =
N

(m2 −M2)2 −M2Γ2
, (6.7)

is used. Here Γ is the width of the resonance, M its peak mass and N is a normalisation
constant. The signal shape for broad resonances thus is

S(mV V ) = Snarrow ⊗ BW . (6.8)

It is important to note that with this modelling of signal shapes no new free parame-
ters are introduced. The relativistic Breit-Wigner function depends on the peak of the
resonance and its width. The width Γ is not a free parameter but is fixed to the width
of the produced MC sample. The peak mass is fixed along with the other free parame-
ters of the detector resolution function by a fit to the narrow-width MC samples of the
Bulk-Graviton model. The signal hypothesis for all available models is tested using a
χ2-test between the signal shape function and the histograms in the mV V spectrum filled
with events passing the full analysis selections. A confidence level of α = 0.05 is used to
determine if the probability density function defined by the shape hypothesis has to be
rejected. The results of the χ2-tests can be found in appendix D.

In appendix C the mV V histograms derived from simulation and their corresponding
signal shape functions are plotted for different masses, widths and theory models and for
both final states. The histograms are filled from reconstructed MC events passing the
complete analysis selections, as described in section 5.3. It can be seen that the shape
description works well for small masses- except for shifts of the mean value, which are
considered in 6.4.2, but breaks down for large resonance masses and widths. A closer
examination of this issue can be found in section 6.4.3.

Consequently the signal shapes are modelled as follows for the limit calculation:

• mV V ≤ 2000 GeV:
For the semileptonic final states the original signal hypothesis S provides an ad-
equate description and is therefore used in the limit setting procedure. For the
all-hadronic channel a shift in the mean value is introduced as described in section
6.4.2.
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Figure 6.9.: Shape test for the all-hadronic channel and a resonance mass of mV V =
1200 GeV for various signal models. The black dots are reconstructed events
from MC, the blue curve is the resolution function convoluted with a Breit-
Wigner. The red curve is the same functional shape with the mean value
shifted as in the limit setting procedure. The MC samples used here have a
relative width of Γ/mV V = 0.3.

• 2000 ≤ mV V ≤ 2800 GeV:
The shapes are accurately described by a convolution between the detector resolu-
tion function and a relativistic Breit-Wigner function for all final states considered.

• MX > 2800 GeV:
The convolution of Snarrow and the BW function is multiplied by a Chebyshev
polynomial of degree one, with the extra degree of freedom is fixed as described in
section 6.4.3.

6.4.2. Peak Mass Shift for mX < 2000 GeV

As can be seen in figure 6.9 and appendix C for small masses the peak mass values for
the signal hypothesis are shifted with respect to the prediction from simulation. This
shift also exists in the semileptonic channel, but is small enough to be fully contained
inside uncertainties assigned to the peak mass value from the fit of the detector resolution
function. In the all-hadronic channel, however, a shift for resonance masses smaller than
2000 GeV is introduced. These shifts in the peak value of the mV V distribution originate
in the residual pT dependence of the jet energy scale and resolution.

The necessary shift is determined through fits for all available masses, widths and theory
models. For use in the limit calculation the resulting shifts are interpolated linearly
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between mass points for all widths, with the shift in the narrow-width case being zero.
Between those resulting points a second linear interpolation between the widths is used
to get the final value for the shifted mass peak mS . This is done for all theory models
for which simulated samples are available. The value for the shift mS is then averaged
over all signal models, taking the difference between maximum and minimum of the
observed shifts for all theory models as additional uncertainty on the parameter. The
resulting uncertainty is much larger than those originating from the fit. The signal
function resulting from this procedure (red curve) can be seen in figure 6.9 overlaid over
the histograms filled with reconstructed events from the simulation for different signal
models. As can be seen the resulting shift shows good agreement for all used theory
models, and it is a clear improvement from the previous signal shape without mean shift
(blue curve).

6.4.3. PDF Correction for mX ≥ 2800 GeV

For high masses and widths the signal shapes display an excess of contributions from
small masses with respect to the expectation from the signal shape modelling, as can
be seen in figure 6.10 and in appendix C. The reason for this behaviour is that those
resonances are spread over a large spectrum of energies and thus partons with different
energy fractions are involved in the production. This leads to an evaluation of the particle
density function of the partons over a larger range in the energy spectrum as opposed
to a narrow resonance. Due to the increase of the value of PDFs for smaller momentum
fractions an increase in contributions from smaller resonance mass values can be seen.
This effect of the PDFs on the shape of the resonance is significant for large masses
and widths while it plays no role for resonance masses smaller than 2 TeV. In the case
of Drell-Yan processes this effect can be corrected for the whole range of the analysis
by introducing an extra degree of freedom in the form of a Chebyshev polynomial of
degree one, see figure 6.10. In the case of gluon fusion processes the effect is stronger and
cannot be corrected for all masses and widths in the range of the analysis. In figure 6.11
the difference in signal shapes between quark-anti-quark annihilation and gluon fusion
production can be seen. Since for some simulated samples for large resonance masses
the introduction of the extra degree of freedom for gluon fusion does not lead to a valid
description of the expected signal shape, a shaded area is introduced in the final limits
to indicate the region where the limits are not valid for gluon fusion produced models.

The determination of the value of the new fit parameter a0 for the Chebyshev polynomial
is analogous to the method of determining the mean shift described in section 6.4.2, with
two exceptions. For the fits and interpolation only the models with more than 80%
Drell-Yan production are used, effectively excluding the Radion model. This is a sensible
choice since the introduction of the Chebyshev polynomial is not enough to fully describe
the shapes extracted from simulation in this case. The second difference is that instead of
introducing a mass cut from which the new signal model is used, this mass is determined
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Figure 6.10.: Shape test for a mass mV V = 4 TeV and a relative width of Γ/mV V = 0.3
for different theory models. The reconstructed events from MC prediction
are drawn as black dots, the blue line is the signal shape model consisting
of the narrow shape convoluted with a Breit-Wigner function. The red line
is the signal shape model multiplied with a Chebyshev polynomial of degree
one that is fitted to the histogram. A Chebyshev polynomial was chosen
because of its well defined normalisation properties. The interval in mV V

is chosen to contain about 90% of signal events. In the top are the shape
tests for the electron channel, while the shape tests for the muon channel
are in the middle. On the bottom are the shape tests for the all-hadronic
analysis.
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Figure 6.11.: The normalised generated mV V spectra for an RS1-Graviton model, sep-
arated based on the production mechanism. The red histogram contains
events from gluon fusion (GF) and the blue one from Drell-Yan (DY) pro-
duction. On the left a simulated sample with a resonance mass of 3 TeV
and a relative width Γ/mV V of 0.3 is considered while the right plot is made
with a simulated sample of a resonance mass of 4 TeV and a relative width
of Γ/mV V of 0.3.

for each width dynamically by using the extra degree of freedom until the interpolation
leads to a change in sign of a0, thus taking corrections for smaller resonance masses into
account for which no samples where simulated. This leads to the use of the extra degree
of freedom to a mass of 2800 GeV for the largest widths of 0.3.

The signal function resulting from this procedure (red curve) can be seen in figure 6.12
overlaid over the histograms filled with simulated events passing all analysis selections
for different signal models, produced widths and resonance masses. Except for masses
above 4000 GeV and a mass of 3000 GeV with a width larger than 0.3 in the Radion
model the resulting agreement between MC prediction and signal shape hypothesis is
acceptable, as can be seen in the tables shown in appendix D.

6.5. Calculation of Model-Independent Limits

The limits are calculated with the asymptotic CLs method (see chapter 4) with the
Combine framework [112], using all systematic uncertainties of the main analysis and
adding the uncertainties calculated in section 6.3, and listed in table 6.4 and table 6.5, as
efficiency uncertainties on the event yield. The limits are calculated for a 2D grid spanned
by the signal widths and masses. The calculation is done for relative widths between the
narrow-width approximation and 0.3 in regular intervals of 0.05 and for masses between
800 (1200) GeV and 4500 (4000) GeV in intervals of 100 GeV for the semileptonic (all-
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Figure 6.12.: The signal shape and MC prediction of the mV V spectrum plotted for dif-
ferent models. The black dots are reconstructed MC events and the red
curve is the final signal function. The interval in mV V is chosen to contain
90% of signal events. As an example the comparison is given for a mass
point of mV V = 4 TeV and a relative width of Γ/mV V = 0.3 for the muon
channel of the semileptonic analysis.
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hadronic) channel. The signal shapes are modelled as described in section 6.4 with a
shaded area added to indicate the region in which the limits cannot be applied to models
with gluon fusion as primary production mechanism. To calculate limits for resonances
with a mass different from those produced as Monte-Carlo samples, the signal shapes
are interpolated. The two final states use different procedures for the interpolation and
the limit setting procedure; see section 6.5.1 for the semileptonic channel and 6.5.2 for
the hadronic channel. The limits are given on the number of signal events to avoid the
model-dependence on the cross sections.

The limits given in figures 6.14 and 6.15 have the following meaning:

The expected limits represent the numbers of signal events necessary in order to reject an
exotic signal model with a 95% level of confidence. The expected limits are determined
by the power of the analysis to distinguish between background and signal events and
therefore also by the uncertainty on the numbers of background and expected signal
events. These limits are determined without using CMS measurements of the signal
region.

The observed limits represent the number of signal events that are necessary in order to
reject an exotic signal model with a confidence level of 95%, given the actual measured
data. The fluctuations in the exclusion power are due to statistical fluctuations in data.
For very high masses, where the background estimation is almost zero, the exclusion
power is essentially limited by Poisson statistics of the data. The tables in appendix E
contain the results of the limit calculation.

6.5.1. Results for the Semileptonic Channel

The semileptonic channel uses an unbinned shape analysis with a fixed background esti-
mation, see section 5.5. For the limit setting procedure the signal shapes are calculated
for arbitrary mass points by using a linear interpolation between the fit values of the
double-sided Crystal-Ball function for different simulated mass points. For broad signal
models the shape modelling described in section 6.4 is used together with the interpola-
tion between mass points for narrow resonances. A shape test of this procedure is shown
in figure 6.13. The normalisation of the signal shapes is fixed to the expected event yields
of the narrow-width Bulk-Graviton model, the signal yield for the limit calculation is ex-
tracted from this as integral over the shape function over the range mV V ∈ [700, 5000],
thus taking into account that more events fall out of the analysis acceptance if the width
of the signal increases. The signal efficiency uncertainties found in table 6.4 are added
as uncertainties on the signal yield.

The expected and observed limits for the semileptonic final states are shown in figure 6.14.
The corresponding values for Nexpected can also be looked up in the tables in appendix
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Figure 6.13.: A shape test for the interpolation procedure of the semileptonic analysis.
The top left figure shows the signal shapes normalised to unity for different
masses and a fixed width of Γ/mV V = 0.21. The top right plot shows
the same for the narrow-width approximation. On the bottom left are the
signal shapes for a fixed mass of mV V = 2200 GeV and different widths
and on the bottom right are the shapes for mV V = 4000 GeV and different
widths featuring the interpolation of the extra degree of freedom. As an
example the figures are given for the muon channel only. The functional
forms of the detector resolution were extracted from simulated samples for
the mass points of mV V = 800, 1200 and 4000 GeV.
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Figure 6.14.: The expected and observed exclusion limits on the number of events for
the semileptonic channel, as a function of resonance mass and the relative
width of the resonance. On the left hand side are the expected limits, and
on the right side are the observed limits. At the top are the limits for the
electron channel, in the middle are the limits for the muon channel and on
the bottom are the limits for both lepton channels combined. The shaded
area indicates the region where the shape hypothesis breaks down for gluon
fusion processes.
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E. The observed limits are contained within the 1 σ uncertainty band of the expected
limits, see figure E.1 in appendix E.

6.5.2. Results for the All-Hadronic Channel

For the shape interpolation in the all-hadronic channel a different method is used. Instead
of interpolating the fit values for the narrow-shape function, the analysis uses histograms
with 1 GeV bin width of the mV V spectrum derived from the MC samples. Histograms
for each mass point are calculated bin per bin using a cubic spline interpolation between
the bin contents for each produced mass point. The resulting histograms are used to fit
the narrow-signal function directly. The normalisation and signal yield are fixed in the
same way as in the semileptonic case. The signal efficiency uncertainties found in table
6.5 are added as uncertainties on the signal yield.

The expected and observed limits for the all-hadronic final states are in figure 6.15.
The corresponding values for the number of signal events Nexpected/observed can be looked
up in the tables in appendix E. Since the all-hadronic analysis does not perform the
background estimation through a fit in a mass sideband, the background function is
fitted simultaneously with the signal function. In the region between 1400 GeV ≤ mV V

≤ 1800 GeV this leads to a worsening of the exclusion limits for broad resonances due to
the possibility that a local decrease in the background function can be compensated by
events from a broad signal. The observed limits are contained within the 1 σ uncertainty
of the expected limits, with the exception of one point in the mass-width plane, that is,
however, well within the 2 σ uncertainty band. This can be seen in figure E.1 in appendix
E.

6.6. Instructions for the Usage of the Model-Independent
Results

To compare a specific model to the model-independent limits given in section 6.5 the
following instructions should be followed step by step. First MC samples of the theory
model in question have to be generated. It is important to note that it is not necessary
to start a full production, since for this framework only the generator kinematics of the
produced particles are used. Thus it suffices to produce MC samples on matrix element
level only. In the semileptonic channel the τ decay to leptons has to be included in
the production in order to correctly reproduce the analysis acceptance. It is possible
to produce events with leptonically decaying tauons only as long as these events are
weighted by the τ branching ratio to leptons. Using the following procedure these MC
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Figure 6.15.: The 95%CL exclusion limits on the number of events for the production of
an exotic diboson resonance, in the all-hadronic channel, as a function of
the exotic resonance mass. On the left are the expected limits and on the
right the observed limits. The shaded area indicates the region where the
shape hypothesis breaks down for gluon fusion processes.

samples are used to extract the product of the acceptance and reconstruction efficiency
of the analyses for a generic signal model.

1. The signal events need to be preselected using the generator level selections in
table 6.1 or 6.2 depending on whether the semileptonic or hadronic final state is
considered.

2. The events need to be reweighted with the efficiencies given in table A.1, A.2 and
A.3 in the appendix in the case of a semileptonic decay.

• A reweighting according to the identification and reconstruction efficiency of
a leptonic W boson with the given kinematics should be applied, using table
A.1 or A.2.

• A second reweighting of the event according to the identification and recon-
struction efficiency of a hadronic W or Z boson using table A.3 or A.4 should
be applied. If the hadronic vector boson is transversally polarised the effi-
ciency should be multiplied by a correction factor that is listed in table 6.3.

3. In case of a hadronic decay the events have to be reweighted according to the
efficiencies in table A.5.

4. The efficiencies for the second lepton veto and b-tagged jet veto should be applied
for the semileptonic final state. The exact values for these vetoes are listed in table
6.3. In case of the all-hadronic channel a factor of 98% should be applied to account
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6.7. Limits on an RS1-Graviton Model

for the selection efficiency on ∆ηjj .

5. The resulting sum of weights divided by the number of signal events generated
provides a reasonable approximation of the product of the total signal efficiency
and acceptance for the given model.

The code written for this thesis, which can be found in https://github.com/daniSchaefer/
lheToTree, can be used to apply the procedure described above to an LHE [120] event
file of a generic model. Once ε, the acceptance multiplied by the efficiency for the model,
is calculated the number of expected signal events N can be compared to the limits given
in section 6.5 for a particular resonance mass and width. The number of expected signal
events is calculated as

N = σprod(
√
s = 13 TeV)BR(X→V V )BR(V V→final state)Lε , (6.9)

where L denotes the integrated luminosity, σprod(
√
s = 13 TeV) is the production cross

section for the production of a resonance X at a center of mass energy of 13 TeV at the
LHC, BR(X→V V ) is the branching ratio of the exotic resonance to two vector bosons,
and BR(V V→final state) is the branching ratio of the produced vector bosons to the final
state of the analyses.

6.7. Limits on an RS1-Graviton Model

The exclusion bounds for an RS1-Graviton model are calculated within the framework
this thesis provides as a proof of concept. The RS1-Graviton model is chosen because
of its large production cross section at the LHC, see section 1.2. This model is usually
not used in dedicated analyses in the diboson channel since the diphoton channel has a
larger sensitivity for this model, thus the exclusion region provided here is the first for
the diboson channel.

For this test a series of Monte Carlo samples are produced with Madgraph5 [100]. The τ
decay for the semileptonic channel is included using the package TauDecay [103]. Only
decays of the τ to the semileptonic final states were explicitly modelled. To take the decay
modes into account that are not used by the analysis, each event with a W decaying to
τν is weighted according to the branching ratio of τ to an electron and neutrinos or
to a muon and neutrinos. Starting from the LHE event format the steps to calculate
the analysis efficiency described in section 6.6 are implemented in the code found in
https://github.com/daniSchaefer/lheToTree. This code has been provided as part
of this thesis and can be used to reweight samples with WW and WZ as intermediate
states for the semileptonic channel, and WW, WZ and ZZ intermediate states for the
all-hadronic channel.
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6.7. Limits on an RS1-Graviton Model

For each sample the acceptance×efficiency (ε) is extracted for the usage in the calculation
of the expected signal event yield. The number of signal events N within the analyses
acceptance and reconstruction efficiencies is then calculated as

N = σproduction · L · ε · BRG → WW/ZZ · BRfinal state . (6.10)

Here L is the integrated luminosity, σproduction is the production cross section at the LHC
and a center of mass energy of 13 TeV, BRG to WW/ZZ is the branching ratio of the exotic
particle to the diboson intermediate state and BRfinal state is the branching ratio of the
produced bosons to the final state of the analysis. The theory cross section is adapted
to different values of the width and therefore the coupling k̃ using

σ(mG, k̃) =

(
k̃

0.1

)2

· σ(mG, 0.1) . (6.11)

The values for σ(mG, 0.1) are found in reference [121], together with the branching ratio
of an RS1-Graviton to two vector bosons. The branching ratios of the vector bosons into
the final state particles of the analysis are calculated as

BR =


(BRW to eν + BRW to µν

+BRW to τν · BRτ to lνν) · 2 · BRG to WW , for WW to lvqq
BRG to WW · (BRW to qq)2 , for WW to qqqq
BRG to ZZ · (BRZ to qq)2 , for ZZ to qqqq

, (6.12)

using the branching ratios in reference [118]. The analysis acceptance×efficiency ε is cal-
culated separately for the all-hadronic decay channel and the semileptonic decay channel,
as well as for the intermediate states WW and ZZ for the all-hadronic decay channel.

Figure 6.16 shows the observed 95% CLs limits on the number of observable events
overlaid with an exclusion curve (light blue), which marks the crossing point of the
observed CLs limit with the theory prediction. The exclusion power of the two considered
final states is similar, excluding RS1-Graviton resonances with masses smaller than ≈ 2
TeV for coupling strengths k̃ between 0.07 and 0.4. A dedicated analysis done specifically
for the RS1-Graviton model could reach better exclusion bounds, but this framework is
able to produce limits over a wide range of coupling strengths. Dedicated RS1-Graviton
analyses are not usually done for this decay channel since the decay to two photons is
more sensitive. Since with the framework presented in this thesis it is possible to find
exclusion regions for arbitrary theory models, the RS1-Graviton model is suitable for this
proof of concept, since the exclusion region calculated in this model-independent way is
the first given in the diboson channel for this model, but the success of the exclusion
region can still be compared to bounds given by dedicated analysis. Exclusion bounds
for an RS1-Graviton model in the diphoton decay channel can be found for example in
references [2] and [3]. Compared to these bounds, which were calculated in the diphoton
channel and for a center-of-mass energy of 13 TeV and 8 TeV combined, the limits on an
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Figure 6.16.: Exclusion bounds for the RS1-Graviton model in both the the all-hadronic
channel (left) and semileptonic decay channel (right). The green lines in-
dicate the widths and masses corresponding to a certain coupling k̃. The
parameter space to the left of the blue line, which marks the crossing point
of the theory prediction with the observed limits, is excluded.

RS1-Graviton model given in this thesis are about a factor of 2 worse. This is a good
performance given that the framework used for the calculation of these exclusion bounds
is especially designed to be model-independent and the diboson channel is less sensitive
to this particular theory model.
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7. Conclusion

There are a multitude of theory models predicting diboson resonances. Since the pre-
dictions for kinematic distributions of final state particles, cross sections and branching
ratios vary wildly between different models, it is impossible for experimentalists to give
conclusive bounds for all of them. In practice a few selected theory models are used for
most BSM analysis, which are not chosen by their physical merit alone, but also consid-
ering reasons like availability of MC generators. Thus more sophisticated or less known
models are often disregarded by dedicated analyses of experimental data searching for
BSM physics.

The goal of this thesis is to bridge the gap between theorists and experimentalists by
providing a framework and model-independent limits for diboson resonances, that can
be used to set limits on arbitrary theory models. This thesis is an expansion of two
existing CMS diboson searches, which utilise jet substructure techniques to search for
heavy diboson resonances in the mass range from 800 to 4000 TeV, with data taken with
the CMS detector at

√
s = 13 TeV. The considered analyses are optimised for the search

of resonances arising in the Bulk-Graviton or HVT models. Two different final states
are considered, the semileptonic channel, where the resonance decays to one W boson,
which in turn decays leptonically and one vector boson that decays hadronically. The
second channel considered is the all hadronic channel, where both vector bosons decay
hadronically.

Based on references [113] and [114] the model-independent limits were calculated for a
2D grid of different values for the mass mX and relative decay width Γ/mX of the exotic
resonance. In order to achieve model-independence the limits are given on the number
of signal events, the low purity category of the analyses was dropped, and the W and Z
mass windows combined into one category. The limit calculation also takes an additional
set of systematic uncertainties on the signal yields into account, which are based on
differences in the reconstruction and identification efficiencies of the two vector bosons
between different theory models.

In figure 7 the results for the two-dimensional model-independent limits are given. To-
gether with the upper limits on the number of signal events, tables containing the re-
construction and identification efficiencies for vector bosons in the kinematic acceptance
of the analysis are provided. Following the instructions detailed in 6.1 or using the code
and instructions under the address https://github.com/daniSchaefer/lheToTree it
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Figure 7.1.: Model-independent 95% CL limits on the number of observed signal events.
The limits are given as a function of the resonance mass mX and the relative
width of the resonance Γ/mX . On the left are the limits for the semileptonic
final state and on the right are the limits for the all hadronic final state. The
shaded area denotes the kinematic regime where the limit is valid only for
quark-anti-quark annihilation processes.

is possible to estimate the number of events for a generic signal model, that would be
expected to be detected in CMS with the collected integrated luminosity and to compare
it with the upper limit on the number of signal events.

As a proof of concept, limits on an RS1-Graviton model are calculated using the provided
framework. The limits can be found in 6.16 and provide an exclusion region for resonance
masses smaller than 2 TeV and couplings k̃ larger than 0.07 and 0.3 in both channels. The
exclusion bounds provided by this model-independent framework are worse than those
from a dedicated analysis such as [3], however, the limits provided with this framework
are provided over a larger parameter space in coupling strengths.

To summarise: Model-independent limits on diboson resonances with a semileptonic or
hadronic final state were calculated and used to develop an ready-to-use framework for
the calculation of signal yields from arbitrary theoretical models. This enables model-
builders to directly obtain the phenomenological implications of their theories and can
therefore help to stimulate and improve scientific exchange between the theoretical and
experimental communities.
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A. Parametrised ID and Reconstruction
Efficiencies

The efficiencies contained in this section are calculated as described in section 6.3. For
the calculation of the efficiencies of the leptonically decaying W boson and of the hadron-
ically decaying W boson in the semileptonic channel a set of Bulk-Graviton samples is
used. The efficiency for a hadronically decaying Z boson in the semileptonic channel is
calculated using a set of W′ MC samples. For the all-hadronic channel MC samples of
a Radion decaying into two Z bosons are used for the calculation of the efficiencies for
a hadronically decaying Z boson. For the calculation of reconstruction efficiencies of a
hadronically decaying W boson a set of Bulk-Graviton MC samples is used. All MC
samples used in this calculation were generated in the narrow-width approximation.

Table A.1.: Reconstruction and identification efficiencies for W → µν and W →
τν → µννν as a function of the generated transverse momentum and
pseudorapidity.

pT [GeV] |η| range
0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 1-1.25 1.25-1.5 1.5-2.0 2-2.5

200-250 0.82 0.79 0.79 0.80 0.85 0.82 0.81 0.82 0.78
250-300 0.89 0.90 0.88 0.86 0.90 0.86 0.91 0.86 0.91
300-400 0.90 0.89 0.90 0.90 0.89 0.90 0.89 0.90 0.87
400-500 0.88 0.89 0.91 0.90 0.88 0.89 0.90 0.89 0.89
500-600 0.90 0.90 0.92 0.90 0.88 0.89 0.91 0.87 0.88
600-700 0.91 0.90 0.92 0.91 0.88 0.90 0.92 0.88 0.87
700-800 0.91 0.89 0.92 0.91 0.89 0.89 0.91 0.90 0.82
800-1000 0.92 0.89 0.92 0.91 0.88 0.88 0.90 0.88 0.94
1000-1200 0.91 0.89 0.92 0.91 0.89 0.88 0.89 0.85 0.75
1200-1500 0.91 0.88 0.92 0.91 0.87 0.87 0.89 0.87 -
1500-2000 0.90 0.87 0.92 0.91 0.86 0.88 0.87 - -
2000-2500 0.91 0.86 0.91 0.90 0.83 0.82 - - -
2500-3000 0.88 0.79 0.90 0.82 - - - - -
3000-4000 0.78 0.88 0.80 1.00 - - - - -
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Table A.2.: Reconstruction and identification efficiencies for W → eν and W →
τν → eννν as a function of the generated transverse momentum and
pseudorapidity.

pT [GeV] |η| range
0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 1-1.25 1.25-1.5 1.5-2.0 2-2.5

200-250 0.78 0.75 0.82 0.81 0.79 0.80 0.71 0.79 0.68
250-300 0.79 0.79 0.77 0.80 0.78 0.82 0.79 0.73 0.78
300-400 0.82 0.82 0.82 0.83 0.82 0.82 0.80 0.81 0.80
400-500 0.82 0.82 0.81 0.84 0.81 0.81 0.82 0.82 0.80
500-600 0.83 0.83 0.84 0.84 0.83 0.81 0.82 0.84 0.85
600-700 0.83 0.84 0.84 0.83 0.85 0.84 0.82 0.84 0.88
700-800 0.84 0.83 0.84 0.85 0.84 0.84 0.82 0.82 0.94
800-1000 0.83 0.84 0.84 0.84 0.85 0.86 0.82 0.85 0.78
1000-1200 0.83 0.84 0.84 0.83 0.84 0.85 0.84 0.86 0.33
1200-1500 0.84 0.84 0.84 0.84 0.85 0.84 0.85 0.81 -
1500-2000 0.83 0.85 0.84 0.84 0.86 0.84 0.86 0.95 -
2000-2500 0.83 0.85 0.84 0.85 0.84 0.79 - - -
2500-3000 0.78 0.82 0.78 0.69 - - - - -
3000-4000 0.80 0.81 0.67 1.00 - - - - -

Table A.3.: Reconstruction and identification efficiency of W → qq̄′ using the selections
of the semileptonic analysis.

pT [GeV] |η| range
0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 1.0-1.25 1.25-1.5 1.5-2.0 2.0-2.5

200-250 0.27 0.34 0.23 0.25 0.35 0.32 0.31 0.30 0.32
250-300 0.55 0.50 0.55 0.51 0.54 0.58 0.52 0.56 0.54
300-400 0.74 0.74 0.75 0.73 0.73 0.69 0.69 0.67 0.63
400-500 0.69 0.68 0.70 0.69 0.68 0.69 0.65 0.65 0.71
500-600 0.72 0.72 0.74 0.73 0.74 0.70 0.66 0.70 0.75
600-700 0.74 0.75 0.75 0.74 0.73 0.72 0.71 0.73 0.78
700-800 0.74 0.75 0.74 0.75 0.73 0.72 0.68 0.69 0.66
800-1000 0.74 0.75 0.75 0.75 0.73 0.71 0.66 0.66 0.58
1000-1200 0.70 0.71 0.72 0.72 0.69 0.67 0.59 0.63 0.40
1200-1500 0.69 0.70 0.70 0.70 0.68 0.65 0.54 0.59 -
1500-2000 0.68 0.69 0.68 0.68 0.67 0.65 0.47 - -
2000-2500 0.69 0.69 0.69 0.69 0.67 0.69 - - -
2500-3000 0.74 0.66 0.73 0.60 - - - - -
3000-4000 0.74 0.74 - - - - - - -
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Table A.4.: Reconstruction and identification efficiency of Z → qq̄ using the selections of
the semileptonic analysis.

pT [GeV] |η| range
0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1 1.0-1.25 1.25-1.5 1.5-2 2.0-2.5

200-250 0.26 0.48 0.27 0.37 0.33 0.41 0.37 0.36 0.28
250-300 0.64 0.56 0.62 0.58 0.60 0.57 0.56 0.61 0.53
300-400 0.76 0.75 0.77 0.75 0.74 0.72 0.71 0.73 0.67
400-500 0.75 0.75 0.76 0.74 0.76 0.77 0.73 0.74 0.71
500-600 0.80 0.81 0.82 0.80 0.78 0.79 0.76 0.78 0.73
600-700 0.81 0.83 0.80 0.81 0.82 0.80 0.76 0.77 0.72
700-800 0.81 0.80 0.79 0.79 0.80 0.78 0.74 0.75 0.77
800-1000 0.81 0.81 0.81 0.81 0.79 0.77 0.72 0.74 0.72
1000-1200 0.78 0.78 0.79 0.78 0.77 0.75 0.66 0.71 0.77
1200-1500 0.77 0.77 0.76 0.77 0.75 0.73 0.60 0.65 0.66
1500-2000 0.74 0.74 0.73 0.74 0.72 0.67 0.52 0.57 -
2000-2500 0.72 0.73 0.73 0.73 0.69 0.66 0.53 - -
2500-3000 0.80 0.85 0.69 0.76 - - - - -
3000-4000 1.0 0.50 1.0 - - - - - -

Table A.5.: Reconstruction and identification efficiency of W → qq̄ using the selections
of the all-hadronic analysis.

pT [GeV] |η| range
0-0.2 0.2-0.3 0.3-0.4 0.4-0.6 0.6-0.8 0.8-1 1-1.25 1.2-1.5 1.5-2 2-2.4

200-250 - - 0.48 - 0.32 0.48 0.32 0.16 0.48 -
250-300 0.24 0.32 0.19 0.24 0.27 0.48 0.32 0.24 0.63 -
300-350 0.23 0.25 0.32 0.42 0.34 0.31 0.39 0.26 0.38 0.95
350-400 0.28 0.34 0.39 0.33 0.36 0.38 0.37 0.39 0.29 0.32
400-500 0.41 0.41 0.46 0.45 0.43 0.45 0.38 0.38 0.38 0.40
500-600 0.56 0.54 0.54 0.54 0.53 0.50 0.46 0.39 0.43 0.46
600-700 0.56 0.56 0.55 0.54 0.54 0.50 0.46 0.37 0.44 0.34
700-800 0.54 0.53 0.55 0.53 0.52 0.50 0.45 0.35 0.35 0.48
800-1000 0.53 0.54 0.52 0.53 0.50 0.48 0.41 0.30 0.31 0.95
1000-1200 0.48 0.49 0.47 0.47 0.45 0.43 0.37 0.19 0.35 -
1200-1500 0.46 0.45 0.45 0.45 0.43 0.39 0.31 0.17 0.29 -
1500-2000 0.44 0.45 0.42 0.43 0.39 0.35 0.31 0.14 0.19 -
2000-2500 0.44 0.43 0.45 0.41 0.39 0.32 0.27 - - -
2500-3000 0.41 0.41 0.43 0.30 0.27 0.17 - - - -
3000-4000 0.39 0.29 0.48 0.17 - - - - - -
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A. Parametrised ID and Reconstruction Efficiencies

Table A.6.: Reconstruction and identification efficiency of Z → qq̄ using the selections of
the all-hadronic analysis.

pT [GeV] |η| range
0-0.2 0.2-0.3 0.3-0.4 0.4-0.6 0.6-0.8 0.8-1 1-1.25 1.2-1.5 1.5-2 2-2.4

200-250 - - 0.24 - - 0.48 - 0.48 - -
250-300 0.29 - 0.32 0.24 0.17 - 0.32 0.63 - -
300-350 0.44 0.15 0.32 0.42 0.43 0.20 0.39 0.12 0.42 -
350-400 0.36 0.38 0.45 0.45 0.40 0.39 0.24 0.33 0.35 0.48
400-500 0.48 0.44 0.48 0.45 0.43 0.49 0.39 0.36 0.43 0.56
500-600 0.56 0.57 0.58 0.57 0.56 0.52 0.50 0.42 0.48 0.63
600-700 0.60 0.58 0.59 0.57 0.56 0.53 0.47 0.43 0.46 0.51
700-800 0.57 0.59 0.58 0.57 0.57 0.55 0.48 0.39 0.39 0.71
800-1000 0.57 0.58 0.56 0.57 0.54 0.50 0.46 0.36 0.44 0.95
1000-1200 0.53 0.50 0.54 0.50 0.50 0.46 0.41 0.23 0.38 0.95
1200-1500 0.50 0.49 0.50 0.49 0.48 0.42 0.37 0.24 0.15 -
1500-2000 0.47 0.46 0.46 0.45 0.44 0.40 0.32 0.23 - -
2000-2500 0.45 0.46 0.46 0.42 0.41 0.40 0.39 0.32 - -
2500-3000 0.41 0.34 0.45 0.44 0.36 0.16 - - - -
3000-4000 0.42 0.48 - - - - - - - -
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B. Efficiency Tests

In order to test the method of efficiency parametrisation that is used for the main limit
setting procedure, the excact efficiency and the one using the parametrisation method
are calculated for different theory models and resonance masses and widths. “Efficiency”
in this section always means the product of the reconstruction and ID efficiency and the
acceptance. The relative difference between the two methods is calculated as

∆ε =
εexact − εparam

εparam
. (B.1)

The uncertainties on the signal yield are derived from these tests by calculating

max

(
εexact − εparam

εparam

)∣∣∣∣
theory models

(B.2)

and rounding up towards the nearest multiple of 5.

Table B.1.: Comparison between the exact efficiency×acceptance obtained using the full
analysis selection on reconstructed events and the efficiency×acceptance ob-
tained using the reweighting procedure. In this self-consistency test the pro-
cedure is used on the same narrow width Bulk-Graviton MC-samples used to
calculate the efficiency tables.

X→WW→ eνqq̄′ X→ WW→ µνqq̄′

Mx εexact εparam ∆ε (in %) εexact εparam ∆ε (in %)
800 0.129 0.110 17.2 0.2212 0.1997 10.8
1200 0.1895 0.1792 5.8 0.2663 0.2572 3.5
1400 0.2035 0.1959 3.9 0.2685 0.2667 0.7
1800 0.2212 0.2176 1.6 0.2723 0.2764 -1.5
2000 0.2257 0.2218 1.8 0.2750 0.2784 -1.2
2500 0.2317 0.2281 1.6 0.2715 0.2722 -0.3
3000 0.2300 0.2294 0.3 0.2631 0.2666 -1.3
3500 0.2381 0.2335 1.9 0.2573 0.2637 -2.4
4500 0.2311 0.2339 -1.2 0.2557 0.2684 -4.7
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B. Efficiency Tests

Table B.2.: Comparison between the exact efficiency×acceptance obtained using the full
analysis selection on reconstructed events and the efficiency×acceptance ob-
tained using the reweighting procedure. The procedure is used on a set of
narrow width W′ samples.

W′ →WZ→ eνqq̄′ W′ → WZ→ µνqq̄′

Mx εexact εparam ∆ε (in %) εexact εparam ∆ε (in %)
800 0.129 0.117 10.7 0.2216 0.2159 2.6
1200 0.2204 0.2010 9.7 0.3000 0.2872 4.5
1400 0.2441 0.2235 9.2 0.3193 0.3101 3.0
1800 0.2705 0.2521 7.3 0.3298 0.3218 2.5
2000 0.2778 0.2613 6.3 0.3284 0.3244 1.2
2500 0.2837 0.2663 6.5 0.3337 0.3274 1.9
3000 0.2860 0.2705 5.7 0.3212 0.3168 1.4
3500 0.2865 0.2689 6.6 0.3209 0.3138 2.3
4500 0.2765 0.2631 5.1 0.3026 0.3051 -0.8

Table B.3.: Comparison between the exact efficiency×acceptance obtained using the full
analysis selection on reconstructed events and the efficiency×acceptance ob-
tained using the reweighting procedure. The procedure is used on narrow
width Z′ samples.

Z′ →WW→ eνqq̄′ Z′ → WW→ µνqq̄′

Mx εexact εparam ∆ε (in %) εexact εparam ∆ε (in %)
800 0.130 0.100 29.3 0.2211 0.1877 17.8
1200 0.1945 0.1671 16.4 0.2737 0.2450 11.7
1400 0.2145 0.1876 14.3 0.2798 0.2542 10.1
1800 0.2351 0.2103 11.8 0.2853 0.2694 5.9
2000 0.2378 0.2145 10.9 0.2882 0.2720 6.0
2500 0.2424 0.2182 11.1 0.2836 0.2664 6.5
3000 0.2423 0.2235 8.4 0.2784 0.2650 5.0
3500 0.2437 0.2229 9.3 0.2742 0.2644 3.7
4500 0.2431 0.2304 5.5 0.2660 0.2617 1.6
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B. Efficiency Tests

Table B.4.: Consistency test using the tables in appendix A on W′ MC samples of differ-
ent masses and widths.

Γ/mX = 0.1
W′ →WZ→ eνqq̄′ W′ → WZ→ µνqq̄′

Mx εexact εparam ∆ε (in %) εexact εparam ∆ε (in %)
800 0.139 0.124 12.2 0.2134 0.2091 2.1
1200 0.2195 0.2016 8.9 0.2957 0.2834 4.4
2000 0.2723 0.2572 5.9 0.3308 0.3258 1.5
3000 0.2911 0.2712 7.3 0.3247 0.3172 2.4
4000 0.2769 0.2613 5.9 0.3107 0.3082 0.8

Γ/mX = 0.2
W′ →WZ→ eνqq̄′ W′ → WZ→ µνqq̄′

Mx εexact εparam ∆ε (in %) εexact εparam ∆ε (in %)
800 0.148 0.132 11.5 0.2279 0.2186 4.3
1200 0.2233 0.2072 7.8 0.3013 0.2903 3.8
2000 0.2752 0.2570 7.1 0.3275 0.3205 2.2
3000 0.2814 0.2655 6.0 0.3192 0.3143 1.6
4000 0.2778 0.2592 7.2 0.3027 0.3024 0.1

Γ/mX = 0.3
W′ →WZ→ eνqq̄′ W′ → WZ→ µνqq̄′

Mx εexact εparam ∆ε (in %) εexact εparam ∆ε (in %)
800 0.158 0.142 10.7 0.2379 0.2279 4.4
1200 0.2231 0.2085 7.0 0.3030 0.2907 4.3
2000 0.2728 0.2566 6.3 0.3264 0.3185 2.5
3000 0.2843 0.2641 7.6 0.3193 0.3122 2.3
4000 0.2720 0.2549 6.7 0.3047 0.2985 2.1
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B. Efficiency Tests

Table B.5.: Consistency test using the tables in appendix A on RS1-Graviton MC sam-
ples. The reconstruction efficiency for the hadronically decaying W boson is
corrected by a constant factor of 1.305 to take effects of W boson polarisation
into account.

Γ/mX = 0.1
X→WW→ eνqq̄′ X→ WW→ µνqq̄′

Mx εexact εparam ∆ε (in %) εexact εparam ∆ε (in %)
800 0.046 0.033 38.2 0.0908 0.0730 24.3
1200 0.0838 0.0695 20.5 0.1389 0.1200 15.7
2000 0.1200 0.1089 10.2 0.1673 0.1610 3.9
3000 0.1405 0.1303 7.8 0.1783 0.1748 2.0
4000 0.1467 0.1384 6.0 0.1740 0.1758 -1.0

Γ/mX = 0.2
X→WW→ eνqq̄′ X→ WW→ µνqq̄′

Mx εexact εparam ∆ε (in %) εexact εparam ∆ε (in %)
800 0.052 0.037 37.9 0.0931 0.0752 23.8
1200 0.0863 0.0716 20.5 0.1408 0.1225 14.9
2000 0.1210 0.1088 11.2 0.1642 0.1592 3.1
3000 0.1326 0.1272 4.2 0.1724 0.1680 2.6
4000 0.1394 0.1318 5.8 0.1676 0.1709 -1.9

Γ/mX = 0.3
X→WW→ eνqq̄′ X→ WW→ µνqq̄′

Mx εexact εparam ∆ε (in %) εexact εparam ∆ε (in %)
800 0.054 0.041 32.9 0.0984 0.0790 24.6
1200 0.0855 0.0719 19.0 0.1376 0.1221 12.7
2000 0.1219 0.1084 12.5 0.1649 0.1553 6.2
3000 0.1349 0.1253 7.7 0.1737 0.1701 2.1
4000 0.1385 0.1299 6.6 0.1727 0.1700 1.6
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B. Efficiency Tests

Table B.6.: Comparison between the exact efficiency×acceptance obtained using the full
analysis selection on reconstructed events and the efficiency×acceptance ob-
tained using the reweighting procedure. The procedure is used on broad Z′

samples.
Γ/mX = 0.1

Z′ →WW→ eνqq̄′ Z′ → WW→ µνqq̄′

Mx εexact εparam ∆ε (in %) εexact εparam ∆ε (in %)
800 0.135 0.108 25.7 0.2181 0.1860 17.2
1200 0.2011 0.1724 16.7 0.2727 0.2419 12.7
2000 0.2361 0.2139 10.4 0.2840 0.2676 6.1
3000 0.2436 0.2212 10.1 0.2779 0.2648 4.9
4000 0.2412 0.2221 8.6 0.2606 0.2558 1.8

Γ/mX = 0.2
Z′ →WW→ eνqq̄′ Z′ → WW→ µνqq̄′

Mx εexact εparam ∆ε (in %) εexact εparam ∆ε (in %)
800 0.143 0.116 23.8 0.2149 0.1865 15.2
1200 0.2029 0.1749 16.0 0.2685 0.2445 9.8
2000 0.2391 0.2133 12.1 0.2869 0.2664 7.7
3000 0.2414 0.2194 10.0 0.2751 0.2614 5.2
4000 0.2389 0.2184 9.4 0.2578 0.2525 2.1

Γ/mX = 0.3
Z′ →WW→ eνqq̄′ Z′ → WW→ µνqq̄′

Mx εexact εparam ∆ε (in %) εexact εparam ∆ε (in %)
800 0.149 0.123 21.0 0.2229 0.1939 14.9
1200 0.2034 0.1757 15.8 0.2714 0.2483 9.3
2000 0.2372 0.2128 11.4 0.2770 0.2634 5.1
3000 0.2388 0.2163 10.4 0.2739 0.2625 4.3
4000 0.2359 0.2138 10.3 0.2535 0.2495 1.6
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B. Efficiency Tests

Table B.7.: Comparison between the exact efficiency×acceptance obtained using the full
analysis selection on reconstructed events and the efficiency×acceptance ob-
tained using the reweighting procedure. The procedure is used on broad
Radion samples.

Γ/mX = 0.1
GRadion →WW→ eνqq̄′ GRadion → WW→ µνqq̄′

Mx εexact εparam ∆ε (in %) εexact εparam ∆ε (in %)
800 0.101 0.083 22.6 0.1713 0.1509 13.5
1200 0.1580 0.1441 9.6 0.2298 0.2151 6.8
2000 0.1990 0.1941 2.5 0.2470 0.2476 -0.2
3000 0.2058 0.2036 1.1 0.2481 0.2514 -1.3
4000 0.2109 0.2083 1.3 0.2391 0.2447 -2.3

Γ/mX = 0.2
GRadion →WW→ eνqq̄′ GRadion → WW→ µνqq̄′

Mx εexact εparam ∆ε (in %) εexact εparam ∆ε (in %)
800 0.102 0.084 20.5 0.1672 0.1459 14.6
1200 0.1586 0.1445 9.7 0.2255 0.2159 4.4
2000 0.1916 0.1882 1.8 0.2468 0.2449 0.8
3000 0.2062 0.2013 2.5 0.2454 0.2468 -0.6
4000 0.2033 0.2016 0.8 0.2375 0.2457 -3.4

Γ/mX = 0.3
GRadion →WW→ eνqq̄′ GRadion → WW→ µνqq̄′

Mx εexact εparam ∆ε (in %) εexact εparam ∆ε (in %)
800 0.106 0.087 21.2 0.1679 0.1473 14.0
1200 0.1572 0.1450 8.4 0.2250 0.2123 5.9
2000 0.1920 0.1857 3.4 0.2437 0.2446 -0.4
3000 0.2010 0.1991 0.9 0.2446 0.2467 -0.8
4000 0.2018 0.1972 2.4 0.2383 0.2424 -1.7
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B. Efficiency Tests

Table B.8.: Comparison between the exact efficiencies using the full analysis selection
and the efficiencies obtained using the reweighting procedure. The test was
performed on the narrow-width Bulk-Graviton sample for the all-hadronic
analysis.

X→WW→ qq̄′qq̄′

Mx εexact εparam ∆ε (in %)
1200 0.271 0.235 15.3
1400 0.2597 0.2454 5.9
1800 0.2293 0.2329 -1.5
2000 0.2255 0.2254 0.1
2500 0.1965 0.1893 3.8
3000 0.1768 0.1781 -0.7
3500 0.1702 0.1699 0.2
4000 0.1672 0.1688 -0.9
4500 0.1603 0.1668 -3.9
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B. Efficiency Tests

Table B.9.: Comparison between the exact efficiencies using the full analysis selection and
the efficiencies obtained using the reweighting procedure on a set of broad
Radion samples with two W bosons as intermediate state.

Γ/mX = 0.1
GRadion →WW→ qq̄′qq̄′

Mx εexact εparam ∆ε (in %)
1200 0.1711 0.1465 16.8
2000 0.1507 0.1482 1.6
3000 0.1214 0.1212 0.2
4000 0.1178 0.1160 1.6

Γ/mX = 0.2
GRadion →WW→ qq̄′qq̄′

Mx εexact εparam ∆ε (in %)
1200 0.1647 0.1370 20.2
2000 0.1418 0.1429 -0.7
3000 0.1261 0.1240 1.7
4000 0.1201 0.1171 2.6

Γ/mX = 0.3
GRadion →WW→ qq̄′qq̄′

Mx εexact εparam ∆ε (in %)
1200 0.1587 0.1310 21.1
2000 0.1479 0.1427 3.7
3000 0.1271 0.1253 1.5
4000 0.1205 0.1205 0.0

Table B.10.: Comparison between the exact efficiencies using the full analysis selection
and the efficiencies obtained using the reweighting procedure on a set of
narrow-width Radion samples with two Z bosons as intermediate state.

GRadion →ZZ→ qq̄′qq̄′

Mx εexact εparam ∆ε (in %)
1200 0.199 0.176 13.4
1400 0.1974 0.1896 4.1
1800 0.1876 0.1845 1.7
2000 0.1810 0.1778 1.8
2500 0.1534 0.1511 1.6
3000 0.1459 0.1406 3.8
3500 0.1237 0.1278 -3.2
4500 0.1166 0.1220 -4.4
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B. Efficiency Tests

Table B.11.: Comparison between the exact efficiencies using the full analysis selection
and the efficiencies obtained using the reweighting procedure on a set of
broad Z′ samples for the all-hadronic analysis.

Γ/mX = 0.1
Z′ →WW→ qq̄′qq̄′

Mx εexact εparam ∆ε (in %)
1200 0.2333 0.1776 31.3
2000 0.2067 0.1753 18.0
3000 0.1784 0.1498 19.1
4000 0.1645 0.1427 15.3

Γ/mX = 0.2
Z′ →WW→ qq̄′qq̄′

Mx εexact εparam ∆ε (in %)
1200 0.2376 0.1816 30.9
2000 0.2017 0.1786 13.0
3000 0.1786 0.1492 19.7
4000 0.1637 0.1427 14.8

Γ/mX = 0.3
Z′ →WW→ qq̄′qq̄′

Mx εexact εparam ∆ε (in %)
1200 0.2479 0.1895 30.8
2000 0.2103 0.1837 14.5
3000 0.1805 0.1492 20.9
4000 0.1637 0.1418 15.4

Table B.12.: Comparison between the exact efficiencies using the full analysis selection
and the efficiencies obtained using the reweighting procedure. The test was
performed on the narrow-width Radion sample for the all-hadronic analysis.

GRadion →WW→ qq̄′qq̄′

Mx εexact εparam ∆ε (in %)
1400 0.1725 0.1670 3.3
1800 0.1604 0.1584 1.3
2000 0.1518 0.1508 0.7
3000 0.1166 0.1186 -1.6
3500 0.1120 0.1104 1.5
4000 0.1080 0.1126 -4.1
4500 0.1059 0.1105 -4.2
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B. Efficiency Tests

Table B.13.: Comparison between the exact efficiencies using the full analysis selection
and the efficiencies obtained using the reweighting procedure on a set of
broad-width RS1-Graviton samples. The reconstruction efficiency of the
hadronically decaying W boson has been corrected by a constant factor of
1.305 to take effects of W boson polarisation into account.

Γ/mX = 0.1
X→WW→ qq̄′qq̄′

Mx εexact εparam ∆ε (in %)
1200 0.0773 0.0636 21.4
2000 0.0686 0.0712 -3.7
3000 0.0661 0.0643 2.7

Γ/mX = 0.2
X→WW→ qq̄′qq̄′

Mx εexact εparam ∆ε (in %)
1200 0.0733 0.0606 20.9
2000 0.0706 0.0704 0.3
3000 0.0648 0.0642 0.9
4000 0.0660 0.0603 9.4

Γ/mX = 0.3
X→WW→ qq̄′qq̄′

Mx εexact εparam ∆ε (in %)
1200 0.0725 0.0600 20.9
2000 0.0717 0.0682 5.1
3000 0.0660 0.0644 2.5
4000 0.0656 0.0602 8.9
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B. Efficiency Tests

Table B.14.: Comparison between the exact efficiencies using the full analysis selection
and the efficiencies obtained using the reweighting procedure. The test was
performed on the narrow-width Z′ sample for the all-hadronic analysis.

Z′ →WW→ qq̄′qq̄′

Mx εexact εparam ∆ε (in %)
1200 0.255 0.198 28.9
1400 0.2376 0.2069 14.8
1800 0.2199 0.1948 12.8
2000 0.2112 0.1886 12.0
2500 0.1922 0.1550 24.0
3000 0.1761 0.1482 18.8
3500 0.1734 0.1402 23.7
4000 0.1594 0.1407 13.3
4500 0.1555 0.1406 10.6

Table B.15.: Comparison between the exact efficiencies using the full analysis selection
and the efficiencies obtained using the reweighting procedure on a set of
broad-width W′ samples for the all-hadronic analysis.

Γ/mX = 0.1
W′ →WZ→ qq̄′qq̄′

Mx εexact εparam ∆ε (in %)
1200 0.250 0.199 25.3
2000 0.2278 0.1982 14.9
3000 0.1894 0.1597 18.6
4000 0.1726 0.1486 16.1

Γ/mX = 0.2
W′ →WZ→ qq̄′qq̄′

Mx εexact εparam ∆ε (in %)
1200 0.245 0.194 26.6
2000 0.2197 0.1934 13.6
3000 0.1929 0.1614 19.5
4000 0.1661 0.1497 11.0

Γ/mX = 0.3
W′ →WZ→ qq̄′qq̄′

Mx εexact εparam ∆ε (in %)
2000 0.2214 0.1909 16.0
3000 0.1899 0.1621 17.2
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C. Shape Hypothesis Tests

To demonstrate the validity of the signal shape parametrisation the histograms derived
from MC simulations for different theory models are depicted together with the shape
hypothesis (blue curve), which corresponds to a Breit-Wigner distribution convoluted
with the narrow resolution function of the theory. The resolution function is fitted to a
narrow Bulk-Graviton MC beforehand and then set to its best fit values. The histograms
are chosen to contain 90 % of signal events after the full analysis selection with the
exception of the mV V cuts, which are omitted on generator level for shape testing in
order to avoid a distortion of shapes due to migration.
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C. Shape Hypothesis Tests
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Figure C.1.: The signal shape modelling for different theory models and decay widths of
Γ/mV V = 0.1, 0.2 and 0.3 and a resonance mass mX = 800 GeV. The figure
contains the shape modelling for the electron channel of the semileptonic
analysis.

132



C. Shape Hypothesis Tests

 [GeV]VVm
600 700 800 900 1000

E
ve

nt
s 

/ (
 1

3 
)

0

100

200

300

400

500

600

 jjν µ → WW →Z' 

=800, width=0.1
VV

Simulation, m

 BW)(m) ⊗(CB 

 jjν µ → WW →Z' 

 [GeV]VVm
600 700 800 900 1000

E
ve

nt
s 

/ (
 1

3 
)

0

100

200

300

400

500

600

 jjν µ → WZ →W' 

=800, width=0.1
VV

Simulation, m

 BW)(m) ⊗(CB 

 jjν µ → WZ →W' 

 [GeV]VVm
700 800 900 1000

E
ve

nt
s 

/ (
 1

3 
)

0

50

100

150

200

250

300

 jjν µ → WW → 
RS

G

=800, width=0.1
VV

Simulation, m

 BW)(m) ⊗(CB 

 jjν µ → WW → 
RS

G

 [GeV]VVm
700 800 900

E
ve

nt
s 

/ (
 1

3 
)

0

100

200

300

400

500

600

 jjν µ → WW → 
Radion

G

=800, width=0.1
VV

Simulation, m

 BW)(m) ⊗(CB 

 jjν µ → WW → 
Radion

G

 [GeV]VVm
600 800 1000 1200 1400

E
ve

nt
s 

/ (
 1

3 
)

0

100

200

300

400

500

600

 jjν µ → WW →Z' 

=800, width=0.2
VV

Simulation, m

 BW)(m) ⊗(CB 

 jjν µ → WW →Z' 

 [GeV]VVm
600 800 1000 1200 1400

E
ve

nt
s 

/ (
 1

3 
)

0

100

200

300

400

500

600

 jjν µ → WZ →W' 

=800, width=0.2
VV

Simulation, m

 BW)(m) ⊗(CB 

 jjν µ → WZ →W' 

 [GeV]VVm
700 800 900 1000 1100 1200

E
ve

nt
s 

/ (
 1

3 
)

0

20

40

60

80

100

120

140

160

180

200

 jjν µ → WW → 
RS

G

=800, width=0.2
VV

Simulation, m

 BW)(m) ⊗(CB 

 jjν µ → WW → 
RS

G

 [GeV]VVm
700 800 900 1000 1100

E
ve

nt
s 

/ (
 1

3 
)

0

50

100

150

200

250

300

350

400

 jjν µ → WW → 
Radion

G

=800, width=0.2
VV

Simulation, m

 BW)(m) ⊗(CB 

 jjν µ → WW → 
Radion

G

 [GeV]VVm
600 800 1000 1200 1400 1600

E
ve

nt
s 

/ (
 1

3 
)

0

50

100

150

200

250

300

350

400

450

500

 jjν µ → WW →Z' 

=800, width=0.3
VV

Simulation, m

 BW)(m) ⊗(CB 

 jjν µ → WW →Z' 

 [GeV]VVm
600 800 1000 1200 1400 1600

E
ve

nt
s 

/ (
 1

3 
)

0

50

100

150

200

250

300

350

400

450

500

 jjν µ → WZ →W' 

=800, width=0.3
VV

Simulation, m

 BW)(m) ⊗(CB 

 jjν µ → WZ →W' 

 [GeV]VVm
800 1000 1200

E
ve

nt
s 

/ (
 1

3 
)

0

50

100

150

200

250

300

350

 jjν µ → WW → 
RS

G

=800, width=0.3
VV

Simulation, m

 BW)(m) ⊗(CB 

 jjν µ → WW → 
RS

G

 [GeV]VVm
700 800 900 1000 1100 1200

E
ve

nt
s 

/ (
 1

3 
)

0

50

100

150

200

250

300

350

 jjν µ → WW → 
Radion

G

=800, width=0.3
VV

Simulation, m

 BW)(m) ⊗(CB 

 jjν µ → WW → 
Radion

G

Figure C.2.: The signal shape modelling for different theory models and decay widths
of Γ/mV V = 0.1, 0.2 and 0.3 and a resonance mass mX = 800 GeV. The
figure contains the shape modelling for the muon channel of the semileptonic
analysis. The mean shift observed here is small enough to be contained
within the fit-uncertainties of the mean value of the narrow-width function.
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Figure C.3.: The signal shape modelling for different theory models and decay widths of
Γ/mV V = 0.1, 0.2 and 0.3 and a resonance massmX = 1200 GeV. The figure
contains the shape modelling for the electron channel of the semileptonic
analysis.
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Figure C.4.: The signal shape modelling for different theory models and decay widths
of Γ/mV V = 0.1, 0.2 and 0.3 and a resonance mass mX = 1200 GeV. The
figure contains the shape modelling for the muon channel of the semileptonic
analysis.
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Figure C.5.: The signal shape modelling for different theory models and decay widths of
Γ/mV V = 0.1, 0.2 and 0.3 and a resonance massmX = 2000 GeV. The figure
contains the shape modelling for the electron channel of the semileptonic
analysis.
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Figure C.6.: The signal shape modelling for different theory models and decay widths
of Γ/mV V = 0.1, 0.2 and 0.3 and a resonance mass mX = 2000 GeV. The
figure contains the shape modelling for the muon channel of the semileptonic
analysis.
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Figure C.7.: The signal shape modelling for different theory models and decay widths
of Γ/mV V = 0.1, 0.2 and 0.3 and a resonance mass mX = 3000 GeV. The
figure contains the shape modelling for the electron channel of the semilep-
tonic analysis. The red curve is the signal hypothesis times a Chebichev
polynomial of degree one, which is fitted to the MC histograms.
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Figure C.8.: The signal shape modelling for different theory models and decay widths of
Γ/mV V = 0.1, 0.2 and 0.3 and a resonance massmX = 3000 GeV. The figure
contains the shape modelling for the muon channel of the semileptonic anal-
ysis. The red curve is the signal hypothesis times a Chebichev polynomial
of degree one, which is fitted to the MC histograms.
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Figure C.9.: The signal shape modelling for different theory models and decay widths
of Γ/mV V = 0.1, 0.2 and 0.3 and a resonance mass mX = 4000 GeV. The
figure contains the shape modelling for the electron channel of the semilep-
tonic analysis. The red curve is the signal hypothesis times a Chebichev
polynomial of degree one, which is fitted to the MC histograms.
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Figure C.10.: The signal shape modelling for different theory models and decay widths
of Γ/mV V = 0.1, 0.2 and 0.3 and a resonance mass mX = 4000 GeV. The
figure contains the shape modelling for the muon channel of the semilep-
tonic analysis. The red curve is the signal hypothesis times a Chebichev
polynomial of degree one, which is fitted to the MC histograms.
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Figure C.11.: The signal shape modelling for different theory models and decay widths
of Γ/mV V = 0.1, 0.2 and 0.3 and a resonance mass mX = 1200 GeV. The
figure contains the shape modelling for the all-hadronic analysis. The red
curve is the normal signal shape modelling with its peak mass value shifted.
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Figure C.12.: The signal shape modelling for different theory models and decay widths
of Γ/mV V = 0.1, 0.2 and 0.3 and a resonance mass mX = 2000 GeV. The
figure contains the shape modelling for the all-hadronic analysis.
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C. Shape Hypothesis Tests
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Figure C.13.: The signal shape modelling for different theory models and decay widths
of Γ/mV V = 0.1, 0.2 and 0.3 and a resonance mass mX = 3000 GeV. The
figure contains the shape modelling for the all-hadronic analysis. The red
curve is the signal hypothesis times a Chebichev polynomial of degree one,
which is fitted to the MC histograms.

144



C. Shape Hypothesis Tests
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Figure C.14.: The signal shape modelling for different theory models and decay widths
of Γ/mV V = 0.1, 0.2 and 0.3 and a resonance mass mX = 4000 GeV. The
figure contains the shape modelling for the all-hadronic analysis. The red
curve is the signal hypothesis times a Chebichev polynomial of degree one,
which is fitted to the MC histograms. The histogram for an RS1-Graviton
model and a mass of 4 TeV with a relative width of 0.1 is empty, because
there is no simulation for this point.
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D. χ2 Tests for Broad Signal Shapes

This section contains the reduced χ2 values for a comparison between the histograms filled
with the reconstructed mV V spectrum and the complete signal shape hypothesis. The
complete signal shape is the narrow-width resolution function convoluted with a Breit-
Wigner function. For small masses it includes the mean shift discussed in section 6.4.2
for the all-hadronic channel. For large resonance masses an extra degree of freedom is
included as discussed in section 6.4.3. For the calculation of the χ2 tests the uncertainties
on the narrow resolution function are approximated. This is done by calculating for each
bin the difference of the function value with all parameters set to best-fit values and the
function value with one parameter set to its maximum/minimum value. The maximum
difference derived this way is added to the uncertainty of the corresponding MC histogram
bin. For small-mass samples a shift of the peak value of the narrow fit function with
respect to the MC histograms can be seen. This shift is, however, within the fitted error
of the mean value for the resolution function in the semileptonic case. For the calculation
of the χ2 test this parameter is therefore left floating within its uncertainty-bounds and
fitted to the broad MC shape. Since the semileptonic analysis uses a mass cut for values
of mV V greater than 500 GeV, the calculation of χ2 values only uses masses larger than
500 GeV. Analogously only masses larger than 1000 GeV are used for the calculations in
the all-hadronic channel.
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D. χ2 Tests for Broad Signal Shapes

Table D.1.: The reduced χ2 values for a Radion theory model decaying semileptonically.
An accepted test value means the shape hypothesis used in the analysis
passed a χ2 test with a confidence level of 0.05.

channel χ2 mass [GeV] width accepted/failed
ele/mu 0.58/0.41 800 0.1 a/a
ele/mu 1.07/0.50 800 0.2 a/a
ele/mu 0.57/0.79 800 0.3 a/a
ele/mu 0.49/0.41 1200 0.1 a/a
ele/mu 0.68/0.71 1200 0.2 a/a
ele/mu 0.39/0.53 1200 0.3 a/a
ele/mu 0.56/0.58 2000 0.1 a/a
ele/mu 0.63/1.16 2000 0.2 a/a
ele/mu 0.89/0.81 2000 0.3 a/a
ele/mu 0.67/1.24 3000 0.1 a/a
ele/mu 0.80/1.29 3000 0.2 a/a
ele/mu 1.15/1.56 3000 0.3 a/f
ele/mu 3.17/4.69 4000 0.1 f/f
ele/mu 5.13/9.39 4000 0.2 f/f
ele/mu 4.48/7.01 4000 0.3 f/f

Table D.2.: The reduced χ2 values for a RS1-Graviton theory model decaying semilep-
tonically. An accepted test value means the shape hypothesis used in the
analysis passed a χ2 test with a confidence level of 0.05.

channel χ2 mass [GeV] width accepted/failed
ele/mu 0.60/0.39 800 0.1 a/a
ele/mu 0.60/0.63 800 0.2 a/a
ele/mu 0.78/0.69 800 0.3 a/a
ele/mu 0.51/0.66 1200 0.1 a/a
ele/mu 0.60/0.81 1200 0.2 a/a
ele/mu 0.54/0.44 1200 0.3 a/a
ele/mu 0.89/0.66 2000 0.1 a/a
ele/mu 1.02/0.31 2000 0.2 a/a
ele/mu 0.47/0.50 2000 0.3 a/a
ele/mu 0.76/0.93 3000 0.1 a/a
ele/mu 0.62/0.84 3000 0.2 a/a
ele/mu 0.68/0.87 3000 0.3 a/a
ele/mu 0.56/0.63 4000 0.1 a/a
ele/mu 0.68/0.89 4000 0.2 a/a
ele/mu 0.66/1.06 4000 0.3 a/a
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D. χ2 Tests for Broad Signal Shapes

Table D.3.: The reduced χ2 values for a Z′ theory model decaying semileptonically. An
accepted test value means the shape hypothesis used in the analysis passed
a χ2 test with a confidence level of 0.05.

channel χ2 mass [GeV] width accepted/failed
ele/mu 0.89/0.90 800 0.1 a/a
ele/mu 1.04/0.76 800 0.2 a/a
ele/mu 1.34/1.21 800 0.3 a/a
ele/mu 0.43/0.63 1200 0.1 a/a
ele/mu 0.69/0.67 1200 0.2 a/a
ele/mu 0.40/1.10 1200 0.3 a/a
ele/mu 0.49/0.84 2000 0.1 a/a
ele/mu 0.53/0.42 2000 0.2 a/a
ele/mu 0.41/0.51 2000 0.3 a/a
ele/mu 0.45/0.56 3000 0.1 a/a
ele/mu 0.68/0.87 3000 0.2 a/a
ele/mu 0.53/0.59 3000 0.3 a/a
ele/mu 0.55/0.48 4000 0.1 a/a
ele/mu 0.61/0.54 4000 0.2 a/a
ele/mu 0.62/0.68 4000 0.3 a/a

Table D.4.: The reduced χ2 values for a W′ theory model decaying semileptonically. An
accepted test value means the shape hypothesis used in the analysis passed
a χ2 test with a confidence level of 0.05.

channel χ2 mass [GeV] width accepted/failed
ele/mu 0.78/0.60 800 0.1 a/a
ele/mu 1.04/0.89 800 0.2 a/a
ele/mu 1.30/1.14 800 0.3 f/a
ele/mu 0.57/0.75 1200 0.1 a/a
ele/mu 0.42/0.523 1200 0.2 a/a
ele/mu 0.57/0.72 1200 0.3 a/a
ele/mu 0.67/0.53 2000 0.1 a/a
ele/mu 0.71/0.56 2000 0.2 a/a
ele/mu 0.58/0.43 2000 0.3 a/a
ele/mu 0.86/1.04 3000 0.1 a/a
ele/mu 0.47/0.60 3000 0.2 a/a
ele/mu 0.45/0.83 3000 0.3 a/a
ele/mu 0.94/1.32 4000 0.1 a/a
ele/mu 0.69/0.94 4000 0.2 a/a
ele/mu 0.66/1.23 4000 0.3 a/a
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D. χ2 Tests for Broad Signal Shapes

Table D.5.: The reduced χ2 values for a Radion theory model decaying hadronically. An
accepted test value means the shape hypothesis used in the analysis passed
a χ2 test with a confidence level of 0.05.

channel χ2 mass [GeV] width accepted/failed
had 0.55 1200 0.1 a
had 0.34 1200 0.2 a
had 0.62 1200 0.3 a
had 0.53 2000 0.1 a
had 0.34 2000 0.2 a
had 0.43 2000 0.3 a
had 0.40 3000 0.1 a
had 0.59 3000 0.2 a
had 1.62 3000 0.3 f
had 3.12 4000 0.1 f
had 6.76 4000 0.2 f
had 10.11 4000 0.3 f

Table D.6.: The reduced χ2 values for a RS1-Graviton theory model decaying hadroni-
cally. An accepted test value means the shape hypothesis used in the analysis
passed a χ2 test with a confidence level of 0.05.
channel χ2 mass [GeV] width accepted/failed

had 0.81 1200 0.1 a
had 0.56 1200 0.2 a
had 0.43 1200 0.3 a
had 0.38 2000 0.1 a
had 0.29 2000 0.2 a
had 0.61 2000 0.3 a
had 0.69 3000 0.1 a
had 0.33 3000 0.2 a
had 0.84 3000 0.3 a
had - 4000 0.1 -
had 1.12 4000 0.2 a
had 1.11 4000 0.3 a
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D. χ2 Tests for Broad Signal Shapes

Table D.7.: The reduced χ2 values for a Z′ theory model decaying hadronically. An
accepted test value means the shape hypothesis used in the analysis passed
a χ2 test with a confidence level of 0.05.
channel χ2 mass [GeV] width accepted/failed

had 0.53 1200 0.1 a
had 0.37 1200 0.2 a
had 0.21 1200 0.3 a
had 0.41 2000 0.1 a
had 0.49 2000 0.2 a
had 0.19 2000 0.3 a
had 0.48 3000 0.1 a
had 0.52 3000 0.2 a
had 0.58 3000 0.3 a
had 0.36 4000 0.1 a
had 0.39 4000 0.2 a
had 0.34 4000 0.3 a

Table D.8.: The reduced χ2 values for a W′ theory model decaying hadronically. An
accepted test value means the shape hypothesis used in the analysis passed
a χ2 test with a confidence level of 0.05. For the χ2 test no mass cut is used
on the reconstructed events.
channel χ2 mass [GeV] width accepted/failed

had 0.46 1200 0.1 a
had 0.35 1200 0.2 a
had 0.22 1200 0.3 a
had 0.49 2000 0.1 a
had 0.35 2000 0.2 a
had 0.39 2000 0.3 a
had 1.31 3000 0.1 a
had 0.76 3000 0.2 a
had 0.84 3000 0.3 a
had 1.29 4000 0.1 a
had 0.76 4000 0.2 a
had 1.31 4000 0.3 a
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E. Model-Independent Limits

In figure E.1 the difference between the observed and expected limits is illustrated. The
observed values of all bins lie well between the 1 σ and 2 σ uncertainty bands.
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Figure E.1.: On the left is the difference between the observed and expected exclusion
limits divided by the variance σ for the semileptonic channel and on the
right for the all-hadronic channel.
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E. Model-Independent Limits

Table E.1.: Observed 95%CLs limits on the number of signal events for a heavy diboson
resonance decaying hadronically. The limits are given as a function of the
resonance mass MX and the relative decay width Γ/MX .
MX [GeV] Γ/MX

0.0 0.05 0.1 0.15 0.2 0.25 0.3
1200 38.1 61.5 88.6 84.6 84.1 82.6 77.9
1300 39.4 54.6 68.8 77.6 82.0 82.7 78.8
1400 29.7 41.7 57.1 66.5 82.6 71.4 85.3
1500 19.5 30.9 44.3 84.2 126.9 115.4 52.2
1600 22.3 33.3 65.5 114.2 100.8 89.9 43.9
1700 22.1 29.1 57.4 70.5 70.5 64.3 56.8
1800 13.0 15.3 24.2 34.5 40.2 40.9 39.6
1900 7.6 11.8 17.2 23.6 27.6 29.1 29.3
2000 7.7 10.5 14.4 18.6 21.4 23.0 23.8
2100 6.2 9.0 12.5 15.5 17.5 18.8 19.5
2200 5.1 7.8 10.9 13.3 15.0 15.9 16.4
2300 4.6 7.8 10.5 12.2 13.2 13.8 14.2
2400 5.8 8.4 10.1 11.1 11.7 12.2 12.5
2500 6.4 8.4 9.4 10.1 10.5 10.9 11.2
2600 5.5 7.8 8.7 9.2 9.6 9.9 10.1
2700 4.8 7.0 7.8 8.3 8.6 8.9 9.2
2800 4.8 6.2 6.8 7.3 7.7 8.0 8.3
2900 4.6 5.5 6.1 6.5 6.8 7.1 7.4
3000 4.5 5.1 5.6 5.9 6.2 6.6 6.9
3100 4.1 4.5 4.9 5.3 5.6 5.9 6.2
3200 2.9 3.7 4.2 4.6 5.0 5.3 5.6
3300 2.4 3.1 3.6 4.0 4.4 4.8 5.1
3400 2.3 2.7 3.1 3.5 4.0 4.3 4.6
3500 2.2 2.5 2.8 3.2 3.6 3.9 4.2
3600 2.2 2.5 2.7 3.0 3.5 3.7 4.0
3700 2.2 2.4 2.6 2.9 3.3 3.5 3.8
4000 2.1 2.2 2.3 2.6 3.0 3.2 3.4
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E. Model-Independent Limits

Table E.2.: Expected 95%CLs limits on the number of signal events for a heavy diboson
resonance decaying hadronically. The limits are given as a function of the
resonance mass MX and the relative decay width Γ/MX .
MX [GeV] Γ/MX

0.0 0.05 0.1 0.15 0.2 0.25 0.3
1200 59.9 89.8 111.7 108.1 97.7 86.1 74.8
1300 43.9 67.8 89.1 90.4 85.5 78.7 69.8
1400 32.0 48.2 65.3 71.2 73.7 71.2 64.0
1500 24.4 36.1 48.8 59.3 66.2 64.4 45.2
1600 19.3 28.1 40.4 51.8 57.6 54.9 37.0
1700 15.6 22.8 33.2 42.3 45.8 43.9 40.2
1800 12.5 18.3 26.3 32.7 34.9 34.3 32.2
1900 10.6 15.6 21.7 25.9 27.3 26.8 25.9
2000 8.4 12.8 17.1 20.0 21.2 21.6 21.4
2100 7.3 10.8 13.9 15.7 16.7 17.2 17.2
2200 6.2 9.1 11.3 12.7 13.5 13.8 14.1
2300 5.5 7.8 9.4 10.4 11.1 11.5 11.7
2400 4.8 6.7 8.0 8.7 9.3 9.7 9.9
2500 4.3 5.9 6.9 7.5 8.0 8.3 8.6
2600 4.0 5.3 6.1 6.6 7.0 7.3 7.6
2700 3.7 4.8 5.5 5.9 6.2 6.5 6.7
2800 3.5 4.4 4.9 5.3 5.6 5.8 6.1
2900 3.3 4.1 4.5 4.8 5.1 5.3 5.5
3000 3.1 3.9 4.2 4.5 4.8 5.0 5.2
3100 3.0 3.6 3.9 4.2 4.4 4.6 4.8
3200 2.8 3.4 3.7 3.9 4.1 4.3 4.5
3300 2.7 3.2 3.4 3.7 3.9 4.1 4.3
3400 2.6 3.0 3.2 3.5 3.7 3.9 4.1
3500 2.5 2.8 3.1 3.3 3.5 3.7 3.9
3600 2.5 2.8 3.0 3.2 3.5 3.6 3.8
3700 2.4 2.7 2.8 3.1 3.4 3.5 3.7
3800 2.4 2.6 2.7 3.0 3.3 3.4 3.6
3900 2.3 2.5 2.7 2.9 3.3 3.4 3.5
4000 2.3 2.4 2.5 2.8 3.2 3.3 3.4
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E. Model-Independent Limits

Table E.3.: Observed 95%CLs limits on the number of signal events for a heavy resonance
decaying semileptonically, for the electron channel. The limits are given as a
function of the resonance mass MX and the relative decay width Γ/MX .

MX [GeV] Γ/MX

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
800 87.9 102.0 108.9 110.0 106.7 100.7 93.7 86.5
900 50.7 62.7 70.0 73.6 74.3 72.9 70.5 67.5
1000 23.9 30.8 35.6 39.7 42.8 44.8 46.0 46.6
1100 17.2 21.0 24.5 27.5 30.1 32.0 33.7 35.1
1200 17.9 19.9 21.4 23.0 24.6 26.3 27.9 29.3
1300 10.6 12.8 14.7 16.9 19.1 21.2 23.2 25.0
1400 7.2 9.7 12.2 14.9 17.5 20.0 22.2 24.1
1500 10.2 12.1 14.4 16.7 19.1 21.4 23.4 24.9
1600 13.2 15.0 17.0 19.3 21.7 23.9 25.4 26.3
1700 9.9 12.7 15.7 18.9 22.1 24.3 25.7 26.4
1800 9.4 13.1 17.1 20.9 23.3 24.3 24.4 24.0
1900 7.3 10.1 13.6 17.4 20.5 22.6 23.9 24.4
2000 8.2 11.0 14.5 17.8 20.3 21.7 22.5 23.0
2100 8.4 11.1 14.5 17.4 19.3 20.2 20.7 21.4
2200 7.2 10.3 13.9 16.6 18.0 18.8 19.4 20.0
2300 6.2 9.6 13.2 15.7 16.8 17.5 18.1 18.7
2400 5.8 9.6 13.0 14.7 15.6 16.3 16.9 17.5
2500 7.1 10.7 12.8 13.9 14.6 15.2 15.8 16.4
2600 8.6 11.0 12.3 13.1 13.6 14.1 14.7 15.3
2700 8.8 10.9 11.8 12.4 12.8 13.2 13.7 14.2
2800 9.1 10.5 11.2 11.7 12.1 12.4 12.8 13.2
2900 8.9 10.0 10.6 11.0 11.4 11.7 12.0 12.4
3000 7.6 9.1 9.8 10.2 10.6 11.0 11.2 11.6
3100 6.2 7.5 8.3 8.9 9.4 9.8 10.1 10.4
3200 5.5 6.5 7.3 7.9 8.5 8.9 9.3 9.7
3300 4.4 5.6 6.3 7.0 7.5 8.0 8.5 8.9
3400 3.6 4.6 5.3 6.0 6.6 7.2 7.7 8.2
3500 3.2 4.0 4.7 5.3 5.8 6.4 6.9 7.5
3600 3.1 3.7 4.2 4.7 5.3 5.8 6.3 6.8
3700 3.0 3.5 3.9 4.4 4.9 5.4 5.9 6.5
4000 3.1 3.4 3.7 4.1 4.5 4.9 5.4 6.0
4100 3.3 3.6 3.9 4.3 4.7 5.2 5.7 6.4
4500 3.4 3.7 4.1 4.4 4.9 5.5 6.4 7.0
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E. Model-Independent Limits

Table E.4.: Expected 95%CLs limits on the number of signal events for a heavy resonance
decaying semileptonically, for the electron channel. The limits are given as a
function of the resonance mass MX and the relative decay width Γ/MX .
MX [GeV] Γ/MX

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
800 57.0 73.7 85.1 90.5 90.5 87.8 83.5 78.1
900 32.0 41.5 49.0 54.5 58.2 60.0 60.3 59.4
1000 25.2 31.8 37.3 42.0 45.4 47.7 48.7 49.1
1100 20.9 26.2 31.1 35.1 38.3 40.6 42.1 42.5
1200 17.8 22.5 26.8 30.6 33.9 36.3 37.7 38.5
1300 15.0 19.2 23.0 26.8 30.0 32.3 33.8 34.6
1400 13.9 18.1 22.0 25.7 28.7 31.1 32.3 32.9
1500 12.7 16.6 20.5 24.3 27.2 29.2 30.4 30.8
1600 11.9 15.7 19.5 23.1 26.1 27.7 28.4 28.6
1700 10.4 13.9 17.7 21.4 23.9 25.4 25.9 26.1
1800 12.2 17.5 21.8 24.2 25.2 24.9 24.0 23.1
1900 8.7 12.1 15.7 18.5 20.2 21.0 21.4 21.4
2000 8.3 11.6 14.9 17.2 18.5 19.1 19.3 19.6
2100 7.7 10.8 13.7 15.6 16.6 17.0 17.3 17.8
2200 7.3 10.2 12.6 14.1 14.9 15.3 15.8 16.2
2300 6.8 9.6 11.6 12.8 13.5 13.9 14.4 14.8
2400 6.5 8.9 10.6 11.6 12.2 12.6 13.1 13.6
2500 6.1 8.3 9.7 10.5 11.0 11.5 12.0 12.5
2600 5.8 7.7 8.9 9.5 10.0 10.4 10.9 11.3
2700 5.4 7.1 8.1 8.7 9.1 9.5 9.8 10.3
2800 5.2 6.6 7.5 8.0 8.4 8.7 9.0 9.4
2900 5.0 6.2 7.0 7.4 7.8 8.1 8.3 8.7
3000 5.0 6.0 6.6 7.0 7.3 7.6 7.8 8.1
3100 4.4 5.4 5.9 6.3 6.6 6.9 7.2 7.4
3200 4.2 5.0 5.5 5.9 6.2 6.5 6.8 7.0
3300 4.0 4.8 5.3 5.6 6.0 6.2 6.5 6.8
3400 3.9 4.6 5.1 5.4 5.7 6.0 6.2 6.5
3500 3.8 4.5 4.9 5.2 5.5 5.8 6.0 6.3
3600 3.7 4.3 4.7 5.0 5.3 5.6 5.9 6.1
3700 3.7 4.2 4.6 4.9 5.2 5.5 5.8 6.0
4000 3.7 4.1 4.4 4.8 5.1 5.4 5.8 6.1
4100 3.9 4.3 4.7 5.1 5.4 5.8 6.2 6.7
4500 3.9 4.4 4.8 5.2 5.7 6.3 7.0 7.4
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E. Model-Independent Limits

Table E.5.: Observed 95%CLs limits on the number of signal events for a heavy resonance
decaying semileptonically, for the muon channel. The limits are given as a
function of the resonance mass MX and the relative decay width Γ/MX .

MX [GeV] Γ/MX

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
800 77.9 100.2 110.1 115.0 115.4 111.9 106.3 100.0
900 39.6 53.8 66.9 77.1 83.7 87.1 87.4 85.5
1000 50.0 63.8 76.4 87.0 93.7 95.8 94.0 89.9
1100 45.0 63.6 80.9 94.0 101.5 103.2 100.1 94.3
1200 57.0 70.3 81.6 90.7 96.1 97.1 94.1 88.7
1300 33.6 46.5 57.3 67.0 73.9 76.9 76.2 73.1
1400 24.3 32.4 40.6 49.1 55.9 59.8 60.6 59.3
1500 19.3 25.3 31.7 38.5 44.2 47.4 48.4 48.0
1600 16.2 21.5 27.4 33.4 37.9 40.3 40.9 40.4
1700 12.6 17.2 22.7 28.3 32.6 34.8 35.6 35.3
1800 10.2 15.4 21.5 26.8 30.2 31.8 32.2 31.8
1900 10.8 15.4 20.5 24.2 26.2 27.0 27.3 27.0
2000 13.0 17.7 21.5 23.6 24.4 24.7 24.5 24.1
2100 12.9 17.1 19.9 21.4 21.8 21.8 21.6 21.3
2200 11.5 15.0 17.4 18.7 19.2 19.0 18.9 18.7
2300 8.8 12.3 14.5 15.8 16.5 16.4 16.4 16.3
2400 6.7 9.8 12.0 13.2 14.0 14.3 14.2 14.3
2500 6.0 8.6 10.4 11.4 12.0 12.4 12.7 12.6
2600 6.4 8.5 9.6 10.3 10.7 11.0 11.3 11.5
2700 7.2 8.4 9.1 9.5 9.8 10.0 10.2 10.4
2800 7.3 8.0 8.5 8.8 9.0 9.2 9.3 9.4
2900 7.0 7.6 7.9 8.1 8.3 8.4 8.6 8.7
3000 6.0 6.5 6.6 6.7 6.8 6.8 6.9 6.9
3100 4.8 5.7 6.1 6.4 6.7 6.9 7.1 7.3
3200 3.5 4.4 5.0 5.4 5.8 6.1 6.3 6.6
3300 3.0 3.7 4.3 4.7 5.1 5.5 5.8 6.1
3400 2.8 3.4 3.8 4.2 4.6 5.0 5.3 5.6
3500 2.8 3.2 3.5 3.9 4.3 4.6 4.9 5.3
3600 2.8 3.1 3.4 3.7 4.0 4.3 4.7 5.0
3700 2.8 3.1 3.3 3.6 3.9 4.2 4.5 4.8
4000 2.9 3.1 3.3 3.5 3.8 4.1 4.4 4.8
4100 3.1 3.3 3.5 3.7 4.0 4.3 4.7 5.0
4500 3.2 3.4 3.7 4.0 4.3 4.7 5.2 5.8
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E. Model-Independent Limits

Table E.6.: Expected 95%CLs limits on the number of signal events for a heavy resonance
decaying semileptonically, for the muon channel. The limits are given as a
function of the resonance mass MX and the relative decay width Γ/MX .

MX [GeV] Γ/MX

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
800 90.2 140.9 159.6 160.6 151.7 137.4 123.1 109.2
900 42.9 61.2 72.6 79.3 81.9 81.4 79.3 76.7
1000 31.1 42.6 50.3 55.9 59.6 61.2 61.7 61.2
1100 26.2 34.4 40.8 46.2 50.4 52.9 54.0 54.0
1200 23.0 30.2 36.3 41.9 46.5 49.5 50.9 51.1
1300 19.9 26.3 32.7 38.9 43.9 47.4 48.5 48.5
1400 17.9 24.4 31.4 38.5 44.4 47.6 48.5 47.6
1500 16.8 23.2 31.0 39.0 44.4 46.7 47.0 45.5
1600 17.4 24.9 33.6 40.8 44.3 44.9 44.0 42.2
1700 16.1 23.9 32.5 38.5 40.9 41.2 40.0 38.5
1800 15.3 23.2 31.1 35.4 36.9 36.6 35.7 34.5
1900 12.3 18.8 24.6 27.7 28.9 29.1 28.8 28.3
2000 11.6 17.3 21.7 23.8 24.4 24.6 24.4 24.1
2100 10.5 15.5 18.6 20.3 20.7 20.9 20.9 20.7
2200 9.5 13.6 16.2 17.4 18.0 18.0 18.0 18.0
2300 8.7 12.0 14.0 15.1 15.7 15.7 15.7 15.7
2400 7.8 10.6 12.2 13.0 13.5 13.8 13.7 13.8
2500 7.1 9.5 10.7 11.3 11.8 12.2 12.3 12.3
2600 6.5 8.5 9.5 10.0 10.5 10.8 11.0 11.2
2700 5.9 7.6 8.4 9.0 9.4 9.6 9.9 10.1
2800 5.5 6.9 7.7 8.1 8.5 8.8 9.0 9.2
2900 5.1 6.4 7.0 7.4 7.8 8.1 8.3 8.5
3000 5.1 5.7 6.1 6.4 6.6 6.8 7.0 7.2
3100 4.4 5.3 5.8 6.2 6.5 6.8 7.1 7.4
3200 4.1 4.9 5.4 5.7 6.0 6.4 6.6 6.9
3300 3.8 4.6 5.0 5.4 5.7 6.0 6.3 6.6
3400 3.6 4.3 4.7 5.1 5.4 5.7 6.0 6.3
3500 3.5 4.1 4.5 4.9 5.2 5.5 5.8 6.1
3600 3.4 4.0 4.3 4.7 5.0 5.3 5.6 5.9
3700 3.4 3.9 4.2 4.6 4.9 5.2 5.5 5.8
4000 3.4 3.8 4.1 4.4 4.7 5.1 5.5 5.8
4100 3.5 3.9 4.2 4.6 5.0 5.4 5.8 6.2
4500 3.5 3.9 4.3 4.8 5.3 5.9 6.5 7.2
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E. Model-Independent Limits

Table E.7.: Observed limits on the number of events for a confidence level 95% for muon
and electron channel combined. The limits are given as a function of the
resonance mass MX and the relative decay width Γ/MX .
MX [GeV] Γ/MX

0.0 0.05 0.1 0.15 0.2 0.25 0.3
800 139.9 173.5 189.2 192.7 185.7 173.1 157.8
900 66.9 87.8 104.4 115.5 120.4 120.6 117.1
1000 46.9 61.4 72.4 81.6 87.9 91.0 91.4
1100 35.2 47.1 58.2 66.7 72.2 75.3 76.3
1200 50.7 56.5 59.7 62.0 63.8 65.1 65.9
1300 22.7 29.4 34.9 40.4 45.5 49.9 53.0
1400 15.1 20.5 26.3 32.1 37.9 43.0 46.9
1500 18.2 22.4 27.1 32.1 37.2 41.7 45.1
1600 20.1 24.1 28.4 33.4 38.3 42.3 44.9
1700 14.2 19.0 24.4 30.6 36.7 41.3 44.0
1800 11.8 17.7 24.5 31.6 37.0 40.0 40.6
1900 11.6 16.6 23.1 29.8 35.1 38.4 39.7
2000 14.7 20.4 26.7 32.0 35.2 36.8 37.2
2100 15.4 20.8 26.4 30.6 32.7 33.6 33.9
2200 13.2 18.5 23.9 27.5 29.4 30.2 30.6
2300 9.8 15.4 20.7 24.2 26.1 27.1 27.3
2400 7.9 13.3 18.4 21.4 23.0 24.2 25.1
2500 8.5 13.7 17.4 19.5 20.6 21.6 22.6
2600 11.0 14.6 16.7 18.0 18.8 19.5 20.3
2700 11.9 14.6 16.0 16.8 17.3 17.7 18.4
2800 12.3 14.1 15.0 15.5 16.0 16.2 16.7
2900 11.9 13.1 13.8 14.3 14.6 14.9 15.2
3000 9.5 11.0 11.7 12.0 12.4 12.5 12.6
3100 7.5 9.2 10.1 10.7 11.2 11.6 11.9
3200 5.6 7.1 8.0 8.8 9.4 9.9 10.3
3300 4.0 5.3 6.2 7.0 7.7 8.3 8.8
3400 3.4 4.3 5.1 5.8 6.5 7.1 7.6
3500 3.2 3.9 4.5 5.1 5.6 6.2 6.8
3600 3.0 3.6 4.1 4.6 5.1 5.6 6.1
3700 3.0 3.5 3.9 4.3 4.7 5.2 5.7
4000 3.1 3.4 3.7 4.0 4.4 4.8 5.3
4100 3.3 3.6 3.9 4.2 4.6 5.0 5.5
4500 3.4 3.7 4.0 4.3 4.8 5.3 6.1
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E. Model-Independent Limits

Table E.8.: Expected limits on the number of events for a confidence level 95% for the
combined electron and moun channels. The limits are given as a function of
the resonance mass MX and the relative decay width Γ/MX .
MX [GeV] Γ/MX

0.0 0.05 0.1 0.15 0.2 0.25 0.3
800 118.1 173.5 202.6 208.7 199.5 182.9 164.3
900 50.5 71.9 86.5 96.4 101.3 102.1 101.3
1000 36.3 48.4 58.1 65.5 71.2 74.5 76.0
1100 29.7 39.0 46.8 53.4 59.0 62.7 65.0
1200 25.8 33.7 40.9 47.6 53.6 57.6 60.5
1300 22.2 29.3 36.4 43.4 49.6 54.1 57.2
1400 20.5 27.8 35.5 43.2 49.9 54.7 57.1
1500 19.3 26.4 34.8 43.4 50.6 54.9 56.8
1600 19.2 26.8 35.8 44.8 51.1 54.2 54.6
1700 17.6 25.2 34.3 43.1 48.5 50.6 50.6
1800 18.7 28.7 39.0 46.0 48.4 47.9 46.0
1900 14.3 21.6 29.7 36.0 38.7 39.8 39.8
2000 13.7 20.7 27.7 32.1 34.0 34.6 34.5
2100 12.6 18.9 24.6 28.0 29.4 29.9 29.9
2200 11.6 17.3 21.8 24.3 25.5 25.9 26.2
2300 10.7 15.7 19.2 21.3 22.4 22.8 22.9
2400 9.8 14.2 17.0 18.5 19.4 20.2 20.9
2500 9.0 12.7 15.0 16.2 17.1 17.7 18.4
2600 8.2 11.4 13.3 14.3 15.0 15.6 16.2
2700 7.6 10.2 11.8 12.7 13.3 13.8 14.4
2800 7.0 9.3 10.6 11.4 12.0 12.3 12.9
2900 6.6 8.6 9.6 10.3 10.9 11.3 11.7
3000 6.5 7.8 8.5 9.0 9.4 9.7 10.0
3100 5.5 7.0 7.8 8.4 8.9 9.3 9.7
3200 5.1 6.4 7.1 7.7 8.2 8.6 8.9
3300 4.7 6.0 6.6 7.1 7.6 8.0 8.4
3400 4.5 5.6 6.2 6.7 7.1 7.5 7.9
3500 4.3 5.3 5.8 6.3 6.8 7.2 7.6
3600 4.1 5.0 5.5 6.0 6.5 6.8 7.2
3700 4.0 4.8 5.3 5.8 6.2 6.6 7.0
4000 3.9 4.6 5.0 5.4 5.9 6.3 6.8
4100 4.1 4.7 5.2 5.7 6.2 6.7 7.3
4500 3.9 4.6 5.1 5.7 6.4 7.1 8.1
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