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1. Introduction

Belle II is a particle physics experiment currently being built at the KEK High
Energy Accelerator Research Organization in Tsukuba, Japan as an upgrade of the
Belle experiment. Data taking is planned to start in the year 2018. The Belle exper-
iment collected data from 1999 to 2010. Important findings of Belle include the
confirmation of the Kobayashi–Masukawa mechanism and other measurements
related to CP violation. Two major goals of the Belle II experiment are the further
study of CP violation and of rare B decays.

The Belle II experiment consists of the SuperKEKB asymmetric e−e+ collider and
the Belle II multi-purpose particle detector. The collider operates at the energy of
the Υ (4S) resonance, which means that many of the electron positron collisions
produce a Υ (4S) meson; this is an exited quarkonium state of a b and b̄ quark,
called bottomium. A Υ (4S) decays into an entangled pair of a B and a B̄meson in
over 96% of the cases which leads to the name B factory for such colliders. The
logo of the Belle II collaboration shown in Figure 1.1 depicts these important
facts: electron and positron have different energies, and the main purpose is
the production of B mesons. The Belle II detector features a vertex detector, a
drift chamber, a time-of-propagation counter, an aerogel ring-imaging cherenkov
detector, an electromagnetic calorimeter, and systems to detect K0

L mesons and
muons. A superconducting solenoid generates a homogeneous magnetic field of
1.5T in the inner parts. Figure 1.2 shows a view of the detector.

Multivariate methods are widely used in experimental particle physics to analyse
data and more precisely to classify certain data points as belonging to a certain
type. They are suited very well for this task given the fact that they are developed
for classifing data containing numerous variables—which is the case for measure-
ments done in collider experiments. Usually the classifiers are trained on data
obtained through Monte Carlo simulations, which use a model of the correspond-
ing detector and available knowledge about the physical processes. However,
neither the model of the detector nor the knowledge about physical properties

Belle

Figure 1.1: The logo of the Belle II collaboration [1]. The B is composed of to e’s
of different sizes, illustrating the fact that Belle II is a B factory built with an
asymmetric collider.
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Figure 1.2: Graphical representation of the Belle II detector [2].

like branching ratios is perfect. Thus, the data measured by the experiment can
differ from the simulated data on which the classifiers were trained—this means
the performance of the classifiers is not optimised for real data. An example for
the mis-modelling in Monte Carlo are interferences of particles in multi-body de-
cays. One problem resides on the theory side and is that hadronisation is not yet
fully understood but described with a variety of phenomenological models. On
the other hand, the toolchain used to produce Monte Carlo events is not yet able
to realise all sorts of interferences observed in real events: For this to work, the
tools used at different stages of event generation would need to become more co-
ordinated than it is possible at the moment for example with EvtGen and Pythia.
For cases where the differences between Monte Carlo and real data are signifi-
cant, techniques have been developed that account for these and use real data to
improve the Monte Carlo data or that train solely on real data [3].

Within the scope of this Thesis, data-driven training based on the sPlot formalism
was implemented for the Belle II Analysis Software Framework (BASF2). BASF2
is the software framework of the Belle II experiment. sPlot is a statistical tool
to unfold data distributions [4] and the per-event weights it calculates can be
used in a training. Firstly, in Chapter 2, various methods of data-driven training
of multivariate classifiers are presented, the sPlot formalism is introduced and
an algorithm is described that trains a classifier using the sPlot weights. Some
properties of the weights that are important for a training are highlighted, as well.
In Chapter 3, the implementation of the new module and its usage are described
in detail. This Chapter might be the most relevant one for users of BASF2 that
already used sPlot in another context. In Chapter 4, some applications of sPlot in
past analyses are briefly discussed. Then, the application of the new module is
shown on the basis of a simple example analysis. The performance of the classifier
trained using sPlot is compared with a classifier trained with Monte Carlo data. In
Chapter 5, the results of the work done in the scope of this Thesis are summarised
and some suggestions for the further development of the module and data-driven
training in general are presented.



2. Data-driven Training Methods for
Multivariate Classifiers

Several methods have been developed to improve the training of multivariate
classifiers using real data—the issues of simulated data were described in the
introduction. In this chapter, a selection of these methods is presented, finally
leading to the sPlot formalism which can be used to perform a training solely on
real data. As a preparation, the concept of multivariate classification is introduced
and all related terms needed for the understanding of the following chapters are
explained.

2.1 Multivariate Classification

The task of multivariate classification is to assign a class to a multidimensional
vector x. In particle physics, this is typically used to classify an event measured
in a detector as one of the two classes signal and background—signal denoting
an event that matches a certain hypothesis and background denoting all other
events. More formally, the classification is a mathematical function mapping a
multidimensional vector x ∈ Rn to a one-dimensional value:

f : Rn → R ,
x 7→ y . (2.1)

The classifier output y is also called test-statistic. Usually, it is normalised to 1.
Under certain conditions, this makes the interpretation as a probability possible.
For the actual classification a critical value Tc has to be chosen that discriminates
between the classes—a classifier output below this value is interpreted as decision
for background, an output above it as signal. In a well-trained classifier, the
mapping f is built in a such way that a loss function

err ({(xi , wi , ti)}) =
∑
i

wi g (yi , ti) wi , ti ∈ R, g : R2 → R, yi = f (xi) (2.2)

calculated on the basis of all training data points (xi , wi , ti) is minimal. Each vec-
tor xi represents one event and is composed of the numerous variables measured
by the detector. Each event is given to the training as a sample for class ti with
weight wi . Normally, ti = 1 is used for signal and ti = 0 or ti = −1 is used for back-
ground. The function g rates the difference of the target value ti and the output
yi of the classifier—this can for example be done with the quadratic difference.
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The per-event weights wi that are set to 1 in a standard training, can be used to
change the influence of events in the training: For the minimization of the loss
function it is favourable to optimize the classification of events that have greater
positive weights than other events, as the function g then evaluates to a small
value. When applied to a data sample, the classifier will perform better for events
that are similar to these events. Negative weights have a different effect: An event
with a negative weight can be used to create a large negative term within the loss
function by optimizing the classifier output for this event to be as far from the
target value as possible. If the training sample is dominated by negative weights
this can lead to the loss function having no lower bound—what this implies for
the training depends on the particular multivariate method. However, when used
reasonably, negative weights can compensate effects of other events with positive
weights in the training. In the case of side-band subtraction and sPlot, the effect
of negative weights is well-defined and useful for data-driven training. This is
discussed in more detail in the according sections of this chapter and in the case
of sPlot further illustrated in Section 4.2.

There are different types of multivariate classifiers, two of them are neural net-
works and boosted decision trees. Each of them is based on its own training
technique, which is used to adjust their internal parameters based on the training
data. The details are not described here. An overview can be found in [5] and [6].
During training the classifiers constantly evaluate their quality to prevent over-
training. A classifier is termed over-trained if it learns statistical fluctuations and
does not generalize the data—this can lead to a very poor performance on an inde-
pendent data sample. Thus, to obtain this independent data sample the training
sample is split into two samples of equal size—one of them is actually used for
the training and the other one serves as an independen test sample. Statistical
tests like the Kolmogorow-Smirnow test can be used to quantify the difference of
the classifier output distribution on the training and the test sample. Ideally, the
distributions of the classifier output are not different on the training and the test
sample.

The discriminating performance of a classifier can be evaluated through many
different plots. Two types of plots are presented hereafter that are produced
on the basis of the training and test samples. Firstly, the distributions of the
classifier output for signal and background events can be compared. An example
is Figure 4.5 in Section 4.2. If the ratio of signal and background events per bin
increases monotonously from left to right this is a sign for a well-trained classifier.
The second possibility are receiver operating characteristic curves, hereafter referred
to by ROC curves. ROC curves are a whole family of plots, but the most interesting
ones for multivariate classification display signal purity or background rejection
over signal efficiency. These three quantities are calculated by integrating over
certain parts of the classifier output distributions and depend on the cut value Tc.
The ROC curves are built pointwise by calculating these quantities for the whole
interval of Tc. An example is Figure 4.6 in Section 4.2. Signal efficiency is the
fraction of all signal events in the sample that are classified as signal:

signal efficiency =
∫ ∞
Tc

f (x|t1) dy . (2.3)

As mentioned in the beginning, the classifier output is normalised. Here, f (x|t1)
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is the classifier output for signal events—events for which hypothesis t1 is true,
and f (x|t0) is the classifier output for background events. These two distributions
are normalised respectively. Signal purity is the fraction of all events classified as
signal that are actually signal events and thus classified correctly:

signal purity =
Nsig

∫∞
Tc
f (x|t1) dy

Nsig

∫∞
Tc
f (x|t1) dy + Nbkg

∫∞
Tc
f (x|t0) dy

. (2.4)

As in this Equation, both the signal and the background distribution are used, the
actual numbers of signal event Nsig and background events Nbkg do not cancel. A
low signal purity means that the classifier mis-classifies more background events
as signal than it classifies signal events as signal. Background rejection is the
fraction of all background events that are classified as background:

background rejection =
∫ Tc

−∞
f (x|t0) dy . (2.5)

The larger the integral of such a ROC curve is, the better is the discriminating per-
formance of the classifier. Ideally, signal efficiency, signal purity and background
rejection are all 1—then the integral is maximal and 1, as well. If the separation
of signal and background is not ideal, a good trade-off for the cut value Tc has to
be found. This can be done on the basis of the ROC curves: Each point on the
curve is a pair of signal purity and signal efficiency or background rejection and
signal efficiency, and corresponds to one setting of Tc.

This overview of multivariate classification is based on [3], [5] and [6].

The terms signal and background that were already used and that will be used in
the following chapters, can occur in two slightly different contexts: on the level of
events and on the level of candidates. In both cases they are a label for satisfying or
not satisfying a certain hypothesis. For example in the Belle experiment, different
classes of events can be of interest: events in which a certain resonance of the Υ

meson was produced, like the Υ (4S) or the Υ (5S), events with two high-energetic
photons or continuum events e+e− → qq̄ with q ∈ {c, s, u, d}. Events that are of
interest for an analysis are called signal and the others background. The term
candidate is used in the context of the reconstruction of decay channels in an
event. During reconstruction, the goal is to identify particles in the measured
data and to assign them to a mother particle and a decay channel. A candidate
that complies with all conditions of a hypothesis, like is an electron or like is a
D0, is called a signal candidate. In the following chapters, event and candidate
are used synonymously as those two concepts are not different regarding the
discussed analysis methods.

2.2 Reweighting of Monte Carlo Data

Existing Monte Carlo (MC) data can be reweighted to account for differences in
data [3]. This way, the Monte Carlo data which was possibly expensive to generate
can still be used. The events are then used with a certain weight when creating
histograms, or when used in a training as discussed in the previous section. When
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creating histograms, the corresponding bin is not incremented by one for each
event but by the weight the event has.

A basic approach to compensate for differences between Monte Carlo and real
data is the usage of scale factors [3]. By comparing histograms of a certain variable
of Monte Carlo and real data the bins can be found in which they differ. For
each bin a different scale factor in [0,∞) can be introduced to scale the Monte
Carlo bin to the height of the real data bin. These scale factors can be used as
weights in a training, as well. However, correcting the distribution of one variable
can degrade the agreement of Monte Carlo and real data in another variable if
there are correlations between these variables. This kind of correlation can be
accounted for by using histograms with two or more dimensions when comparing
Monte Carlo and real data. Still, this is not satisfying because with an increasing
number of dimensions, the needed computation resources increase as well, and
the statistics per bin decreases.

A method that accounts for the correlations between all variables at once and
calculates weights event by event is the following. A multivariate classifier can
be used to discriminate Monte Carlo and real data events and its output be trans-
formed to a per-event weight [3]. It is trained with MC data as background and
real data as signal. If the classifier does not learn anything to discriminate these
two classes, the agreement of MC and data is perfect. MC events which are clas-
sified as MC are unlikely to appear in real data and thus their influence needs
to be suppressed by using a small weight. MC events which are classified as real
data are likely to appear in real data and thus the influence of MC events that
are similar to them needs to be raised with a large weight. After the training,
the classifier is applied to all events in the MC data sample. Given the classifier
output yi for MC event i, the corresponding weight wi ∈ [0,∞) can be derived
with

wi =
1 + yi
1 − yi

for yi ∈ [−1, 1] or (2.6)

wi =
yi

1 − yi
for yi ∈ [0, 1] . (2.7)

Like the scale factors, this technique cannot compensate for regions in phase space
where no MC events exist but real data events do. Another problem is that the
classifier is not aware of the class to which an event belongs. This can lead to
a situation where signal events from MC are reweighted to match background
events from data and vice versa.

2.3 Side-band Subtraction

Knowing the issues of the presented reweighting techniques for MC, these prob-
lems would disappear if multivariate classifiers could be trained solely on real
data. This is not directly possible as there are usually no pure samples of signal
and background events available. If however in the distribution of a variable a
signal peak is visible over some background, a side-band subtracted training can
be performed [3].

For this training, different regions in the distribution of the discriminating variable
need to be defined to determine which events are included as samples for signal
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Figure 2.1: Mass distribution of Λc candidates. Red is the signal region, blue
and green are the side-bands [3, 7].

Table 2.1: Input for a side-band subtracted training based on the distribution
shown in Figure 2.1. Taken from [3].

region number of events target weight

red Nsig + Nbkg signal +1
blue Nbkg signal -1
green Nsig background +1

and background. Figure 2.1 shows an example, where the invariant mass M is
used as discriminating variable. In principle, multiple discriminating variables
can be used to determine the regions—in the case of two, a two-dimensional
histogram would be used. The red region is used in the training as signal with
weight 1. Based on the side-band it has to be estimated how many signal events
Nsig and background events Nbkg are included within this region. This can for
example be done by fitting a model to the data. Then, the size of the blue region
has to be chosen such that it consists of Nbkg events. It is used in the training as
signal with weight -1. This has the effect that the background events from the red
region with weight 1 are statistically subtracted which leads to a signal sample
that statistically only consists of signal events. The green region is chosen in a size
such that it contains Nsig events. These are used in the training as background
with weight 1. The reason for chosing the background sample in the same size as
the signal sample is that this improves the training quality. The training input is
summarised in Table 2.1.

The statistical subtraction of background events only works if the background
behaves the same across the used range of the discriminating variable. This does
not mean that the density of background events has to be the same across the
range but that the variables used in the training have to be independent of the
discriminating variable. As a consequence, the discriminating variable itself can-
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not be used; it is only used to prepare the training sample. Stated differently,
the variables used in the training must not contain any information about the
discriminating variable, so the classifier cannot predict the value of the discrim-
inating variable from the knowledge of the other variables. As a check of this
independence, the training of such a classifier can actually be performed. The
quality of this classifier’s prediction is a direct measure of the dependency of the
variables and the discriminating variable. If variables depending on the discrim-
inating variable are used in the side-band subtracted training, the classifier can
learn from these variables in which region the event is located: The discriminating
variable provides an explicit assignment to signal and background in this setting
of the training, namely the signal peak and the green region, which do not overlap.
The classifier will rate any variable depending on it as very significant and clas-
sify only based on it. This is not representative for an independent data sample
and thus the classifier would perform very poorly. If no variables can be found
that are independent of the discriminating variable in the used range, side-band
subtracted training cannot be used.

2.4 The sPlot Technique

The sPlot technique can be used as an advanced side-band subtraction. It does
not require a clean background region, but only measurable differences between
the distributions of the classes [3]. With sPlot, each event is assigned a weight
for each class. sPlot does this based on a model that is fitted to the data with an
extended maximum likelihood fit and by using the properties of the covariance
matrix of this fit. The advantage over side-band subtraction is that there are no
regions to be defined. Everything is derived from the model and thus the data on
the whole range can be used—given that there are no satellite resonances present
within the range.

sPlot1 was introduced in [4] with the subtitle “A statistical tool to unfold data dis-
tributions”. This means that based on the model of some discriminating variables,
the distributions of other variables can be reconstructed for each class. These
other variables are called control variables hereafter. The discriminating variable
can for example be the invariant mass, as in the example shown in Figure 2.1.
A more descriptive example is if the signal and background classes can be un-
ambiguously separated based on some discriminating variables. In this case, the
distributions of control variables for signal and background can be determined
by histogramming these variables for signal and background events separately.
sPlot makes it possible to produce these plots even if it is not clear for all events to
which class they belong while accounting for the correlation between the classes.
The sPlots are originally thought of as a means of testing the accuracy of the model
of the discriminating variables; the agreement of the reconstructed distributions
of the control variables with what is expected based on other knowledge is a sign
of quality for the model. This can be used as a mutual check of the discriminating
variables: One discriminating variable at a time can be excluded from the set

1According to the authors, the s in sPlot originates from the usage of the covariance in the
calculation of the weights. The covariance is related to the variance which is in turn sometimes
denoted with s2—additionally, the pronounciation of the symbol σ2 for the covariance starts
with an s.
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of discriminating variables and its distribution reconstructed with sPlot to see if
the data agrees with the model. sPlot calculates errors for the bins of the recon-
structed histograms, as well. Thus, it can be seen how exact the reconstrution is
possible on the basis of the discriminating variables.

In this section, the sPlot formalism is derived based on the original sPlot paper [4]
and mostly follows their notation for better comparability. Some facts relevant for
the use of the weights in a training are added to the discussion. Firstly, the method
of extended maximum likelihood fit is explained. Then, in Section 2.4.1, a naive
but very straightforward method for the calculation of weights is discussed. It is
called inPlot and leads to the definition of sPlot weights, which are presented in
Section 2.4.2. Section 2.4.3 shows some interesting properties of the weights and
compares inPlot and sPlot weights on the basis of an example. In the last section,
the complete algorithm for an sPlot-based training is described based on [3].

The method of extended maximum likelihood (EML) is widely used in particle
physics to estimate parameters of models for a certain data sample [8]. Usually,
a data sample consists of events that belong to different classes, like signal and
background; and the model to be fitted describes the distribution of events in
a certain variable. This means, in the case of a histogram, that it describes how
many events of each class are present in each bin. A model can generally look like
this for the discussed problems:

Ns∑
n=1

Nnfn(y) , (2.8)

where Ns is the number of classes present in the sample, Nn is the yield of class n
and fn(y) is the probability density function (PDF) of the discriminating variables y
for class n. The PDFs are normalised, which means that the yields Nn are the
expected number of events for class n. Again, usually Ns is 2, with the classes
being signal and background. The parameters of the fn and the yields Nn are
estimated with an EML fit by maximising the extended log-likelihood function

L =
N∑
e=1

log

 Ns∑
n=1

Nnfn(ye)

 − Ns∑
n=1

Nn , (2.9)

where N is the total number of measured events in the data sample and ye is the
value of the discriminating variables for event e. By maximising L the set of model
parameters is found which is most likely to produce the given data sample. The
value of the last sum over all yields is the number of events that the fit actually
estimates and can be different from the number of observed events N . This term
is also the difference to the standardmaximum likelihood fit. In EML, the number
of estimated events can differ from the number of actually observed events and
thus, it has one extra degree of freedom. In particle physics experiments where
the number of events that are measured in each class can fluctuate in line with
the Poisson distribution, this degree of freedom is important and leads to better
fit results [3].

2.4.1 inPlot as a First Step
As already stated in the introduction of this section, sPlot can be used to recon-
struct the true distributions Mn(x) of control variables x for different classes n
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from the knowledge of the PDFs fn(y) of the discriminating variables y of these
classes. While the derivation is done for an arbitrary number of classes, this can
always be reduced to the two classes signal and background for a better under-
standing.

As a first step it is assumed that the control variables depend on the discriminating
variables in such a way that x is a function of y: x = x(y). This is not a case in
which x could actually be used as a control variable for y; Since the knowledge
about the distribution of x is implicitly used when constructing the histograms
of x, they cannot serve as independent means of evaluating the model for y. A
descriptive example is given after the derivation of the inPlot weights.

Under the assumption that the parameters of the PDFs fn(y) and the yields Nn are
determined by a fit as explained above, weights can be defined for each event and
each class by

Pn(ye) =
Nnfn(ye)∑Ns
k=1Nkfk(ye)

. (2.10)

This simply is the ratio of events for the value ye of the discriminating variables
that belong to class n. Stated differently, the weight is the probability to choose an
event of class nwhen choosing from events with the value ye in the discriminating
variables. From Equation 2.10 it can directly be derived that the Pn are all in [0, 1]
and that for each event e, the weights sum up to 1:

Ns∑
k=1

Pn(ye) = 1 ∀ events e . (2.11)

These weights can now be used to build the reconstructed x distributions M̃n(x)
for class n bin per bin:

Nn

∫
Bδx(x̄)

M̃n(x) dx ≡
∑

e: xe ∈Bδx(x̄)
Pn(ye) , (2.12)

where Bδx(x̄) is the x bin centered on x̄ with an edge length of δx. The sum is
over all events e in the bin. All events of the data sample are used to build these
histograms, but with the weight belonging to the class for which the histogram
is built. Because of Equation 2.11 each event is only used with total weight 1,
as in a standard histogram or training. To prove that M̃n(x) reproduces the true
distributionMn(x), a continuous form of Equation 2.12 in the limit of many events
and δx → 0 is built. For this, the sum over all events that belong to the bin is
turned into an integral over the whole range of the discriminating variable y. The
delta distribution is used to select just those parts of y that belong to the x value
x̄ that is currently being evaluated:

∑
e: xe ∈Bδx(x̄)

1→
∫ Ns∑

j=1

Njfj(y) δ(x(y) − x̄) dy . (2.13)

Like the sum over 1, this calculates the number of events with x value x̄, including
all classes. Multiplying with the weight Pn(y) leads to the continuous form of
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Equation 2.12. Angle brackets are used to denote that this is the expectation value
of the reconstructed distribution.

〈NnM̃n(x̄)〉 =
∫ Ns∑

j=1

Njfj(y) δ(x(y) − x̄) Pn(y) dy . (2.14)

Inserting the definition of the weights gives

〈NnM̃n(x̄)〉 =
∫ Ns∑

j=1

Njfj(y) δ(x(y) − x̄)
Nnfn(y)∑Ns
k=1Nkfk(y)

dy . (2.15)

The two sums over all components of the model cancel:

〈NnM̃n(x̄)〉 = Nn
∫
δ(x(y) − x̄) fn(y) dy . (2.16)

≡ NnMn(x̄) . (2.17)

The last step can be phrased as follows: As x and y are dependent variables, the
probability density of a certain x̄ in a class is the sum of the probability densities
of the y values in the same class that have x̄ as function value x(y) = x̄. Or, even
more descriptive: A value x̄ occurs as often in a class as the corresponding y
values do in the same class.

This shows that the weights defined in 2.10 can be used to reconstruct the distri-
bution of control variables if the control variables depend on the discriminating
variables. Because the control variables in this case basically belong to the set of
discriminating variables, the plots obtained using these weights are called inPlots.
As already mentioned, the inPlots cannot be used to evaluate the quality of the
model used for the discriminating variables. Because x and y are dependent, by
defining a model for y, a model for x is implicitly defined. Thus, the Pn re-weight
the events to be in line with the implicitly defined model for x. The following can
be considered as an example: A model for y is used, where in a certain region of
y, no events at all are expected to be measured. This implicitly defines, that in
certain regions of x, smaller numbers of events or no events are expected, too. If
however, there are events showing up in this region in a measurement, a small
weight is assigned to them according to the model, or even the weight 0. Then,
the reconstructed histogram of x will look like the implicitly defined one and the
mis-modeling of y cannot be detected. Thus, the inPlots are systematically biased.

2.4.2 The sPlot Formalism

Based on inPlot, weights can be derived for the more interesting case where x is
not correlated with y and thus can be used as a control variable. In the case of
uncorrelated x and y, there is no way of looking up the x value for a certain y.
Because of this, taking Equation 2.14 as a starting point, the integral needs to be
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formulated differently:

〈NnM̃n(x̄)〉 =
∫ ∫ Ns∑

j=1

Njfj(y)Mj(x) δ(x − x̄) Pn(y) dy dx (2.18)

=
∫ Ns∑

j=1

Njfj(y)Mj(x̄) Pn(y) dy . (2.19)

Like in Equation 2.14, when omitting the Pn(y), this would evaluate to the total
number of events expected for the x value x̄. As there is no direct connection
between x and y values, an integration over the whole phase space is needed. In
Equation 2.14, there are some discrete y values that contribute with their probabil-
ity density to the probability density of x̄. Here however, as there is no correlation,
there is a probability for all y values that they occur together with x̄. This proba-
bility is different in each class j. It is the product of the probability that x̄ occurs
in this class, Mj , and the expected number of events for y in this class: Njfj(y).
The inPlot weights are used to reduce the total number of events to the number
expected for class n:

〈NnM̃n(x̄)〉 =
∫ Ns∑

j=1

Njfj(y)Mj(x̄)
Nnfn(y)∑Ns
k=1Nkfk(y)

dy . (2.20)

The two sums over all components of the model now do not cancel because of the
contribution of Mj(x̄) in each class. Thus, in comparision to Equation 2.17, there
is a correction term remaining:

〈NnM̃n(x̄)〉 = Nn
Ns∑
j=1

Mj(x̄)

Nj ∫ fn(y)fj(y)∑Ns
k=1Nkfk(y)

dy

 (2.21)

, NnMn(x̄) .

This cannot be identified with the true distribution Mn(x̄) but is a linear combi-
nation of all true distributions. The correction term corresponds to the inverse of
the covariance matrix that results from the extended maximum likelihood fit as a
second derivative of −L [8]:

V −1nj =
�2(−L)
�Nn�Nj

=
N∑
e=1

fn(ye)fj(ye)(∑Ns
k=1Nkfk(ye)

)2 . (2.22)
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The sum over all events can be transformed into the continuous form like in
Equation 2.19, just that no δ distribution is needed because the covariance matrix
depends on all x values:

〈V −1nj 〉 =
∫ ∫ Ns∑

l=1

Nlfl(y)Ml(x)
fn(ye)fj(ye)(∑Ns
k=1Nkfk(ye)

)2 dy dx (2.23)

=
∫ Ns∑

l=1

Nlfl(y)
fn(ye)fj(ye)(∑Ns
k=1Nkfk(ye)

)2 dy
∫

Ml(x)dx︸        ︷︷        ︸
=1

(2.24)

=
∫

fn(ye)fj(ye)∑Ns
k=1Nkfk(ye)

dy . (2.25)

Using this in Equation 2.21 leads to

〈M̃n(x̄)〉 =
Ns∑
j=1

Mj(x̄)Nj〈V −1nj 〉 . (2.26)

This matrix equation can be inverted and solved for the true distribution

NnMn(x̄) =
Ns∑
j=1

〈Vnj〉〈M̃j(x̄)〉 . (2.27)

This means that the true x distribution in a class n is the linear combination
of all distributions reconstructed with inPlot weights, and the coefficients are
the covariances of the yields of the classes. This can now be used to build the
sPlot-reconstructed x distribution sM̃n of class n, bin per bin, analogous to Equa-
tion 2.12:

Nn

∫
Bδx(x̄)

sM̃n(x̄) dx =
Ns∑
j=1

Vnj

∫
Bδx(x̄)

M̃n(x̄) dx (2.28)

=
Ns∑
j=1

Vnj
∑

e: xe ∈Bδx(x̄)

fn(ye)∑Ns
k=1Nkfk(ye)

(2.29)

=
∑

e: xe ∈Bδx(x̄)

Ns∑
j=1

Vnj
fn(ye)∑Ns

k=1Nkfk(ye)
, (2.30)

and finally

Nn

∫
Bδx(x̄)

sM̃n(x̄) dx =
∑

e: xe ∈Bδx(x̄)
sPn(ye) , (2.31)

with

sPn(ye) =
∑Ns
j=1 Vnjfj(ye)∑Ns
k=1Nkfk(ye)

. (2.32)
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To conclude, in the case of uncorrelated variables x and y, the x distributions can
be reconstructed using the sWeights sPn as defined in Equations 2.31 and 2.32.
The weights can be calculated solely based on data. The covariance results directly
from the extended maximum likelihood fit. However, according to the authors
of [4], using it is numerically less accurate than computing it via the sum of events.
In fact, the implementation of sPlot in RooStats uses Equation 2.22 to calculate
the inverse covariance matrix and then inverts it.

2.4.3 Properties of the Weights

The sWeights have some interesting properties that are also satisfied in non-
asymptotic conditions, because they result from the properties of the extended
maximum likelihood fit and the properties of the covariance matrix. The prop-
erties are derived using three sum rules that are introduced below. If one is
interested in the properties only, these definitions can be skipped safely.

1. Maximum Likelihood Sum Rule

Calculating the partial derivative of Equation 2.9 with respect to a yield vari-
able Nj leads to the following result, because L is extremal in this variable
after the fit:

N∑
e=1

fj(ye)∑Ns
k=1Nkfk(ye)

= 1 ∀j . (2.33)

2. Variance Matrix Sum Rule

From Equations 2.22 and 2.33 it can be derived that

Ns∑
i=1

NiV
−1
ij =

Ns∑
i=1

Ni

N∑
e=1

fi(ye)fj(ye)(∑Ns
k=1Nkfk(ye)

)2
=

N∑
e=1

fj(ye)∑Ns
k=1Nkfk(ye)

2.33= 1 ∀j . (2.34)

3. Covariance Matrix Sum Rule

The sum over a row or a column l of the covariancematrix equals the yieldNl
and thus the number of expected events for this class:

Ns∑
j=1

Vjl =
Ns∑
j=1

Vjl

Ns∑
i=1

NiV
−1
ij︸      ︷︷      ︸

2.34

=
Ns∑
i=1

 Ns∑
j=1

V −1ij Vjl

Ni

=
Ns∑
i=1

δijNi = Nl ∀l . (2.35)

From this rule, the equivalence of inPlot and sPlot weights can be deduced
for the case that the discriminating variables are totally discriminating.
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Then, as all classes are separated in y, the covariance matrix has the yields
on the diagonal elements and zeros everywhere else. As a result, in the sPn
defined in Equation 2.32, only Vnnfn contribute. With Vnn = Nn in this case,
this reduces to the definition of Pn in Equation 2.10.

This sum rule is related to the fact that the non-diagonal elements of the co-
variance are≤ 0 because themodel consists of probability density functions—
PDFs are always ≥ 0 and if one component is decreased, another one has to
be increased to compensate. For the weights this means generally that they
become smaller if there is a correlation with another class—except this class
has no contribution at the given y position.

2.4.3.1 Normalization

From these three sum rules it follows that each reconstructed x distribution is
normalised:

Nn

∫
sM̃n(x) dx =

N∑
e=1

sPn(ye) =
N∑
e=1

∑Ns
j=1 Vnjfj(ye)∑Ns
k=1Nkfk(ye)

2.33=
Ns∑
j=1

Vnj
2.35= Nn ∀n . (2.36)

Furthermore, the weights assigned to an event sum up to 1:

Ns∑
l=1

sPl(ye) =
Ns∑
l=1

∑Ns
j=1 Vljfj(ye)∑Ns
k=1Nkfk(ye)

2.35=

∑Ns
j=1Njfj(ye)∑Ns
k=1Nkfk(ye)

= 1 ∀e . (2.37)

This means that the overall sPlot-reconstructed x distribution contains as many
events in each bin as were actually observed. Stated differently, the distributions
obtained with sPlot represent consistently how x is distributed in the different
classes.

2.4.3.2 Statistical Uncertainties

Based on the sWeights, statistical uncertainties for each bin in the reconstructed
distributions can be calculated:

σ

[
Nn

∫
Bδx(x̄)

sM̃n(x̄) dx
]
=

√ ∑
e: xe ∈Bδx(x̄)

(sPn(ye))2 . (2.38)

In fact, the whole covariance matrix can be reproduced with the sWeights:

N∑
e=1

(sPi(ye))(sPj(ye)) = Vij . (2.39)

The derivation can be found in [4].
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2.4.3.3 Merging of sPlots

One or more classes i and j can be merged into a single class (i + j) without the
need to perform the fit or to compute the sWeights again. The weights for the
combined class are the sum of the separate weights:

sP(i+j)(ye) = sPi(ye) + sPj(ye) ∀e . (2.40)

All properties including the normalisation and the statistical uncertainties are
still valid, this is derived in [4]. This property is useful for example if the model
contains multiple types of background events that need to be fitted separately but
are used together in a training.

2.4.4 Algorithm for the Training of Multivariate Classifiers

The use of weights calculated by sPlot in a training of multivariate classifiers
is discussed in [3]. With sPlot, each event gets assigned a weight for each class
and these weights depend on how much this event contributes to the distribution
of the class. If each event is used in the training for each class but with the
corresponding weight, the classifier will learn that certain regions in phase space
are more significant for one class than another—this information is encoded in the
weights. The classifier will optimize its separation power without that the truth
for any event is known. This implies that such a classifier cannot perform better
on Monte Carlo data compared to a classifier that was trained in the standard way.
On real data, the classifier trained using sPlot can perform better depending on
how significant the mis-modeling in Monte Carlo is. This results in the following
algorithm:

1. An extended maximum likelihood fit is performed to find the parameters
of the probability density functions fi in the model and the yields Ni of the
different classes. The fit relies on the discriminating variables y but not on
the control variables x because x und y are uncorrelated.

2. A second fit is performed where all parameters but the yields Ni are frozen.
This is proposed by the authors of [4] to improve the estimation.

3. The sWeights sPi are calculated with Equation 2.32. The covariance matrix is
calculated by inverting the inverse covariance matrix given in Equation 2.22.

4. Each event is used in the training for every class with the corresponding
weight. Usually, this means using the event twice, once for signal and once
for background. Care has to be taken when choosing the classifier and its op-
tions: Negative weights need to be supported and when splitting the sample
into training and test sample, the instances of an event should not be sepa-
rated. Details are discussed in Section 3.3.1 and 3.3.2. The variables x used
in the training need to be uncorrelated with the discriminating variables y.

This algorithm was implemented in the scope of this Thesis for the Belle II Anal-
ysis Software Framework. For the calculation of the sWeights, the sPlot imple-
mentation in the RooStats package is used—it implements points 2 and 3 of the
algorithm.

For a better understanding of the influence of sWeights in a training, Equation 2.37
is important; the sum of all weights assigned to an event is 1. This means that a
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negative weight of an event in a certain class is always complemented by a larger
positive weight when combining the weights of all other classes. Thus, negative
sWeights do not remove the lower bound of the loss function. Instead, they always
emphasize the optimisation of the classifier output for the other classes.

If variables are used in the training that are correlated with the discriminating
variables y, this will affect the performance of the classifier as it was already de-
scribed for the side-band subtracted training in Section 2.3; a variable correlated
with y is very significant during the training. The classifier will learn to give this
variable a high priority in the decision and perform badly on an independent data
sample. In a side-band subtracted training, certain regions are clearly associated
with a certain class because of the way the training sample is built and thus, the
training is heavily biased when using a variable correlated with the discriminating
variable. This effect is more subtle for a training with sWeights, but essentially
the same: The weights still define regions of the discriminating variables, that are
associated more with one class than another—this becomes visible in Figure 4.4
of the example analysis. This preference for a certain class is derived from the
discriminating variables and thus correlated with any variable that is correlated
with y. This information is then picked up by the training and leads to a bias in
the decision process. For this reason, as with side-band subtracted training, the
discriminating variables can only be used to prepare the training sample.





3. Implementation of sPlot-based
Training

In this chapter, the implementation of sPlot-based training within the Belle II
Analysis Software Framework (BASF2) is described. BASF2 is the software frame-
work of the Belle II experiment. The sPlot-based training is implemented as a new
module within BASF2 which is the main work done in the scope of this Thesis.

BASF2 is described shortly in the next Section 3.1. In Section 3.2, the definition
of the physical model using RooFit classes is discussed. sPlot’s requirement of
a model of the discriminating variables is specified in Sections 2.4.2 and 2.4.4.
In Section 3.3, the usage of the new module is documented: All parameters are
explained in detail, compatible multivariate classifiers are discussed, and some
interesting aspects of the implementation are highlighted.

3.1 The Belle II Analysis Software Framework

BASF2 is used in the Belle II experiment for online and offline data handling [5].
It is written in C++ 11 and Python 2.7 and incorporates many libraries that are
widely used in particle physics, one of them is the ROOT Data Analysis Frame-
work [9]. BASF2 is organised in packages that unite functionality belonging to a
common category, like Monte Carlo event generation, detector simulation, track
reconstruction, visualisation and physics analysis. The packages in turn contain
libraries, modules and data objects. Modules are event processing units that per-
form self-contained tasks. Most of them are written in C++. Multiple modules can
be chained together in a path, which can be used for different applications like
performing an analysis, generating Monte Carlo data or reconstructing tracks. A
common data store enables the modules to share data. BASF2 is used via a steering
file, which is a Python file that defines the path and the parameters of all used
modules. Internally, the path is translated to C++ using the Boost Python library,
so BASF2 profits from the ease of use of Python and the execution speed of C++.
Figure 3.1 illustrates how the BASF2 components act together in the processing of
the data event by event. An example steering file is shown in Section 4.2, where
an analysis using the new sPlot-based module is discussed. BASF2 supports par-
allelisation by means of multi-processing and distributed computing.

BASF2 provides an interface to ROOT’s TMVA library for multivariate analysis
(MVA) [10]. Thus, the user can easily access different multivariate classifiers
through one configuration interface and use them to separate correctly recon-
structed candidates from background. The TMVA interface provides the two
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modules TMVATeacher and TMVAExpert, that train and apply a specified classifier
on the events of a data set [5].

3.2 Specification of the Model using RooFit

There are two implementations of the sPlot algorithm available in the ROOT
framework: TSPlot [11] in the math libraries; and RooStats::SPlot [12] from the
RooStats project [13], which is built on top of the RooFit package [14]. TSPlot

was implemented alongside with the publication of the original paper introduc-
ing sPlot [4]. In this implementation, the model for the discriminating vari-
ables cannot be passed as an analytical function. Instead, the user needs to
provide a list of explicit PDF values of each discriminating variable for each
candidate. RooStats::SPlot takes the model as an analytical function defined
with RooFit, which is more comfortable, as fits are often performed with RooFit
anyway and thus no conversion of the PDF is necessary. For this reason it was
decided to use the RooStats implementation of sPlot for the development of the
new TMVASPlotTeacher module for sPlot-based training in BASF2.

RooFit provides a large selection of C++ classes to define probability density func-
tions: RooGaussian, RooExponential, RooChebychev, and many more. Those basic
PDFs can be combined using different operators, for example RooAddPdf for a
linear combination, or RooProdPdf for a product of multiple PDFs. Parameters
and observables are defined using the class RooRealVar. Chapters 3 and 4 of the
RooFit Users Manual [15] describe all concepts needed for the understanding of
the following examples. Additional guidance can be found in the tutorial macros
distributed with ROOT [16] and the ones available on the RooFit website [17],
both showing examples from different applications in physics. There is a tutorial
for RooStats::SPlot, as well [12]. The following listing shows the definition of
the model which is later used for the example analysis in Section 4.2. A plot of
the model is shown there, in Figure 4.2. It uses RooAddPdf to construct a linear
combination of the signal and background PDFs, which, for a majority of cases, is
the most straightforward approach.

Listing 3.1: Example model for the D0 mass, using PyROOT.

1 # observable

2 M = RooRealVar("M", "M", 1.83, 1.9)

3

4 # component PDFs

5 mD0 = RooRealVar("mD0", "D0 Mass", 1.864)

DataStore

Exchange of data-objects

Libraries
Use common functions

Path... ...Module Module Module Module OutputInput

Figure 3.1: Illustration of the event processing chain in BASF2 [5].
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6 sigmaD0 = RooRealVar("sigmaD0", "Width of Gaussian", 0.00325)

7 sig = RooGaussian("sig", "D0 Model", M, mD0, sigmaD0)

8

9 a0 = RooRealVar("a0", "a0", -0.115)

10 a1 = RooRealVar("a1", "a1", -0.164)

11 bkg = RooChebychev("bkg", "Background", M, RooArgList(a0, a1))

12

13 # coefficients

14 bkgfrac = RooRealVar("bkgfrac", "background frac", 44853)

15 sigfrac = RooRealVar("sigfrac", "signal frac", 18050)

16

17 # linear combination

18 model = RooAddPdf("model", "bkg+sig", RooArgList(bkg, sig), RooArgList(←↩
bkgfrac, sigfrac))

The model has to be provided to TMVASPlotTeacher via a ROOT file. The file-
name and the name of the RooFit object inside the file have to be handed over
to TMVASPlotTeacher via the parameters, which will be described in detail in Sec-
tion 3.3.1. For the example model, the object name would be model. The ROOT
file can be produced within the steering file using PyROOT, just before adding a
TMVASPlotTeacher module to the path. An example is shown in Section 4.2.

The RooFit object defining the model must be derived from RooAbsPdf, which is
the abstract interface for all probability density functions in RooFit. This way, full
flexibility is retained for the user in their definition of the model. However, all
PDF operators have to support an extended maximum likelihood fit, as sPlot is
built upon this assumption. This was already discussed in Section 2.4.2; the sPlot
formalism needs estimates for the yields of all classes. RooAddPdf and RooProdPdf

support extended maximum likelihood fits; if any part of the PDF does not sup-
port it, the error message

this PDF does not support extended maximum likelihood

is shown during the fit. Moreover, RooStats::SPlot only calculates weights for
a class if the according yield is explicitly declared in the model. In example
listing 3.1, the yields are bkgfrac for background and sigfrac for signal.

The connection between model and data are the discriminating variables. All
discriminating variables have to be represented in the model, and there is no limi-
tation on the number of discriminating variables. The ranges of the discriminating
variables defined in the model should match the ranges these variables cover in
the data, see line 2 in listing 3.1. Otherwise, the fit which is performed inside
TMVASPlotTeacher could fail. More importantly, for the sWeights to be meaning-
ful, a good choice of the ranges is essential: Discriminating and control variables
have to be independent. As a check of this independence, the training of such a
classifier can actually be performed, see Section 4.2. The quality of this classifier’s
prediction is a direct measure of the dependency of control and discriminating
variables. These considerations concerning the ranges usually mean that they are
chosen closely to the signal peak in a way that the data set contains at least as many
background as signal candidates, while not including any satellite resonances.

In a model with multiple independent discriminating variables, the PDF for each
class would consist of a PDF for each discriminating variable, multiplied using
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RooProdPdf:
ys · fs,1(x1)fs,2(x2)︸           ︷︷           ︸

RooProdPdf

+ yb · fb,1(x1)fb,2(x2)︸            ︷︷            ︸
RooProdPdf

,

where ys and yb are the yields for signal and background, and fi,j(xj) is the PDF for
class i in discriminating variable xj . This is described in more detail in Chapter 6
of the RooFit Users Manual [15]; in the case of correlated discriminating variables
a common PDF has to be defined, this is covered in Chapter 7.

The module imposes no limit on the number of classes. Weights are calculated
for every class that has a yield defined in the model. If more than two yields are
present, one classifier is trained to separate each class from the others respectively;
this approach is usually called one vs. rest. The sPlot-based training still works in
such a case because of the merging property of the sPlots defined in Equation 2.40;
the weights of the other classes are virtually summed up to built one new class.

During the run of TMVASPlotTeacher, two fits of the model to the data are per-
formed. One of them is invoked directly from the module and the other from the
RooStats::SPlot class. SPlot expects that the PDFs of all classes which are part
of the model are already fitted and normalized, and only determines the yields
by this fit. To do so, it sets all parameters except the yields explicitly to constant.
The first fit inside TMVASPlotTeacher fits all parameters to prepare for the fit by
SPlot. Depending on the structure of the model, it might be necessary to set the
parameters explicitly to be not constant:

Listing 3.2: Example model for the D0 mass, additions for the fit.

1 mD0.setConstant(kFALSE)

2 sigmaD0.setConstant(kFALSE)

3 a0.setConstant(kFALSE)

4 a1.setConstant(kFALSE)

5 dummy = 42

6 bkgfrac = RooRealVar("bkgfrac", "fraction of background", dummy, 0., dummy←↩
)

7 sigfrac = RooRealVar("sigfrac", "fraction of background", dummy, 0., dummy←↩
)

8 bkgfrac.setConstant(kFALSE);

9 sigfrac.setConstant(kFALSE);

Lines 5 and 6 concern the ranges of the yields. If no value for the ranges are
provided, RooAddPdf assumes the yields to be fractions within the interval of [0, 1]
by default. As SPlot uses an extended maximum likelihood fit, the yields need a
larger range, ideally from 0 to the number of candidates, to cover all possibilities.
The number of candidates is not necessarily known by the user of BASF2 when
writing the steering file, except they know the number by other means—a user
could also want to use one steering file for different data samples. For this rea-
son, TMVASPlotTeacher provides a way to set the range and the initial value later
depending on the number of candidates, see the explanation of the parameters
setYieldRanges and modelYieldsInitialFractions in Section 3.3.1. In the steering
file, the user might then just insert a placeholder value, like it is done with the
dummy variable in listing 3.2.
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3.3 sPlot-based Training in the Belle II Analysis Software Frame-
work

The new module TMVASPlotTeacher can be added to a path like other modules:

Listing 3.3: Adding TMVASPlotTeacher to a path inside a steering file.

1 splotteacher = register_module(’TMVASPlotTeacher’)

2 splotteacher.param(’prefix’, ...)

3 splotteacher.param(’method’, ...)

4 splotteacher.param(’listNames’, ’D0’)

5 ...

6 main.add_module(splotteacher)

It has the same output as the TMVATeacher module, more precisely it writes the
configuration of a trained classifier to disk. Thus, applying a classifier trained
with TMVASPlotTeacher on a data sample is no different from applying any another
classifier which was trained through BASF2’s TMVAInterface:

Listing 3.4: Apply a trained classifier inside a steering file.

1 expert = register_module(’TMVAExpert’)

2 expert.param(’prefix’, ...)

3 expert.param(’method’, ...)

4 expert.param(’listNames’, ’D0’)

5 expert.param(’expertOutputName’, ’Test_Probability’)

6 main.add_module(expert)

7

8 output = register_module(’VariablesToNtuple’)

9 output.param(’particleList’, ’D0’)

10 output.param(’variables’, [’extraInfo(Test_Probability)’, ’isSignal’, ’M’←↩
])

11 output.param(’fileName’, prefix + ’_expert_per_candidate.root’)

12 output.param(’treeName’, ’variables’)

13 main.add_module(output)

The module TMVAExpert reads the configuration of a trained classifier, calculates
the classifier output for every candidate and attaches it to in the sample. If the user
wants to analyse the classifier output externally, the VariablesToNtuple module
can be used to write it to disk.

3.3.1 Parameters

TMVASPlotTeacher has to be configured through parameters. In the steering file,
they are set like it was already shown in the previous listings:

Listing 3.5: Set a parameter inside a steering file.

1 splotteacher.param(<parameter name>, <parameter value>)

Some of TMVASPlotTeacher’s parameters are the same as for the standard TMVATeacher

module. The reason for this is that internally, they both use the same interface to
access TMVA to train the specified classifier. Thus, to keep this section short, only
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parameters introduced for TMVASPlotTeacher will be described hereafter. Param-
eters that appear both in TMVATeacher and TMVASPlotTeacher are only mentioned
if they have to be handled specially for an sPlot training. The full list of param-
eters of TMVATeacher with a short description can be obtained by running basf2

-m TMVATeacher. In the following, the parameters are listed with their name, type,
default value and value used in the example analysis discussed in Section 4.2.

prefix (string)
default: ’TMVA’ example: ’TMVASPlot’

This parameter is the same as in TMVATeacher. This prefix is used by the TMVAInterface
to store its configuration file $prefix.config and by TMVA itself to write the
files weights/$prefix_$method.class.C and weights/$prefix_$method.weights.xml

with additional information. TMVASPlotTeacherwrites the plot of the fit to $prefix_
pre_splot_fit.png.

prepareOption (string)
default: !V:SplitMode=Alternate:MixMode=Block:NormMode=None example: (default)

This parameter is the same as in TMVATeacher. This configuration string is passed
to TMVA and defines how the data sample is split into training and test sample.
The default option guarantees that the instances of an event are not separated. If
this is not respected, it could happen that only events with small weights or only
events with large weights are chosen for a class. A classifier trained on such a
sample would perform poorly. With NormMode=None, a change of the weights by
TMVA is inhibited. Therefore, this parameter should not be changed.

methods (list of tuples(name, type, config))
default: no default example: (’NeuroBayes’, ’Plugin’, ’H:V:...’)

This parameter is the same as in TMVATeacher. It specifies the classifier and its
configuration. For an sPlot training, a classifier has to be used that supports
negative weights. This and other requirements for the classifier are discussed in
more detail in Section 3.3.2.

variables (list of strings)
default: no default example: ’daughter(0, Kid)’, ’daughter(1, piid)’, ...

This parameter is the same as in TMVATeacher. These are the input variables used
by the TMVA method to train the classifier. In an sPlot training, these variables
must not depend on the discriminating variables or have any correlation with
them. A trivial conclusion is that the discriminating variables themselves are not
part of this list.

spectators (list of strings)
default: empty example: (default)

This parameter is the same as in TMVATeacher. A list of variables that are saved in
the output file, but not used as training input. TMVASPlotTeacher automatically
adds the discriminating variables to this list. This way, it is more convenient for
the user to analyse the distribution of the sWeights with regard to the discriminat-
ing variables.

doNotTrain (boolean)
default: false example: (default)
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This parameter is the same as in TMVATeacher. If set to true, the classifier is not
trained but only a data file with the prepared samples is written to disk. The
sWeights are included in this file. It is then possible to use BASF2’s externTeacher
command to perform the training without the need of a steering file.

maxEventsPerClass (unsigned int)
default: 0 example: (default)

This parameter is the same as in TMVATeacher. Maximum number of events per
class passed to TMVA. 0 means no limit. This is useful if it is not clear how large
the data sample is. In an sPlot training, all events are used for all classes. Thus,
this parameter defines how many events of the data sample are used.

discriminatingVariables (list of strings)
default: empty example: ’M’

The list of discriminating variables used by sPlot to determine the sWeights. The
names provided here must match the names that were chosen in the declaration
of the RooRealVars in the model—that means the names defined in the constructor
of the objects, not the names of the C++ or Python variables.

modelFileName (string)
default: empty example: ’TMVASPlot_model.root’

Path to the ROOT file containing the model which describes the distribution of
the candidate classes in the discriminating variable. This file will only be opened
read-only.

modelObjectName (string)
default: ’model’ example: ’model’

Name of the RooAbsPdf object in the ROOT file.

modelPlotComponentNames (list of strings)
default: empty example: ’sig’, ’bkg’

TMVASPlotTeacher plots the fitted model to a PNG file as a simple check for the user.
If names of RooAbsPdf objects are provided with this parameter, they are plotted
additionally on the same plot. This can be used to assess the fit for each class
separately.

modelYieldsObjectNames (list of strings)
default: empty example: ’bkgfrac’, ’sigfrac’

Name of the RooRealVar objects that represent the yields of the classes in themodel.
There have to be as many yields as classes—the number of yields is interpreted as
the number of classes. In the case of two classes, the yield for the signal class has
to be the second. The reason is that the classes are internally numbered according
to their order and BASF2’s TMVA interface interprets the largest class number as
signal.

setYieldRanges (boolean)
default: true example: (default)

If set to true, the module sets the upper limit of the yield variables that are defined
with modelYieldsObjectNames to the number of candidates. The lower limit is not
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changed. This feature is useful if the user does not know the number of candidates
when writing the steering file, for example if they want to use one steering file for
different data samples.

modelYieldsInitialFractions (vector of floats)
default: empty example: 0.99, 0.01

If set, the initial value of yield i will be set to initialFraction[i]×numberOfCandidates.
If there are fewer initial fractions given than yields, the initial values of the re-
maining yields are not changed. This feature is useful if the user does not know
the number of candidates when writing the steering file, and the fit depends on
well-set initial values.

3.3.2 Underlying Multivariate Classifiers

Multivariate classifiers used for an sPlot training must support negative weights.
The TMVA user guide includes a tabular overview of the provided classifiers and
their abilities [10, page 135]. Weights are supported by all but one classifier.
Negative weights are only supported by 6 out of 15 methods: Likelihood, PDE-RS,
PDE-Foam, k-NN, SVM and BDT. It is important to note that a classifier marked as
supporting negative weights does not necessarily do so in all configurations or
even in its default configuration. Thus, the choice of a multivariate method and
its configuration needs to be done by carefully consulting the documentation. The
following two TMVA methods were shortly tested and seem to work:

1 [(’BDTStochastic’,

2 ’BDT’,

3 ’!H:!V:NTrees=100:BoostType=Grad:Shrinkage=0.10:GradBaggingFraction=0.5:←↩
UseBaggedBoost:nCuts=256:MaxDepth=3’),

4 (’BDT’,

5 ’BDT’,

6 ’!H:!V:NTrees=100:BoostType=Grad:Shrinkage=0.10:GradBaggingFraction=1.0:←↩
nCuts=256:MaxDepth=3’)]

FastBDT, the classifier distributed with BASF2, supports negative weights using
the following configuration:

1 [(’FastBDT’,

2 ’Plugin’,

3 ’!H:!V:NTrees=100:Shrinkage=0.10:RandRatio=0.5:NCutLevel=8:NTreeLayers=3←↩
’)]

For the example analyses presented in this Thesis, the proprietary classifierNeuroBayes®

is used. It supports negative weights out of the box and is able to automatically
pre-process input variables, for example it can perform a decorrelation. The con-
figuration tuple is given in Section 4.2.1.

3.3.3 Implementation

TMVASPlotTeacher is a BASF2 module written in C++. Although it is very simi-
lar to the standard TMVATeacher, it is not implemented as a class derived from
TMVATeacher. The differences in data processing and parameters are so significant
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that the implementation would not become cleaner by using inheritance. How-
ever, the modules still share a large amount of functionality as they both use the
TMVA interface to perform the training. The implementation of TMVASPlotTeacher
was the main work done in the scope of this Thesis; including one change in the
TMVA Interface to make it possible to insert weights into the data sample.

As every module in the event processing chain, TMVASPlotTeacher implements
three phases: initialisation, event processing, and termination. In the initialisation
phase the model is read from the provided ROOT file. Some basic checks are
performed to validate the parameters provided by the user. For example it is
verified that all discriminating variables and yields are present in the model. At
this stage, the discriminating variables are added to the list of spectator variables,
as well. In the event processing phase the values of all discriminating variables
are collected for each event. TMVASPlotTeacher is integrated into BASF2 in such a
way that this phase can automatically be parallelized, like it is the case for many
other BASF2 modules. In the termination phase the fit of the model to the data,
the calculation of sWeights and the training are performed. Directly before the
fit, the ranges and initial values of the yield variables are updated using the now
known number of candidates depending on how the parameters setYieldRanges
and modelYieldsInitialFractions are set by the user.

As mentioned before, the model needs to be passed to TMVASPlotTeacher through a
ROOT file. In general, it could be made possible to pass the RooFit object directly
from the steering file to the module. However, this would need a tremendous
amount of conversion code to be written for the translation of RooFit objects
defined with PyROOT to C++ objects. Thus, the detour over a ROOT file was
preferred.





4. Applications of sPlot

4.1 Analyses in Belle and other Experiments

We are not aware of analyses in the course of the Belle experiment that use an sPlot-
based training. However, sPlot has been used in the way for which it was designed
originally, namely as a means to plot the distributions of control variables. For
example, in the ongoing analysis by Andreas Heller [18] of the decay B+ → l+νγ ,
sPlots are used to determine the systematic uncertainties of the classifiers which
were trained on MC. Besides that, sPlots are widely used in B physics [19].

sPlot-based training was used successfully for example in analyses performed
by the CDF collaboration. In [20] and [21], the background could be drastically
reduced by using the invariant mass of the particles as discriminating variable.

4.2 Example Study in Belle II on D0 → K−π+

In the following, an example analysis is performed to show the usage of the new
BASF2 module for sPlot-based training, and to compare the performance of the
sPlot-based training with a standard training. As no data is available for the
Belle II experiment yet, both trainings are done on the same data sample from
generic MC simulations. The sPlot-based training does not use the MC truth but
only the sWeights. A third training is performed to check if the variables used in
the training are correlated to the discriminating variable. In this analysis, one is
interested in D0 mesons that decay into K− and π+. The classifiers are trained to
separate correctly reconstructed D0s from background candidates, where the K−

and π+ did not originate from a D0.

4.2.1 Steering File for the Trainings

In the following, the steering file used for the analysis is presented step by step.

1 from basf2 import *
2 from modularAnalysis import *
3 import ROOT

4 from ROOT import (RooRealVar, RooGaussian, RooChebychev, RooAddPdf, ←↩
RooArgList, RooFit, RooAbsReal, TFile, kFALSE)

5

6 # configuration

7 splotPrefix = "TMVASPlot"

8 modelFileName = splotPrefix + "_model.root"

9 modelObjectName = "model"
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Firstly, the needed Python libraries are imported. basf2 and modularAnalysis

provide access to the BASF2 modules and to the functions needed to build the
analysis path. The ROOT libraries are used to define the model needed by sPlot.
Then, some variables are defined for later use as file and ROOT object names.

10 main = create_path()

11 main.add_module(register_module(’RootInput’))

12 main.add_module(register_module(’Gearbox’))

The path is created, and three modules added to it. RootInput is needed to load
data from ROOT files, the Gearbox module loads the detector parameters and the

13 fillParticleList(’K-’, ’Kid > 0.1’, path=main)

14 fillParticleList(’pi+’, ’piid > 0.1’, path=main)

K− and π+ candidates are selected with a soft cut on the corresponding identifica-
tion likelihood ratio.

15 reconstructDecay(’D0:raw -> K- pi+’, ’1.8275 < M < 1.9025’, path=main)

16 vertexKFit(’D0:raw’, 0.001, path=main)

17 cutAndCopyList(’D0’, ’D0:raw’, ’1.83 < M < 1.9’, path=main, writeOut=True)

18 matchMCTruth(’D0’, path=main)

Now, D0 candidates are reconstructed from K− and π+. A range around the
already known invariant mass of the reconstructed D0 is chosen. Then, a vertex
fit is performed to find the secondary vertex of the D0. A soft cut drops candidates
for which the K− and π+ tracks have no common vertex. The list of D0 candidates
is then copied while cutting a small piece from both sides of the mass range. This
is necessary because the vertex fit changes the invariant mass a bit. The invariant
mass of some particles shifts outside of the range, which reduces the statistics in
the bins at the borders of the range. Thus, these regions are cut. The last line adds
the MC information to the candidates.

19 variables = [’daughter(0, Kid)’, ’daughter(1, piid)’,

20 ’decayAngle(0)’,

21 ’daughter(0, dr)’, ’daughter(0, dz)’,

22 ’daughter(1, dr)’, ’daughter(1, dz)’,

23 ’daughter(0, chiProb)’, ’daughter(1, chiProb)’,

24 ’p_CMS’, ’pt_CMS’, ’pz_CMS’,

25 ’dr’, ’dz’, ’chiProb’, ’significanceOfDistance’,

26 ’VertexZDist’]

27 discriminatingVariables = [’M’]

Here, the variables used in the training and the discriminating variables are de-
fined. Hereafter, the variables used in the training are refered to as control vari-
ables to be consistent with the terminology of sPlot. The invariant massM is used
as discriminating variable as it is easy to fit to a model.

28 methods = [

29 (’NeuroBayes’, ’Plugin’, ’H:V:Preprocessing=122:ShapeTreat=OFF:←↩
NtrainingIter=20:NBIndiPreproFlagByVarname=daughter0Kid=94,←↩
daughter1piid=94,’ + ",".join( ROOT.Belle2.Variable.←↩
makeROOTCompatible(variable) + "=34" for variable in variables[2:]←↩
))
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30 ]

This is the classifier configuration that is used for all trainings. The proprietary
classifier NeuroBayes® can be configured to perform a different preprocessing for
each variable. An explanation of the processing flags can be found in [6].

In the following, the model of the discriminating variable is defined using RooFit
classes. This has already been discussed in detail in Section 3.2.

31 # observable

32 M = RooRealVar("M", "M", 1.83, 1.9)

33 M.setBins(250)

34

35 # Setup component PDFs

36 mD0 = RooRealVar("mD0", "D0 Mass", 1.865)

37 sigmaD0 = RooRealVar("sigmaD0", "Width of Gaussian", 0.025)

38 sig = RooGaussian("sig", "D0 Model", M, mD0, sigmaD0)

39 mD0.setConstant(kFALSE)

40 sigmaD0.setConstant(kFALSE)

41

42 a0 = RooRealVar("a0", "a0", -0.69)

43 a1 = RooRealVar("a1", "a1", 0.1)

44 a0.setConstant(kFALSE)

45 a1.setConstant(kFALSE)

46 bkg = RooChebychev("bkg", "Background", M, RooArgList(a0, a1))

47

48 # Add signal and background

49 dummy = 42

50 bkgfrac = RooRealVar("bkgfrac", "fraction of background", dummy, 0., dummy←↩
)

51 sigfrac = RooRealVar("sigfrac", "fraction of background", dummy, 0., dummy←↩
)

52

53 # Parameters for TMVASPlotTeacher

54 modelYieldsObjectNames = [’bkgfrac’, ’sigfrac’]

55 modelYieldsInitialFractions = [0.99, 0.01]

56 modelPlotComponentNames = [’sig’, ’bkg’]

57

58 bkgfrac.setConstant(kFALSE)

59 sigfrac.setConstant(kFALSE)

60

61 model = RooAddPdf(modelObjectName, "bkg+sig", RooArgList(bkg, sig), ←↩
RooArgList(bkgfrac, sigfrac))

62

63 # Write model to file and close the file, so TMVASPlotTeacher can open it.

64 modelFile = TFile(modelFileName, "RECREATE")

65 model.Write(modelObjectName)

66 modelFile.ls()

67 modelFile.Close()

The range of the discriminating variable is chosen tight around the D0 peak, so
that no satellite resonances are included. It is important that the range defined
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in the model is the same as the range in which candidates were reconstructed.
Otherwise, the fit performed before the calculation of the sWeights could fail.

Now, a TMVASPlotTeacher is added to the path. The parameters defined in the
previous parts of the steering file are passed to it.

68 splotteacher = register_module(’TMVASPlotTeacher’)

69 splotteacher.param(’prefix’, splotPrefix)

70 splotteacher.param(’methods’, methods)

71 splotteacher.param(’variables’, variables)

72 splotteacher.param(’discriminatingVariables’, discriminatingVariables)

73 splotteacher.param(’modelFileName’, modelFileName)

74 splotteacher.param(’modelObjectName’, modelObjectName)

75 splotteacher.param(’modelYieldsObjectNames’, modelYieldsObjectNames)

76 splotteacher.param(’modelYieldsInitialFractions’, ←↩
modelYieldsInitialFractions)

77 splotteacher.param(’modelPlotComponentNames’, modelPlotComponentNames)

78 splotteacher.param(’listNames’, ’D0’)

79 main.add_module(splotteacher)

The parameter listNames is used to specify that the training should be performed
on the D0 candidates. The discriminating variables are automatically added to
the spectator variables, so this parameter is omitted here.

For the standard training, TMVATeacher is added to the path.

80 teacher = register_module(’TMVATeacher’)

81 teacher.param(’prefix’, ’TMVA’)

82 teacher.param(’methods’, methods)

83 teacher.param(’variables’, variables)

84 teacher.param(’spectators’, discriminatingVariables)

85 teacher.param(’target’, ’isSignal’)

86 teacher.param(’prepareOption’, ’!V:SplitMode=random:NormMode=None’)

87 teacher.param(’listNames’, ’D0’)

88 main.add_module(teacher)

The important difference is that for TMVATeacher, the target of the training is de-
fined with the parameter target, which is the MC truth in this case. The target of
the training for a TMVASPlotTeacher is defined via the names of the yields in the
model, provided via the modelYieldsObjectNames parameter.

To test if the control variables are uncorrelated to the discriminating variableM,
the following classifier is used:

89 cutAndCopyList(’D0:background’, ’D0’, ’isSignal == 0’, path=main)

90 teacher = register_module(’TMVATeacher’)

91 teacher.param(’prefix’, ’TMVAMCorrelation’)

92 teacher.param(’methods’, methods)

93 teacher.param(’variables’, variables)

94 teacher.param(’spectators’, discriminatingVariables)

95 teacher.param(’target’, ’isInRegion(M, 1.855, 1.875)’)

96 teacher.param(’prepareOption’, ’!V:SplitMode=random:NormMode=None’)

97 teacher.param(’listNames’, ’D0:background’)

98 main.add_module(teacher)
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Figure 4.1:Classifier output distributions of the correlation training, taken from
the NeuroBayes® report. The red curve is signal, the black one for background.
It can be seen that no separation of the two samples is possible. NeuroBayes®

uses the target value −1 for background and 1 for signal.

The classifier is trained to predict, for background candidates, if the invariant
mass is located in the signal region. Thus, signal in this case are background
candidates with an invariant mass in the signal region, and background are back-
ground candidates with an invariant mass outside the signal region. If the control
variables are correlated toM, this separation is possible. For this training, a parti-
cle list has to be prepared that only contains background candidates. Finally, the
path is executed with the following line:

99 process(main)

4.2.2 Check for Correlation of the Control Variables

The result of the correlation test of control and discriminating variables is shown
in Figure 4.1. It shows the classifier output distribution for signal and background
candidates. What signal and background means in this classification, was defined
above. The distributions are located on top of each other and thus, the classifier
cannot distinguish them. This means that the control variables are uncorrelated
to the discriminating variables and the sPlot-based training can be used.

4.2.3 Distribution of the sWeights in the Training Sample

As a next step, the calculation of the sWeights is examined. Figure 4.2 shows that
the fit of the model to the data was successful, and the model is able to describe
the data well.

Figure 4.3 shows the distributions of the sWeights for signal and background.
Most candidates are assigned extreme weights. This is consistent with the model,
as for many candidates it is clear to which class they belong. More candidates are
assigned a large backgroundweight. The reason is that there are more background
than signal candidates in the sample. The numbers are 38 452 for background
and 24 451 for signal, which adds up to 62 903. Interestingly, the yields are de-
termined by the fit are 44 853 for background and 18 050 for signal. This is an



34 sPlot-based Training of Multivariate Classifiers in BASF2

Figure 4.2: Control plot produced by TMVASPlotTeacher. The fit of the model to
the data succeeded and describes the data well.

indication that the model does not describe the MC as accurate as thought initially.
The fact that the ranges of the weights differ between signal and background is
also resulting from the different yields for signal and background; the covariance
between the two classes is the same for both the calculation of the signal and
background weights with Equation 2.32, but the variance of background is larger
than the variance of signal. Two facts that agree with Equation 2.37 are that the
mean values of the two distributions sum up to 1, and that the maximum weight
of one class sums up to 1 with the minimum of the other class respectively.

Figure 4.4 shows the distribution of the sWeights for signal and background de-
pending on the value of the discriminating variableM. It can be seen that every
M is assigned one weight for signal and background respectively, disregarding
numerical inaccuracies of the histogram. The signal and background weights sum
up to 1 for every M. Consulting Figure 4.2, weights close to 0.5 are assigned to
values ofM where signal and background distribution are close, too.

4.2.4 Performance Comparision of the Trainings

As a last step, the two trained classifiers are now applied on one independent data
sample. This sample has the same size than the one that was used for the training.
For that purpose, the module TMVAExpert is used in a steering file respectively. The
file is explained on the basis of the one for the sPlot-based training. To begin with,
the steering files start with the same commands as the one used for the trainings
to reconstruct the candidates:

1 from basf2 import *
2 from modularAnalysis import *
3 main = create_path()

4 main.add_module(register_module(’RootInput’))

5 main.add_module(register_module(’Gearbox’))

6 main.add_module(register_module(’ParticleLoader’))

7 fillParticleList(’K-’, ’Kid > 0.1’, path=main)

8 fillParticleList(’pi+’, ’piid > 0.1’, path=main)
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Figure 4.3: Distribution of the sWeights for signal and background. Most can-
didates are assigned extreme weights. The extremal values differ a bit between
signal and background. The mean values of signal and background distribution
sum up to 1 corresponding to Equation 2.37.
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Figure 4.4: Distribution of the sWeights for signal and background depending
onM. EveryM is assigned one weight for signal and background respectively,
disregarding numerical inaccuracies of this histogram. Signal and background
weights sum up to 1 for everyM.
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9 reconstructDecay(’D0:raw -> K- pi+’, ’1.8275 < M < 1.9025’, path=main)

10 vertexKFit(’D0:raw’, 0.001, path=main)

11 cutAndCopyList(’D0’, ’D0:raw’, ’1.83 < M < 1.9’, path=main, writeOut=True)

12 matchMCTruth(’D0’, path=main)

Then, TMVAExpert is added to the path:

13 expert = register_module(’TMVAExpert’)

14 expert.param(’prefix’, ’TMVASPlot’)

15 expert.param(’method’, ’NeuroBayes’)

16 expert.param(’listNames’, ’D0’)

17 expert.param(’expertOutputName’, ’Test_Probability’)

18 main.add_module(expert)

Here, the same prefix and the samemethod name are used as with the TMVASPlotTeacher
module. This way, the expert finds the classifier definition on disk. The output of
the classifier is attached to the data set with the name ’Test_Probability’.

With the VariablesToNtuple module, a ROOT file is produced for the further
studies of the classifier performance:

19 output = register_module(’VariablesToNtuple’)

20 output.param(’particleList’, ’D0’)

21 output.param(’variables’, [’extraInfo(Test_Probability)’, ’isSignal’, ’M’←↩
])

22 output.param(’fileName’, ’TMVASPlot’ + ’_expert_per_candidate.root’)

23 output.param(’treeName’, ’variables’)

24 main.add_module(output)

25 process(main)

For each candidate, the invariant mass, the MC truth and the classifier output
are written to disk. The steering file for the application of the standard training
can be derived from this one by replacing the two occurences of ’TMVASPlot’ by
’TMVA’.

The performance of the classifiers is now examined and compared by means of the
classifier output distributions and two ROC plots. The classifier output distribu-
tions are shown in Figure 4.5. It can be seen that both classifiers can separate sig-
nal and background. The classifier trained using sPlot has a better identification
of background than the standard classifier, because the background distribution
is shifted more to the left side.

The ROC plots in Figure 4.6 show that the sPlot-based training performs not much
worse than the standard training. Consulting Figure 4.5, the main reason for the
loss in performance is that the signal distribution of the sPlot-based classifier has
large contributions far into the background range.



Chapter 4. Applications of sPlot 37

1− 0.5− 0 0.5 10

0.01

0.02

0.03

0.04

0.05

Network output

p
ro

b
a
b

ili
ty

(a) sPlot-based training

1− 0.5− 0 0.5 10

0.005

0.01

0.015

0.02

0.025

Network output

p
ro

b
a
b

ili
ty

(b) Standard training

Figure 4.5:Classifier output distributions for sPlot-based and standard training.
The red curve is signal, the blue curve is background. Both classifiers are able
to separate signal and background. NeuroBayes® uses the target value −1 for
background and 1 for signal.
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Figure 4.6: ROC plots comparing sPlot-based and standard training. Blue is the
sPlot-based training and red the standard training. The sPlot-based training
performs not much worse than the standard training.





5. Summary and Outlook

In the scope of this Thesis, an sPlot-based data-driven training ofmultivariate clas-
sifiers was implemented into the Belle II Analysis Software Framework (BASF2).
It can now easily be used within the event processing pipeline by the users of
BASF2.

Data-driven training is useful in cases where the available simulated Monte Carlo
data differs significantly from the real data. The sPlot formalism can, based on a
model of some discriminating variables, reconstruct the distributions of control
variables that are uncorrelated with the discriminating variables. It does this
by introducing weights per event and per class. These weights can be used in
a training where the classifier will learn only based on real data to separate the
different classes.

On the basis of an example analysis, it was shown how the new module is used
within BASF2. The performance of the classifier training using sPlot was com-
pared to a classifier trained on the same data sample the standard way using the
Monte Carlo truth. Because no real data was available, the sPlot training was
performed on Monte Carlo data, but without using the Monte Carlo truth. Thus,
it was expected that the performance is worse than with a standard training. How-
ever, it could be seen that the drop in performance was not large. As a result, the
classifier could perform better than the classifier trained in the standard way on
real data. This is particularly interesting during the initial stage of an experiment,
when no MC corresponding to the current detector configuration is available yet.

It is planned to use the sPlot-based training within the Full Event Interpreta-
tion (FEI) [5]. The FEI is an advanced analysis method in BASF2. It is useful for
analyses that reconstruct the decays of both Bmesons originating from an Υ (4S),
which is a technique unique to B factories: The decay channel of interest, called
the signal side, contains a B meson called Bsig. Because the B mesons are en-
tangled, some properties of the other B meson, called Btag, like its flavour and
4-momentum, are implicitly defined. By trying to reconstruct the tag side in ad-
dition to the signal side, the accuracy of the analysis can be improved, because
the background can be reduced drastically. With sPlot, many classifiers employed
in the FEI could be trained on real data automatically. On the tag side, decay
channels with high statistics are used anyway, which is a good precondition for
data-driven training.

For the future, it is also planned to extend the sPlot method so it can correctly
handle variables correlated with the discriminating variables. Then, performing
a training on real data becomes even more easy as there are fewer constraints on
the choice of variables.
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